1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 
11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
13 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
14 #include "mlir/Dialect/StandardOps/IR/Ops.h"
15 #include "mlir/Dialect/Vector/VectorOps.h"
16 #include "mlir/IR/BuiltinTypes.h"
17 #include "mlir/Target/LLVMIR/TypeTranslation.h"
18 #include "mlir/Transforms/DialectConversion.h"
19 
20 using namespace mlir;
21 using namespace mlir::vector;
22 
23 // Helper to reduce vector type by one rank at front.
24 static VectorType reducedVectorTypeFront(VectorType tp) {
25   assert((tp.getRank() > 1) && "unlowerable vector type");
26   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
27 }
28 
29 // Helper to reduce vector type by *all* but one rank at back.
30 static VectorType reducedVectorTypeBack(VectorType tp) {
31   assert((tp.getRank() > 1) && "unlowerable vector type");
32   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
33 }
34 
35 // Helper that picks the proper sequence for inserting.
36 static Value insertOne(ConversionPatternRewriter &rewriter,
37                        LLVMTypeConverter &typeConverter, Location loc,
38                        Value val1, Value val2, Type llvmType, int64_t rank,
39                        int64_t pos) {
40   if (rank == 1) {
41     auto idxType = rewriter.getIndexType();
42     auto constant = rewriter.create<LLVM::ConstantOp>(
43         loc, typeConverter.convertType(idxType),
44         rewriter.getIntegerAttr(idxType, pos));
45     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
46                                                   constant);
47   }
48   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
49                                               rewriter.getI64ArrayAttr(pos));
50 }
51 
52 // Helper that picks the proper sequence for inserting.
53 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
54                        Value into, int64_t offset) {
55   auto vectorType = into.getType().cast<VectorType>();
56   if (vectorType.getRank() > 1)
57     return rewriter.create<InsertOp>(loc, from, into, offset);
58   return rewriter.create<vector::InsertElementOp>(
59       loc, vectorType, from, into,
60       rewriter.create<ConstantIndexOp>(loc, offset));
61 }
62 
63 // Helper that picks the proper sequence for extracting.
64 static Value extractOne(ConversionPatternRewriter &rewriter,
65                         LLVMTypeConverter &typeConverter, Location loc,
66                         Value val, Type llvmType, int64_t rank, int64_t pos) {
67   if (rank == 1) {
68     auto idxType = rewriter.getIndexType();
69     auto constant = rewriter.create<LLVM::ConstantOp>(
70         loc, typeConverter.convertType(idxType),
71         rewriter.getIntegerAttr(idxType, pos));
72     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
73                                                    constant);
74   }
75   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
76                                                rewriter.getI64ArrayAttr(pos));
77 }
78 
79 // Helper that picks the proper sequence for extracting.
80 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
81                         int64_t offset) {
82   auto vectorType = vector.getType().cast<VectorType>();
83   if (vectorType.getRank() > 1)
84     return rewriter.create<ExtractOp>(loc, vector, offset);
85   return rewriter.create<vector::ExtractElementOp>(
86       loc, vectorType.getElementType(), vector,
87       rewriter.create<ConstantIndexOp>(loc, offset));
88 }
89 
90 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
91 // TODO: Better support for attribute subtype forwarding + slicing.
92 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
93                                               unsigned dropFront = 0,
94                                               unsigned dropBack = 0) {
95   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
96   auto range = arrayAttr.getAsRange<IntegerAttr>();
97   SmallVector<int64_t, 4> res;
98   res.reserve(arrayAttr.size() - dropFront - dropBack);
99   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
100        it != eit; ++it)
101     res.push_back((*it).getValue().getSExtValue());
102   return res;
103 }
104 
105 // Helper that returns a vector comparison that constructs a mask:
106 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
107 //
108 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
109 //       much more compact, IR for this operation, but LLVM eventually
110 //       generates more elaborate instructions for this intrinsic since it
111 //       is very conservative on the boundary conditions.
112 static Value buildVectorComparison(ConversionPatternRewriter &rewriter,
113                                    Operation *op, bool enableIndexOptimizations,
114                                    int64_t dim, Value b, Value *off = nullptr) {
115   auto loc = op->getLoc();
116   // If we can assume all indices fit in 32-bit, we perform the vector
117   // comparison in 32-bit to get a higher degree of SIMD parallelism.
118   // Otherwise we perform the vector comparison using 64-bit indices.
119   Value indices;
120   Type idxType;
121   if (enableIndexOptimizations) {
122     indices = rewriter.create<ConstantOp>(
123         loc, rewriter.getI32VectorAttr(
124                  llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))));
125     idxType = rewriter.getI32Type();
126   } else {
127     indices = rewriter.create<ConstantOp>(
128         loc, rewriter.getI64VectorAttr(
129                  llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))));
130     idxType = rewriter.getI64Type();
131   }
132   // Add in an offset if requested.
133   if (off) {
134     Value o = rewriter.create<IndexCastOp>(loc, idxType, *off);
135     Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o);
136     indices = rewriter.create<AddIOp>(loc, ov, indices);
137   }
138   // Construct the vector comparison.
139   Value bound = rewriter.create<IndexCastOp>(loc, idxType, b);
140   Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
141   return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds);
142 }
143 
144 // Helper that returns data layout alignment of a memref.
145 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
146                                  MemRefType memrefType, unsigned &align) {
147   Type elementTy = typeConverter.convertType(memrefType.getElementType());
148   if (!elementTy)
149     return failure();
150 
151   // TODO: this should use the MLIR data layout when it becomes available and
152   // stop depending on translation.
153   llvm::LLVMContext llvmContext;
154   align = LLVM::TypeToLLVMIRTranslator(llvmContext)
155               .getPreferredAlignment(elementTy, typeConverter.getDataLayout());
156   return success();
157 }
158 
159 // Helper that returns the base address of a memref.
160 static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc,
161                              Value memref, MemRefType memRefType, Value &base) {
162   // Inspect stride and offset structure.
163   //
164   // TODO: flat memory only for now, generalize
165   //
166   int64_t offset;
167   SmallVector<int64_t, 4> strides;
168   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
169   if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 ||
170       offset != 0 || memRefType.getMemorySpace() != 0)
171     return failure();
172   base = MemRefDescriptor(memref).alignedPtr(rewriter, loc);
173   return success();
174 }
175 
176 // Helper that returns vector of pointers given a memref base with index vector.
177 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
178                                     Location loc, Value memref, Value indices,
179                                     MemRefType memRefType, VectorType vType,
180                                     Type iType, Value &ptrs) {
181   Value base;
182   if (failed(getBase(rewriter, loc, memref, memRefType, base)))
183     return failure();
184   auto pType = MemRefDescriptor(memref).getElementPtrType();
185   auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
186   ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices);
187   return success();
188 }
189 
190 // Casts a strided element pointer to a vector pointer. The vector pointer
191 // would always be on address space 0, therefore addrspacecast shall be
192 // used when source/dst memrefs are not on address space 0.
193 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
194                          Value ptr, MemRefType memRefType, Type vt) {
195   auto pType = LLVM::LLVMPointerType::get(vt);
196   if (memRefType.getMemorySpace() == 0)
197     return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
198   return rewriter.create<LLVM::AddrSpaceCastOp>(loc, pType, ptr);
199 }
200 
201 static LogicalResult
202 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
203                                  LLVMTypeConverter &typeConverter, Location loc,
204                                  TransferReadOp xferOp,
205                                  ArrayRef<Value> operands, Value dataPtr) {
206   unsigned align;
207   if (failed(getMemRefAlignment(
208           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
209     return failure();
210   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
211   return success();
212 }
213 
214 static LogicalResult
215 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
216                             LLVMTypeConverter &typeConverter, Location loc,
217                             TransferReadOp xferOp, ArrayRef<Value> operands,
218                             Value dataPtr, Value mask) {
219   auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
220   VectorType fillType = xferOp.getVectorType();
221   Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
222   fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill);
223 
224   Type vecTy = typeConverter.convertType(xferOp.getVectorType());
225   if (!vecTy)
226     return failure();
227 
228   unsigned align;
229   if (failed(getMemRefAlignment(
230           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
231     return failure();
232 
233   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
234       xferOp, vecTy, dataPtr, mask, ValueRange{fill},
235       rewriter.getI32IntegerAttr(align));
236   return success();
237 }
238 
239 static LogicalResult
240 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
241                                  LLVMTypeConverter &typeConverter, Location loc,
242                                  TransferWriteOp xferOp,
243                                  ArrayRef<Value> operands, Value dataPtr) {
244   unsigned align;
245   if (failed(getMemRefAlignment(
246           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
247     return failure();
248   auto adaptor = TransferWriteOpAdaptor(operands);
249   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
250                                              align);
251   return success();
252 }
253 
254 static LogicalResult
255 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
256                             LLVMTypeConverter &typeConverter, Location loc,
257                             TransferWriteOp xferOp, ArrayRef<Value> operands,
258                             Value dataPtr, Value mask) {
259   unsigned align;
260   if (failed(getMemRefAlignment(
261           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
262     return failure();
263 
264   auto adaptor = TransferWriteOpAdaptor(operands);
265   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
266       xferOp, adaptor.vector(), dataPtr, mask,
267       rewriter.getI32IntegerAttr(align));
268   return success();
269 }
270 
271 static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
272                                                   ArrayRef<Value> operands) {
273   return TransferReadOpAdaptor(operands);
274 }
275 
276 static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
277                                                    ArrayRef<Value> operands) {
278   return TransferWriteOpAdaptor(operands);
279 }
280 
281 namespace {
282 
283 /// Conversion pattern for a vector.matrix_multiply.
284 /// This is lowered directly to the proper llvm.intr.matrix.multiply.
285 class VectorMatmulOpConversion
286     : public ConvertOpToLLVMPattern<vector::MatmulOp> {
287 public:
288   using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
289 
290   LogicalResult
291   matchAndRewrite(vector::MatmulOp matmulOp, ArrayRef<Value> operands,
292                   ConversionPatternRewriter &rewriter) const override {
293     auto adaptor = vector::MatmulOpAdaptor(operands);
294     rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
295         matmulOp, typeConverter->convertType(matmulOp.res().getType()),
296         adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
297         matmulOp.lhs_columns(), matmulOp.rhs_columns());
298     return success();
299   }
300 };
301 
302 /// Conversion pattern for a vector.flat_transpose.
303 /// This is lowered directly to the proper llvm.intr.matrix.transpose.
304 class VectorFlatTransposeOpConversion
305     : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
306 public:
307   using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
308 
309   LogicalResult
310   matchAndRewrite(vector::FlatTransposeOp transOp, ArrayRef<Value> operands,
311                   ConversionPatternRewriter &rewriter) const override {
312     auto adaptor = vector::FlatTransposeOpAdaptor(operands);
313     rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
314         transOp, typeConverter->convertType(transOp.res().getType()),
315         adaptor.matrix(), transOp.rows(), transOp.columns());
316     return success();
317   }
318 };
319 
320 /// Conversion pattern for a vector.maskedload.
321 class VectorMaskedLoadOpConversion
322     : public ConvertOpToLLVMPattern<vector::MaskedLoadOp> {
323 public:
324   using ConvertOpToLLVMPattern<vector::MaskedLoadOp>::ConvertOpToLLVMPattern;
325 
326   LogicalResult
327   matchAndRewrite(vector::MaskedLoadOp load, ArrayRef<Value> operands,
328                   ConversionPatternRewriter &rewriter) const override {
329     auto loc = load->getLoc();
330     auto adaptor = vector::MaskedLoadOpAdaptor(operands);
331     MemRefType memRefType = load.getMemRefType();
332 
333     // Resolve alignment.
334     unsigned align;
335     if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
336       return failure();
337 
338     // Resolve address.
339     auto vtype = typeConverter->convertType(load.getResultVectorType());
340     Value dataPtr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
341                                                adaptor.indices(), rewriter);
342     Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefType, vtype);
343 
344     rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
345         load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(),
346         rewriter.getI32IntegerAttr(align));
347     return success();
348   }
349 };
350 
351 /// Conversion pattern for a vector.maskedstore.
352 class VectorMaskedStoreOpConversion
353     : public ConvertOpToLLVMPattern<vector::MaskedStoreOp> {
354 public:
355   using ConvertOpToLLVMPattern<vector::MaskedStoreOp>::ConvertOpToLLVMPattern;
356 
357   LogicalResult
358   matchAndRewrite(vector::MaskedStoreOp store, ArrayRef<Value> operands,
359                   ConversionPatternRewriter &rewriter) const override {
360     auto loc = store->getLoc();
361     auto adaptor = vector::MaskedStoreOpAdaptor(operands);
362     MemRefType memRefType = store.getMemRefType();
363 
364     // Resolve alignment.
365     unsigned align;
366     if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
367       return failure();
368 
369     // Resolve address.
370     auto vtype = typeConverter->convertType(store.getValueVectorType());
371     Value dataPtr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
372                                                adaptor.indices(), rewriter);
373     Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefType, vtype);
374 
375     rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
376         store, adaptor.value(), ptr, adaptor.mask(),
377         rewriter.getI32IntegerAttr(align));
378     return success();
379   }
380 };
381 
382 /// Conversion pattern for a vector.gather.
383 class VectorGatherOpConversion
384     : public ConvertOpToLLVMPattern<vector::GatherOp> {
385 public:
386   using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
387 
388   LogicalResult
389   matchAndRewrite(vector::GatherOp gather, ArrayRef<Value> operands,
390                   ConversionPatternRewriter &rewriter) const override {
391     auto loc = gather->getLoc();
392     auto adaptor = vector::GatherOpAdaptor(operands);
393 
394     // Resolve alignment.
395     unsigned align;
396     if (failed(getMemRefAlignment(*getTypeConverter(), gather.getMemRefType(),
397                                   align)))
398       return failure();
399 
400     // Get index ptrs.
401     VectorType vType = gather.getResultVectorType();
402     Type iType = gather.getIndicesVectorType().getElementType();
403     Value ptrs;
404     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
405                               gather.getMemRefType(), vType, iType, ptrs)))
406       return failure();
407 
408     // Replace with the gather intrinsic.
409     rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
410         gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
411         adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
412     return success();
413   }
414 };
415 
416 /// Conversion pattern for a vector.scatter.
417 class VectorScatterOpConversion
418     : public ConvertOpToLLVMPattern<vector::ScatterOp> {
419 public:
420   using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
421 
422   LogicalResult
423   matchAndRewrite(vector::ScatterOp scatter, ArrayRef<Value> operands,
424                   ConversionPatternRewriter &rewriter) const override {
425     auto loc = scatter->getLoc();
426     auto adaptor = vector::ScatterOpAdaptor(operands);
427 
428     // Resolve alignment.
429     unsigned align;
430     if (failed(getMemRefAlignment(*getTypeConverter(), scatter.getMemRefType(),
431                                   align)))
432       return failure();
433 
434     // Get index ptrs.
435     VectorType vType = scatter.getValueVectorType();
436     Type iType = scatter.getIndicesVectorType().getElementType();
437     Value ptrs;
438     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
439                               scatter.getMemRefType(), vType, iType, ptrs)))
440       return failure();
441 
442     // Replace with the scatter intrinsic.
443     rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
444         scatter, adaptor.value(), ptrs, adaptor.mask(),
445         rewriter.getI32IntegerAttr(align));
446     return success();
447   }
448 };
449 
450 /// Conversion pattern for a vector.expandload.
451 class VectorExpandLoadOpConversion
452     : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
453 public:
454   using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
455 
456   LogicalResult
457   matchAndRewrite(vector::ExpandLoadOp expand, ArrayRef<Value> operands,
458                   ConversionPatternRewriter &rewriter) const override {
459     auto loc = expand->getLoc();
460     auto adaptor = vector::ExpandLoadOpAdaptor(operands);
461     MemRefType memRefType = expand.getMemRefType();
462 
463     // Resolve address.
464     auto vtype = typeConverter->convertType(expand.getResultVectorType());
465     Value ptr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
466                                            adaptor.indices(), rewriter);
467 
468     rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
469         expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
470     return success();
471   }
472 };
473 
474 /// Conversion pattern for a vector.compressstore.
475 class VectorCompressStoreOpConversion
476     : public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
477 public:
478   using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
479 
480   LogicalResult
481   matchAndRewrite(vector::CompressStoreOp compress, ArrayRef<Value> operands,
482                   ConversionPatternRewriter &rewriter) const override {
483     auto loc = compress->getLoc();
484     auto adaptor = vector::CompressStoreOpAdaptor(operands);
485     MemRefType memRefType = compress.getMemRefType();
486 
487     // Resolve address.
488     Value ptr = this->getStridedElementPtr(loc, memRefType, adaptor.base(),
489                                            adaptor.indices(), rewriter);
490 
491     rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
492         compress, adaptor.value(), ptr, adaptor.mask());
493     return success();
494   }
495 };
496 
497 /// Conversion pattern for all vector reductions.
498 class VectorReductionOpConversion
499     : public ConvertOpToLLVMPattern<vector::ReductionOp> {
500 public:
501   explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
502                                        bool reassociateFPRed)
503       : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
504         reassociateFPReductions(reassociateFPRed) {}
505 
506   LogicalResult
507   matchAndRewrite(vector::ReductionOp reductionOp, ArrayRef<Value> operands,
508                   ConversionPatternRewriter &rewriter) const override {
509     auto kind = reductionOp.kind();
510     Type eltType = reductionOp.dest().getType();
511     Type llvmType = typeConverter->convertType(eltType);
512     if (eltType.isIntOrIndex()) {
513       // Integer reductions: add/mul/min/max/and/or/xor.
514       if (kind == "add")
515         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(
516             reductionOp, llvmType, operands[0]);
517       else if (kind == "mul")
518         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(
519             reductionOp, llvmType, operands[0]);
520       else if (kind == "min" &&
521                (eltType.isIndex() || eltType.isUnsignedInteger()))
522         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
523             reductionOp, llvmType, operands[0]);
524       else if (kind == "min")
525         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
526             reductionOp, llvmType, operands[0]);
527       else if (kind == "max" &&
528                (eltType.isIndex() || eltType.isUnsignedInteger()))
529         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
530             reductionOp, llvmType, operands[0]);
531       else if (kind == "max")
532         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
533             reductionOp, llvmType, operands[0]);
534       else if (kind == "and")
535         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(
536             reductionOp, llvmType, operands[0]);
537       else if (kind == "or")
538         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(
539             reductionOp, llvmType, operands[0]);
540       else if (kind == "xor")
541         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(
542             reductionOp, llvmType, operands[0]);
543       else
544         return failure();
545       return success();
546     }
547 
548     if (!eltType.isa<FloatType>())
549       return failure();
550 
551     // Floating-point reductions: add/mul/min/max
552     if (kind == "add") {
553       // Optional accumulator (or zero).
554       Value acc = operands.size() > 1 ? operands[1]
555                                       : rewriter.create<LLVM::ConstantOp>(
556                                             reductionOp->getLoc(), llvmType,
557                                             rewriter.getZeroAttr(eltType));
558       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
559           reductionOp, llvmType, acc, operands[0],
560           rewriter.getBoolAttr(reassociateFPReductions));
561     } else if (kind == "mul") {
562       // Optional accumulator (or one).
563       Value acc = operands.size() > 1
564                       ? operands[1]
565                       : rewriter.create<LLVM::ConstantOp>(
566                             reductionOp->getLoc(), llvmType,
567                             rewriter.getFloatAttr(eltType, 1.0));
568       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
569           reductionOp, llvmType, acc, operands[0],
570           rewriter.getBoolAttr(reassociateFPReductions));
571     } else if (kind == "min")
572       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(
573           reductionOp, llvmType, operands[0]);
574     else if (kind == "max")
575       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(
576           reductionOp, llvmType, operands[0]);
577     else
578       return failure();
579     return success();
580   }
581 
582 private:
583   const bool reassociateFPReductions;
584 };
585 
586 /// Conversion pattern for a vector.create_mask (1-D only).
587 class VectorCreateMaskOpConversion
588     : public ConvertOpToLLVMPattern<vector::CreateMaskOp> {
589 public:
590   explicit VectorCreateMaskOpConversion(LLVMTypeConverter &typeConv,
591                                         bool enableIndexOpt)
592       : ConvertOpToLLVMPattern<vector::CreateMaskOp>(typeConv),
593         enableIndexOptimizations(enableIndexOpt) {}
594 
595   LogicalResult
596   matchAndRewrite(vector::CreateMaskOp op, ArrayRef<Value> operands,
597                   ConversionPatternRewriter &rewriter) const override {
598     auto dstType = op.getType();
599     int64_t rank = dstType.getRank();
600     if (rank == 1) {
601       rewriter.replaceOp(
602           op, buildVectorComparison(rewriter, op, enableIndexOptimizations,
603                                     dstType.getDimSize(0), operands[0]));
604       return success();
605     }
606     return failure();
607   }
608 
609 private:
610   const bool enableIndexOptimizations;
611 };
612 
613 class VectorShuffleOpConversion
614     : public ConvertOpToLLVMPattern<vector::ShuffleOp> {
615 public:
616   using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
617 
618   LogicalResult
619   matchAndRewrite(vector::ShuffleOp shuffleOp, ArrayRef<Value> operands,
620                   ConversionPatternRewriter &rewriter) const override {
621     auto loc = shuffleOp->getLoc();
622     auto adaptor = vector::ShuffleOpAdaptor(operands);
623     auto v1Type = shuffleOp.getV1VectorType();
624     auto v2Type = shuffleOp.getV2VectorType();
625     auto vectorType = shuffleOp.getVectorType();
626     Type llvmType = typeConverter->convertType(vectorType);
627     auto maskArrayAttr = shuffleOp.mask();
628 
629     // Bail if result type cannot be lowered.
630     if (!llvmType)
631       return failure();
632 
633     // Get rank and dimension sizes.
634     int64_t rank = vectorType.getRank();
635     assert(v1Type.getRank() == rank);
636     assert(v2Type.getRank() == rank);
637     int64_t v1Dim = v1Type.getDimSize(0);
638 
639     // For rank 1, where both operands have *exactly* the same vector type,
640     // there is direct shuffle support in LLVM. Use it!
641     if (rank == 1 && v1Type == v2Type) {
642       Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
643           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
644       rewriter.replaceOp(shuffleOp, llvmShuffleOp);
645       return success();
646     }
647 
648     // For all other cases, insert the individual values individually.
649     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
650     int64_t insPos = 0;
651     for (auto en : llvm::enumerate(maskArrayAttr)) {
652       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
653       Value value = adaptor.v1();
654       if (extPos >= v1Dim) {
655         extPos -= v1Dim;
656         value = adaptor.v2();
657       }
658       Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
659                                  llvmType, rank, extPos);
660       insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
661                          llvmType, rank, insPos++);
662     }
663     rewriter.replaceOp(shuffleOp, insert);
664     return success();
665   }
666 };
667 
668 class VectorExtractElementOpConversion
669     : public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
670 public:
671   using ConvertOpToLLVMPattern<
672       vector::ExtractElementOp>::ConvertOpToLLVMPattern;
673 
674   LogicalResult
675   matchAndRewrite(vector::ExtractElementOp extractEltOp,
676                   ArrayRef<Value> operands,
677                   ConversionPatternRewriter &rewriter) const override {
678     auto adaptor = vector::ExtractElementOpAdaptor(operands);
679     auto vectorType = extractEltOp.getVectorType();
680     auto llvmType = typeConverter->convertType(vectorType.getElementType());
681 
682     // Bail if result type cannot be lowered.
683     if (!llvmType)
684       return failure();
685 
686     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
687         extractEltOp, llvmType, adaptor.vector(), adaptor.position());
688     return success();
689   }
690 };
691 
692 class VectorExtractOpConversion
693     : public ConvertOpToLLVMPattern<vector::ExtractOp> {
694 public:
695   using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
696 
697   LogicalResult
698   matchAndRewrite(vector::ExtractOp extractOp, ArrayRef<Value> operands,
699                   ConversionPatternRewriter &rewriter) const override {
700     auto loc = extractOp->getLoc();
701     auto adaptor = vector::ExtractOpAdaptor(operands);
702     auto vectorType = extractOp.getVectorType();
703     auto resultType = extractOp.getResult().getType();
704     auto llvmResultType = typeConverter->convertType(resultType);
705     auto positionArrayAttr = extractOp.position();
706 
707     // Bail if result type cannot be lowered.
708     if (!llvmResultType)
709       return failure();
710 
711     // One-shot extraction of vector from array (only requires extractvalue).
712     if (resultType.isa<VectorType>()) {
713       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
714           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
715       rewriter.replaceOp(extractOp, extracted);
716       return success();
717     }
718 
719     // Potential extraction of 1-D vector from array.
720     auto *context = extractOp->getContext();
721     Value extracted = adaptor.vector();
722     auto positionAttrs = positionArrayAttr.getValue();
723     if (positionAttrs.size() > 1) {
724       auto oneDVectorType = reducedVectorTypeBack(vectorType);
725       auto nMinusOnePositionAttrs =
726           ArrayAttr::get(positionAttrs.drop_back(), context);
727       extracted = rewriter.create<LLVM::ExtractValueOp>(
728           loc, typeConverter->convertType(oneDVectorType), extracted,
729           nMinusOnePositionAttrs);
730     }
731 
732     // Remaining extraction of element from 1-D LLVM vector
733     auto position = positionAttrs.back().cast<IntegerAttr>();
734     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
735     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
736     extracted =
737         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
738     rewriter.replaceOp(extractOp, extracted);
739 
740     return success();
741   }
742 };
743 
744 /// Conversion pattern that turns a vector.fma on a 1-D vector
745 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
746 /// This does not match vectors of n >= 2 rank.
747 ///
748 /// Example:
749 /// ```
750 ///  vector.fma %a, %a, %a : vector<8xf32>
751 /// ```
752 /// is converted to:
753 /// ```
754 ///  llvm.intr.fmuladd %va, %va, %va:
755 ///    (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
756 ///    -> !llvm."<8 x f32>">
757 /// ```
758 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
759 public:
760   using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
761 
762   LogicalResult
763   matchAndRewrite(vector::FMAOp fmaOp, ArrayRef<Value> operands,
764                   ConversionPatternRewriter &rewriter) const override {
765     auto adaptor = vector::FMAOpAdaptor(operands);
766     VectorType vType = fmaOp.getVectorType();
767     if (vType.getRank() != 1)
768       return failure();
769     rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
770                                                  adaptor.rhs(), adaptor.acc());
771     return success();
772   }
773 };
774 
775 class VectorInsertElementOpConversion
776     : public ConvertOpToLLVMPattern<vector::InsertElementOp> {
777 public:
778   using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
779 
780   LogicalResult
781   matchAndRewrite(vector::InsertElementOp insertEltOp, ArrayRef<Value> operands,
782                   ConversionPatternRewriter &rewriter) const override {
783     auto adaptor = vector::InsertElementOpAdaptor(operands);
784     auto vectorType = insertEltOp.getDestVectorType();
785     auto llvmType = typeConverter->convertType(vectorType);
786 
787     // Bail if result type cannot be lowered.
788     if (!llvmType)
789       return failure();
790 
791     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
792         insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
793         adaptor.position());
794     return success();
795   }
796 };
797 
798 class VectorInsertOpConversion
799     : public ConvertOpToLLVMPattern<vector::InsertOp> {
800 public:
801   using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
802 
803   LogicalResult
804   matchAndRewrite(vector::InsertOp insertOp, ArrayRef<Value> operands,
805                   ConversionPatternRewriter &rewriter) const override {
806     auto loc = insertOp->getLoc();
807     auto adaptor = vector::InsertOpAdaptor(operands);
808     auto sourceType = insertOp.getSourceType();
809     auto destVectorType = insertOp.getDestVectorType();
810     auto llvmResultType = typeConverter->convertType(destVectorType);
811     auto positionArrayAttr = insertOp.position();
812 
813     // Bail if result type cannot be lowered.
814     if (!llvmResultType)
815       return failure();
816 
817     // One-shot insertion of a vector into an array (only requires insertvalue).
818     if (sourceType.isa<VectorType>()) {
819       Value inserted = rewriter.create<LLVM::InsertValueOp>(
820           loc, llvmResultType, adaptor.dest(), adaptor.source(),
821           positionArrayAttr);
822       rewriter.replaceOp(insertOp, inserted);
823       return success();
824     }
825 
826     // Potential extraction of 1-D vector from array.
827     auto *context = insertOp->getContext();
828     Value extracted = adaptor.dest();
829     auto positionAttrs = positionArrayAttr.getValue();
830     auto position = positionAttrs.back().cast<IntegerAttr>();
831     auto oneDVectorType = destVectorType;
832     if (positionAttrs.size() > 1) {
833       oneDVectorType = reducedVectorTypeBack(destVectorType);
834       auto nMinusOnePositionAttrs =
835           ArrayAttr::get(positionAttrs.drop_back(), context);
836       extracted = rewriter.create<LLVM::ExtractValueOp>(
837           loc, typeConverter->convertType(oneDVectorType), extracted,
838           nMinusOnePositionAttrs);
839     }
840 
841     // Insertion of an element into a 1-D LLVM vector.
842     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
843     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
844     Value inserted = rewriter.create<LLVM::InsertElementOp>(
845         loc, typeConverter->convertType(oneDVectorType), extracted,
846         adaptor.source(), constant);
847 
848     // Potential insertion of resulting 1-D vector into array.
849     if (positionAttrs.size() > 1) {
850       auto nMinusOnePositionAttrs =
851           ArrayAttr::get(positionAttrs.drop_back(), context);
852       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
853                                                       adaptor.dest(), inserted,
854                                                       nMinusOnePositionAttrs);
855     }
856 
857     rewriter.replaceOp(insertOp, inserted);
858     return success();
859   }
860 };
861 
862 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
863 ///
864 /// Example:
865 /// ```
866 ///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
867 /// ```
868 /// is rewritten into:
869 /// ```
870 ///  %r = splat %f0: vector<2x4xf32>
871 ///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
872 ///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
873 ///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
874 ///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
875 ///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
876 ///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
877 ///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
878 ///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
879 ///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
880 ///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
881 ///  // %r3 holds the final value.
882 /// ```
883 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
884 public:
885   using OpRewritePattern<FMAOp>::OpRewritePattern;
886 
887   LogicalResult matchAndRewrite(FMAOp op,
888                                 PatternRewriter &rewriter) const override {
889     auto vType = op.getVectorType();
890     if (vType.getRank() < 2)
891       return failure();
892 
893     auto loc = op.getLoc();
894     auto elemType = vType.getElementType();
895     Value zero = rewriter.create<ConstantOp>(loc, elemType,
896                                              rewriter.getZeroAttr(elemType));
897     Value desc = rewriter.create<SplatOp>(loc, vType, zero);
898     for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
899       Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
900       Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
901       Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
902       Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
903       desc = rewriter.create<InsertOp>(loc, fma, desc, i);
904     }
905     rewriter.replaceOp(op, desc);
906     return success();
907   }
908 };
909 
910 // When ranks are different, InsertStridedSlice needs to extract a properly
911 // ranked vector from the destination vector into which to insert. This pattern
912 // only takes care of this part and forwards the rest of the conversion to
913 // another pattern that converts InsertStridedSlice for operands of the same
914 // rank.
915 //
916 // RewritePattern for InsertStridedSliceOp where source and destination vectors
917 // have different ranks. In this case:
918 //   1. the proper subvector is extracted from the destination vector
919 //   2. a new InsertStridedSlice op is created to insert the source in the
920 //   destination subvector
921 //   3. the destination subvector is inserted back in the proper place
922 //   4. the op is replaced by the result of step 3.
923 // The new InsertStridedSlice from step 2. will be picked up by a
924 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
925 class VectorInsertStridedSliceOpDifferentRankRewritePattern
926     : public OpRewritePattern<InsertStridedSliceOp> {
927 public:
928   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
929 
930   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
931                                 PatternRewriter &rewriter) const override {
932     auto srcType = op.getSourceVectorType();
933     auto dstType = op.getDestVectorType();
934 
935     if (op.offsets().getValue().empty())
936       return failure();
937 
938     auto loc = op.getLoc();
939     int64_t rankDiff = dstType.getRank() - srcType.getRank();
940     assert(rankDiff >= 0);
941     if (rankDiff == 0)
942       return failure();
943 
944     int64_t rankRest = dstType.getRank() - rankDiff;
945     // Extract / insert the subvector of matching rank and InsertStridedSlice
946     // on it.
947     Value extracted =
948         rewriter.create<ExtractOp>(loc, op.dest(),
949                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
950                                                   /*dropBack=*/rankRest));
951     // A different pattern will kick in for InsertStridedSlice with matching
952     // ranks.
953     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
954         loc, op.source(), extracted,
955         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
956         getI64SubArray(op.strides(), /*dropFront=*/0));
957     rewriter.replaceOpWithNewOp<InsertOp>(
958         op, stridedSliceInnerOp.getResult(), op.dest(),
959         getI64SubArray(op.offsets(), /*dropFront=*/0,
960                        /*dropBack=*/rankRest));
961     return success();
962   }
963 };
964 
965 // RewritePattern for InsertStridedSliceOp where source and destination vectors
966 // have the same rank. In this case, we reduce
967 //   1. the proper subvector is extracted from the destination vector
968 //   2. a new InsertStridedSlice op is created to insert the source in the
969 //   destination subvector
970 //   3. the destination subvector is inserted back in the proper place
971 //   4. the op is replaced by the result of step 3.
972 // The new InsertStridedSlice from step 2. will be picked up by a
973 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
974 class VectorInsertStridedSliceOpSameRankRewritePattern
975     : public OpRewritePattern<InsertStridedSliceOp> {
976 public:
977   VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx)
978       : OpRewritePattern<InsertStridedSliceOp>(ctx) {
979     // This pattern creates recursive InsertStridedSliceOp, but the recursion is
980     // bounded as the rank is strictly decreasing.
981     setHasBoundedRewriteRecursion();
982   }
983 
984   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
985                                 PatternRewriter &rewriter) const override {
986     auto srcType = op.getSourceVectorType();
987     auto dstType = op.getDestVectorType();
988 
989     if (op.offsets().getValue().empty())
990       return failure();
991 
992     int64_t rankDiff = dstType.getRank() - srcType.getRank();
993     assert(rankDiff >= 0);
994     if (rankDiff != 0)
995       return failure();
996 
997     if (srcType == dstType) {
998       rewriter.replaceOp(op, op.source());
999       return success();
1000     }
1001 
1002     int64_t offset =
1003         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1004     int64_t size = srcType.getShape().front();
1005     int64_t stride =
1006         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1007 
1008     auto loc = op.getLoc();
1009     Value res = op.dest();
1010     // For each slice of the source vector along the most major dimension.
1011     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1012          off += stride, ++idx) {
1013       // 1. extract the proper subvector (or element) from source
1014       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
1015       if (extractedSource.getType().isa<VectorType>()) {
1016         // 2. If we have a vector, extract the proper subvector from destination
1017         // Otherwise we are at the element level and no need to recurse.
1018         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
1019         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
1020         // smaller rank.
1021         extractedSource = rewriter.create<InsertStridedSliceOp>(
1022             loc, extractedSource, extractedDest,
1023             getI64SubArray(op.offsets(), /* dropFront=*/1),
1024             getI64SubArray(op.strides(), /* dropFront=*/1));
1025       }
1026       // 4. Insert the extractedSource into the res vector.
1027       res = insertOne(rewriter, loc, extractedSource, res, off);
1028     }
1029 
1030     rewriter.replaceOp(op, res);
1031     return success();
1032   }
1033 };
1034 
1035 /// Returns the strides if the memory underlying `memRefType` has a contiguous
1036 /// static layout.
1037 static llvm::Optional<SmallVector<int64_t, 4>>
1038 computeContiguousStrides(MemRefType memRefType) {
1039   int64_t offset;
1040   SmallVector<int64_t, 4> strides;
1041   if (failed(getStridesAndOffset(memRefType, strides, offset)))
1042     return None;
1043   if (!strides.empty() && strides.back() != 1)
1044     return None;
1045   // If no layout or identity layout, this is contiguous by definition.
1046   if (memRefType.getAffineMaps().empty() ||
1047       memRefType.getAffineMaps().front().isIdentity())
1048     return strides;
1049 
1050   // Otherwise, we must determine contiguity form shapes. This can only ever
1051   // work in static cases because MemRefType is underspecified to represent
1052   // contiguous dynamic shapes in other ways than with just empty/identity
1053   // layout.
1054   auto sizes = memRefType.getShape();
1055   for (int index = 0, e = strides.size() - 2; index < e; ++index) {
1056     if (ShapedType::isDynamic(sizes[index + 1]) ||
1057         ShapedType::isDynamicStrideOrOffset(strides[index]) ||
1058         ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
1059       return None;
1060     if (strides[index] != strides[index + 1] * sizes[index + 1])
1061       return None;
1062   }
1063   return strides;
1064 }
1065 
1066 class VectorTypeCastOpConversion
1067     : public ConvertOpToLLVMPattern<vector::TypeCastOp> {
1068 public:
1069   using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
1070 
1071   LogicalResult
1072   matchAndRewrite(vector::TypeCastOp castOp, ArrayRef<Value> operands,
1073                   ConversionPatternRewriter &rewriter) const override {
1074     auto loc = castOp->getLoc();
1075     MemRefType sourceMemRefType =
1076         castOp.getOperand().getType().cast<MemRefType>();
1077     MemRefType targetMemRefType = castOp.getType();
1078 
1079     // Only static shape casts supported atm.
1080     if (!sourceMemRefType.hasStaticShape() ||
1081         !targetMemRefType.hasStaticShape())
1082       return failure();
1083 
1084     auto llvmSourceDescriptorTy =
1085         operands[0].getType().dyn_cast<LLVM::LLVMStructType>();
1086     if (!llvmSourceDescriptorTy)
1087       return failure();
1088     MemRefDescriptor sourceMemRef(operands[0]);
1089 
1090     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
1091                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
1092     if (!llvmTargetDescriptorTy)
1093       return failure();
1094 
1095     // Only contiguous source buffers supported atm.
1096     auto sourceStrides = computeContiguousStrides(sourceMemRefType);
1097     if (!sourceStrides)
1098       return failure();
1099     auto targetStrides = computeContiguousStrides(targetMemRefType);
1100     if (!targetStrides)
1101       return failure();
1102     // Only support static strides for now, regardless of contiguity.
1103     if (llvm::any_of(*targetStrides, [](int64_t stride) {
1104           return ShapedType::isDynamicStrideOrOffset(stride);
1105         }))
1106       return failure();
1107 
1108     auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
1109 
1110     // Create descriptor.
1111     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1112     Type llvmTargetElementTy = desc.getElementPtrType();
1113     // Set allocated ptr.
1114     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
1115     allocated =
1116         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
1117     desc.setAllocatedPtr(rewriter, loc, allocated);
1118     // Set aligned ptr.
1119     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
1120     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
1121     desc.setAlignedPtr(rewriter, loc, ptr);
1122     // Fill offset 0.
1123     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
1124     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
1125     desc.setOffset(rewriter, loc, zero);
1126 
1127     // Fill size and stride descriptors in memref.
1128     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
1129       int64_t index = indexedSize.index();
1130       auto sizeAttr =
1131           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
1132       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
1133       desc.setSize(rewriter, loc, index, size);
1134       auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
1135                                                 (*targetStrides)[index]);
1136       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
1137       desc.setStride(rewriter, loc, index, stride);
1138     }
1139 
1140     rewriter.replaceOp(castOp, {desc});
1141     return success();
1142   }
1143 };
1144 
1145 /// Conversion pattern that converts a 1-D vector transfer read/write op in a
1146 /// sequence of:
1147 /// 1. Get the source/dst address as an LLVM vector pointer.
1148 /// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
1149 /// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
1150 /// 4. Create a mask where offsetVector is compared against memref upper bound.
1151 /// 5. Rewrite op as a masked read or write.
1152 template <typename ConcreteOp>
1153 class VectorTransferConversion : public ConvertOpToLLVMPattern<ConcreteOp> {
1154 public:
1155   explicit VectorTransferConversion(LLVMTypeConverter &typeConv,
1156                                     bool enableIndexOpt)
1157       : ConvertOpToLLVMPattern<ConcreteOp>(typeConv),
1158         enableIndexOptimizations(enableIndexOpt) {}
1159 
1160   LogicalResult
1161   matchAndRewrite(ConcreteOp xferOp, ArrayRef<Value> operands,
1162                   ConversionPatternRewriter &rewriter) const override {
1163     auto adaptor = getTransferOpAdapter(xferOp, operands);
1164 
1165     if (xferOp.getVectorType().getRank() > 1 ||
1166         llvm::size(xferOp.indices()) == 0)
1167       return failure();
1168     if (xferOp.permutation_map() !=
1169         AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
1170                                        xferOp.getVectorType().getRank(),
1171                                        xferOp->getContext()))
1172       return failure();
1173     auto memRefType = xferOp.getShapedType().template dyn_cast<MemRefType>();
1174     if (!memRefType)
1175       return failure();
1176     // Only contiguous source tensors supported atm.
1177     auto strides = computeContiguousStrides(memRefType);
1178     if (!strides)
1179       return failure();
1180 
1181     auto toLLVMTy = [&](Type t) {
1182       return this->getTypeConverter()->convertType(t);
1183     };
1184 
1185     Location loc = xferOp->getLoc();
1186 
1187     if (auto memrefVectorElementType =
1188             memRefType.getElementType().template dyn_cast<VectorType>()) {
1189       // Memref has vector element type.
1190       if (memrefVectorElementType.getElementType() !=
1191           xferOp.getVectorType().getElementType())
1192         return failure();
1193 #ifndef NDEBUG
1194       // Check that memref vector type is a suffix of 'vectorType.
1195       unsigned memrefVecEltRank = memrefVectorElementType.getRank();
1196       unsigned resultVecRank = xferOp.getVectorType().getRank();
1197       assert(memrefVecEltRank <= resultVecRank);
1198       // TODO: Move this to isSuffix in Vector/Utils.h.
1199       unsigned rankOffset = resultVecRank - memrefVecEltRank;
1200       auto memrefVecEltShape = memrefVectorElementType.getShape();
1201       auto resultVecShape = xferOp.getVectorType().getShape();
1202       for (unsigned i = 0; i < memrefVecEltRank; ++i)
1203         assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
1204                "memref vector element shape should match suffix of vector "
1205                "result shape.");
1206 #endif // ifndef NDEBUG
1207     }
1208 
1209     // 1. Get the source/dst address as an LLVM vector pointer.
1210     VectorType vtp = xferOp.getVectorType();
1211     Value dataPtr = this->getStridedElementPtr(
1212         loc, memRefType, adaptor.source(), adaptor.indices(), rewriter);
1213     Value vectorDataPtr =
1214         castDataPtr(rewriter, loc, dataPtr, memRefType, toLLVMTy(vtp));
1215 
1216     if (!xferOp.isMaskedDim(0))
1217       return replaceTransferOpWithLoadOrStore(rewriter,
1218                                               *this->getTypeConverter(), loc,
1219                                               xferOp, operands, vectorDataPtr);
1220 
1221     // 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
1222     // 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
1223     // 4. Let dim the memref dimension, compute the vector comparison mask:
1224     //   [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
1225     //
1226     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
1227     //       dimensions here.
1228     unsigned vecWidth = LLVM::getVectorNumElements(vtp).getFixedValue();
1229     unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
1230     Value off = xferOp.indices()[lastIndex];
1231     Value dim = rewriter.create<DimOp>(loc, xferOp.source(), lastIndex);
1232     Value mask = buildVectorComparison(
1233         rewriter, xferOp, enableIndexOptimizations, vecWidth, dim, &off);
1234 
1235     // 5. Rewrite as a masked read / write.
1236     return replaceTransferOpWithMasked(rewriter, *this->getTypeConverter(), loc,
1237                                        xferOp, operands, vectorDataPtr, mask);
1238   }
1239 
1240 private:
1241   const bool enableIndexOptimizations;
1242 };
1243 
1244 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
1245 public:
1246   using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
1247 
1248   // Proof-of-concept lowering implementation that relies on a small
1249   // runtime support library, which only needs to provide a few
1250   // printing methods (single value for all data types, opening/closing
1251   // bracket, comma, newline). The lowering fully unrolls a vector
1252   // in terms of these elementary printing operations. The advantage
1253   // of this approach is that the library can remain unaware of all
1254   // low-level implementation details of vectors while still supporting
1255   // output of any shaped and dimensioned vector. Due to full unrolling,
1256   // this approach is less suited for very large vectors though.
1257   //
1258   // TODO: rely solely on libc in future? something else?
1259   //
1260   LogicalResult
1261   matchAndRewrite(vector::PrintOp printOp, ArrayRef<Value> operands,
1262                   ConversionPatternRewriter &rewriter) const override {
1263     auto adaptor = vector::PrintOpAdaptor(operands);
1264     Type printType = printOp.getPrintType();
1265 
1266     if (typeConverter->convertType(printType) == nullptr)
1267       return failure();
1268 
1269     // Make sure element type has runtime support.
1270     PrintConversion conversion = PrintConversion::None;
1271     VectorType vectorType = printType.dyn_cast<VectorType>();
1272     Type eltType = vectorType ? vectorType.getElementType() : printType;
1273     Operation *printer;
1274     if (eltType.isF32()) {
1275       printer = getPrintFloat(printOp);
1276     } else if (eltType.isF64()) {
1277       printer = getPrintDouble(printOp);
1278     } else if (eltType.isIndex()) {
1279       printer = getPrintU64(printOp);
1280     } else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
1281       // Integers need a zero or sign extension on the operand
1282       // (depending on the source type) as well as a signed or
1283       // unsigned print method. Up to 64-bit is supported.
1284       unsigned width = intTy.getWidth();
1285       if (intTy.isUnsigned()) {
1286         if (width <= 64) {
1287           if (width < 64)
1288             conversion = PrintConversion::ZeroExt64;
1289           printer = getPrintU64(printOp);
1290         } else {
1291           return failure();
1292         }
1293       } else {
1294         assert(intTy.isSignless() || intTy.isSigned());
1295         if (width <= 64) {
1296           // Note that we *always* zero extend booleans (1-bit integers),
1297           // so that true/false is printed as 1/0 rather than -1/0.
1298           if (width == 1)
1299             conversion = PrintConversion::ZeroExt64;
1300           else if (width < 64)
1301             conversion = PrintConversion::SignExt64;
1302           printer = getPrintI64(printOp);
1303         } else {
1304           return failure();
1305         }
1306       }
1307     } else {
1308       return failure();
1309     }
1310 
1311     // Unroll vector into elementary print calls.
1312     int64_t rank = vectorType ? vectorType.getRank() : 0;
1313     emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank,
1314               conversion);
1315     emitCall(rewriter, printOp->getLoc(), getPrintNewline(printOp));
1316     rewriter.eraseOp(printOp);
1317     return success();
1318   }
1319 
1320 private:
1321   enum class PrintConversion {
1322     // clang-format off
1323     None,
1324     ZeroExt64,
1325     SignExt64
1326     // clang-format on
1327   };
1328 
1329   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
1330                  Value value, VectorType vectorType, Operation *printer,
1331                  int64_t rank, PrintConversion conversion) const {
1332     Location loc = op->getLoc();
1333     if (rank == 0) {
1334       switch (conversion) {
1335       case PrintConversion::ZeroExt64:
1336         value = rewriter.create<ZeroExtendIOp>(
1337             loc, value, IntegerType::get(rewriter.getContext(), 64));
1338         break;
1339       case PrintConversion::SignExt64:
1340         value = rewriter.create<SignExtendIOp>(
1341             loc, value, IntegerType::get(rewriter.getContext(), 64));
1342         break;
1343       case PrintConversion::None:
1344         break;
1345       }
1346       emitCall(rewriter, loc, printer, value);
1347       return;
1348     }
1349 
1350     emitCall(rewriter, loc, getPrintOpen(op));
1351     Operation *printComma = getPrintComma(op);
1352     int64_t dim = vectorType.getDimSize(0);
1353     for (int64_t d = 0; d < dim; ++d) {
1354       auto reducedType =
1355           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
1356       auto llvmType = typeConverter->convertType(
1357           rank > 1 ? reducedType : vectorType.getElementType());
1358       Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
1359                                    llvmType, rank, d);
1360       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
1361                 conversion);
1362       if (d != dim - 1)
1363         emitCall(rewriter, loc, printComma);
1364     }
1365     emitCall(rewriter, loc, getPrintClose(op));
1366   }
1367 
1368   // Helper to emit a call.
1369   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
1370                        Operation *ref, ValueRange params = ValueRange()) {
1371     rewriter.create<LLVM::CallOp>(loc, TypeRange(),
1372                                   rewriter.getSymbolRefAttr(ref), params);
1373   }
1374 
1375   // Helper for printer method declaration (first hit) and lookup.
1376   static Operation *getPrint(Operation *op, StringRef name,
1377                              ArrayRef<Type> params) {
1378     auto module = op->getParentOfType<ModuleOp>();
1379     auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
1380     if (func)
1381       return func;
1382     OpBuilder moduleBuilder(module.getBodyRegion());
1383     return moduleBuilder.create<LLVM::LLVMFuncOp>(
1384         op->getLoc(), name,
1385         LLVM::LLVMFunctionType::get(LLVM::LLVMVoidType::get(op->getContext()),
1386                                     params));
1387   }
1388 
1389   // Helpers for method names.
1390   Operation *getPrintI64(Operation *op) const {
1391     return getPrint(op, "printI64", IntegerType::get(op->getContext(), 64));
1392   }
1393   Operation *getPrintU64(Operation *op) const {
1394     return getPrint(op, "printU64", IntegerType::get(op->getContext(), 64));
1395   }
1396   Operation *getPrintFloat(Operation *op) const {
1397     return getPrint(op, "printF32", Float32Type::get(op->getContext()));
1398   }
1399   Operation *getPrintDouble(Operation *op) const {
1400     return getPrint(op, "printF64", Float64Type::get(op->getContext()));
1401   }
1402   Operation *getPrintOpen(Operation *op) const {
1403     return getPrint(op, "printOpen", {});
1404   }
1405   Operation *getPrintClose(Operation *op) const {
1406     return getPrint(op, "printClose", {});
1407   }
1408   Operation *getPrintComma(Operation *op) const {
1409     return getPrint(op, "printComma", {});
1410   }
1411   Operation *getPrintNewline(Operation *op) const {
1412     return getPrint(op, "printNewline", {});
1413   }
1414 };
1415 
1416 /// Progressive lowering of ExtractStridedSliceOp to either:
1417 ///   1. express single offset extract as a direct shuffle.
1418 ///   2. extract + lower rank strided_slice + insert for the n-D case.
1419 class VectorExtractStridedSliceOpConversion
1420     : public OpRewritePattern<ExtractStridedSliceOp> {
1421 public:
1422   VectorExtractStridedSliceOpConversion(MLIRContext *ctx)
1423       : OpRewritePattern<ExtractStridedSliceOp>(ctx) {
1424     // This pattern creates recursive ExtractStridedSliceOp, but the recursion
1425     // is bounded as the rank is strictly decreasing.
1426     setHasBoundedRewriteRecursion();
1427   }
1428 
1429   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
1430                                 PatternRewriter &rewriter) const override {
1431     auto dstType = op.getType();
1432 
1433     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
1434 
1435     int64_t offset =
1436         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1437     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
1438     int64_t stride =
1439         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1440 
1441     auto loc = op.getLoc();
1442     auto elemType = dstType.getElementType();
1443     assert(elemType.isSignlessIntOrIndexOrFloat());
1444 
1445     // Single offset can be more efficiently shuffled.
1446     if (op.offsets().getValue().size() == 1) {
1447       SmallVector<int64_t, 4> offsets;
1448       offsets.reserve(size);
1449       for (int64_t off = offset, e = offset + size * stride; off < e;
1450            off += stride)
1451         offsets.push_back(off);
1452       rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
1453                                              op.vector(),
1454                                              rewriter.getI64ArrayAttr(offsets));
1455       return success();
1456     }
1457 
1458     // Extract/insert on a lower ranked extract strided slice op.
1459     Value zero = rewriter.create<ConstantOp>(loc, elemType,
1460                                              rewriter.getZeroAttr(elemType));
1461     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
1462     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1463          off += stride, ++idx) {
1464       Value one = extractOne(rewriter, loc, op.vector(), off);
1465       Value extracted = rewriter.create<ExtractStridedSliceOp>(
1466           loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
1467           getI64SubArray(op.sizes(), /* dropFront=*/1),
1468           getI64SubArray(op.strides(), /* dropFront=*/1));
1469       res = insertOne(rewriter, loc, extracted, res, idx);
1470     }
1471     rewriter.replaceOp(op, res);
1472     return success();
1473   }
1474 };
1475 
1476 } // namespace
1477 
1478 /// Populate the given list with patterns that convert from Vector to LLVM.
1479 void mlir::populateVectorToLLVMConversionPatterns(
1480     LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
1481     bool reassociateFPReductions, bool enableIndexOptimizations) {
1482   MLIRContext *ctx = converter.getDialect()->getContext();
1483   // clang-format off
1484   patterns.insert<VectorFMAOpNDRewritePattern,
1485                   VectorInsertStridedSliceOpDifferentRankRewritePattern,
1486                   VectorInsertStridedSliceOpSameRankRewritePattern,
1487                   VectorExtractStridedSliceOpConversion>(ctx);
1488   patterns.insert<VectorReductionOpConversion>(
1489       converter, reassociateFPReductions);
1490   patterns.insert<VectorCreateMaskOpConversion,
1491                   VectorTransferConversion<TransferReadOp>,
1492                   VectorTransferConversion<TransferWriteOp>>(
1493       converter, enableIndexOptimizations);
1494   patterns
1495       .insert<VectorShuffleOpConversion,
1496               VectorExtractElementOpConversion,
1497               VectorExtractOpConversion,
1498               VectorFMAOp1DConversion,
1499               VectorInsertElementOpConversion,
1500               VectorInsertOpConversion,
1501               VectorPrintOpConversion,
1502               VectorTypeCastOpConversion,
1503               VectorMaskedLoadOpConversion,
1504               VectorMaskedStoreOpConversion,
1505               VectorGatherOpConversion,
1506               VectorScatterOpConversion,
1507               VectorExpandLoadOpConversion,
1508               VectorCompressStoreOpConversion>(converter);
1509   // clang-format on
1510 }
1511 
1512 void mlir::populateVectorToLLVMMatrixConversionPatterns(
1513     LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
1514   patterns.insert<VectorMatmulOpConversion>(converter);
1515   patterns.insert<VectorFlatTransposeOpConversion>(converter);
1516 }
1517