1 //===- AffineDataCopyGeneration.cpp - Explicit memref copying pass ------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to automatically promote accessed memref regions
10 // to buffers in a faster memory space that is explicitly managed, with the
11 // necessary data movement operations performed through either regular
12 // point-wise load/store's or DMAs. Such explicit copying (also referred to as
13 // array packing/unpacking in the literature), when done on arrays that exhibit
14 // reuse, results in near elimination of conflict misses, TLB misses, reduced
15 // use of hardware prefetch streams, and reduced false sharing. It is also
16 // necessary for hardware that explicitly managed levels in the memory
17 // hierarchy, and where DMAs may have to be used. This optimization is often
18 // performed on already tiled code.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "PassDetail.h"
23 #include "mlir/Analysis/Utils.h"
24 #include "mlir/Dialect/Affine/IR/AffineOps.h"
25 #include "mlir/Dialect/Affine/Passes.h"
26 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
27 #include "mlir/Dialect/MemRef/IR/MemRef.h"
28 #include "mlir/Dialect/StandardOps/IR/Ops.h"
29 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
30 #include "mlir/Transforms/LoopUtils.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include <algorithm>
35 
36 #define DEBUG_TYPE "affine-data-copy-generate"
37 
38 using namespace mlir;
39 
40 namespace {
41 
42 /// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
43 /// introducing copy operations to transfer data into `fastMemorySpace` and
44 /// rewriting the original load's/store's to instead load/store from the
45 /// allocated fast memory buffers. Additional options specify the identifier
46 /// corresponding to the fast memory space and the amount of fast memory space
47 /// available. The pass traverses through the nesting structure, recursing to
48 /// inner levels if necessary to determine at what depth copies need to be
49 /// placed so that the allocated buffers fit within the memory capacity
50 /// provided.
51 // TODO: We currently can't generate copies correctly when stores
52 // are strided. Check for strided stores.
53 struct AffineDataCopyGeneration
54     : public AffineDataCopyGenerationBase<AffineDataCopyGeneration> {
55   AffineDataCopyGeneration() = default;
56   explicit AffineDataCopyGeneration(unsigned slowMemorySpace,
57                                     unsigned fastMemorySpace,
58                                     unsigned tagMemorySpace,
59                                     int minDmaTransferSize,
60                                     uint64_t fastMemCapacityBytes) {
61     this->slowMemorySpace = slowMemorySpace;
62     this->fastMemorySpace = fastMemorySpace;
63     this->tagMemorySpace = tagMemorySpace;
64     this->minDmaTransferSize = minDmaTransferSize;
65     this->fastMemoryCapacity = fastMemCapacityBytes / 1024;
66   }
67 
68   void runOnFunction() override;
69   LogicalResult runOnBlock(Block *block, DenseSet<Operation *> &copyNests);
70 
71   // Constant zero index to avoid too many duplicates.
72   Value zeroIndex = nullptr;
73 };
74 
75 } // end anonymous namespace
76 
77 /// Generates copies for memref's living in 'slowMemorySpace' into newly created
78 /// buffers in 'fastMemorySpace', and replaces memory operations to the former
79 /// by the latter. Only load op's handled for now.
80 /// TODO: extend this to store op's.
81 std::unique_ptr<OperationPass<FuncOp>> mlir::createAffineDataCopyGenerationPass(
82     unsigned slowMemorySpace, unsigned fastMemorySpace, unsigned tagMemorySpace,
83     int minDmaTransferSize, uint64_t fastMemCapacityBytes) {
84   return std::make_unique<AffineDataCopyGeneration>(
85       slowMemorySpace, fastMemorySpace, tagMemorySpace, minDmaTransferSize,
86       fastMemCapacityBytes);
87 }
88 std::unique_ptr<OperationPass<FuncOp>>
89 mlir::createAffineDataCopyGenerationPass() {
90   return std::make_unique<AffineDataCopyGeneration>();
91 }
92 
93 /// Generate copies for this block. The block is partitioned into separate
94 /// ranges: each range is either a sequence of one or more operations starting
95 /// and ending with an affine load or store op, or just an affine.forop (which
96 /// could have other affine for op's nested within).
97 LogicalResult
98 AffineDataCopyGeneration::runOnBlock(Block *block,
99                                      DenseSet<Operation *> &copyNests) {
100   if (block->empty())
101     return success();
102 
103   uint64_t fastMemCapacityBytes =
104       fastMemoryCapacity != std::numeric_limits<uint64_t>::max()
105           ? fastMemoryCapacity * 1024
106           : fastMemoryCapacity;
107   AffineCopyOptions copyOptions = {generateDma, slowMemorySpace,
108                                    fastMemorySpace, tagMemorySpace,
109                                    fastMemCapacityBytes};
110 
111   // Every affine.forop in the block starts and ends a block range for copying;
112   // in addition, a contiguous sequence of operations starting with a
113   // load/store op but not including any copy nests themselves is also
114   // identified as a copy block range. Straightline code (a contiguous chunk of
115   // operations excluding AffineForOp's) are always assumed to not exhaust
116   // memory. As a result, this approach is conservative in some cases at the
117   // moment; we do a check later and report an error with location info.
118   // TODO: An 'affine.if' operation is being treated similar to an
119   // operation. 'affine.if''s could have 'affine.for's in them;
120   // treat them separately.
121 
122   // Get to the first load, store, or for op (that is not a copy nest itself).
123   auto curBegin =
124       std::find_if(block->begin(), block->end(), [&](Operation &op) {
125         return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
126                copyNests.count(&op) == 0;
127       });
128 
129   // Create [begin, end) ranges.
130   auto it = curBegin;
131   while (it != block->end()) {
132     AffineForOp forOp;
133     // If you hit a non-copy for loop, we will split there.
134     if ((forOp = dyn_cast<AffineForOp>(&*it)) && copyNests.count(forOp) == 0) {
135       // Perform the copying up unti this 'for' op first.
136       affineDataCopyGenerate(/*begin=*/curBegin, /*end=*/it, copyOptions,
137                              /*filterMemRef=*/llvm::None, copyNests);
138 
139       // Returns true if the footprint is known to exceed capacity.
140       auto exceedsCapacity = [&](AffineForOp forOp) {
141         Optional<int64_t> footprint =
142             getMemoryFootprintBytes(forOp,
143                                     /*memorySpace=*/0);
144         return (footprint.hasValue() &&
145                 static_cast<uint64_t>(footprint.getValue()) >
146                     fastMemCapacityBytes);
147       };
148 
149       // If the memory footprint of the 'affine.for' loop is higher than fast
150       // memory capacity (when provided), we recurse to copy at an inner level
151       // until we find a depth at which footprint fits in fast mem capacity. If
152       // the footprint can't be calculated, we assume for now it fits. Recurse
153       // inside if footprint for 'forOp' exceeds capacity, or when
154       // skipNonUnitStrideLoops is set and the step size is not one.
155       bool recurseInner = skipNonUnitStrideLoops ? forOp.getStep() != 1
156                                                  : exceedsCapacity(forOp);
157       if (recurseInner) {
158         // We'll recurse and do the copies at an inner level for 'forInst'.
159         // Recurse onto the body of this loop.
160         (void)runOnBlock(forOp.getBody(), copyNests);
161       } else {
162         // We have enough capacity, i.e., copies will be computed for the
163         // portion of the block until 'it', and for 'it', which is 'forOp'. Note
164         // that for the latter, the copies are placed just before this loop (for
165         // incoming copies) and right after (for outgoing ones).
166 
167         // Inner loop copies have their own scope - we don't thus update
168         // consumed capacity. The footprint check above guarantees this inner
169         // loop's footprint fits.
170         affineDataCopyGenerate(/*begin=*/it, /*end=*/std::next(it), copyOptions,
171                                /*filterMemRef=*/llvm::None, copyNests);
172       }
173       // Get to the next load or store op after 'forOp'.
174       curBegin = std::find_if(std::next(it), block->end(), [&](Operation &op) {
175         return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
176                copyNests.count(&op) == 0;
177       });
178       it = curBegin;
179     } else {
180       assert(copyNests.count(&*it) == 0 &&
181              "all copy nests generated should have been skipped above");
182       // We simply include this op in the current range and continue for more.
183       ++it;
184     }
185   }
186 
187   // Generate the copy for the final block range.
188   if (curBegin != block->end()) {
189     // Can't be a terminator because it would have been skipped above.
190     assert(!curBegin->hasTrait<OpTrait::IsTerminator>() &&
191            "can't be a terminator");
192     // Exclude the affine.yield - hence, the std::prev.
193     affineDataCopyGenerate(/*begin=*/curBegin, /*end=*/std::prev(block->end()),
194                            copyOptions, /*filterMemRef=*/llvm::None, copyNests);
195   }
196 
197   return success();
198 }
199 
200 void AffineDataCopyGeneration::runOnFunction() {
201   FuncOp f = getFunction();
202   OpBuilder topBuilder(f.getBody());
203   zeroIndex = topBuilder.create<arith::ConstantIndexOp>(f.getLoc(), 0);
204 
205   // Nests that are copy-in's or copy-out's; the root AffineForOps of those
206   // nests are stored herein.
207   DenseSet<Operation *> copyNests;
208 
209   // Clear recorded copy nests.
210   copyNests.clear();
211 
212   for (auto &block : f)
213     (void)runOnBlock(&block, copyNests);
214 
215   // Promote any single iteration loops in the copy nests and collect
216   // load/stores to simplify.
217   SmallVector<Operation *, 4> copyOps;
218   for (Operation *nest : copyNests)
219     // With a post order walk, the erasure of loops does not affect
220     // continuation of the walk or the collection of load/store ops.
221     nest->walk([&](Operation *op) {
222       if (auto forOp = dyn_cast<AffineForOp>(op))
223         (void)promoteIfSingleIteration(forOp);
224       else if (isa<AffineLoadOp, AffineStoreOp>(op))
225         copyOps.push_back(op);
226     });
227 
228   // Promoting single iteration loops could lead to simplification of
229   // contained load's/store's, and the latter could anyway also be
230   // canonicalized.
231   RewritePatternSet patterns(&getContext());
232   AffineLoadOp::getCanonicalizationPatterns(patterns, &getContext());
233   AffineStoreOp::getCanonicalizationPatterns(patterns, &getContext());
234   FrozenRewritePatternSet frozenPatterns(std::move(patterns));
235   (void)applyOpPatternsAndFold(copyOps, frozenPatterns, /*strict=*/true);
236 }
237