1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 
11 #include "mlir/Conversion/LLVMCommon/VectorPattern.h"
12 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
13 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
15 #include "mlir/Dialect/MemRef/IR/MemRef.h"
16 #include "mlir/Dialect/StandardOps/IR/Ops.h"
17 #include "mlir/Dialect/Vector/VectorOps.h"
18 #include "mlir/IR/BuiltinTypes.h"
19 #include "mlir/Support/MathExtras.h"
20 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
21 #include "mlir/Transforms/DialectConversion.h"
22 
23 using namespace mlir;
24 using namespace mlir::vector;
25 
26 // Helper to reduce vector type by one rank at front.
27 static VectorType reducedVectorTypeFront(VectorType tp) {
28   assert((tp.getRank() > 1) && "unlowerable vector type");
29   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
30 }
31 
32 // Helper to reduce vector type by *all* but one rank at back.
33 static VectorType reducedVectorTypeBack(VectorType tp) {
34   assert((tp.getRank() > 1) && "unlowerable vector type");
35   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
36 }
37 
38 // Helper that picks the proper sequence for inserting.
39 static Value insertOne(ConversionPatternRewriter &rewriter,
40                        LLVMTypeConverter &typeConverter, Location loc,
41                        Value val1, Value val2, Type llvmType, int64_t rank,
42                        int64_t pos) {
43   if (rank == 1) {
44     auto idxType = rewriter.getIndexType();
45     auto constant = rewriter.create<LLVM::ConstantOp>(
46         loc, typeConverter.convertType(idxType),
47         rewriter.getIntegerAttr(idxType, pos));
48     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
49                                                   constant);
50   }
51   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
52                                               rewriter.getI64ArrayAttr(pos));
53 }
54 
55 // Helper that picks the proper sequence for inserting.
56 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
57                        Value into, int64_t offset) {
58   auto vectorType = into.getType().cast<VectorType>();
59   if (vectorType.getRank() > 1)
60     return rewriter.create<InsertOp>(loc, from, into, offset);
61   return rewriter.create<vector::InsertElementOp>(
62       loc, vectorType, from, into,
63       rewriter.create<arith::ConstantIndexOp>(loc, offset));
64 }
65 
66 // Helper that picks the proper sequence for extracting.
67 static Value extractOne(ConversionPatternRewriter &rewriter,
68                         LLVMTypeConverter &typeConverter, Location loc,
69                         Value val, Type llvmType, int64_t rank, int64_t pos) {
70   if (rank == 1) {
71     auto idxType = rewriter.getIndexType();
72     auto constant = rewriter.create<LLVM::ConstantOp>(
73         loc, typeConverter.convertType(idxType),
74         rewriter.getIntegerAttr(idxType, pos));
75     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
76                                                    constant);
77   }
78   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
79                                                rewriter.getI64ArrayAttr(pos));
80 }
81 
82 // Helper that picks the proper sequence for extracting.
83 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
84                         int64_t offset) {
85   auto vectorType = vector.getType().cast<VectorType>();
86   if (vectorType.getRank() > 1)
87     return rewriter.create<ExtractOp>(loc, vector, offset);
88   return rewriter.create<vector::ExtractElementOp>(
89       loc, vectorType.getElementType(), vector,
90       rewriter.create<arith::ConstantIndexOp>(loc, offset));
91 }
92 
93 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
94 // TODO: Better support for attribute subtype forwarding + slicing.
95 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
96                                               unsigned dropFront = 0,
97                                               unsigned dropBack = 0) {
98   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
99   auto range = arrayAttr.getAsRange<IntegerAttr>();
100   SmallVector<int64_t, 4> res;
101   res.reserve(arrayAttr.size() - dropFront - dropBack);
102   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
103        it != eit; ++it)
104     res.push_back((*it).getValue().getSExtValue());
105   return res;
106 }
107 
108 // Helper that returns data layout alignment of a memref.
109 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
110                                  MemRefType memrefType, unsigned &align) {
111   Type elementTy = typeConverter.convertType(memrefType.getElementType());
112   if (!elementTy)
113     return failure();
114 
115   // TODO: this should use the MLIR data layout when it becomes available and
116   // stop depending on translation.
117   llvm::LLVMContext llvmContext;
118   align = LLVM::TypeToLLVMIRTranslator(llvmContext)
119               .getPreferredAlignment(elementTy, typeConverter.getDataLayout());
120   return success();
121 }
122 
123 // Return the minimal alignment value that satisfies all the AssumeAlignment
124 // uses of `value`. If no such uses exist, return 1.
125 static unsigned getAssumedAlignment(Value value) {
126   unsigned align = 1;
127   for (auto &u : value.getUses()) {
128     Operation *owner = u.getOwner();
129     if (auto op = dyn_cast<memref::AssumeAlignmentOp>(owner))
130       align = mlir::lcm(align, op.alignment());
131   }
132   return align;
133 }
134 
135 // Helper that returns data layout alignment of a memref associated with a
136 // load, store, scatter, or gather op, including additional information from
137 // assume_alignment calls on the source of the transfer
138 template <class OpAdaptor>
139 LogicalResult getMemRefOpAlignment(LLVMTypeConverter &typeConverter,
140                                    OpAdaptor op, unsigned &align) {
141   if (failed(getMemRefAlignment(typeConverter, op.getMemRefType(), align)))
142     return failure();
143   align = std::max(align, getAssumedAlignment(op.base()));
144   return success();
145 }
146 
147 // Add an index vector component to a base pointer. This almost always succeeds
148 // unless the last stride is non-unit or the memory space is not zero.
149 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
150                                     Location loc, Value memref, Value base,
151                                     Value index, MemRefType memRefType,
152                                     VectorType vType, Value &ptrs) {
153   int64_t offset;
154   SmallVector<int64_t, 4> strides;
155   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
156   if (failed(successStrides) || strides.back() != 1 ||
157       memRefType.getMemorySpaceAsInt() != 0)
158     return failure();
159   auto pType = MemRefDescriptor(memref).getElementPtrType();
160   auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
161   ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index);
162   return success();
163 }
164 
165 // Casts a strided element pointer to a vector pointer.  The vector pointer
166 // will be in the same address space as the incoming memref type.
167 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
168                          Value ptr, MemRefType memRefType, Type vt) {
169   auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt());
170   return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
171 }
172 
173 namespace {
174 
175 /// Conversion pattern for a vector.bitcast.
176 class VectorBitCastOpConversion
177     : public ConvertOpToLLVMPattern<vector::BitCastOp> {
178 public:
179   using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
180 
181   LogicalResult
182   matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor,
183                   ConversionPatternRewriter &rewriter) const override {
184     // Only 1-D vectors can be lowered to LLVM.
185     VectorType resultTy = bitCastOp.getType();
186     if (resultTy.getRank() != 1)
187       return failure();
188     Type newResultTy = typeConverter->convertType(resultTy);
189     rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
190                                                  adaptor.getOperands()[0]);
191     return success();
192   }
193 };
194 
195 /// Conversion pattern for a vector.matrix_multiply.
196 /// This is lowered directly to the proper llvm.intr.matrix.multiply.
197 class VectorMatmulOpConversion
198     : public ConvertOpToLLVMPattern<vector::MatmulOp> {
199 public:
200   using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
201 
202   LogicalResult
203   matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor,
204                   ConversionPatternRewriter &rewriter) const override {
205     rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
206         matmulOp, typeConverter->convertType(matmulOp.res().getType()),
207         adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
208         matmulOp.lhs_columns(), matmulOp.rhs_columns());
209     return success();
210   }
211 };
212 
213 /// Conversion pattern for a vector.flat_transpose.
214 /// This is lowered directly to the proper llvm.intr.matrix.transpose.
215 class VectorFlatTransposeOpConversion
216     : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
217 public:
218   using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
219 
220   LogicalResult
221   matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor,
222                   ConversionPatternRewriter &rewriter) const override {
223     rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
224         transOp, typeConverter->convertType(transOp.res().getType()),
225         adaptor.matrix(), transOp.rows(), transOp.columns());
226     return success();
227   }
228 };
229 
230 /// Overloaded utility that replaces a vector.load, vector.store,
231 /// vector.maskedload and vector.maskedstore with their respective LLVM
232 /// couterparts.
233 static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
234                                  vector::LoadOpAdaptor adaptor,
235                                  VectorType vectorTy, Value ptr, unsigned align,
236                                  ConversionPatternRewriter &rewriter) {
237   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align);
238 }
239 
240 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
241                                  vector::MaskedLoadOpAdaptor adaptor,
242                                  VectorType vectorTy, Value ptr, unsigned align,
243                                  ConversionPatternRewriter &rewriter) {
244   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
245       loadOp, vectorTy, ptr, adaptor.mask(), adaptor.pass_thru(), align);
246 }
247 
248 static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
249                                  vector::StoreOpAdaptor adaptor,
250                                  VectorType vectorTy, Value ptr, unsigned align,
251                                  ConversionPatternRewriter &rewriter) {
252   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.valueToStore(),
253                                              ptr, align);
254 }
255 
256 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
257                                  vector::MaskedStoreOpAdaptor adaptor,
258                                  VectorType vectorTy, Value ptr, unsigned align,
259                                  ConversionPatternRewriter &rewriter) {
260   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
261       storeOp, adaptor.valueToStore(), ptr, adaptor.mask(), align);
262 }
263 
264 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
265 /// vector.maskedstore.
266 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
267 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
268 public:
269   using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
270 
271   LogicalResult
272   matchAndRewrite(LoadOrStoreOp loadOrStoreOp,
273                   typename LoadOrStoreOp::Adaptor adaptor,
274                   ConversionPatternRewriter &rewriter) const override {
275     // Only 1-D vectors can be lowered to LLVM.
276     VectorType vectorTy = loadOrStoreOp.getVectorType();
277     if (vectorTy.getRank() > 1)
278       return failure();
279 
280     auto loc = loadOrStoreOp->getLoc();
281     MemRefType memRefTy = loadOrStoreOp.getMemRefType();
282 
283     // Resolve alignment.
284     unsigned align;
285     if (failed(getMemRefOpAlignment(*this->getTypeConverter(), loadOrStoreOp,
286                                     align)))
287       return failure();
288 
289     // Resolve address.
290     auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType())
291                      .template cast<VectorType>();
292     Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.base(),
293                                                adaptor.indices(), rewriter);
294     Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype);
295 
296     replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
297     return success();
298   }
299 };
300 
301 /// Conversion pattern for a vector.gather.
302 class VectorGatherOpConversion
303     : public ConvertOpToLLVMPattern<vector::GatherOp> {
304 public:
305   using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
306 
307   LogicalResult
308   matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor,
309                   ConversionPatternRewriter &rewriter) const override {
310     auto loc = gather->getLoc();
311     MemRefType memRefType = gather.getMemRefType();
312 
313     // Resolve alignment.
314     unsigned align;
315     if (failed(getMemRefOpAlignment(*getTypeConverter(), gather, align)))
316       return failure();
317 
318     // Resolve address.
319     Value ptrs;
320     VectorType vType = gather.getVectorType();
321     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
322                                      adaptor.indices(), rewriter);
323     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
324                               adaptor.index_vec(), memRefType, vType, ptrs)))
325       return failure();
326 
327     // Replace with the gather intrinsic.
328     rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
329         gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
330         adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
331     return success();
332   }
333 };
334 
335 /// Conversion pattern for a vector.scatter.
336 class VectorScatterOpConversion
337     : public ConvertOpToLLVMPattern<vector::ScatterOp> {
338 public:
339   using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
340 
341   LogicalResult
342   matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor,
343                   ConversionPatternRewriter &rewriter) const override {
344     auto loc = scatter->getLoc();
345     MemRefType memRefType = scatter.getMemRefType();
346 
347     // Resolve alignment.
348     unsigned align;
349     if (failed(getMemRefOpAlignment(*getTypeConverter(), scatter, align)))
350       return failure();
351 
352     // Resolve address.
353     Value ptrs;
354     VectorType vType = scatter.getVectorType();
355     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
356                                      adaptor.indices(), rewriter);
357     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
358                               adaptor.index_vec(), memRefType, vType, ptrs)))
359       return failure();
360 
361     // Replace with the scatter intrinsic.
362     rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
363         scatter, adaptor.valueToStore(), ptrs, adaptor.mask(),
364         rewriter.getI32IntegerAttr(align));
365     return success();
366   }
367 };
368 
369 /// Conversion pattern for a vector.expandload.
370 class VectorExpandLoadOpConversion
371     : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
372 public:
373   using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
374 
375   LogicalResult
376   matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor,
377                   ConversionPatternRewriter &rewriter) const override {
378     auto loc = expand->getLoc();
379     MemRefType memRefType = expand.getMemRefType();
380 
381     // Resolve address.
382     auto vtype = typeConverter->convertType(expand.getVectorType());
383     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
384                                      adaptor.indices(), rewriter);
385 
386     rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
387         expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
388     return success();
389   }
390 };
391 
392 /// Conversion pattern for a vector.compressstore.
393 class VectorCompressStoreOpConversion
394     : public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
395 public:
396   using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
397 
398   LogicalResult
399   matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor,
400                   ConversionPatternRewriter &rewriter) const override {
401     auto loc = compress->getLoc();
402     MemRefType memRefType = compress.getMemRefType();
403 
404     // Resolve address.
405     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
406                                      adaptor.indices(), rewriter);
407 
408     rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
409         compress, adaptor.valueToStore(), ptr, adaptor.mask());
410     return success();
411   }
412 };
413 
414 /// Conversion pattern for all vector reductions.
415 class VectorReductionOpConversion
416     : public ConvertOpToLLVMPattern<vector::ReductionOp> {
417 public:
418   explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
419                                        bool reassociateFPRed)
420       : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
421         reassociateFPReductions(reassociateFPRed) {}
422 
423   LogicalResult
424   matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor,
425                   ConversionPatternRewriter &rewriter) const override {
426     auto kind = reductionOp.kind();
427     Type eltType = reductionOp.dest().getType();
428     Type llvmType = typeConverter->convertType(eltType);
429     Value operand = adaptor.getOperands()[0];
430     if (eltType.isIntOrIndex()) {
431       // Integer reductions: add/mul/min/max/and/or/xor.
432       if (kind == "add")
433         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(reductionOp,
434                                                              llvmType, operand);
435       else if (kind == "mul")
436         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(reductionOp,
437                                                              llvmType, operand);
438       else if (kind == "minui")
439         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
440             reductionOp, llvmType, operand);
441       else if (kind == "minsi")
442         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
443             reductionOp, llvmType, operand);
444       else if (kind == "maxui")
445         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
446             reductionOp, llvmType, operand);
447       else if (kind == "maxsi")
448         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
449             reductionOp, llvmType, operand);
450       else if (kind == "and")
451         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(reductionOp,
452                                                              llvmType, operand);
453       else if (kind == "or")
454         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(reductionOp,
455                                                             llvmType, operand);
456       else if (kind == "xor")
457         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(reductionOp,
458                                                              llvmType, operand);
459       else
460         return failure();
461       return success();
462     }
463 
464     if (!eltType.isa<FloatType>())
465       return failure();
466 
467     // Floating-point reductions: add/mul/min/max
468     if (kind == "add") {
469       // Optional accumulator (or zero).
470       Value acc = adaptor.getOperands().size() > 1
471                       ? adaptor.getOperands()[1]
472                       : rewriter.create<LLVM::ConstantOp>(
473                             reductionOp->getLoc(), llvmType,
474                             rewriter.getZeroAttr(eltType));
475       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
476           reductionOp, llvmType, acc, operand,
477           rewriter.getBoolAttr(reassociateFPReductions));
478     } else if (kind == "mul") {
479       // Optional accumulator (or one).
480       Value acc = adaptor.getOperands().size() > 1
481                       ? adaptor.getOperands()[1]
482                       : rewriter.create<LLVM::ConstantOp>(
483                             reductionOp->getLoc(), llvmType,
484                             rewriter.getFloatAttr(eltType, 1.0));
485       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
486           reductionOp, llvmType, acc, operand,
487           rewriter.getBoolAttr(reassociateFPReductions));
488     } else if (kind == "minf")
489       // FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
490       // NaNs/-0.0/+0.0 in the same way.
491       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(reductionOp,
492                                                             llvmType, operand);
493     else if (kind == "maxf")
494       // FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle
495       // NaNs/-0.0/+0.0 in the same way.
496       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(reductionOp,
497                                                             llvmType, operand);
498     else
499       return failure();
500     return success();
501   }
502 
503 private:
504   const bool reassociateFPReductions;
505 };
506 
507 class VectorShuffleOpConversion
508     : public ConvertOpToLLVMPattern<vector::ShuffleOp> {
509 public:
510   using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
511 
512   LogicalResult
513   matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
514                   ConversionPatternRewriter &rewriter) const override {
515     auto loc = shuffleOp->getLoc();
516     auto v1Type = shuffleOp.getV1VectorType();
517     auto v2Type = shuffleOp.getV2VectorType();
518     auto vectorType = shuffleOp.getVectorType();
519     Type llvmType = typeConverter->convertType(vectorType);
520     auto maskArrayAttr = shuffleOp.mask();
521 
522     // Bail if result type cannot be lowered.
523     if (!llvmType)
524       return failure();
525 
526     // Get rank and dimension sizes.
527     int64_t rank = vectorType.getRank();
528     assert(v1Type.getRank() == rank);
529     assert(v2Type.getRank() == rank);
530     int64_t v1Dim = v1Type.getDimSize(0);
531 
532     // For rank 1, where both operands have *exactly* the same vector type,
533     // there is direct shuffle support in LLVM. Use it!
534     if (rank == 1 && v1Type == v2Type) {
535       Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
536           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
537       rewriter.replaceOp(shuffleOp, llvmShuffleOp);
538       return success();
539     }
540 
541     // For all other cases, insert the individual values individually.
542     Type eltType;
543     llvm::errs() << llvmType << "\n";
544     if (auto arrayType = llvmType.dyn_cast<LLVM::LLVMArrayType>())
545       eltType = arrayType.getElementType();
546     else
547       eltType = llvmType.cast<VectorType>().getElementType();
548     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
549     int64_t insPos = 0;
550     for (auto en : llvm::enumerate(maskArrayAttr)) {
551       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
552       Value value = adaptor.v1();
553       if (extPos >= v1Dim) {
554         extPos -= v1Dim;
555         value = adaptor.v2();
556       }
557       Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
558                                  eltType, rank, extPos);
559       insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
560                          llvmType, rank, insPos++);
561     }
562     rewriter.replaceOp(shuffleOp, insert);
563     return success();
564   }
565 };
566 
567 class VectorExtractElementOpConversion
568     : public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
569 public:
570   using ConvertOpToLLVMPattern<
571       vector::ExtractElementOp>::ConvertOpToLLVMPattern;
572 
573   LogicalResult
574   matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor,
575                   ConversionPatternRewriter &rewriter) const override {
576     auto vectorType = extractEltOp.getVectorType();
577     auto llvmType = typeConverter->convertType(vectorType.getElementType());
578 
579     // Bail if result type cannot be lowered.
580     if (!llvmType)
581       return failure();
582 
583     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
584         extractEltOp, llvmType, adaptor.vector(), adaptor.position());
585     return success();
586   }
587 };
588 
589 class VectorExtractOpConversion
590     : public ConvertOpToLLVMPattern<vector::ExtractOp> {
591 public:
592   using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
593 
594   LogicalResult
595   matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
596                   ConversionPatternRewriter &rewriter) const override {
597     auto loc = extractOp->getLoc();
598     auto vectorType = extractOp.getVectorType();
599     auto resultType = extractOp.getResult().getType();
600     auto llvmResultType = typeConverter->convertType(resultType);
601     auto positionArrayAttr = extractOp.position();
602 
603     // Bail if result type cannot be lowered.
604     if (!llvmResultType)
605       return failure();
606 
607     // Extract entire vector. Should be handled by folder, but just to be safe.
608     if (positionArrayAttr.empty()) {
609       rewriter.replaceOp(extractOp, adaptor.vector());
610       return success();
611     }
612 
613     // One-shot extraction of vector from array (only requires extractvalue).
614     if (resultType.isa<VectorType>()) {
615       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
616           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
617       rewriter.replaceOp(extractOp, extracted);
618       return success();
619     }
620 
621     // Potential extraction of 1-D vector from array.
622     auto *context = extractOp->getContext();
623     Value extracted = adaptor.vector();
624     auto positionAttrs = positionArrayAttr.getValue();
625     if (positionAttrs.size() > 1) {
626       auto oneDVectorType = reducedVectorTypeBack(vectorType);
627       auto nMinusOnePositionAttrs =
628           ArrayAttr::get(context, positionAttrs.drop_back());
629       extracted = rewriter.create<LLVM::ExtractValueOp>(
630           loc, typeConverter->convertType(oneDVectorType), extracted,
631           nMinusOnePositionAttrs);
632     }
633 
634     // Remaining extraction of element from 1-D LLVM vector
635     auto position = positionAttrs.back().cast<IntegerAttr>();
636     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
637     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
638     extracted =
639         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
640     rewriter.replaceOp(extractOp, extracted);
641 
642     return success();
643   }
644 };
645 
646 /// Conversion pattern that turns a vector.fma on a 1-D vector
647 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
648 /// This does not match vectors of n >= 2 rank.
649 ///
650 /// Example:
651 /// ```
652 ///  vector.fma %a, %a, %a : vector<8xf32>
653 /// ```
654 /// is converted to:
655 /// ```
656 ///  llvm.intr.fmuladd %va, %va, %va:
657 ///    (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
658 ///    -> !llvm."<8 x f32>">
659 /// ```
660 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
661 public:
662   using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
663 
664   LogicalResult
665   matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
666                   ConversionPatternRewriter &rewriter) const override {
667     VectorType vType = fmaOp.getVectorType();
668     if (vType.getRank() != 1)
669       return failure();
670     rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
671                                                  adaptor.rhs(), adaptor.acc());
672     return success();
673   }
674 };
675 
676 class VectorInsertElementOpConversion
677     : public ConvertOpToLLVMPattern<vector::InsertElementOp> {
678 public:
679   using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
680 
681   LogicalResult
682   matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor,
683                   ConversionPatternRewriter &rewriter) const override {
684     auto vectorType = insertEltOp.getDestVectorType();
685     auto llvmType = typeConverter->convertType(vectorType);
686 
687     // Bail if result type cannot be lowered.
688     if (!llvmType)
689       return failure();
690 
691     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
692         insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
693         adaptor.position());
694     return success();
695   }
696 };
697 
698 class VectorInsertOpConversion
699     : public ConvertOpToLLVMPattern<vector::InsertOp> {
700 public:
701   using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
702 
703   LogicalResult
704   matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
705                   ConversionPatternRewriter &rewriter) const override {
706     auto loc = insertOp->getLoc();
707     auto sourceType = insertOp.getSourceType();
708     auto destVectorType = insertOp.getDestVectorType();
709     auto llvmResultType = typeConverter->convertType(destVectorType);
710     auto positionArrayAttr = insertOp.position();
711 
712     // Bail if result type cannot be lowered.
713     if (!llvmResultType)
714       return failure();
715 
716     // Overwrite entire vector with value. Should be handled by folder, but
717     // just to be safe.
718     if (positionArrayAttr.empty()) {
719       rewriter.replaceOp(insertOp, adaptor.source());
720       return success();
721     }
722 
723     // One-shot insertion of a vector into an array (only requires insertvalue).
724     if (sourceType.isa<VectorType>()) {
725       Value inserted = rewriter.create<LLVM::InsertValueOp>(
726           loc, llvmResultType, adaptor.dest(), adaptor.source(),
727           positionArrayAttr);
728       rewriter.replaceOp(insertOp, inserted);
729       return success();
730     }
731 
732     // Potential extraction of 1-D vector from array.
733     auto *context = insertOp->getContext();
734     Value extracted = adaptor.dest();
735     auto positionAttrs = positionArrayAttr.getValue();
736     auto position = positionAttrs.back().cast<IntegerAttr>();
737     auto oneDVectorType = destVectorType;
738     if (positionAttrs.size() > 1) {
739       oneDVectorType = reducedVectorTypeBack(destVectorType);
740       auto nMinusOnePositionAttrs =
741           ArrayAttr::get(context, positionAttrs.drop_back());
742       extracted = rewriter.create<LLVM::ExtractValueOp>(
743           loc, typeConverter->convertType(oneDVectorType), extracted,
744           nMinusOnePositionAttrs);
745     }
746 
747     // Insertion of an element into a 1-D LLVM vector.
748     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
749     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
750     Value inserted = rewriter.create<LLVM::InsertElementOp>(
751         loc, typeConverter->convertType(oneDVectorType), extracted,
752         adaptor.source(), constant);
753 
754     // Potential insertion of resulting 1-D vector into array.
755     if (positionAttrs.size() > 1) {
756       auto nMinusOnePositionAttrs =
757           ArrayAttr::get(context, positionAttrs.drop_back());
758       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
759                                                       adaptor.dest(), inserted,
760                                                       nMinusOnePositionAttrs);
761     }
762 
763     rewriter.replaceOp(insertOp, inserted);
764     return success();
765   }
766 };
767 
768 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
769 ///
770 /// Example:
771 /// ```
772 ///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
773 /// ```
774 /// is rewritten into:
775 /// ```
776 ///  %r = splat %f0: vector<2x4xf32>
777 ///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
778 ///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
779 ///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
780 ///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
781 ///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
782 ///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
783 ///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
784 ///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
785 ///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
786 ///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
787 ///  // %r3 holds the final value.
788 /// ```
789 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
790 public:
791   using OpRewritePattern<FMAOp>::OpRewritePattern;
792 
793   LogicalResult matchAndRewrite(FMAOp op,
794                                 PatternRewriter &rewriter) const override {
795     auto vType = op.getVectorType();
796     if (vType.getRank() < 2)
797       return failure();
798 
799     auto loc = op.getLoc();
800     auto elemType = vType.getElementType();
801     Value zero = rewriter.create<arith::ConstantOp>(
802         loc, elemType, rewriter.getZeroAttr(elemType));
803     Value desc = rewriter.create<SplatOp>(loc, vType, zero);
804     for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
805       Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
806       Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
807       Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
808       Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
809       desc = rewriter.create<InsertOp>(loc, fma, desc, i);
810     }
811     rewriter.replaceOp(op, desc);
812     return success();
813   }
814 };
815 
816 // When ranks are different, InsertStridedSlice needs to extract a properly
817 // ranked vector from the destination vector into which to insert. This pattern
818 // only takes care of this part and forwards the rest of the conversion to
819 // another pattern that converts InsertStridedSlice for operands of the same
820 // rank.
821 //
822 // RewritePattern for InsertStridedSliceOp where source and destination vectors
823 // have different ranks. In this case:
824 //   1. the proper subvector is extracted from the destination vector
825 //   2. a new InsertStridedSlice op is created to insert the source in the
826 //   destination subvector
827 //   3. the destination subvector is inserted back in the proper place
828 //   4. the op is replaced by the result of step 3.
829 // The new InsertStridedSlice from step 2. will be picked up by a
830 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
831 class VectorInsertStridedSliceOpDifferentRankRewritePattern
832     : public OpRewritePattern<InsertStridedSliceOp> {
833 public:
834   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
835 
836   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
837                                 PatternRewriter &rewriter) const override {
838     auto srcType = op.getSourceVectorType();
839     auto dstType = op.getDestVectorType();
840 
841     if (op.offsets().getValue().empty())
842       return failure();
843 
844     auto loc = op.getLoc();
845     int64_t rankDiff = dstType.getRank() - srcType.getRank();
846     assert(rankDiff >= 0);
847     if (rankDiff == 0)
848       return failure();
849 
850     int64_t rankRest = dstType.getRank() - rankDiff;
851     // Extract / insert the subvector of matching rank and InsertStridedSlice
852     // on it.
853     Value extracted =
854         rewriter.create<ExtractOp>(loc, op.dest(),
855                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
856                                                   /*dropBack=*/rankRest));
857     // A different pattern will kick in for InsertStridedSlice with matching
858     // ranks.
859     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
860         loc, op.source(), extracted,
861         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
862         getI64SubArray(op.strides(), /*dropFront=*/0));
863     rewriter.replaceOpWithNewOp<InsertOp>(
864         op, stridedSliceInnerOp.getResult(), op.dest(),
865         getI64SubArray(op.offsets(), /*dropFront=*/0,
866                        /*dropBack=*/rankRest));
867     return success();
868   }
869 };
870 
871 // RewritePattern for InsertStridedSliceOp where source and destination vectors
872 // have the same rank. In this case, we reduce
873 //   1. the proper subvector is extracted from the destination vector
874 //   2. a new InsertStridedSlice op is created to insert the source in the
875 //   destination subvector
876 //   3. the destination subvector is inserted back in the proper place
877 //   4. the op is replaced by the result of step 3.
878 // The new InsertStridedSlice from step 2. will be picked up by a
879 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
880 class VectorInsertStridedSliceOpSameRankRewritePattern
881     : public OpRewritePattern<InsertStridedSliceOp> {
882 public:
883   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
884 
885   void initialize() {
886     // This pattern creates recursive InsertStridedSliceOp, but the recursion is
887     // bounded as the rank is strictly decreasing.
888     setHasBoundedRewriteRecursion();
889   }
890 
891   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
892                                 PatternRewriter &rewriter) const override {
893     auto srcType = op.getSourceVectorType();
894     auto dstType = op.getDestVectorType();
895 
896     if (op.offsets().getValue().empty())
897       return failure();
898 
899     int64_t rankDiff = dstType.getRank() - srcType.getRank();
900     assert(rankDiff >= 0);
901     if (rankDiff != 0)
902       return failure();
903 
904     if (srcType == dstType) {
905       rewriter.replaceOp(op, op.source());
906       return success();
907     }
908 
909     int64_t offset =
910         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
911     int64_t size = srcType.getShape().front();
912     int64_t stride =
913         op.strides().getValue().front().cast<IntegerAttr>().getInt();
914 
915     auto loc = op.getLoc();
916     Value res = op.dest();
917     // For each slice of the source vector along the most major dimension.
918     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
919          off += stride, ++idx) {
920       // 1. extract the proper subvector (or element) from source
921       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
922       if (extractedSource.getType().isa<VectorType>()) {
923         // 2. If we have a vector, extract the proper subvector from destination
924         // Otherwise we are at the element level and no need to recurse.
925         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
926         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
927         // smaller rank.
928         extractedSource = rewriter.create<InsertStridedSliceOp>(
929             loc, extractedSource, extractedDest,
930             getI64SubArray(op.offsets(), /* dropFront=*/1),
931             getI64SubArray(op.strides(), /* dropFront=*/1));
932       }
933       // 4. Insert the extractedSource into the res vector.
934       res = insertOne(rewriter, loc, extractedSource, res, off);
935     }
936 
937     rewriter.replaceOp(op, res);
938     return success();
939   }
940 };
941 
942 /// Returns the strides if the memory underlying `memRefType` has a contiguous
943 /// static layout.
944 static llvm::Optional<SmallVector<int64_t, 4>>
945 computeContiguousStrides(MemRefType memRefType) {
946   int64_t offset;
947   SmallVector<int64_t, 4> strides;
948   if (failed(getStridesAndOffset(memRefType, strides, offset)))
949     return None;
950   if (!strides.empty() && strides.back() != 1)
951     return None;
952   // If no layout or identity layout, this is contiguous by definition.
953   if (memRefType.getAffineMaps().empty() ||
954       memRefType.getAffineMaps().front().isIdentity())
955     return strides;
956 
957   // Otherwise, we must determine contiguity form shapes. This can only ever
958   // work in static cases because MemRefType is underspecified to represent
959   // contiguous dynamic shapes in other ways than with just empty/identity
960   // layout.
961   auto sizes = memRefType.getShape();
962   for (int index = 0, e = strides.size() - 1; index < e; ++index) {
963     if (ShapedType::isDynamic(sizes[index + 1]) ||
964         ShapedType::isDynamicStrideOrOffset(strides[index]) ||
965         ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
966       return None;
967     if (strides[index] != strides[index + 1] * sizes[index + 1])
968       return None;
969   }
970   return strides;
971 }
972 
973 class VectorTypeCastOpConversion
974     : public ConvertOpToLLVMPattern<vector::TypeCastOp> {
975 public:
976   using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
977 
978   LogicalResult
979   matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor,
980                   ConversionPatternRewriter &rewriter) const override {
981     auto loc = castOp->getLoc();
982     MemRefType sourceMemRefType =
983         castOp.getOperand().getType().cast<MemRefType>();
984     MemRefType targetMemRefType = castOp.getType();
985 
986     // Only static shape casts supported atm.
987     if (!sourceMemRefType.hasStaticShape() ||
988         !targetMemRefType.hasStaticShape())
989       return failure();
990 
991     auto llvmSourceDescriptorTy =
992         adaptor.getOperands()[0].getType().dyn_cast<LLVM::LLVMStructType>();
993     if (!llvmSourceDescriptorTy)
994       return failure();
995     MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]);
996 
997     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
998                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
999     if (!llvmTargetDescriptorTy)
1000       return failure();
1001 
1002     // Only contiguous source buffers supported atm.
1003     auto sourceStrides = computeContiguousStrides(sourceMemRefType);
1004     if (!sourceStrides)
1005       return failure();
1006     auto targetStrides = computeContiguousStrides(targetMemRefType);
1007     if (!targetStrides)
1008       return failure();
1009     // Only support static strides for now, regardless of contiguity.
1010     if (llvm::any_of(*targetStrides, [](int64_t stride) {
1011           return ShapedType::isDynamicStrideOrOffset(stride);
1012         }))
1013       return failure();
1014 
1015     auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
1016 
1017     // Create descriptor.
1018     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1019     Type llvmTargetElementTy = desc.getElementPtrType();
1020     // Set allocated ptr.
1021     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
1022     allocated =
1023         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
1024     desc.setAllocatedPtr(rewriter, loc, allocated);
1025     // Set aligned ptr.
1026     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
1027     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
1028     desc.setAlignedPtr(rewriter, loc, ptr);
1029     // Fill offset 0.
1030     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
1031     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
1032     desc.setOffset(rewriter, loc, zero);
1033 
1034     // Fill size and stride descriptors in memref.
1035     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
1036       int64_t index = indexedSize.index();
1037       auto sizeAttr =
1038           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
1039       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
1040       desc.setSize(rewriter, loc, index, size);
1041       auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
1042                                                 (*targetStrides)[index]);
1043       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
1044       desc.setStride(rewriter, loc, index, stride);
1045     }
1046 
1047     rewriter.replaceOp(castOp, {desc});
1048     return success();
1049   }
1050 };
1051 
1052 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
1053 public:
1054   using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
1055 
1056   // Proof-of-concept lowering implementation that relies on a small
1057   // runtime support library, which only needs to provide a few
1058   // printing methods (single value for all data types, opening/closing
1059   // bracket, comma, newline). The lowering fully unrolls a vector
1060   // in terms of these elementary printing operations. The advantage
1061   // of this approach is that the library can remain unaware of all
1062   // low-level implementation details of vectors while still supporting
1063   // output of any shaped and dimensioned vector. Due to full unrolling,
1064   // this approach is less suited for very large vectors though.
1065   //
1066   // TODO: rely solely on libc in future? something else?
1067   //
1068   LogicalResult
1069   matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor,
1070                   ConversionPatternRewriter &rewriter) const override {
1071     Type printType = printOp.getPrintType();
1072 
1073     if (typeConverter->convertType(printType) == nullptr)
1074       return failure();
1075 
1076     // Make sure element type has runtime support.
1077     PrintConversion conversion = PrintConversion::None;
1078     VectorType vectorType = printType.dyn_cast<VectorType>();
1079     Type eltType = vectorType ? vectorType.getElementType() : printType;
1080     Operation *printer;
1081     if (eltType.isF32()) {
1082       printer =
1083           LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>());
1084     } else if (eltType.isF64()) {
1085       printer =
1086           LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>());
1087     } else if (eltType.isIndex()) {
1088       printer =
1089           LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>());
1090     } else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
1091       // Integers need a zero or sign extension on the operand
1092       // (depending on the source type) as well as a signed or
1093       // unsigned print method. Up to 64-bit is supported.
1094       unsigned width = intTy.getWidth();
1095       if (intTy.isUnsigned()) {
1096         if (width <= 64) {
1097           if (width < 64)
1098             conversion = PrintConversion::ZeroExt64;
1099           printer = LLVM::lookupOrCreatePrintU64Fn(
1100               printOp->getParentOfType<ModuleOp>());
1101         } else {
1102           return failure();
1103         }
1104       } else {
1105         assert(intTy.isSignless() || intTy.isSigned());
1106         if (width <= 64) {
1107           // Note that we *always* zero extend booleans (1-bit integers),
1108           // so that true/false is printed as 1/0 rather than -1/0.
1109           if (width == 1)
1110             conversion = PrintConversion::ZeroExt64;
1111           else if (width < 64)
1112             conversion = PrintConversion::SignExt64;
1113           printer = LLVM::lookupOrCreatePrintI64Fn(
1114               printOp->getParentOfType<ModuleOp>());
1115         } else {
1116           return failure();
1117         }
1118       }
1119     } else {
1120       return failure();
1121     }
1122 
1123     // Unroll vector into elementary print calls.
1124     int64_t rank = vectorType ? vectorType.getRank() : 0;
1125     emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank,
1126               conversion);
1127     emitCall(rewriter, printOp->getLoc(),
1128              LLVM::lookupOrCreatePrintNewlineFn(
1129                  printOp->getParentOfType<ModuleOp>()));
1130     rewriter.eraseOp(printOp);
1131     return success();
1132   }
1133 
1134 private:
1135   enum class PrintConversion {
1136     // clang-format off
1137     None,
1138     ZeroExt64,
1139     SignExt64
1140     // clang-format on
1141   };
1142 
1143   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
1144                  Value value, VectorType vectorType, Operation *printer,
1145                  int64_t rank, PrintConversion conversion) const {
1146     Location loc = op->getLoc();
1147     if (rank == 0) {
1148       switch (conversion) {
1149       case PrintConversion::ZeroExt64:
1150         value = rewriter.create<arith::ExtUIOp>(
1151             loc, value, IntegerType::get(rewriter.getContext(), 64));
1152         break;
1153       case PrintConversion::SignExt64:
1154         value = rewriter.create<arith::ExtSIOp>(
1155             loc, value, IntegerType::get(rewriter.getContext(), 64));
1156         break;
1157       case PrintConversion::None:
1158         break;
1159       }
1160       emitCall(rewriter, loc, printer, value);
1161       return;
1162     }
1163 
1164     emitCall(rewriter, loc,
1165              LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>()));
1166     Operation *printComma =
1167         LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>());
1168     int64_t dim = vectorType.getDimSize(0);
1169     for (int64_t d = 0; d < dim; ++d) {
1170       auto reducedType =
1171           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
1172       auto llvmType = typeConverter->convertType(
1173           rank > 1 ? reducedType : vectorType.getElementType());
1174       Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
1175                                    llvmType, rank, d);
1176       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
1177                 conversion);
1178       if (d != dim - 1)
1179         emitCall(rewriter, loc, printComma);
1180     }
1181     emitCall(rewriter, loc,
1182              LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
1183   }
1184 
1185   // Helper to emit a call.
1186   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
1187                        Operation *ref, ValueRange params = ValueRange()) {
1188     rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref),
1189                                   params);
1190   }
1191 };
1192 
1193 /// Progressive lowering of ExtractStridedSliceOp to either:
1194 ///   1. express single offset extract as a direct shuffle.
1195 ///   2. extract + lower rank strided_slice + insert for the n-D case.
1196 class VectorExtractStridedSliceOpConversion
1197     : public OpRewritePattern<ExtractStridedSliceOp> {
1198 public:
1199   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
1200 
1201   void initialize() {
1202     // This pattern creates recursive ExtractStridedSliceOp, but the recursion
1203     // is bounded as the rank is strictly decreasing.
1204     setHasBoundedRewriteRecursion();
1205   }
1206 
1207   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
1208                                 PatternRewriter &rewriter) const override {
1209     auto dstType = op.getType();
1210 
1211     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
1212 
1213     int64_t offset =
1214         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1215     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
1216     int64_t stride =
1217         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1218 
1219     auto loc = op.getLoc();
1220     auto elemType = dstType.getElementType();
1221     assert(elemType.isSignlessIntOrIndexOrFloat());
1222 
1223     // Single offset can be more efficiently shuffled.
1224     if (op.offsets().getValue().size() == 1) {
1225       SmallVector<int64_t, 4> offsets;
1226       offsets.reserve(size);
1227       for (int64_t off = offset, e = offset + size * stride; off < e;
1228            off += stride)
1229         offsets.push_back(off);
1230       rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
1231                                              op.vector(),
1232                                              rewriter.getI64ArrayAttr(offsets));
1233       return success();
1234     }
1235 
1236     // Extract/insert on a lower ranked extract strided slice op.
1237     Value zero = rewriter.create<arith::ConstantOp>(
1238         loc, elemType, rewriter.getZeroAttr(elemType));
1239     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
1240     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1241          off += stride, ++idx) {
1242       Value one = extractOne(rewriter, loc, op.vector(), off);
1243       Value extracted = rewriter.create<ExtractStridedSliceOp>(
1244           loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
1245           getI64SubArray(op.sizes(), /* dropFront=*/1),
1246           getI64SubArray(op.strides(), /* dropFront=*/1));
1247       res = insertOne(rewriter, loc, extracted, res, idx);
1248     }
1249     rewriter.replaceOp(op, res);
1250     return success();
1251   }
1252 };
1253 
1254 } // namespace
1255 
1256 /// Populate the given list with patterns that convert from Vector to LLVM.
1257 void mlir::populateVectorToLLVMConversionPatterns(
1258     LLVMTypeConverter &converter, RewritePatternSet &patterns,
1259     bool reassociateFPReductions) {
1260   MLIRContext *ctx = converter.getDialect()->getContext();
1261   patterns.add<VectorFMAOpNDRewritePattern,
1262                VectorInsertStridedSliceOpDifferentRankRewritePattern,
1263                VectorInsertStridedSliceOpSameRankRewritePattern,
1264                VectorExtractStridedSliceOpConversion>(ctx);
1265   patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
1266   patterns
1267       .add<VectorBitCastOpConversion, VectorShuffleOpConversion,
1268            VectorExtractElementOpConversion, VectorExtractOpConversion,
1269            VectorFMAOp1DConversion, VectorInsertElementOpConversion,
1270            VectorInsertOpConversion, VectorPrintOpConversion,
1271            VectorTypeCastOpConversion,
1272            VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
1273            VectorLoadStoreConversion<vector::MaskedLoadOp,
1274                                      vector::MaskedLoadOpAdaptor>,
1275            VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
1276            VectorLoadStoreConversion<vector::MaskedStoreOp,
1277                                      vector::MaskedStoreOpAdaptor>,
1278            VectorGatherOpConversion, VectorScatterOpConversion,
1279            VectorExpandLoadOpConversion, VectorCompressStoreOpConversion>(
1280           converter);
1281   // Transfer ops with rank > 1 are handled by VectorToSCF.
1282   populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
1283 }
1284 
1285 void mlir::populateVectorToLLVMMatrixConversionPatterns(
1286     LLVMTypeConverter &converter, RewritePatternSet &patterns) {
1287   patterns.add<VectorMatmulOpConversion>(converter);
1288   patterns.add<VectorFlatTransposeOpConversion>(converter);
1289 }
1290