1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 
11 #include "mlir/Conversion/LLVMCommon/VectorPattern.h"
12 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
13 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
14 #include "mlir/Dialect/MemRef/IR/MemRef.h"
15 #include "mlir/Dialect/StandardOps/IR/Ops.h"
16 #include "mlir/Dialect/Vector/VectorOps.h"
17 #include "mlir/IR/BuiltinTypes.h"
18 #include "mlir/Support/MathExtras.h"
19 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
20 #include "mlir/Transforms/DialectConversion.h"
21 
22 using namespace mlir;
23 using namespace mlir::vector;
24 
25 // Helper to reduce vector type by one rank at front.
26 static VectorType reducedVectorTypeFront(VectorType tp) {
27   assert((tp.getRank() > 1) && "unlowerable vector type");
28   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
29 }
30 
31 // Helper to reduce vector type by *all* but one rank at back.
32 static VectorType reducedVectorTypeBack(VectorType tp) {
33   assert((tp.getRank() > 1) && "unlowerable vector type");
34   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
35 }
36 
37 // Helper that picks the proper sequence for inserting.
38 static Value insertOne(ConversionPatternRewriter &rewriter,
39                        LLVMTypeConverter &typeConverter, Location loc,
40                        Value val1, Value val2, Type llvmType, int64_t rank,
41                        int64_t pos) {
42   if (rank == 1) {
43     auto idxType = rewriter.getIndexType();
44     auto constant = rewriter.create<LLVM::ConstantOp>(
45         loc, typeConverter.convertType(idxType),
46         rewriter.getIntegerAttr(idxType, pos));
47     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
48                                                   constant);
49   }
50   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
51                                               rewriter.getI64ArrayAttr(pos));
52 }
53 
54 // Helper that picks the proper sequence for inserting.
55 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
56                        Value into, int64_t offset) {
57   auto vectorType = into.getType().cast<VectorType>();
58   if (vectorType.getRank() > 1)
59     return rewriter.create<InsertOp>(loc, from, into, offset);
60   return rewriter.create<vector::InsertElementOp>(
61       loc, vectorType, from, into,
62       rewriter.create<ConstantIndexOp>(loc, offset));
63 }
64 
65 // Helper that picks the proper sequence for extracting.
66 static Value extractOne(ConversionPatternRewriter &rewriter,
67                         LLVMTypeConverter &typeConverter, Location loc,
68                         Value val, Type llvmType, int64_t rank, int64_t pos) {
69   if (rank == 1) {
70     auto idxType = rewriter.getIndexType();
71     auto constant = rewriter.create<LLVM::ConstantOp>(
72         loc, typeConverter.convertType(idxType),
73         rewriter.getIntegerAttr(idxType, pos));
74     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
75                                                    constant);
76   }
77   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
78                                                rewriter.getI64ArrayAttr(pos));
79 }
80 
81 // Helper that picks the proper sequence for extracting.
82 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
83                         int64_t offset) {
84   auto vectorType = vector.getType().cast<VectorType>();
85   if (vectorType.getRank() > 1)
86     return rewriter.create<ExtractOp>(loc, vector, offset);
87   return rewriter.create<vector::ExtractElementOp>(
88       loc, vectorType.getElementType(), vector,
89       rewriter.create<ConstantIndexOp>(loc, offset));
90 }
91 
92 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
93 // TODO: Better support for attribute subtype forwarding + slicing.
94 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
95                                               unsigned dropFront = 0,
96                                               unsigned dropBack = 0) {
97   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
98   auto range = arrayAttr.getAsRange<IntegerAttr>();
99   SmallVector<int64_t, 4> res;
100   res.reserve(arrayAttr.size() - dropFront - dropBack);
101   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
102        it != eit; ++it)
103     res.push_back((*it).getValue().getSExtValue());
104   return res;
105 }
106 
107 // Helper that returns data layout alignment of a memref.
108 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
109                                  MemRefType memrefType, unsigned &align) {
110   Type elementTy = typeConverter.convertType(memrefType.getElementType());
111   if (!elementTy)
112     return failure();
113 
114   // TODO: this should use the MLIR data layout when it becomes available and
115   // stop depending on translation.
116   llvm::LLVMContext llvmContext;
117   align = LLVM::TypeToLLVMIRTranslator(llvmContext)
118               .getPreferredAlignment(elementTy, typeConverter.getDataLayout());
119   return success();
120 }
121 
122 // Return the minimal alignment value that satisfies all the AssumeAlignment
123 // uses of `value`. If no such uses exist, return 1.
124 static unsigned getAssumedAlignment(Value value) {
125   unsigned align = 1;
126   for (auto &u : value.getUses()) {
127     Operation *owner = u.getOwner();
128     if (auto op = dyn_cast<memref::AssumeAlignmentOp>(owner))
129       align = mlir::lcm(align, op.alignment());
130   }
131   return align;
132 }
133 
134 // Helper that returns data layout alignment of a memref associated with a
135 // load, store, scatter, or gather op, including additional information from
136 // assume_alignment calls on the source of the transfer
137 template <class OpAdaptor>
138 LogicalResult getMemRefOpAlignment(LLVMTypeConverter &typeConverter,
139                                    OpAdaptor op, unsigned &align) {
140   if (failed(getMemRefAlignment(typeConverter, op.getMemRefType(), align)))
141     return failure();
142   align = std::max(align, getAssumedAlignment(op.base()));
143   return success();
144 }
145 
146 // Add an index vector component to a base pointer. This almost always succeeds
147 // unless the last stride is non-unit or the memory space is not zero.
148 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
149                                     Location loc, Value memref, Value base,
150                                     Value index, MemRefType memRefType,
151                                     VectorType vType, Value &ptrs) {
152   int64_t offset;
153   SmallVector<int64_t, 4> strides;
154   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
155   if (failed(successStrides) || strides.back() != 1 ||
156       memRefType.getMemorySpaceAsInt() != 0)
157     return failure();
158   auto pType = MemRefDescriptor(memref).getElementPtrType();
159   auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
160   ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index);
161   return success();
162 }
163 
164 // Casts a strided element pointer to a vector pointer.  The vector pointer
165 // will be in the same address space as the incoming memref type.
166 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
167                          Value ptr, MemRefType memRefType, Type vt) {
168   auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt());
169   return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
170 }
171 
172 namespace {
173 
174 /// Conversion pattern for a vector.bitcast.
175 class VectorBitCastOpConversion
176     : public ConvertOpToLLVMPattern<vector::BitCastOp> {
177 public:
178   using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
179 
180   LogicalResult
181   matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor,
182                   ConversionPatternRewriter &rewriter) const override {
183     // Only 1-D vectors can be lowered to LLVM.
184     VectorType resultTy = bitCastOp.getType();
185     if (resultTy.getRank() != 1)
186       return failure();
187     Type newResultTy = typeConverter->convertType(resultTy);
188     rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
189                                                  adaptor.getOperands()[0]);
190     return success();
191   }
192 };
193 
194 /// Conversion pattern for a vector.matrix_multiply.
195 /// This is lowered directly to the proper llvm.intr.matrix.multiply.
196 class VectorMatmulOpConversion
197     : public ConvertOpToLLVMPattern<vector::MatmulOp> {
198 public:
199   using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
200 
201   LogicalResult
202   matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor,
203                   ConversionPatternRewriter &rewriter) const override {
204     rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
205         matmulOp, typeConverter->convertType(matmulOp.res().getType()),
206         adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
207         matmulOp.lhs_columns(), matmulOp.rhs_columns());
208     return success();
209   }
210 };
211 
212 /// Conversion pattern for a vector.flat_transpose.
213 /// This is lowered directly to the proper llvm.intr.matrix.transpose.
214 class VectorFlatTransposeOpConversion
215     : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
216 public:
217   using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
218 
219   LogicalResult
220   matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor,
221                   ConversionPatternRewriter &rewriter) const override {
222     rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
223         transOp, typeConverter->convertType(transOp.res().getType()),
224         adaptor.matrix(), transOp.rows(), transOp.columns());
225     return success();
226   }
227 };
228 
229 /// Overloaded utility that replaces a vector.load, vector.store,
230 /// vector.maskedload and vector.maskedstore with their respective LLVM
231 /// couterparts.
232 static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
233                                  vector::LoadOpAdaptor adaptor,
234                                  VectorType vectorTy, Value ptr, unsigned align,
235                                  ConversionPatternRewriter &rewriter) {
236   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align);
237 }
238 
239 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
240                                  vector::MaskedLoadOpAdaptor adaptor,
241                                  VectorType vectorTy, Value ptr, unsigned align,
242                                  ConversionPatternRewriter &rewriter) {
243   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
244       loadOp, vectorTy, ptr, adaptor.mask(), adaptor.pass_thru(), align);
245 }
246 
247 static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
248                                  vector::StoreOpAdaptor adaptor,
249                                  VectorType vectorTy, Value ptr, unsigned align,
250                                  ConversionPatternRewriter &rewriter) {
251   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.valueToStore(),
252                                              ptr, align);
253 }
254 
255 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
256                                  vector::MaskedStoreOpAdaptor adaptor,
257                                  VectorType vectorTy, Value ptr, unsigned align,
258                                  ConversionPatternRewriter &rewriter) {
259   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
260       storeOp, adaptor.valueToStore(), ptr, adaptor.mask(), align);
261 }
262 
263 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
264 /// vector.maskedstore.
265 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
266 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
267 public:
268   using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
269 
270   LogicalResult
271   matchAndRewrite(LoadOrStoreOp loadOrStoreOp,
272                   typename LoadOrStoreOp::Adaptor adaptor,
273                   ConversionPatternRewriter &rewriter) const override {
274     // Only 1-D vectors can be lowered to LLVM.
275     VectorType vectorTy = loadOrStoreOp.getVectorType();
276     if (vectorTy.getRank() > 1)
277       return failure();
278 
279     auto loc = loadOrStoreOp->getLoc();
280     MemRefType memRefTy = loadOrStoreOp.getMemRefType();
281 
282     // Resolve alignment.
283     unsigned align;
284     if (failed(getMemRefOpAlignment(*this->getTypeConverter(), loadOrStoreOp,
285                                     align)))
286       return failure();
287 
288     // Resolve address.
289     auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType())
290                      .template cast<VectorType>();
291     Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.base(),
292                                                adaptor.indices(), rewriter);
293     Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype);
294 
295     replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
296     return success();
297   }
298 };
299 
300 /// Conversion pattern for a vector.gather.
301 class VectorGatherOpConversion
302     : public ConvertOpToLLVMPattern<vector::GatherOp> {
303 public:
304   using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
305 
306   LogicalResult
307   matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor,
308                   ConversionPatternRewriter &rewriter) const override {
309     auto loc = gather->getLoc();
310     MemRefType memRefType = gather.getMemRefType();
311 
312     // Resolve alignment.
313     unsigned align;
314     if (failed(getMemRefOpAlignment(*getTypeConverter(), gather, align)))
315       return failure();
316 
317     // Resolve address.
318     Value ptrs;
319     VectorType vType = gather.getVectorType();
320     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
321                                      adaptor.indices(), rewriter);
322     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
323                               adaptor.index_vec(), memRefType, vType, ptrs)))
324       return failure();
325 
326     // Replace with the gather intrinsic.
327     rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
328         gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
329         adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
330     return success();
331   }
332 };
333 
334 /// Conversion pattern for a vector.scatter.
335 class VectorScatterOpConversion
336     : public ConvertOpToLLVMPattern<vector::ScatterOp> {
337 public:
338   using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
339 
340   LogicalResult
341   matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor,
342                   ConversionPatternRewriter &rewriter) const override {
343     auto loc = scatter->getLoc();
344     MemRefType memRefType = scatter.getMemRefType();
345 
346     // Resolve alignment.
347     unsigned align;
348     if (failed(getMemRefOpAlignment(*getTypeConverter(), scatter, align)))
349       return failure();
350 
351     // Resolve address.
352     Value ptrs;
353     VectorType vType = scatter.getVectorType();
354     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
355                                      adaptor.indices(), rewriter);
356     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
357                               adaptor.index_vec(), memRefType, vType, ptrs)))
358       return failure();
359 
360     // Replace with the scatter intrinsic.
361     rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
362         scatter, adaptor.valueToStore(), ptrs, adaptor.mask(),
363         rewriter.getI32IntegerAttr(align));
364     return success();
365   }
366 };
367 
368 /// Conversion pattern for a vector.expandload.
369 class VectorExpandLoadOpConversion
370     : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
371 public:
372   using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
373 
374   LogicalResult
375   matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor,
376                   ConversionPatternRewriter &rewriter) const override {
377     auto loc = expand->getLoc();
378     MemRefType memRefType = expand.getMemRefType();
379 
380     // Resolve address.
381     auto vtype = typeConverter->convertType(expand.getVectorType());
382     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
383                                      adaptor.indices(), rewriter);
384 
385     rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
386         expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
387     return success();
388   }
389 };
390 
391 /// Conversion pattern for a vector.compressstore.
392 class VectorCompressStoreOpConversion
393     : public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
394 public:
395   using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
396 
397   LogicalResult
398   matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor,
399                   ConversionPatternRewriter &rewriter) const override {
400     auto loc = compress->getLoc();
401     MemRefType memRefType = compress.getMemRefType();
402 
403     // Resolve address.
404     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
405                                      adaptor.indices(), rewriter);
406 
407     rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
408         compress, adaptor.valueToStore(), ptr, adaptor.mask());
409     return success();
410   }
411 };
412 
413 /// Conversion pattern for all vector reductions.
414 class VectorReductionOpConversion
415     : public ConvertOpToLLVMPattern<vector::ReductionOp> {
416 public:
417   explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
418                                        bool reassociateFPRed)
419       : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
420         reassociateFPReductions(reassociateFPRed) {}
421 
422   LogicalResult
423   matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor,
424                   ConversionPatternRewriter &rewriter) const override {
425     auto kind = reductionOp.kind();
426     Type eltType = reductionOp.dest().getType();
427     Type llvmType = typeConverter->convertType(eltType);
428     Value operand = adaptor.getOperands()[0];
429     if (eltType.isIntOrIndex()) {
430       // Integer reductions: add/mul/min/max/and/or/xor.
431       if (kind == "add")
432         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(reductionOp,
433                                                              llvmType, operand);
434       else if (kind == "mul")
435         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(reductionOp,
436                                                              llvmType, operand);
437       else if (kind == "minui")
438         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
439             reductionOp, llvmType, operand);
440       else if (kind == "minsi")
441         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
442             reductionOp, llvmType, operand);
443       else if (kind == "maxui")
444         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
445             reductionOp, llvmType, operand);
446       else if (kind == "maxsi")
447         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
448             reductionOp, llvmType, operand);
449       else if (kind == "and")
450         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(reductionOp,
451                                                              llvmType, operand);
452       else if (kind == "or")
453         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(reductionOp,
454                                                             llvmType, operand);
455       else if (kind == "xor")
456         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(reductionOp,
457                                                              llvmType, operand);
458       else
459         return failure();
460       return success();
461     }
462 
463     if (!eltType.isa<FloatType>())
464       return failure();
465 
466     // Floating-point reductions: add/mul/min/max
467     if (kind == "add") {
468       // Optional accumulator (or zero).
469       Value acc = adaptor.getOperands().size() > 1
470                       ? adaptor.getOperands()[1]
471                       : rewriter.create<LLVM::ConstantOp>(
472                             reductionOp->getLoc(), llvmType,
473                             rewriter.getZeroAttr(eltType));
474       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
475           reductionOp, llvmType, acc, operand,
476           rewriter.getBoolAttr(reassociateFPReductions));
477     } else if (kind == "mul") {
478       // Optional accumulator (or one).
479       Value acc = adaptor.getOperands().size() > 1
480                       ? adaptor.getOperands()[1]
481                       : rewriter.create<LLVM::ConstantOp>(
482                             reductionOp->getLoc(), llvmType,
483                             rewriter.getFloatAttr(eltType, 1.0));
484       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
485           reductionOp, llvmType, acc, operand,
486           rewriter.getBoolAttr(reassociateFPReductions));
487     } else if (kind == "minf")
488       // FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
489       // NaNs/-0.0/+0.0 in the same way.
490       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(reductionOp,
491                                                             llvmType, operand);
492     else if (kind == "maxf")
493       // FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle
494       // NaNs/-0.0/+0.0 in the same way.
495       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(reductionOp,
496                                                             llvmType, operand);
497     else
498       return failure();
499     return success();
500   }
501 
502 private:
503   const bool reassociateFPReductions;
504 };
505 
506 class VectorShuffleOpConversion
507     : public ConvertOpToLLVMPattern<vector::ShuffleOp> {
508 public:
509   using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
510 
511   LogicalResult
512   matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
513                   ConversionPatternRewriter &rewriter) const override {
514     auto loc = shuffleOp->getLoc();
515     auto v1Type = shuffleOp.getV1VectorType();
516     auto v2Type = shuffleOp.getV2VectorType();
517     auto vectorType = shuffleOp.getVectorType();
518     Type llvmType = typeConverter->convertType(vectorType);
519     auto maskArrayAttr = shuffleOp.mask();
520 
521     // Bail if result type cannot be lowered.
522     if (!llvmType)
523       return failure();
524 
525     // Get rank and dimension sizes.
526     int64_t rank = vectorType.getRank();
527     assert(v1Type.getRank() == rank);
528     assert(v2Type.getRank() == rank);
529     int64_t v1Dim = v1Type.getDimSize(0);
530 
531     // For rank 1, where both operands have *exactly* the same vector type,
532     // there is direct shuffle support in LLVM. Use it!
533     if (rank == 1 && v1Type == v2Type) {
534       Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
535           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
536       rewriter.replaceOp(shuffleOp, llvmShuffleOp);
537       return success();
538     }
539 
540     // For all other cases, insert the individual values individually.
541     Type eltType;
542     llvm::errs() << llvmType << "\n";
543     if (auto arrayType = llvmType.dyn_cast<LLVM::LLVMArrayType>())
544       eltType = arrayType.getElementType();
545     else
546       eltType = llvmType.cast<VectorType>().getElementType();
547     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
548     int64_t insPos = 0;
549     for (auto en : llvm::enumerate(maskArrayAttr)) {
550       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
551       Value value = adaptor.v1();
552       if (extPos >= v1Dim) {
553         extPos -= v1Dim;
554         value = adaptor.v2();
555       }
556       Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
557                                  eltType, rank, extPos);
558       insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
559                          llvmType, rank, insPos++);
560     }
561     rewriter.replaceOp(shuffleOp, insert);
562     return success();
563   }
564 };
565 
566 class VectorExtractElementOpConversion
567     : public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
568 public:
569   using ConvertOpToLLVMPattern<
570       vector::ExtractElementOp>::ConvertOpToLLVMPattern;
571 
572   LogicalResult
573   matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor,
574                   ConversionPatternRewriter &rewriter) const override {
575     auto vectorType = extractEltOp.getVectorType();
576     auto llvmType = typeConverter->convertType(vectorType.getElementType());
577 
578     // Bail if result type cannot be lowered.
579     if (!llvmType)
580       return failure();
581 
582     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
583         extractEltOp, llvmType, adaptor.vector(), adaptor.position());
584     return success();
585   }
586 };
587 
588 class VectorExtractOpConversion
589     : public ConvertOpToLLVMPattern<vector::ExtractOp> {
590 public:
591   using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
592 
593   LogicalResult
594   matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
595                   ConversionPatternRewriter &rewriter) const override {
596     auto loc = extractOp->getLoc();
597     auto vectorType = extractOp.getVectorType();
598     auto resultType = extractOp.getResult().getType();
599     auto llvmResultType = typeConverter->convertType(resultType);
600     auto positionArrayAttr = extractOp.position();
601 
602     // Bail if result type cannot be lowered.
603     if (!llvmResultType)
604       return failure();
605 
606     // Extract entire vector. Should be handled by folder, but just to be safe.
607     if (positionArrayAttr.empty()) {
608       rewriter.replaceOp(extractOp, adaptor.vector());
609       return success();
610     }
611 
612     // One-shot extraction of vector from array (only requires extractvalue).
613     if (resultType.isa<VectorType>()) {
614       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
615           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
616       rewriter.replaceOp(extractOp, extracted);
617       return success();
618     }
619 
620     // Potential extraction of 1-D vector from array.
621     auto *context = extractOp->getContext();
622     Value extracted = adaptor.vector();
623     auto positionAttrs = positionArrayAttr.getValue();
624     if (positionAttrs.size() > 1) {
625       auto oneDVectorType = reducedVectorTypeBack(vectorType);
626       auto nMinusOnePositionAttrs =
627           ArrayAttr::get(context, positionAttrs.drop_back());
628       extracted = rewriter.create<LLVM::ExtractValueOp>(
629           loc, typeConverter->convertType(oneDVectorType), extracted,
630           nMinusOnePositionAttrs);
631     }
632 
633     // Remaining extraction of element from 1-D LLVM vector
634     auto position = positionAttrs.back().cast<IntegerAttr>();
635     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
636     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
637     extracted =
638         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
639     rewriter.replaceOp(extractOp, extracted);
640 
641     return success();
642   }
643 };
644 
645 /// Conversion pattern that turns a vector.fma on a 1-D vector
646 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
647 /// This does not match vectors of n >= 2 rank.
648 ///
649 /// Example:
650 /// ```
651 ///  vector.fma %a, %a, %a : vector<8xf32>
652 /// ```
653 /// is converted to:
654 /// ```
655 ///  llvm.intr.fmuladd %va, %va, %va:
656 ///    (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
657 ///    -> !llvm."<8 x f32>">
658 /// ```
659 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
660 public:
661   using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
662 
663   LogicalResult
664   matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
665                   ConversionPatternRewriter &rewriter) const override {
666     VectorType vType = fmaOp.getVectorType();
667     if (vType.getRank() != 1)
668       return failure();
669     rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
670                                                  adaptor.rhs(), adaptor.acc());
671     return success();
672   }
673 };
674 
675 class VectorInsertElementOpConversion
676     : public ConvertOpToLLVMPattern<vector::InsertElementOp> {
677 public:
678   using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
679 
680   LogicalResult
681   matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor,
682                   ConversionPatternRewriter &rewriter) const override {
683     auto vectorType = insertEltOp.getDestVectorType();
684     auto llvmType = typeConverter->convertType(vectorType);
685 
686     // Bail if result type cannot be lowered.
687     if (!llvmType)
688       return failure();
689 
690     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
691         insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
692         adaptor.position());
693     return success();
694   }
695 };
696 
697 class VectorInsertOpConversion
698     : public ConvertOpToLLVMPattern<vector::InsertOp> {
699 public:
700   using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
701 
702   LogicalResult
703   matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
704                   ConversionPatternRewriter &rewriter) const override {
705     auto loc = insertOp->getLoc();
706     auto sourceType = insertOp.getSourceType();
707     auto destVectorType = insertOp.getDestVectorType();
708     auto llvmResultType = typeConverter->convertType(destVectorType);
709     auto positionArrayAttr = insertOp.position();
710 
711     // Bail if result type cannot be lowered.
712     if (!llvmResultType)
713       return failure();
714 
715     // Overwrite entire vector with value. Should be handled by folder, but
716     // just to be safe.
717     if (positionArrayAttr.empty()) {
718       rewriter.replaceOp(insertOp, adaptor.source());
719       return success();
720     }
721 
722     // One-shot insertion of a vector into an array (only requires insertvalue).
723     if (sourceType.isa<VectorType>()) {
724       Value inserted = rewriter.create<LLVM::InsertValueOp>(
725           loc, llvmResultType, adaptor.dest(), adaptor.source(),
726           positionArrayAttr);
727       rewriter.replaceOp(insertOp, inserted);
728       return success();
729     }
730 
731     // Potential extraction of 1-D vector from array.
732     auto *context = insertOp->getContext();
733     Value extracted = adaptor.dest();
734     auto positionAttrs = positionArrayAttr.getValue();
735     auto position = positionAttrs.back().cast<IntegerAttr>();
736     auto oneDVectorType = destVectorType;
737     if (positionAttrs.size() > 1) {
738       oneDVectorType = reducedVectorTypeBack(destVectorType);
739       auto nMinusOnePositionAttrs =
740           ArrayAttr::get(context, positionAttrs.drop_back());
741       extracted = rewriter.create<LLVM::ExtractValueOp>(
742           loc, typeConverter->convertType(oneDVectorType), extracted,
743           nMinusOnePositionAttrs);
744     }
745 
746     // Insertion of an element into a 1-D LLVM vector.
747     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
748     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
749     Value inserted = rewriter.create<LLVM::InsertElementOp>(
750         loc, typeConverter->convertType(oneDVectorType), extracted,
751         adaptor.source(), constant);
752 
753     // Potential insertion of resulting 1-D vector into array.
754     if (positionAttrs.size() > 1) {
755       auto nMinusOnePositionAttrs =
756           ArrayAttr::get(context, positionAttrs.drop_back());
757       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
758                                                       adaptor.dest(), inserted,
759                                                       nMinusOnePositionAttrs);
760     }
761 
762     rewriter.replaceOp(insertOp, inserted);
763     return success();
764   }
765 };
766 
767 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
768 ///
769 /// Example:
770 /// ```
771 ///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
772 /// ```
773 /// is rewritten into:
774 /// ```
775 ///  %r = splat %f0: vector<2x4xf32>
776 ///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
777 ///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
778 ///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
779 ///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
780 ///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
781 ///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
782 ///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
783 ///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
784 ///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
785 ///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
786 ///  // %r3 holds the final value.
787 /// ```
788 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
789 public:
790   using OpRewritePattern<FMAOp>::OpRewritePattern;
791 
792   LogicalResult matchAndRewrite(FMAOp op,
793                                 PatternRewriter &rewriter) const override {
794     auto vType = op.getVectorType();
795     if (vType.getRank() < 2)
796       return failure();
797 
798     auto loc = op.getLoc();
799     auto elemType = vType.getElementType();
800     Value zero = rewriter.create<ConstantOp>(loc, elemType,
801                                              rewriter.getZeroAttr(elemType));
802     Value desc = rewriter.create<SplatOp>(loc, vType, zero);
803     for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
804       Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
805       Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
806       Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
807       Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
808       desc = rewriter.create<InsertOp>(loc, fma, desc, i);
809     }
810     rewriter.replaceOp(op, desc);
811     return success();
812   }
813 };
814 
815 // When ranks are different, InsertStridedSlice needs to extract a properly
816 // ranked vector from the destination vector into which to insert. This pattern
817 // only takes care of this part and forwards the rest of the conversion to
818 // another pattern that converts InsertStridedSlice for operands of the same
819 // rank.
820 //
821 // RewritePattern for InsertStridedSliceOp where source and destination vectors
822 // have different ranks. In this case:
823 //   1. the proper subvector is extracted from the destination vector
824 //   2. a new InsertStridedSlice op is created to insert the source in the
825 //   destination subvector
826 //   3. the destination subvector is inserted back in the proper place
827 //   4. the op is replaced by the result of step 3.
828 // The new InsertStridedSlice from step 2. will be picked up by a
829 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
830 class VectorInsertStridedSliceOpDifferentRankRewritePattern
831     : public OpRewritePattern<InsertStridedSliceOp> {
832 public:
833   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
834 
835   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
836                                 PatternRewriter &rewriter) const override {
837     auto srcType = op.getSourceVectorType();
838     auto dstType = op.getDestVectorType();
839 
840     if (op.offsets().getValue().empty())
841       return failure();
842 
843     auto loc = op.getLoc();
844     int64_t rankDiff = dstType.getRank() - srcType.getRank();
845     assert(rankDiff >= 0);
846     if (rankDiff == 0)
847       return failure();
848 
849     int64_t rankRest = dstType.getRank() - rankDiff;
850     // Extract / insert the subvector of matching rank and InsertStridedSlice
851     // on it.
852     Value extracted =
853         rewriter.create<ExtractOp>(loc, op.dest(),
854                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
855                                                   /*dropBack=*/rankRest));
856     // A different pattern will kick in for InsertStridedSlice with matching
857     // ranks.
858     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
859         loc, op.source(), extracted,
860         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
861         getI64SubArray(op.strides(), /*dropFront=*/0));
862     rewriter.replaceOpWithNewOp<InsertOp>(
863         op, stridedSliceInnerOp.getResult(), op.dest(),
864         getI64SubArray(op.offsets(), /*dropFront=*/0,
865                        /*dropBack=*/rankRest));
866     return success();
867   }
868 };
869 
870 // RewritePattern for InsertStridedSliceOp where source and destination vectors
871 // have the same rank. In this case, we reduce
872 //   1. the proper subvector is extracted from the destination vector
873 //   2. a new InsertStridedSlice op is created to insert the source in the
874 //   destination subvector
875 //   3. the destination subvector is inserted back in the proper place
876 //   4. the op is replaced by the result of step 3.
877 // The new InsertStridedSlice from step 2. will be picked up by a
878 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
879 class VectorInsertStridedSliceOpSameRankRewritePattern
880     : public OpRewritePattern<InsertStridedSliceOp> {
881 public:
882   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
883 
884   void initialize() {
885     // This pattern creates recursive InsertStridedSliceOp, but the recursion is
886     // bounded as the rank is strictly decreasing.
887     setHasBoundedRewriteRecursion();
888   }
889 
890   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
891                                 PatternRewriter &rewriter) const override {
892     auto srcType = op.getSourceVectorType();
893     auto dstType = op.getDestVectorType();
894 
895     if (op.offsets().getValue().empty())
896       return failure();
897 
898     int64_t rankDiff = dstType.getRank() - srcType.getRank();
899     assert(rankDiff >= 0);
900     if (rankDiff != 0)
901       return failure();
902 
903     if (srcType == dstType) {
904       rewriter.replaceOp(op, op.source());
905       return success();
906     }
907 
908     int64_t offset =
909         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
910     int64_t size = srcType.getShape().front();
911     int64_t stride =
912         op.strides().getValue().front().cast<IntegerAttr>().getInt();
913 
914     auto loc = op.getLoc();
915     Value res = op.dest();
916     // For each slice of the source vector along the most major dimension.
917     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
918          off += stride, ++idx) {
919       // 1. extract the proper subvector (or element) from source
920       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
921       if (extractedSource.getType().isa<VectorType>()) {
922         // 2. If we have a vector, extract the proper subvector from destination
923         // Otherwise we are at the element level and no need to recurse.
924         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
925         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
926         // smaller rank.
927         extractedSource = rewriter.create<InsertStridedSliceOp>(
928             loc, extractedSource, extractedDest,
929             getI64SubArray(op.offsets(), /* dropFront=*/1),
930             getI64SubArray(op.strides(), /* dropFront=*/1));
931       }
932       // 4. Insert the extractedSource into the res vector.
933       res = insertOne(rewriter, loc, extractedSource, res, off);
934     }
935 
936     rewriter.replaceOp(op, res);
937     return success();
938   }
939 };
940 
941 /// Returns the strides if the memory underlying `memRefType` has a contiguous
942 /// static layout.
943 static llvm::Optional<SmallVector<int64_t, 4>>
944 computeContiguousStrides(MemRefType memRefType) {
945   int64_t offset;
946   SmallVector<int64_t, 4> strides;
947   if (failed(getStridesAndOffset(memRefType, strides, offset)))
948     return None;
949   if (!strides.empty() && strides.back() != 1)
950     return None;
951   // If no layout or identity layout, this is contiguous by definition.
952   if (memRefType.getAffineMaps().empty() ||
953       memRefType.getAffineMaps().front().isIdentity())
954     return strides;
955 
956   // Otherwise, we must determine contiguity form shapes. This can only ever
957   // work in static cases because MemRefType is underspecified to represent
958   // contiguous dynamic shapes in other ways than with just empty/identity
959   // layout.
960   auto sizes = memRefType.getShape();
961   for (int index = 0, e = strides.size() - 1; index < e; ++index) {
962     if (ShapedType::isDynamic(sizes[index + 1]) ||
963         ShapedType::isDynamicStrideOrOffset(strides[index]) ||
964         ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
965       return None;
966     if (strides[index] != strides[index + 1] * sizes[index + 1])
967       return None;
968   }
969   return strides;
970 }
971 
972 class VectorTypeCastOpConversion
973     : public ConvertOpToLLVMPattern<vector::TypeCastOp> {
974 public:
975   using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
976 
977   LogicalResult
978   matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor,
979                   ConversionPatternRewriter &rewriter) const override {
980     auto loc = castOp->getLoc();
981     MemRefType sourceMemRefType =
982         castOp.getOperand().getType().cast<MemRefType>();
983     MemRefType targetMemRefType = castOp.getType();
984 
985     // Only static shape casts supported atm.
986     if (!sourceMemRefType.hasStaticShape() ||
987         !targetMemRefType.hasStaticShape())
988       return failure();
989 
990     auto llvmSourceDescriptorTy =
991         adaptor.getOperands()[0].getType().dyn_cast<LLVM::LLVMStructType>();
992     if (!llvmSourceDescriptorTy)
993       return failure();
994     MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]);
995 
996     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
997                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
998     if (!llvmTargetDescriptorTy)
999       return failure();
1000 
1001     // Only contiguous source buffers supported atm.
1002     auto sourceStrides = computeContiguousStrides(sourceMemRefType);
1003     if (!sourceStrides)
1004       return failure();
1005     auto targetStrides = computeContiguousStrides(targetMemRefType);
1006     if (!targetStrides)
1007       return failure();
1008     // Only support static strides for now, regardless of contiguity.
1009     if (llvm::any_of(*targetStrides, [](int64_t stride) {
1010           return ShapedType::isDynamicStrideOrOffset(stride);
1011         }))
1012       return failure();
1013 
1014     auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
1015 
1016     // Create descriptor.
1017     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1018     Type llvmTargetElementTy = desc.getElementPtrType();
1019     // Set allocated ptr.
1020     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
1021     allocated =
1022         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
1023     desc.setAllocatedPtr(rewriter, loc, allocated);
1024     // Set aligned ptr.
1025     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
1026     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
1027     desc.setAlignedPtr(rewriter, loc, ptr);
1028     // Fill offset 0.
1029     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
1030     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
1031     desc.setOffset(rewriter, loc, zero);
1032 
1033     // Fill size and stride descriptors in memref.
1034     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
1035       int64_t index = indexedSize.index();
1036       auto sizeAttr =
1037           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
1038       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
1039       desc.setSize(rewriter, loc, index, size);
1040       auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
1041                                                 (*targetStrides)[index]);
1042       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
1043       desc.setStride(rewriter, loc, index, stride);
1044     }
1045 
1046     rewriter.replaceOp(castOp, {desc});
1047     return success();
1048   }
1049 };
1050 
1051 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
1052 public:
1053   using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
1054 
1055   // Proof-of-concept lowering implementation that relies on a small
1056   // runtime support library, which only needs to provide a few
1057   // printing methods (single value for all data types, opening/closing
1058   // bracket, comma, newline). The lowering fully unrolls a vector
1059   // in terms of these elementary printing operations. The advantage
1060   // of this approach is that the library can remain unaware of all
1061   // low-level implementation details of vectors while still supporting
1062   // output of any shaped and dimensioned vector. Due to full unrolling,
1063   // this approach is less suited for very large vectors though.
1064   //
1065   // TODO: rely solely on libc in future? something else?
1066   //
1067   LogicalResult
1068   matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor,
1069                   ConversionPatternRewriter &rewriter) const override {
1070     Type printType = printOp.getPrintType();
1071 
1072     if (typeConverter->convertType(printType) == nullptr)
1073       return failure();
1074 
1075     // Make sure element type has runtime support.
1076     PrintConversion conversion = PrintConversion::None;
1077     VectorType vectorType = printType.dyn_cast<VectorType>();
1078     Type eltType = vectorType ? vectorType.getElementType() : printType;
1079     Operation *printer;
1080     if (eltType.isF32()) {
1081       printer =
1082           LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>());
1083     } else if (eltType.isF64()) {
1084       printer =
1085           LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>());
1086     } else if (eltType.isIndex()) {
1087       printer =
1088           LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>());
1089     } else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
1090       // Integers need a zero or sign extension on the operand
1091       // (depending on the source type) as well as a signed or
1092       // unsigned print method. Up to 64-bit is supported.
1093       unsigned width = intTy.getWidth();
1094       if (intTy.isUnsigned()) {
1095         if (width <= 64) {
1096           if (width < 64)
1097             conversion = PrintConversion::ZeroExt64;
1098           printer = LLVM::lookupOrCreatePrintU64Fn(
1099               printOp->getParentOfType<ModuleOp>());
1100         } else {
1101           return failure();
1102         }
1103       } else {
1104         assert(intTy.isSignless() || intTy.isSigned());
1105         if (width <= 64) {
1106           // Note that we *always* zero extend booleans (1-bit integers),
1107           // so that true/false is printed as 1/0 rather than -1/0.
1108           if (width == 1)
1109             conversion = PrintConversion::ZeroExt64;
1110           else if (width < 64)
1111             conversion = PrintConversion::SignExt64;
1112           printer = LLVM::lookupOrCreatePrintI64Fn(
1113               printOp->getParentOfType<ModuleOp>());
1114         } else {
1115           return failure();
1116         }
1117       }
1118     } else {
1119       return failure();
1120     }
1121 
1122     // Unroll vector into elementary print calls.
1123     int64_t rank = vectorType ? vectorType.getRank() : 0;
1124     emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank,
1125               conversion);
1126     emitCall(rewriter, printOp->getLoc(),
1127              LLVM::lookupOrCreatePrintNewlineFn(
1128                  printOp->getParentOfType<ModuleOp>()));
1129     rewriter.eraseOp(printOp);
1130     return success();
1131   }
1132 
1133 private:
1134   enum class PrintConversion {
1135     // clang-format off
1136     None,
1137     ZeroExt64,
1138     SignExt64
1139     // clang-format on
1140   };
1141 
1142   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
1143                  Value value, VectorType vectorType, Operation *printer,
1144                  int64_t rank, PrintConversion conversion) const {
1145     Location loc = op->getLoc();
1146     if (rank == 0) {
1147       switch (conversion) {
1148       case PrintConversion::ZeroExt64:
1149         value = rewriter.create<ZeroExtendIOp>(
1150             loc, value, IntegerType::get(rewriter.getContext(), 64));
1151         break;
1152       case PrintConversion::SignExt64:
1153         value = rewriter.create<SignExtendIOp>(
1154             loc, value, IntegerType::get(rewriter.getContext(), 64));
1155         break;
1156       case PrintConversion::None:
1157         break;
1158       }
1159       emitCall(rewriter, loc, printer, value);
1160       return;
1161     }
1162 
1163     emitCall(rewriter, loc,
1164              LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>()));
1165     Operation *printComma =
1166         LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>());
1167     int64_t dim = vectorType.getDimSize(0);
1168     for (int64_t d = 0; d < dim; ++d) {
1169       auto reducedType =
1170           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
1171       auto llvmType = typeConverter->convertType(
1172           rank > 1 ? reducedType : vectorType.getElementType());
1173       Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
1174                                    llvmType, rank, d);
1175       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
1176                 conversion);
1177       if (d != dim - 1)
1178         emitCall(rewriter, loc, printComma);
1179     }
1180     emitCall(rewriter, loc,
1181              LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
1182   }
1183 
1184   // Helper to emit a call.
1185   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
1186                        Operation *ref, ValueRange params = ValueRange()) {
1187     rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref),
1188                                   params);
1189   }
1190 };
1191 
1192 /// Progressive lowering of ExtractStridedSliceOp to either:
1193 ///   1. express single offset extract as a direct shuffle.
1194 ///   2. extract + lower rank strided_slice + insert for the n-D case.
1195 class VectorExtractStridedSliceOpConversion
1196     : public OpRewritePattern<ExtractStridedSliceOp> {
1197 public:
1198   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
1199 
1200   void initialize() {
1201     // This pattern creates recursive ExtractStridedSliceOp, but the recursion
1202     // is bounded as the rank is strictly decreasing.
1203     setHasBoundedRewriteRecursion();
1204   }
1205 
1206   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
1207                                 PatternRewriter &rewriter) const override {
1208     auto dstType = op.getType();
1209 
1210     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
1211 
1212     int64_t offset =
1213         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1214     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
1215     int64_t stride =
1216         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1217 
1218     auto loc = op.getLoc();
1219     auto elemType = dstType.getElementType();
1220     assert(elemType.isSignlessIntOrIndexOrFloat());
1221 
1222     // Single offset can be more efficiently shuffled.
1223     if (op.offsets().getValue().size() == 1) {
1224       SmallVector<int64_t, 4> offsets;
1225       offsets.reserve(size);
1226       for (int64_t off = offset, e = offset + size * stride; off < e;
1227            off += stride)
1228         offsets.push_back(off);
1229       rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
1230                                              op.vector(),
1231                                              rewriter.getI64ArrayAttr(offsets));
1232       return success();
1233     }
1234 
1235     // Extract/insert on a lower ranked extract strided slice op.
1236     Value zero = rewriter.create<ConstantOp>(loc, elemType,
1237                                              rewriter.getZeroAttr(elemType));
1238     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
1239     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1240          off += stride, ++idx) {
1241       Value one = extractOne(rewriter, loc, op.vector(), off);
1242       Value extracted = rewriter.create<ExtractStridedSliceOp>(
1243           loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
1244           getI64SubArray(op.sizes(), /* dropFront=*/1),
1245           getI64SubArray(op.strides(), /* dropFront=*/1));
1246       res = insertOne(rewriter, loc, extracted, res, idx);
1247     }
1248     rewriter.replaceOp(op, res);
1249     return success();
1250   }
1251 };
1252 
1253 } // namespace
1254 
1255 /// Populate the given list with patterns that convert from Vector to LLVM.
1256 void mlir::populateVectorToLLVMConversionPatterns(
1257     LLVMTypeConverter &converter, RewritePatternSet &patterns,
1258     bool reassociateFPReductions) {
1259   MLIRContext *ctx = converter.getDialect()->getContext();
1260   patterns.add<VectorFMAOpNDRewritePattern,
1261                VectorInsertStridedSliceOpDifferentRankRewritePattern,
1262                VectorInsertStridedSliceOpSameRankRewritePattern,
1263                VectorExtractStridedSliceOpConversion>(ctx);
1264   patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
1265   patterns
1266       .add<VectorBitCastOpConversion, VectorShuffleOpConversion,
1267            VectorExtractElementOpConversion, VectorExtractOpConversion,
1268            VectorFMAOp1DConversion, VectorInsertElementOpConversion,
1269            VectorInsertOpConversion, VectorPrintOpConversion,
1270            VectorTypeCastOpConversion,
1271            VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
1272            VectorLoadStoreConversion<vector::MaskedLoadOp,
1273                                      vector::MaskedLoadOpAdaptor>,
1274            VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
1275            VectorLoadStoreConversion<vector::MaskedStoreOp,
1276                                      vector::MaskedStoreOpAdaptor>,
1277            VectorGatherOpConversion, VectorScatterOpConversion,
1278            VectorExpandLoadOpConversion, VectorCompressStoreOpConversion>(
1279           converter);
1280   // Transfer ops with rank > 1 are handled by VectorToSCF.
1281   populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
1282 }
1283 
1284 void mlir::populateVectorToLLVMMatrixConversionPatterns(
1285     LLVMTypeConverter &converter, RewritePatternSet &patterns) {
1286   patterns.add<VectorMatmulOpConversion>(converter);
1287   patterns.add<VectorFlatTransposeOpConversion>(converter);
1288 }
1289