1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parser for the MLIR textual form.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "Parser.h"
14 #include "AsmParserImpl.h"
15 #include "mlir/AsmParser/AsmParser.h"
16 #include "mlir/AsmParser/AsmParserState.h"
17 #include "mlir/AsmParser/CodeComplete.h"
18 #include "mlir/IR/AffineMap.h"
19 #include "mlir/IR/AsmState.h"
20 #include "mlir/IR/BuiltinOps.h"
21 #include "mlir/IR/Dialect.h"
22 #include "mlir/IR/Verifier.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/ScopeExit.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/bit.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/PrettyStackTrace.h"
29 #include "llvm/Support/SourceMgr.h"
30 #include <algorithm>
31
32 using namespace mlir;
33 using namespace mlir::detail;
34
35 //===----------------------------------------------------------------------===//
36 // CodeComplete
37 //===----------------------------------------------------------------------===//
38
39 AsmParserCodeCompleteContext::~AsmParserCodeCompleteContext() = default;
40
41 //===----------------------------------------------------------------------===//
42 // Parser
43 //===----------------------------------------------------------------------===//
44
45 /// Parse a list of comma-separated items with an optional delimiter. If a
46 /// delimiter is provided, then an empty list is allowed. If not, then at
47 /// least one element will be parsed.
48 ParseResult
parseCommaSeparatedList(Delimiter delimiter,function_ref<ParseResult ()> parseElementFn,StringRef contextMessage)49 Parser::parseCommaSeparatedList(Delimiter delimiter,
50 function_ref<ParseResult()> parseElementFn,
51 StringRef contextMessage) {
52 switch (delimiter) {
53 case Delimiter::None:
54 break;
55 case Delimiter::OptionalParen:
56 if (getToken().isNot(Token::l_paren))
57 return success();
58 LLVM_FALLTHROUGH;
59 case Delimiter::Paren:
60 if (parseToken(Token::l_paren, "expected '('" + contextMessage))
61 return failure();
62 // Check for empty list.
63 if (consumeIf(Token::r_paren))
64 return success();
65 break;
66 case Delimiter::OptionalLessGreater:
67 // Check for absent list.
68 if (getToken().isNot(Token::less))
69 return success();
70 LLVM_FALLTHROUGH;
71 case Delimiter::LessGreater:
72 if (parseToken(Token::less, "expected '<'" + contextMessage))
73 return success();
74 // Check for empty list.
75 if (consumeIf(Token::greater))
76 return success();
77 break;
78 case Delimiter::OptionalSquare:
79 if (getToken().isNot(Token::l_square))
80 return success();
81 LLVM_FALLTHROUGH;
82 case Delimiter::Square:
83 if (parseToken(Token::l_square, "expected '['" + contextMessage))
84 return failure();
85 // Check for empty list.
86 if (consumeIf(Token::r_square))
87 return success();
88 break;
89 case Delimiter::OptionalBraces:
90 if (getToken().isNot(Token::l_brace))
91 return success();
92 LLVM_FALLTHROUGH;
93 case Delimiter::Braces:
94 if (parseToken(Token::l_brace, "expected '{'" + contextMessage))
95 return failure();
96 // Check for empty list.
97 if (consumeIf(Token::r_brace))
98 return success();
99 break;
100 }
101
102 // Non-empty case starts with an element.
103 if (parseElementFn())
104 return failure();
105
106 // Otherwise we have a list of comma separated elements.
107 while (consumeIf(Token::comma)) {
108 if (parseElementFn())
109 return failure();
110 }
111
112 switch (delimiter) {
113 case Delimiter::None:
114 return success();
115 case Delimiter::OptionalParen:
116 case Delimiter::Paren:
117 return parseToken(Token::r_paren, "expected ')'" + contextMessage);
118 case Delimiter::OptionalLessGreater:
119 case Delimiter::LessGreater:
120 return parseToken(Token::greater, "expected '>'" + contextMessage);
121 case Delimiter::OptionalSquare:
122 case Delimiter::Square:
123 return parseToken(Token::r_square, "expected ']'" + contextMessage);
124 case Delimiter::OptionalBraces:
125 case Delimiter::Braces:
126 return parseToken(Token::r_brace, "expected '}'" + contextMessage);
127 }
128 llvm_unreachable("Unknown delimiter");
129 }
130
131 /// Parse a comma-separated list of elements, terminated with an arbitrary
132 /// token. This allows empty lists if allowEmptyList is true.
133 ///
134 /// abstract-list ::= rightToken // if allowEmptyList == true
135 /// abstract-list ::= element (',' element)* rightToken
136 ///
137 ParseResult
parseCommaSeparatedListUntil(Token::Kind rightToken,function_ref<ParseResult ()> parseElement,bool allowEmptyList)138 Parser::parseCommaSeparatedListUntil(Token::Kind rightToken,
139 function_ref<ParseResult()> parseElement,
140 bool allowEmptyList) {
141 // Handle the empty case.
142 if (getToken().is(rightToken)) {
143 if (!allowEmptyList)
144 return emitWrongTokenError("expected list element");
145 consumeToken(rightToken);
146 return success();
147 }
148
149 if (parseCommaSeparatedList(parseElement) ||
150 parseToken(rightToken, "expected ',' or '" +
151 Token::getTokenSpelling(rightToken) + "'"))
152 return failure();
153
154 return success();
155 }
156
emitError(const Twine & message)157 InFlightDiagnostic Parser::emitError(const Twine &message) {
158 auto loc = state.curToken.getLoc();
159 if (state.curToken.isNot(Token::eof))
160 return emitError(loc, message);
161
162 // If the error is to be emitted at EOF, move it back one character.
163 return emitError(SMLoc::getFromPointer(loc.getPointer() - 1), message);
164 }
165
emitError(SMLoc loc,const Twine & message)166 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
167 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
168
169 // If we hit a parse error in response to a lexer error, then the lexer
170 // already reported the error.
171 if (getToken().is(Token::error))
172 diag.abandon();
173 return diag;
174 }
175
176 /// Emit an error about a "wrong token". If the current token is at the
177 /// start of a source line, this will apply heuristics to back up and report
178 /// the error at the end of the previous line, which is where the expected
179 /// token is supposed to be.
emitWrongTokenError(const Twine & message)180 InFlightDiagnostic Parser::emitWrongTokenError(const Twine &message) {
181 auto loc = state.curToken.getLoc();
182
183 // If the error is to be emitted at EOF, move it back one character.
184 if (state.curToken.is(Token::eof))
185 loc = SMLoc::getFromPointer(loc.getPointer() - 1);
186
187 // This is the location we were originally asked to report the error at.
188 auto originalLoc = loc;
189
190 // Determine if the token is at the start of the current line.
191 const char *bufferStart = state.lex.getBufferBegin();
192 const char *curPtr = loc.getPointer();
193
194 // Use this StringRef to keep track of what we are going to back up through,
195 // it provides nicer string search functions etc.
196 StringRef startOfBuffer(bufferStart, curPtr - bufferStart);
197
198 // Back up over entirely blank lines.
199 while (true) {
200 // Back up until we see a \n, but don't look past the buffer start.
201 startOfBuffer = startOfBuffer.rtrim(" \t");
202
203 // For tokens with no preceding source line, just emit at the original
204 // location.
205 if (startOfBuffer.empty())
206 return emitError(originalLoc, message);
207
208 // If we found something that isn't the end of line, then we're done.
209 if (startOfBuffer.back() != '\n' && startOfBuffer.back() != '\r')
210 return emitError(SMLoc::getFromPointer(startOfBuffer.end()), message);
211
212 // Drop the \n so we emit the diagnostic at the end of the line.
213 startOfBuffer = startOfBuffer.drop_back();
214
215 // Check to see if the preceding line has a comment on it. We assume that a
216 // `//` is the start of a comment, which is mostly correct.
217 // TODO: This will do the wrong thing for // in a string literal.
218 auto prevLine = startOfBuffer;
219 size_t newLineIndex = prevLine.find_last_of("\n\r");
220 if (newLineIndex != StringRef::npos)
221 prevLine = prevLine.drop_front(newLineIndex);
222
223 // If we find a // in the current line, then emit the diagnostic before it.
224 size_t commentStart = prevLine.find("//");
225 if (commentStart != StringRef::npos)
226 startOfBuffer = startOfBuffer.drop_back(prevLine.size() - commentStart);
227 }
228 }
229
230 /// Consume the specified token if present and return success. On failure,
231 /// output a diagnostic and return failure.
parseToken(Token::Kind expectedToken,const Twine & message)232 ParseResult Parser::parseToken(Token::Kind expectedToken,
233 const Twine &message) {
234 if (consumeIf(expectedToken))
235 return success();
236 return emitWrongTokenError(message);
237 }
238
239 /// Parse an optional integer value from the stream.
parseOptionalInteger(APInt & result)240 OptionalParseResult Parser::parseOptionalInteger(APInt &result) {
241 Token curToken = getToken();
242 if (curToken.isNot(Token::integer, Token::minus))
243 return llvm::None;
244
245 bool negative = consumeIf(Token::minus);
246 Token curTok = getToken();
247 if (parseToken(Token::integer, "expected integer value"))
248 return failure();
249
250 StringRef spelling = curTok.getSpelling();
251 bool isHex = spelling.size() > 1 && spelling[1] == 'x';
252 if (spelling.getAsInteger(isHex ? 0 : 10, result))
253 return emitError(curTok.getLoc(), "integer value too large");
254
255 // Make sure we have a zero at the top so we return the right signedness.
256 if (result.isNegative())
257 result = result.zext(result.getBitWidth() + 1);
258
259 // Process the negative sign if present.
260 if (negative)
261 result.negate();
262
263 return success();
264 }
265
266 /// Parse a floating point value from an integer literal token.
parseFloatFromIntegerLiteral(Optional<APFloat> & result,const Token & tok,bool isNegative,const llvm::fltSemantics & semantics,size_t typeSizeInBits)267 ParseResult Parser::parseFloatFromIntegerLiteral(
268 Optional<APFloat> &result, const Token &tok, bool isNegative,
269 const llvm::fltSemantics &semantics, size_t typeSizeInBits) {
270 SMLoc loc = tok.getLoc();
271 StringRef spelling = tok.getSpelling();
272 bool isHex = spelling.size() > 1 && spelling[1] == 'x';
273 if (!isHex) {
274 return emitError(loc, "unexpected decimal integer literal for a "
275 "floating point value")
276 .attachNote()
277 << "add a trailing dot to make the literal a float";
278 }
279 if (isNegative) {
280 return emitError(loc, "hexadecimal float literal should not have a "
281 "leading minus");
282 }
283
284 Optional<uint64_t> value = tok.getUInt64IntegerValue();
285 if (!value)
286 return emitError(loc, "hexadecimal float constant out of range for type");
287
288 if (&semantics == &APFloat::IEEEdouble()) {
289 result = APFloat(semantics, APInt(typeSizeInBits, *value));
290 return success();
291 }
292
293 APInt apInt(typeSizeInBits, *value);
294 if (apInt != *value)
295 return emitError(loc, "hexadecimal float constant out of range for type");
296 result = APFloat(semantics, apInt);
297
298 return success();
299 }
300
parseOptionalKeyword(StringRef * keyword)301 ParseResult Parser::parseOptionalKeyword(StringRef *keyword) {
302 // Check that the current token is a keyword.
303 if (!isCurrentTokenAKeyword())
304 return failure();
305
306 *keyword = getTokenSpelling();
307 consumeToken();
308 return success();
309 }
310
311 //===----------------------------------------------------------------------===//
312 // Resource Parsing
313
314 FailureOr<AsmDialectResourceHandle>
parseResourceHandle(const OpAsmDialectInterface * dialect,StringRef & name)315 Parser::parseResourceHandle(const OpAsmDialectInterface *dialect,
316 StringRef &name) {
317 assert(dialect && "expected valid dialect interface");
318 SMLoc nameLoc = getToken().getLoc();
319 if (failed(parseOptionalKeyword(&name)))
320 return emitError("expected identifier key for 'resource' entry");
321 auto &resources = getState().symbols.dialectResources;
322
323 // If this is the first time encountering this handle, ask the dialect to
324 // resolve a reference to this handle. This allows for us to remap the name of
325 // the handle if necessary.
326 std::pair<std::string, AsmDialectResourceHandle> &entry =
327 resources[dialect][name];
328 if (entry.first.empty()) {
329 FailureOr<AsmDialectResourceHandle> result = dialect->declareResource(name);
330 if (failed(result)) {
331 return emitError(nameLoc)
332 << "unknown 'resource' key '" << name << "' for dialect '"
333 << dialect->getDialect()->getNamespace() << "'";
334 }
335 entry.first = dialect->getResourceKey(*result);
336 entry.second = *result;
337 }
338
339 name = entry.first;
340 return entry.second;
341 }
342
343 //===----------------------------------------------------------------------===//
344 // Code Completion
345
codeCompleteDialectName()346 ParseResult Parser::codeCompleteDialectName() {
347 state.codeCompleteContext->completeDialectName();
348 return failure();
349 }
350
codeCompleteOperationName(StringRef dialectName)351 ParseResult Parser::codeCompleteOperationName(StringRef dialectName) {
352 // Perform some simple validation on the dialect name. This doesn't need to be
353 // extensive, it's more of an optimization (to avoid checking completion
354 // results when we know they will fail).
355 if (dialectName.empty() || dialectName.contains('.'))
356 return failure();
357 state.codeCompleteContext->completeOperationName(dialectName);
358 return failure();
359 }
360
codeCompleteDialectOrElidedOpName(SMLoc loc)361 ParseResult Parser::codeCompleteDialectOrElidedOpName(SMLoc loc) {
362 // Check to see if there is anything else on the current line. This check
363 // isn't strictly necessary, but it does avoid unnecessarily triggering
364 // completions for operations and dialects in situations where we don't want
365 // them (e.g. at the end of an operation).
366 auto shouldIgnoreOpCompletion = [&]() {
367 const char *bufBegin = state.lex.getBufferBegin();
368 const char *it = loc.getPointer() - 1;
369 for (; it > bufBegin && *it != '\n'; --it)
370 if (!llvm::is_contained(StringRef(" \t\r"), *it))
371 return true;
372 return false;
373 };
374 if (shouldIgnoreOpCompletion())
375 return failure();
376
377 // The completion here is either for a dialect name, or an operation name
378 // whose dialect prefix was elided. For this we simply invoke both of the
379 // individual completion methods.
380 (void)codeCompleteDialectName();
381 return codeCompleteOperationName(state.defaultDialectStack.back());
382 }
383
codeCompleteStringDialectOrOperationName(StringRef name)384 ParseResult Parser::codeCompleteStringDialectOrOperationName(StringRef name) {
385 // If the name is empty, this is the start of the string and contains the
386 // dialect.
387 if (name.empty())
388 return codeCompleteDialectName();
389
390 // Otherwise, we treat this as completing an operation name. The current name
391 // is used as the dialect namespace.
392 if (name.consume_back("."))
393 return codeCompleteOperationName(name);
394 return failure();
395 }
396
codeCompleteExpectedTokens(ArrayRef<StringRef> tokens)397 ParseResult Parser::codeCompleteExpectedTokens(ArrayRef<StringRef> tokens) {
398 state.codeCompleteContext->completeExpectedTokens(tokens, /*optional=*/false);
399 return failure();
400 }
codeCompleteOptionalTokens(ArrayRef<StringRef> tokens)401 ParseResult Parser::codeCompleteOptionalTokens(ArrayRef<StringRef> tokens) {
402 state.codeCompleteContext->completeExpectedTokens(tokens, /*optional=*/true);
403 return failure();
404 }
405
codeCompleteAttribute()406 Attribute Parser::codeCompleteAttribute() {
407 state.codeCompleteContext->completeAttribute(
408 state.symbols.attributeAliasDefinitions);
409 return {};
410 }
codeCompleteType()411 Type Parser::codeCompleteType() {
412 state.codeCompleteContext->completeType(state.symbols.typeAliasDefinitions);
413 return {};
414 }
415
416 Attribute
codeCompleteDialectSymbol(const llvm::StringMap<Attribute> & aliases)417 Parser::codeCompleteDialectSymbol(const llvm::StringMap<Attribute> &aliases) {
418 state.codeCompleteContext->completeDialectAttributeOrAlias(aliases);
419 return {};
420 }
codeCompleteDialectSymbol(const llvm::StringMap<Type> & aliases)421 Type Parser::codeCompleteDialectSymbol(const llvm::StringMap<Type> &aliases) {
422 state.codeCompleteContext->completeDialectTypeOrAlias(aliases);
423 return {};
424 }
425
426 //===----------------------------------------------------------------------===//
427 // OperationParser
428 //===----------------------------------------------------------------------===//
429
430 namespace {
431 /// This class provides support for parsing operations and regions of
432 /// operations.
433 class OperationParser : public Parser {
434 public:
435 OperationParser(ParserState &state, ModuleOp topLevelOp);
436 ~OperationParser();
437
438 /// After parsing is finished, this function must be called to see if there
439 /// are any remaining issues.
440 ParseResult finalize();
441
442 //===--------------------------------------------------------------------===//
443 // SSA Value Handling
444 //===--------------------------------------------------------------------===//
445
446 using UnresolvedOperand = OpAsmParser::UnresolvedOperand;
447 using Argument = OpAsmParser::Argument;
448
449 struct DeferredLocInfo {
450 SMLoc loc;
451 StringRef identifier;
452 };
453
454 /// Push a new SSA name scope to the parser.
455 void pushSSANameScope(bool isIsolated);
456
457 /// Pop the last SSA name scope from the parser.
458 ParseResult popSSANameScope();
459
460 /// Register a definition of a value with the symbol table.
461 ParseResult addDefinition(UnresolvedOperand useInfo, Value value);
462
463 /// Parse an optional list of SSA uses into 'results'.
464 ParseResult
465 parseOptionalSSAUseList(SmallVectorImpl<UnresolvedOperand> &results);
466
467 /// Parse a single SSA use into 'result'. If 'allowResultNumber' is true then
468 /// we allow #42 syntax.
469 ParseResult parseSSAUse(UnresolvedOperand &result,
470 bool allowResultNumber = true);
471
472 /// Given a reference to an SSA value and its type, return a reference. This
473 /// returns null on failure.
474 Value resolveSSAUse(UnresolvedOperand useInfo, Type type);
475
476 ParseResult parseSSADefOrUseAndType(
477 function_ref<ParseResult(UnresolvedOperand, Type)> action);
478
479 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);
480
481 /// Return the location of the value identified by its name and number if it
482 /// has been already reference.
getReferenceLoc(StringRef name,unsigned number)483 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
484 auto &values = isolatedNameScopes.back().values;
485 if (!values.count(name) || number >= values[name].size())
486 return {};
487 if (values[name][number].value)
488 return values[name][number].loc;
489 return {};
490 }
491
492 //===--------------------------------------------------------------------===//
493 // Operation Parsing
494 //===--------------------------------------------------------------------===//
495
496 /// Parse an operation instance.
497 ParseResult parseOperation();
498
499 /// Parse a single operation successor.
500 ParseResult parseSuccessor(Block *&dest);
501
502 /// Parse a comma-separated list of operation successors in brackets.
503 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);
504
505 /// Parse an operation instance that is in the generic form.
506 Operation *parseGenericOperation();
507
508 /// Parse different components, viz., use-info of operand(s), successor(s),
509 /// region(s), attribute(s) and function-type, of the generic form of an
510 /// operation instance and populate the input operation-state 'result' with
511 /// those components. If any of the components is explicitly provided, then
512 /// skip parsing that component.
513 ParseResult parseGenericOperationAfterOpName(
514 OperationState &result,
515 Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo = llvm::None,
516 Optional<ArrayRef<Block *>> parsedSuccessors = llvm::None,
517 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions =
518 llvm::None,
519 Optional<ArrayRef<NamedAttribute>> parsedAttributes = llvm::None,
520 Optional<FunctionType> parsedFnType = llvm::None);
521
522 /// Parse an operation instance that is in the generic form and insert it at
523 /// the provided insertion point.
524 Operation *parseGenericOperation(Block *insertBlock,
525 Block::iterator insertPt);
526
527 /// This type is used to keep track of things that are either an Operation or
528 /// a BlockArgument. We cannot use Value for this, because not all Operations
529 /// have results.
530 using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>;
531
532 /// Parse an optional trailing location and add it to the specifier Operation
533 /// or `UnresolvedOperand` if present.
534 ///
535 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))?
536 ///
537 ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument);
538
539 /// Parse a location alias, that is a sequence looking like: #loc42
540 /// The alias may have already be defined or may be defined later, in which
541 /// case an OpaqueLoc is used a placeholder.
542 ParseResult parseLocationAlias(LocationAttr &loc);
543
544 /// This is the structure of a result specifier in the assembly syntax,
545 /// including the name, number of results, and location.
546 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>;
547
548 /// Parse an operation instance that is in the op-defined custom form.
549 /// resultInfo specifies information about the "%name =" specifiers.
550 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);
551
552 /// Parse the name of an operation, in the custom form. On success, return a
553 /// an object of type 'OperationName'. Otherwise, failure is returned.
554 FailureOr<OperationName> parseCustomOperationName();
555
556 //===--------------------------------------------------------------------===//
557 // Region Parsing
558 //===--------------------------------------------------------------------===//
559
560 /// Parse a region into 'region' with the provided entry block arguments.
561 /// 'isIsolatedNameScope' indicates if the naming scope of this region is
562 /// isolated from those above.
563 ParseResult parseRegion(Region ®ion, ArrayRef<Argument> entryArguments,
564 bool isIsolatedNameScope = false);
565
566 /// Parse a region body into 'region'.
567 ParseResult parseRegionBody(Region ®ion, SMLoc startLoc,
568 ArrayRef<Argument> entryArguments,
569 bool isIsolatedNameScope);
570
571 //===--------------------------------------------------------------------===//
572 // Block Parsing
573 //===--------------------------------------------------------------------===//
574
575 /// Parse a new block into 'block'.
576 ParseResult parseBlock(Block *&block);
577
578 /// Parse a list of operations into 'block'.
579 ParseResult parseBlockBody(Block *block);
580
581 /// Parse a (possibly empty) list of block arguments.
582 ParseResult parseOptionalBlockArgList(Block *owner);
583
584 /// Get the block with the specified name, creating it if it doesn't
585 /// already exist. The location specified is the point of use, which allows
586 /// us to diagnose references to blocks that are not defined precisely.
587 Block *getBlockNamed(StringRef name, SMLoc loc);
588
589 //===--------------------------------------------------------------------===//
590 // Code Completion
591 //===--------------------------------------------------------------------===//
592
593 /// The set of various code completion methods. Every completion method
594 /// returns `failure` to stop the parsing process after providing completion
595 /// results.
596
597 ParseResult codeCompleteSSAUse();
598 ParseResult codeCompleteBlock();
599
600 private:
601 /// This class represents a definition of a Block.
602 struct BlockDefinition {
603 /// A pointer to the defined Block.
604 Block *block;
605 /// The location that the Block was defined at.
606 SMLoc loc;
607 };
608 /// This class represents a definition of a Value.
609 struct ValueDefinition {
610 /// A pointer to the defined Value.
611 Value value;
612 /// The location that the Value was defined at.
613 SMLoc loc;
614 };
615
616 /// Returns the info for a block at the current scope for the given name.
getBlockInfoByName(StringRef name)617 BlockDefinition &getBlockInfoByName(StringRef name) {
618 return blocksByName.back()[name];
619 }
620
621 /// Insert a new forward reference to the given block.
insertForwardRef(Block * block,SMLoc loc)622 void insertForwardRef(Block *block, SMLoc loc) {
623 forwardRef.back().try_emplace(block, loc);
624 }
625
626 /// Erase any forward reference to the given block.
eraseForwardRef(Block * block)627 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
628
629 /// Record that a definition was added at the current scope.
630 void recordDefinition(StringRef def);
631
632 /// Get the value entry for the given SSA name.
633 SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name);
634
635 /// Create a forward reference placeholder value with the given location and
636 /// result type.
637 Value createForwardRefPlaceholder(SMLoc loc, Type type);
638
639 /// Return true if this is a forward reference.
isForwardRefPlaceholder(Value value)640 bool isForwardRefPlaceholder(Value value) {
641 return forwardRefPlaceholders.count(value);
642 }
643
644 /// This struct represents an isolated SSA name scope. This scope may contain
645 /// other nested non-isolated scopes. These scopes are used for operations
646 /// that are known to be isolated to allow for reusing names within their
647 /// regions, even if those names are used above.
648 struct IsolatedSSANameScope {
649 /// Record that a definition was added at the current scope.
recordDefinition__anon220499430211::OperationParser::IsolatedSSANameScope650 void recordDefinition(StringRef def) {
651 definitionsPerScope.back().insert(def);
652 }
653
654 /// Push a nested name scope.
pushSSANameScope__anon220499430211::OperationParser::IsolatedSSANameScope655 void pushSSANameScope() { definitionsPerScope.push_back({}); }
656
657 /// Pop a nested name scope.
popSSANameScope__anon220499430211::OperationParser::IsolatedSSANameScope658 void popSSANameScope() {
659 for (auto &def : definitionsPerScope.pop_back_val())
660 values.erase(def.getKey());
661 }
662
663 /// This keeps track of all of the SSA values we are tracking for each name
664 /// scope, indexed by their name. This has one entry per result number.
665 llvm::StringMap<SmallVector<ValueDefinition, 1>> values;
666
667 /// This keeps track of all of the values defined by a specific name scope.
668 SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
669 };
670
671 /// A list of isolated name scopes.
672 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
673
674 /// This keeps track of the block names as well as the location of the first
675 /// reference for each nested name scope. This is used to diagnose invalid
676 /// block references and memorize them.
677 SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName;
678 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
679
680 /// These are all of the placeholders we've made along with the location of
681 /// their first reference, to allow checking for use of undefined values.
682 DenseMap<Value, SMLoc> forwardRefPlaceholders;
683
684 /// Deffered locations: when parsing `loc(#loc42)` we add an entry to this
685 /// map. After parsing the definition `#loc42 = ...` we'll patch back users
686 /// of this location.
687 std::vector<DeferredLocInfo> deferredLocsReferences;
688
689 /// The builder used when creating parsed operation instances.
690 OpBuilder opBuilder;
691
692 /// The top level operation that holds all of the parsed operations.
693 Operation *topLevelOp;
694 };
695 } // namespace
696
697 MLIR_DECLARE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *)
MLIR_DEFINE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *)698 MLIR_DEFINE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *)
699
700 OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp)
701 : Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) {
702 // The top level operation starts a new name scope.
703 pushSSANameScope(/*isIsolated=*/true);
704
705 // If we are populating the parser state, prepare it for parsing.
706 if (state.asmState)
707 state.asmState->initialize(topLevelOp);
708 }
709
~OperationParser()710 OperationParser::~OperationParser() {
711 for (auto &fwd : forwardRefPlaceholders) {
712 // Drop all uses of undefined forward declared reference and destroy
713 // defining operation.
714 fwd.first.dropAllUses();
715 fwd.first.getDefiningOp()->destroy();
716 }
717 for (const auto &scope : forwardRef) {
718 for (const auto &fwd : scope) {
719 // Delete all blocks that were created as forward references but never
720 // included into a region.
721 fwd.first->dropAllUses();
722 delete fwd.first;
723 }
724 }
725 }
726
727 /// After parsing is finished, this function must be called to see if there are
728 /// any remaining issues.
finalize()729 ParseResult OperationParser::finalize() {
730 // Check for any forward references that are left. If we find any, error
731 // out.
732 if (!forwardRefPlaceholders.empty()) {
733 SmallVector<const char *, 4> errors;
734 // Iteration over the map isn't deterministic, so sort by source location.
735 for (auto entry : forwardRefPlaceholders)
736 errors.push_back(entry.second.getPointer());
737 llvm::array_pod_sort(errors.begin(), errors.end());
738
739 for (const char *entry : errors) {
740 auto loc = SMLoc::getFromPointer(entry);
741 emitError(loc, "use of undeclared SSA value name");
742 }
743 return failure();
744 }
745
746 // Resolve the locations of any deferred operations.
747 auto &attributeAliases = state.symbols.attributeAliasDefinitions;
748 auto locID = TypeID::get<DeferredLocInfo *>();
749 auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult {
750 auto fwdLoc = opOrArgument.getLoc().template dyn_cast<OpaqueLoc>();
751 if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID)
752 return success();
753 auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()];
754 Attribute attr = attributeAliases.lookup(locInfo.identifier);
755 if (!attr)
756 return this->emitError(locInfo.loc)
757 << "operation location alias was never defined";
758 auto locAttr = attr.dyn_cast<LocationAttr>();
759 if (!locAttr)
760 return this->emitError(locInfo.loc)
761 << "expected location, but found '" << attr << "'";
762 opOrArgument.setLoc(locAttr);
763 return success();
764 };
765
766 auto walkRes = topLevelOp->walk([&](Operation *op) {
767 if (failed(resolveLocation(*op)))
768 return WalkResult::interrupt();
769 for (Region ®ion : op->getRegions())
770 for (Block &block : region.getBlocks())
771 for (BlockArgument arg : block.getArguments())
772 if (failed(resolveLocation(arg)))
773 return WalkResult::interrupt();
774 return WalkResult::advance();
775 });
776 if (walkRes.wasInterrupted())
777 return failure();
778
779 // Pop the top level name scope.
780 if (failed(popSSANameScope()))
781 return failure();
782
783 // Verify that the parsed operations are valid.
784 if (failed(verify(topLevelOp)))
785 return failure();
786
787 // If we are populating the parser state, finalize the top-level operation.
788 if (state.asmState)
789 state.asmState->finalize(topLevelOp);
790 return success();
791 }
792
793 //===----------------------------------------------------------------------===//
794 // SSA Value Handling
795 //===----------------------------------------------------------------------===//
796
pushSSANameScope(bool isIsolated)797 void OperationParser::pushSSANameScope(bool isIsolated) {
798 blocksByName.push_back(DenseMap<StringRef, BlockDefinition>());
799 forwardRef.push_back(DenseMap<Block *, SMLoc>());
800
801 // Push back a new name definition scope.
802 if (isIsolated)
803 isolatedNameScopes.push_back({});
804 isolatedNameScopes.back().pushSSANameScope();
805 }
806
popSSANameScope()807 ParseResult OperationParser::popSSANameScope() {
808 auto forwardRefInCurrentScope = forwardRef.pop_back_val();
809
810 // Verify that all referenced blocks were defined.
811 if (!forwardRefInCurrentScope.empty()) {
812 SmallVector<std::pair<const char *, Block *>, 4> errors;
813 // Iteration over the map isn't deterministic, so sort by source location.
814 for (auto entry : forwardRefInCurrentScope) {
815 errors.push_back({entry.second.getPointer(), entry.first});
816 // Add this block to the top-level region to allow for automatic cleanup.
817 topLevelOp->getRegion(0).push_back(entry.first);
818 }
819 llvm::array_pod_sort(errors.begin(), errors.end());
820
821 for (auto entry : errors) {
822 auto loc = SMLoc::getFromPointer(entry.first);
823 emitError(loc, "reference to an undefined block");
824 }
825 return failure();
826 }
827
828 // Pop the next nested namescope. If there is only one internal namescope,
829 // just pop the isolated scope.
830 auto ¤tNameScope = isolatedNameScopes.back();
831 if (currentNameScope.definitionsPerScope.size() == 1)
832 isolatedNameScopes.pop_back();
833 else
834 currentNameScope.popSSANameScope();
835
836 blocksByName.pop_back();
837 return success();
838 }
839
840 /// Register a definition of a value with the symbol table.
addDefinition(UnresolvedOperand useInfo,Value value)841 ParseResult OperationParser::addDefinition(UnresolvedOperand useInfo,
842 Value value) {
843 auto &entries = getSSAValueEntry(useInfo.name);
844
845 // Make sure there is a slot for this value.
846 if (entries.size() <= useInfo.number)
847 entries.resize(useInfo.number + 1);
848
849 // If we already have an entry for this, check to see if it was a definition
850 // or a forward reference.
851 if (auto existing = entries[useInfo.number].value) {
852 if (!isForwardRefPlaceholder(existing)) {
853 return emitError(useInfo.location)
854 .append("redefinition of SSA value '", useInfo.name, "'")
855 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
856 .append("previously defined here");
857 }
858
859 if (existing.getType() != value.getType()) {
860 return emitError(useInfo.location)
861 .append("definition of SSA value '", useInfo.name, "#",
862 useInfo.number, "' has type ", value.getType())
863 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
864 .append("previously used here with type ", existing.getType());
865 }
866
867 // If it was a forward reference, update everything that used it to use
868 // the actual definition instead, delete the forward ref, and remove it
869 // from our set of forward references we track.
870 existing.replaceAllUsesWith(value);
871 existing.getDefiningOp()->destroy();
872 forwardRefPlaceholders.erase(existing);
873
874 // If a definition of the value already exists, replace it in the assembly
875 // state.
876 if (state.asmState)
877 state.asmState->refineDefinition(existing, value);
878 }
879
880 /// Record this definition for the current scope.
881 entries[useInfo.number] = {value, useInfo.location};
882 recordDefinition(useInfo.name);
883 return success();
884 }
885
886 /// Parse a (possibly empty) list of SSA operands.
887 ///
888 /// ssa-use-list ::= ssa-use (`,` ssa-use)*
889 /// ssa-use-list-opt ::= ssa-use-list?
890 ///
parseOptionalSSAUseList(SmallVectorImpl<UnresolvedOperand> & results)891 ParseResult OperationParser::parseOptionalSSAUseList(
892 SmallVectorImpl<UnresolvedOperand> &results) {
893 if (!getToken().isOrIsCodeCompletionFor(Token::percent_identifier))
894 return success();
895 return parseCommaSeparatedList([&]() -> ParseResult {
896 UnresolvedOperand result;
897 if (parseSSAUse(result))
898 return failure();
899 results.push_back(result);
900 return success();
901 });
902 }
903
904 /// Parse a SSA operand for an operation.
905 ///
906 /// ssa-use ::= ssa-id
907 ///
parseSSAUse(UnresolvedOperand & result,bool allowResultNumber)908 ParseResult OperationParser::parseSSAUse(UnresolvedOperand &result,
909 bool allowResultNumber) {
910 if (getToken().isCodeCompletion())
911 return codeCompleteSSAUse();
912
913 result.name = getTokenSpelling();
914 result.number = 0;
915 result.location = getToken().getLoc();
916 if (parseToken(Token::percent_identifier, "expected SSA operand"))
917 return failure();
918
919 // If we have an attribute ID, it is a result number.
920 if (getToken().is(Token::hash_identifier)) {
921 if (!allowResultNumber)
922 return emitError("result number not allowed in argument list");
923
924 if (auto value = getToken().getHashIdentifierNumber())
925 result.number = *value;
926 else
927 return emitError("invalid SSA value result number");
928 consumeToken(Token::hash_identifier);
929 }
930
931 return success();
932 }
933
934 /// Given an unbound reference to an SSA value and its type, return the value
935 /// it specifies. This returns null on failure.
resolveSSAUse(UnresolvedOperand useInfo,Type type)936 Value OperationParser::resolveSSAUse(UnresolvedOperand useInfo, Type type) {
937 auto &entries = getSSAValueEntry(useInfo.name);
938
939 // Functor used to record the use of the given value if the assembly state
940 // field is populated.
941 auto maybeRecordUse = [&](Value value) {
942 if (state.asmState)
943 state.asmState->addUses(value, useInfo.location);
944 return value;
945 };
946
947 // If we have already seen a value of this name, return it.
948 if (useInfo.number < entries.size() && entries[useInfo.number].value) {
949 Value result = entries[useInfo.number].value;
950 // Check that the type matches the other uses.
951 if (result.getType() == type)
952 return maybeRecordUse(result);
953
954 emitError(useInfo.location, "use of value '")
955 .append(useInfo.name,
956 "' expects different type than prior uses: ", type, " vs ",
957 result.getType())
958 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc))
959 .append("prior use here");
960 return nullptr;
961 }
962
963 // Make sure we have enough slots for this.
964 if (entries.size() <= useInfo.number)
965 entries.resize(useInfo.number + 1);
966
967 // If the value has already been defined and this is an overly large result
968 // number, diagnose that.
969 if (entries[0].value && !isForwardRefPlaceholder(entries[0].value))
970 return (emitError(useInfo.location, "reference to invalid result number"),
971 nullptr);
972
973 // Otherwise, this is a forward reference. Create a placeholder and remember
974 // that we did so.
975 Value result = createForwardRefPlaceholder(useInfo.location, type);
976 entries[useInfo.number] = {result, useInfo.location};
977 return maybeRecordUse(result);
978 }
979
980 /// Parse an SSA use with an associated type.
981 ///
982 /// ssa-use-and-type ::= ssa-use `:` type
parseSSADefOrUseAndType(function_ref<ParseResult (UnresolvedOperand,Type)> action)983 ParseResult OperationParser::parseSSADefOrUseAndType(
984 function_ref<ParseResult(UnresolvedOperand, Type)> action) {
985 UnresolvedOperand useInfo;
986 if (parseSSAUse(useInfo) ||
987 parseToken(Token::colon, "expected ':' and type for SSA operand"))
988 return failure();
989
990 auto type = parseType();
991 if (!type)
992 return failure();
993
994 return action(useInfo, type);
995 }
996
997 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then
998 /// followed by a type list.
999 ///
1000 /// ssa-use-and-type-list
1001 /// ::= ssa-use-list ':' type-list-no-parens
1002 ///
parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> & results)1003 ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
1004 SmallVectorImpl<Value> &results) {
1005 SmallVector<UnresolvedOperand, 4> valueIDs;
1006 if (parseOptionalSSAUseList(valueIDs))
1007 return failure();
1008
1009 // If there were no operands, then there is no colon or type lists.
1010 if (valueIDs.empty())
1011 return success();
1012
1013 SmallVector<Type, 4> types;
1014 if (parseToken(Token::colon, "expected ':' in operand list") ||
1015 parseTypeListNoParens(types))
1016 return failure();
1017
1018 if (valueIDs.size() != types.size())
1019 return emitError("expected ")
1020 << valueIDs.size() << " types to match operand list";
1021
1022 results.reserve(valueIDs.size());
1023 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
1024 if (auto value = resolveSSAUse(valueIDs[i], types[i]))
1025 results.push_back(value);
1026 else
1027 return failure();
1028 }
1029
1030 return success();
1031 }
1032
1033 /// Record that a definition was added at the current scope.
recordDefinition(StringRef def)1034 void OperationParser::recordDefinition(StringRef def) {
1035 isolatedNameScopes.back().recordDefinition(def);
1036 }
1037
1038 /// Get the value entry for the given SSA name.
getSSAValueEntry(StringRef name)1039 auto OperationParser::getSSAValueEntry(StringRef name)
1040 -> SmallVectorImpl<ValueDefinition> & {
1041 return isolatedNameScopes.back().values[name];
1042 }
1043
1044 /// Create and remember a new placeholder for a forward reference.
createForwardRefPlaceholder(SMLoc loc,Type type)1045 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
1046 // Forward references are always created as operations, because we just need
1047 // something with a def/use chain.
1048 //
1049 // We create these placeholders as having an empty name, which we know
1050 // cannot be created through normal user input, allowing us to distinguish
1051 // them.
1052 auto name = OperationName("builtin.unrealized_conversion_cast", getContext());
1053 auto *op = Operation::create(
1054 getEncodedSourceLocation(loc), name, type, /*operands=*/{},
1055 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0);
1056 forwardRefPlaceholders[op->getResult(0)] = loc;
1057 return op->getResult(0);
1058 }
1059
1060 //===----------------------------------------------------------------------===//
1061 // Operation Parsing
1062 //===----------------------------------------------------------------------===//
1063
1064 /// Parse an operation.
1065 ///
1066 /// operation ::= op-result-list?
1067 /// (generic-operation | custom-operation)
1068 /// trailing-location?
1069 /// generic-operation ::= string-literal `(` ssa-use-list? `)`
1070 /// successor-list? (`(` region-list `)`)?
1071 /// attribute-dict? `:` function-type
1072 /// custom-operation ::= bare-id custom-operation-format
1073 /// op-result-list ::= op-result (`,` op-result)* `=`
1074 /// op-result ::= ssa-id (`:` integer-literal)
1075 ///
parseOperation()1076 ParseResult OperationParser::parseOperation() {
1077 auto loc = getToken().getLoc();
1078 SmallVector<ResultRecord, 1> resultIDs;
1079 size_t numExpectedResults = 0;
1080 if (getToken().is(Token::percent_identifier)) {
1081 // Parse the group of result ids.
1082 auto parseNextResult = [&]() -> ParseResult {
1083 // Parse the next result id.
1084 Token nameTok = getToken();
1085 if (parseToken(Token::percent_identifier,
1086 "expected valid ssa identifier"))
1087 return failure();
1088
1089 // If the next token is a ':', we parse the expected result count.
1090 size_t expectedSubResults = 1;
1091 if (consumeIf(Token::colon)) {
1092 // Check that the next token is an integer.
1093 if (!getToken().is(Token::integer))
1094 return emitWrongTokenError("expected integer number of results");
1095
1096 // Check that number of results is > 0.
1097 auto val = getToken().getUInt64IntegerValue();
1098 if (!val || *val < 1)
1099 return emitError(
1100 "expected named operation to have at least 1 result");
1101 consumeToken(Token::integer);
1102 expectedSubResults = *val;
1103 }
1104
1105 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
1106 nameTok.getLoc());
1107 numExpectedResults += expectedSubResults;
1108 return success();
1109 };
1110 if (parseCommaSeparatedList(parseNextResult))
1111 return failure();
1112
1113 if (parseToken(Token::equal, "expected '=' after SSA name"))
1114 return failure();
1115 }
1116
1117 Operation *op;
1118 Token nameTok = getToken();
1119 if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword())
1120 op = parseCustomOperation(resultIDs);
1121 else if (nameTok.is(Token::string))
1122 op = parseGenericOperation();
1123 else if (nameTok.isCodeCompletionFor(Token::string))
1124 return codeCompleteStringDialectOrOperationName(nameTok.getStringValue());
1125 else if (nameTok.isCodeCompletion())
1126 return codeCompleteDialectOrElidedOpName(loc);
1127 else
1128 return emitWrongTokenError("expected operation name in quotes");
1129
1130 // If parsing of the basic operation failed, then this whole thing fails.
1131 if (!op)
1132 return failure();
1133
1134 // If the operation had a name, register it.
1135 if (!resultIDs.empty()) {
1136 if (op->getNumResults() == 0)
1137 return emitError(loc, "cannot name an operation with no results");
1138 if (numExpectedResults != op->getNumResults())
1139 return emitError(loc, "operation defines ")
1140 << op->getNumResults() << " results but was provided "
1141 << numExpectedResults << " to bind";
1142
1143 // Add this operation to the assembly state if it was provided to populate.
1144 if (state.asmState) {
1145 unsigned resultIt = 0;
1146 SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups;
1147 asmResultGroups.reserve(resultIDs.size());
1148 for (ResultRecord &record : resultIDs) {
1149 asmResultGroups.emplace_back(resultIt, std::get<2>(record));
1150 resultIt += std::get<1>(record);
1151 }
1152 state.asmState->finalizeOperationDefinition(
1153 op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(),
1154 asmResultGroups);
1155 }
1156
1157 // Add definitions for each of the result groups.
1158 unsigned opResI = 0;
1159 for (ResultRecord &resIt : resultIDs) {
1160 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
1161 if (addDefinition({std::get<2>(resIt), std::get<0>(resIt), subRes},
1162 op->getResult(opResI++)))
1163 return failure();
1164 }
1165 }
1166
1167 // Add this operation to the assembly state if it was provided to populate.
1168 } else if (state.asmState) {
1169 state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(),
1170 /*endLoc=*/getToken().getLoc());
1171 }
1172
1173 return success();
1174 }
1175
1176 /// Parse a single operation successor.
1177 ///
1178 /// successor ::= block-id
1179 ///
parseSuccessor(Block * & dest)1180 ParseResult OperationParser::parseSuccessor(Block *&dest) {
1181 if (getToken().isCodeCompletion())
1182 return codeCompleteBlock();
1183
1184 // Verify branch is identifier and get the matching block.
1185 if (!getToken().is(Token::caret_identifier))
1186 return emitWrongTokenError("expected block name");
1187 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
1188 consumeToken();
1189 return success();
1190 }
1191
1192 /// Parse a comma-separated list of operation successors in brackets.
1193 ///
1194 /// successor-list ::= `[` successor (`,` successor )* `]`
1195 ///
1196 ParseResult
parseSuccessors(SmallVectorImpl<Block * > & destinations)1197 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
1198 if (parseToken(Token::l_square, "expected '['"))
1199 return failure();
1200
1201 auto parseElt = [this, &destinations] {
1202 Block *dest;
1203 ParseResult res = parseSuccessor(dest);
1204 destinations.push_back(dest);
1205 return res;
1206 };
1207 return parseCommaSeparatedListUntil(Token::r_square, parseElt,
1208 /*allowEmptyList=*/false);
1209 }
1210
1211 namespace {
1212 // RAII-style guard for cleaning up the regions in the operation state before
1213 // deleting them. Within the parser, regions may get deleted if parsing failed,
1214 // and other errors may be present, in particular undominated uses. This makes
1215 // sure such uses are deleted.
1216 struct CleanupOpStateRegions {
~CleanupOpStateRegions__anon220499430911::CleanupOpStateRegions1217 ~CleanupOpStateRegions() {
1218 SmallVector<Region *, 4> regionsToClean;
1219 regionsToClean.reserve(state.regions.size());
1220 for (auto ®ion : state.regions)
1221 if (region)
1222 for (auto &block : *region)
1223 block.dropAllDefinedValueUses();
1224 }
1225 OperationState &state;
1226 };
1227 } // namespace
1228
parseGenericOperationAfterOpName(OperationState & result,Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo,Optional<ArrayRef<Block * >> parsedSuccessors,Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,Optional<ArrayRef<NamedAttribute>> parsedAttributes,Optional<FunctionType> parsedFnType)1229 ParseResult OperationParser::parseGenericOperationAfterOpName(
1230 OperationState &result,
1231 Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo,
1232 Optional<ArrayRef<Block *>> parsedSuccessors,
1233 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
1234 Optional<ArrayRef<NamedAttribute>> parsedAttributes,
1235 Optional<FunctionType> parsedFnType) {
1236
1237 // Parse the operand list, if not explicitly provided.
1238 SmallVector<UnresolvedOperand, 8> opInfo;
1239 if (!parsedOperandUseInfo) {
1240 if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
1241 parseOptionalSSAUseList(opInfo) ||
1242 parseToken(Token::r_paren, "expected ')' to end operand list")) {
1243 return failure();
1244 }
1245 parsedOperandUseInfo = opInfo;
1246 }
1247
1248 // Parse the successor list, if not explicitly provided.
1249 if (!parsedSuccessors) {
1250 if (getToken().is(Token::l_square)) {
1251 // Check if the operation is not a known terminator.
1252 if (!result.name.mightHaveTrait<OpTrait::IsTerminator>())
1253 return emitError("successors in non-terminator");
1254
1255 SmallVector<Block *, 2> successors;
1256 if (parseSuccessors(successors))
1257 return failure();
1258 result.addSuccessors(successors);
1259 }
1260 } else {
1261 result.addSuccessors(*parsedSuccessors);
1262 }
1263
1264 // Parse the region list, if not explicitly provided.
1265 if (!parsedRegions) {
1266 if (consumeIf(Token::l_paren)) {
1267 do {
1268 // Create temporary regions with the top level region as parent.
1269 result.regions.emplace_back(new Region(topLevelOp));
1270 if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
1271 return failure();
1272 } while (consumeIf(Token::comma));
1273 if (parseToken(Token::r_paren, "expected ')' to end region list"))
1274 return failure();
1275 }
1276 } else {
1277 result.addRegions(*parsedRegions);
1278 }
1279
1280 // Parse the attributes, if not explicitly provided.
1281 if (!parsedAttributes) {
1282 if (getToken().is(Token::l_brace)) {
1283 if (parseAttributeDict(result.attributes))
1284 return failure();
1285 }
1286 } else {
1287 result.addAttributes(*parsedAttributes);
1288 }
1289
1290 // Parse the operation type, if not explicitly provided.
1291 Location typeLoc = result.location;
1292 if (!parsedFnType) {
1293 if (parseToken(Token::colon, "expected ':' followed by operation type"))
1294 return failure();
1295
1296 typeLoc = getEncodedSourceLocation(getToken().getLoc());
1297 auto type = parseType();
1298 if (!type)
1299 return failure();
1300 auto fnType = type.dyn_cast<FunctionType>();
1301 if (!fnType)
1302 return mlir::emitError(typeLoc, "expected function type");
1303
1304 parsedFnType = fnType;
1305 }
1306
1307 result.addTypes(parsedFnType->getResults());
1308
1309 // Check that we have the right number of types for the operands.
1310 ArrayRef<Type> operandTypes = parsedFnType->getInputs();
1311 if (operandTypes.size() != parsedOperandUseInfo->size()) {
1312 auto plural = "s"[parsedOperandUseInfo->size() == 1];
1313 return mlir::emitError(typeLoc, "expected ")
1314 << parsedOperandUseInfo->size() << " operand type" << plural
1315 << " but had " << operandTypes.size();
1316 }
1317
1318 // Resolve all of the operands.
1319 for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) {
1320 result.operands.push_back(
1321 resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i]));
1322 if (!result.operands.back())
1323 return failure();
1324 }
1325
1326 return success();
1327 }
1328
parseGenericOperation()1329 Operation *OperationParser::parseGenericOperation() {
1330 // Get location information for the operation.
1331 auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
1332
1333 std::string name = getToken().getStringValue();
1334 if (name.empty())
1335 return (emitError("empty operation name is invalid"), nullptr);
1336 if (name.find('\0') != StringRef::npos)
1337 return (emitError("null character not allowed in operation name"), nullptr);
1338
1339 consumeToken(Token::string);
1340
1341 OperationState result(srcLocation, name);
1342 CleanupOpStateRegions guard{result};
1343
1344 // Lazy load dialects in the context as needed.
1345 if (!result.name.isRegistered()) {
1346 StringRef dialectName = StringRef(name).split('.').first;
1347 if (!getContext()->getLoadedDialect(dialectName) &&
1348 !getContext()->getOrLoadDialect(dialectName) &&
1349 !getContext()->allowsUnregisteredDialects()) {
1350 // Emit an error if the dialect couldn't be loaded (i.e., it was not
1351 // registered) and unregistered dialects aren't allowed.
1352 emitError("operation being parsed with an unregistered dialect. If "
1353 "this is intended, please use -allow-unregistered-dialect "
1354 "with the MLIR tool used");
1355 return nullptr;
1356 }
1357 }
1358
1359 // If we are populating the parser state, start a new operation definition.
1360 if (state.asmState)
1361 state.asmState->startOperationDefinition(result.name);
1362
1363 if (parseGenericOperationAfterOpName(result))
1364 return nullptr;
1365
1366 // Create the operation and try to parse a location for it.
1367 Operation *op = opBuilder.create(result);
1368 if (parseTrailingLocationSpecifier(op))
1369 return nullptr;
1370 return op;
1371 }
1372
parseGenericOperation(Block * insertBlock,Block::iterator insertPt)1373 Operation *OperationParser::parseGenericOperation(Block *insertBlock,
1374 Block::iterator insertPt) {
1375 Token nameToken = getToken();
1376
1377 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
1378 opBuilder.setInsertionPoint(insertBlock, insertPt);
1379 Operation *op = parseGenericOperation();
1380 if (!op)
1381 return nullptr;
1382
1383 // If we are populating the parser asm state, finalize this operation
1384 // definition.
1385 if (state.asmState)
1386 state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(),
1387 /*endLoc=*/getToken().getLoc());
1388 return op;
1389 }
1390
1391 namespace {
1392 class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> {
1393 public:
CustomOpAsmParser(SMLoc nameLoc,ArrayRef<OperationParser::ResultRecord> resultIDs,function_ref<ParseResult (OpAsmParser &,OperationState &)> parseAssembly,bool isIsolatedFromAbove,StringRef opName,OperationParser & parser)1394 CustomOpAsmParser(
1395 SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs,
1396 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly,
1397 bool isIsolatedFromAbove, StringRef opName, OperationParser &parser)
1398 : AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs),
1399 parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove),
1400 opName(opName), parser(parser) {
1401 (void)isIsolatedFromAbove; // Only used in assert, silence unused warning.
1402 }
1403
1404 /// Parse an instance of the operation described by 'opDefinition' into the
1405 /// provided operation state.
parseOperation(OperationState & opState)1406 ParseResult parseOperation(OperationState &opState) {
1407 if (parseAssembly(*this, opState))
1408 return failure();
1409 // Verify that the parsed attributes does not have duplicate attributes.
1410 // This can happen if an attribute set during parsing is also specified in
1411 // the attribute dictionary in the assembly, or the attribute is set
1412 // multiple during parsing.
1413 Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate();
1414 if (duplicate)
1415 return emitError(getNameLoc(), "attribute '")
1416 << duplicate->getName().getValue()
1417 << "' occurs more than once in the attribute list";
1418 return success();
1419 }
1420
parseGenericOperation(Block * insertBlock,Block::iterator insertPt)1421 Operation *parseGenericOperation(Block *insertBlock,
1422 Block::iterator insertPt) final {
1423 return parser.parseGenericOperation(insertBlock, insertPt);
1424 }
1425
parseCustomOperationName()1426 FailureOr<OperationName> parseCustomOperationName() final {
1427 return parser.parseCustomOperationName();
1428 }
1429
parseGenericOperationAfterOpName(OperationState & result,Optional<ArrayRef<UnresolvedOperand>> parsedUnresolvedOperands,Optional<ArrayRef<Block * >> parsedSuccessors,Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,Optional<ArrayRef<NamedAttribute>> parsedAttributes,Optional<FunctionType> parsedFnType)1430 ParseResult parseGenericOperationAfterOpName(
1431 OperationState &result,
1432 Optional<ArrayRef<UnresolvedOperand>> parsedUnresolvedOperands,
1433 Optional<ArrayRef<Block *>> parsedSuccessors,
1434 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions,
1435 Optional<ArrayRef<NamedAttribute>> parsedAttributes,
1436 Optional<FunctionType> parsedFnType) final {
1437 return parser.parseGenericOperationAfterOpName(
1438 result, parsedUnresolvedOperands, parsedSuccessors, parsedRegions,
1439 parsedAttributes, parsedFnType);
1440 }
1441 //===--------------------------------------------------------------------===//
1442 // Utilities
1443 //===--------------------------------------------------------------------===//
1444
1445 /// Return the name of the specified result in the specified syntax, as well
1446 /// as the subelement in the name. For example, in this operation:
1447 ///
1448 /// %x, %y:2, %z = foo.op
1449 ///
1450 /// getResultName(0) == {"x", 0 }
1451 /// getResultName(1) == {"y", 0 }
1452 /// getResultName(2) == {"y", 1 }
1453 /// getResultName(3) == {"z", 0 }
1454 std::pair<StringRef, unsigned>
getResultName(unsigned resultNo) const1455 getResultName(unsigned resultNo) const override {
1456 // Scan for the resultID that contains this result number.
1457 for (const auto &entry : resultIDs) {
1458 if (resultNo < std::get<1>(entry)) {
1459 // Don't pass on the leading %.
1460 StringRef name = std::get<0>(entry).drop_front();
1461 return {name, resultNo};
1462 }
1463 resultNo -= std::get<1>(entry);
1464 }
1465
1466 // Invalid result number.
1467 return {"", ~0U};
1468 }
1469
1470 /// Return the number of declared SSA results. This returns 4 for the foo.op
1471 /// example in the comment for getResultName.
getNumResults() const1472 size_t getNumResults() const override {
1473 size_t count = 0;
1474 for (auto &entry : resultIDs)
1475 count += std::get<1>(entry);
1476 return count;
1477 }
1478
1479 /// Emit a diagnostic at the specified location and return failure.
emitError(SMLoc loc,const Twine & message)1480 InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override {
1481 return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName +
1482 "' " + message);
1483 }
1484
1485 //===--------------------------------------------------------------------===//
1486 // Operand Parsing
1487 //===--------------------------------------------------------------------===//
1488
1489 /// Parse a single operand.
parseOperand(UnresolvedOperand & result,bool allowResultNumber=true)1490 ParseResult parseOperand(UnresolvedOperand &result,
1491 bool allowResultNumber = true) override {
1492 OperationParser::UnresolvedOperand useInfo;
1493 if (parser.parseSSAUse(useInfo, allowResultNumber))
1494 return failure();
1495
1496 result = {useInfo.location, useInfo.name, useInfo.number};
1497 return success();
1498 }
1499
1500 /// Parse a single operand if present.
1501 OptionalParseResult
parseOptionalOperand(UnresolvedOperand & result,bool allowResultNumber=true)1502 parseOptionalOperand(UnresolvedOperand &result,
1503 bool allowResultNumber = true) override {
1504 if (parser.getToken().isOrIsCodeCompletionFor(Token::percent_identifier))
1505 return parseOperand(result, allowResultNumber);
1506 return llvm::None;
1507 }
1508
1509 /// Parse zero or more SSA comma-separated operand references with a specified
1510 /// surrounding delimiter, and an optional required operand count.
parseOperandList(SmallVectorImpl<UnresolvedOperand> & result,Delimiter delimiter=Delimiter::None,bool allowResultNumber=true,int requiredOperandCount=-1)1511 ParseResult parseOperandList(SmallVectorImpl<UnresolvedOperand> &result,
1512 Delimiter delimiter = Delimiter::None,
1513 bool allowResultNumber = true,
1514 int requiredOperandCount = -1) override {
1515 // The no-delimiter case has some special handling for better diagnostics.
1516 if (delimiter == Delimiter::None) {
1517 // parseCommaSeparatedList doesn't handle the missing case for "none",
1518 // so we handle it custom here.
1519 Token tok = parser.getToken();
1520 if (!tok.isOrIsCodeCompletionFor(Token::percent_identifier)) {
1521 // If we didn't require any operands or required exactly zero (weird)
1522 // then this is success.
1523 if (requiredOperandCount == -1 || requiredOperandCount == 0)
1524 return success();
1525
1526 // Otherwise, try to produce a nice error message.
1527 if (tok.isAny(Token::l_paren, Token::l_square))
1528 return parser.emitError("unexpected delimiter");
1529 return parser.emitWrongTokenError("expected operand");
1530 }
1531 }
1532
1533 auto parseOneOperand = [&]() -> ParseResult {
1534 return parseOperand(result.emplace_back(), allowResultNumber);
1535 };
1536
1537 auto startLoc = parser.getToken().getLoc();
1538 if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list"))
1539 return failure();
1540
1541 // Check that we got the expected # of elements.
1542 if (requiredOperandCount != -1 &&
1543 result.size() != static_cast<size_t>(requiredOperandCount))
1544 return emitError(startLoc, "expected ")
1545 << requiredOperandCount << " operands";
1546 return success();
1547 }
1548
1549 /// Resolve an operand to an SSA value, emitting an error on failure.
resolveOperand(const UnresolvedOperand & operand,Type type,SmallVectorImpl<Value> & result)1550 ParseResult resolveOperand(const UnresolvedOperand &operand, Type type,
1551 SmallVectorImpl<Value> &result) override {
1552 if (auto value = parser.resolveSSAUse(operand, type)) {
1553 result.push_back(value);
1554 return success();
1555 }
1556 return failure();
1557 }
1558
1559 /// Parse an AffineMap of SSA ids.
1560 ParseResult
parseAffineMapOfSSAIds(SmallVectorImpl<UnresolvedOperand> & operands,Attribute & mapAttr,StringRef attrName,NamedAttrList & attrs,Delimiter delimiter)1561 parseAffineMapOfSSAIds(SmallVectorImpl<UnresolvedOperand> &operands,
1562 Attribute &mapAttr, StringRef attrName,
1563 NamedAttrList &attrs, Delimiter delimiter) override {
1564 SmallVector<UnresolvedOperand, 2> dimOperands;
1565 SmallVector<UnresolvedOperand, 1> symOperands;
1566
1567 auto parseElement = [&](bool isSymbol) -> ParseResult {
1568 UnresolvedOperand operand;
1569 if (parseOperand(operand))
1570 return failure();
1571 if (isSymbol)
1572 symOperands.push_back(operand);
1573 else
1574 dimOperands.push_back(operand);
1575 return success();
1576 };
1577
1578 AffineMap map;
1579 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
1580 return failure();
1581 // Add AffineMap attribute.
1582 if (map) {
1583 mapAttr = AffineMapAttr::get(map);
1584 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
1585 }
1586
1587 // Add dim operands before symbol operands in 'operands'.
1588 operands.assign(dimOperands.begin(), dimOperands.end());
1589 operands.append(symOperands.begin(), symOperands.end());
1590 return success();
1591 }
1592
1593 /// Parse an AffineExpr of SSA ids.
1594 ParseResult
parseAffineExprOfSSAIds(SmallVectorImpl<UnresolvedOperand> & dimOperands,SmallVectorImpl<UnresolvedOperand> & symbOperands,AffineExpr & expr)1595 parseAffineExprOfSSAIds(SmallVectorImpl<UnresolvedOperand> &dimOperands,
1596 SmallVectorImpl<UnresolvedOperand> &symbOperands,
1597 AffineExpr &expr) override {
1598 auto parseElement = [&](bool isSymbol) -> ParseResult {
1599 UnresolvedOperand operand;
1600 if (parseOperand(operand))
1601 return failure();
1602 if (isSymbol)
1603 symbOperands.push_back(operand);
1604 else
1605 dimOperands.push_back(operand);
1606 return success();
1607 };
1608
1609 return parser.parseAffineExprOfSSAIds(expr, parseElement);
1610 }
1611
1612 //===--------------------------------------------------------------------===//
1613 // Argument Parsing
1614 //===--------------------------------------------------------------------===//
1615
1616 /// Parse a single argument with the following syntax:
1617 ///
1618 /// `%ssaname : !type { optionalAttrDict} loc(optionalSourceLoc)`
1619 ///
1620 /// If `allowType` is false or `allowAttrs` are false then the respective
1621 /// parts of the grammar are not parsed.
parseArgument(Argument & result,bool allowType=false,bool allowAttrs=false)1622 ParseResult parseArgument(Argument &result, bool allowType = false,
1623 bool allowAttrs = false) override {
1624 NamedAttrList attrs;
1625 if (parseOperand(result.ssaName, /*allowResultNumber=*/false) ||
1626 (allowType && parseColonType(result.type)) ||
1627 (allowAttrs && parseOptionalAttrDict(attrs)) ||
1628 parseOptionalLocationSpecifier(result.sourceLoc))
1629 return failure();
1630 result.attrs = attrs.getDictionary(getContext());
1631 return success();
1632 }
1633
1634 /// Parse a single argument if present.
parseOptionalArgument(Argument & result,bool allowType,bool allowAttrs)1635 OptionalParseResult parseOptionalArgument(Argument &result, bool allowType,
1636 bool allowAttrs) override {
1637 if (parser.getToken().is(Token::percent_identifier))
1638 return parseArgument(result, allowType, allowAttrs);
1639 return llvm::None;
1640 }
1641
parseArgumentList(SmallVectorImpl<Argument> & result,Delimiter delimiter,bool allowType,bool allowAttrs)1642 ParseResult parseArgumentList(SmallVectorImpl<Argument> &result,
1643 Delimiter delimiter, bool allowType,
1644 bool allowAttrs) override {
1645 // The no-delimiter case has some special handling for the empty case.
1646 if (delimiter == Delimiter::None &&
1647 parser.getToken().isNot(Token::percent_identifier))
1648 return success();
1649
1650 auto parseOneArgument = [&]() -> ParseResult {
1651 return parseArgument(result.emplace_back(), allowType, allowAttrs);
1652 };
1653 return parseCommaSeparatedList(delimiter, parseOneArgument,
1654 " in argument list");
1655 }
1656
1657 //===--------------------------------------------------------------------===//
1658 // Region Parsing
1659 //===--------------------------------------------------------------------===//
1660
1661 /// Parse a region that takes `arguments` of `argTypes` types. This
1662 /// effectively defines the SSA values of `arguments` and assigns their type.
parseRegion(Region & region,ArrayRef<Argument> arguments,bool enableNameShadowing)1663 ParseResult parseRegion(Region ®ion, ArrayRef<Argument> arguments,
1664 bool enableNameShadowing) override {
1665 // Try to parse the region.
1666 (void)isIsolatedFromAbove;
1667 assert((!enableNameShadowing || isIsolatedFromAbove) &&
1668 "name shadowing is only allowed on isolated regions");
1669 if (parser.parseRegion(region, arguments, enableNameShadowing))
1670 return failure();
1671 return success();
1672 }
1673
1674 /// Parses a region if present.
parseOptionalRegion(Region & region,ArrayRef<Argument> arguments,bool enableNameShadowing)1675 OptionalParseResult parseOptionalRegion(Region ®ion,
1676 ArrayRef<Argument> arguments,
1677 bool enableNameShadowing) override {
1678 if (parser.getToken().isNot(Token::l_brace))
1679 return llvm::None;
1680 return parseRegion(region, arguments, enableNameShadowing);
1681 }
1682
1683 /// Parses a region if present. If the region is present, a new region is
1684 /// allocated and placed in `region`. If no region is present, `region`
1685 /// remains untouched.
1686 OptionalParseResult
parseOptionalRegion(std::unique_ptr<Region> & region,ArrayRef<Argument> arguments,bool enableNameShadowing=false)1687 parseOptionalRegion(std::unique_ptr<Region> ®ion,
1688 ArrayRef<Argument> arguments,
1689 bool enableNameShadowing = false) override {
1690 if (parser.getToken().isNot(Token::l_brace))
1691 return llvm::None;
1692 std::unique_ptr<Region> newRegion = std::make_unique<Region>();
1693 if (parseRegion(*newRegion, arguments, enableNameShadowing))
1694 return failure();
1695
1696 region = std::move(newRegion);
1697 return success();
1698 }
1699
1700 //===--------------------------------------------------------------------===//
1701 // Successor Parsing
1702 //===--------------------------------------------------------------------===//
1703
1704 /// Parse a single operation successor.
parseSuccessor(Block * & dest)1705 ParseResult parseSuccessor(Block *&dest) override {
1706 return parser.parseSuccessor(dest);
1707 }
1708
1709 /// Parse an optional operation successor and its operand list.
parseOptionalSuccessor(Block * & dest)1710 OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
1711 if (!parser.getToken().isOrIsCodeCompletionFor(Token::caret_identifier))
1712 return llvm::None;
1713 return parseSuccessor(dest);
1714 }
1715
1716 /// Parse a single operation successor and its operand list.
1717 ParseResult
parseSuccessorAndUseList(Block * & dest,SmallVectorImpl<Value> & operands)1718 parseSuccessorAndUseList(Block *&dest,
1719 SmallVectorImpl<Value> &operands) override {
1720 if (parseSuccessor(dest))
1721 return failure();
1722
1723 // Handle optional arguments.
1724 if (succeeded(parseOptionalLParen()) &&
1725 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
1726 return failure();
1727 }
1728 return success();
1729 }
1730
1731 //===--------------------------------------------------------------------===//
1732 // Type Parsing
1733 //===--------------------------------------------------------------------===//
1734
1735 /// Parse a list of assignments of the form
1736 /// (%x1 = %y1, %x2 = %y2, ...).
parseOptionalAssignmentList(SmallVectorImpl<Argument> & lhs,SmallVectorImpl<UnresolvedOperand> & rhs)1737 OptionalParseResult parseOptionalAssignmentList(
1738 SmallVectorImpl<Argument> &lhs,
1739 SmallVectorImpl<UnresolvedOperand> &rhs) override {
1740 if (failed(parseOptionalLParen()))
1741 return llvm::None;
1742
1743 auto parseElt = [&]() -> ParseResult {
1744 if (parseArgument(lhs.emplace_back()) || parseEqual() ||
1745 parseOperand(rhs.emplace_back()))
1746 return failure();
1747 return success();
1748 };
1749 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
1750 }
1751
1752 /// Parse a loc(...) specifier if present, filling in result if so.
1753 ParseResult
parseOptionalLocationSpecifier(Optional<Location> & result)1754 parseOptionalLocationSpecifier(Optional<Location> &result) override {
1755 // If there is a 'loc' we parse a trailing location.
1756 if (!parser.consumeIf(Token::kw_loc))
1757 return success();
1758 LocationAttr directLoc;
1759 if (parser.parseToken(Token::l_paren, "expected '(' in location"))
1760 return failure();
1761
1762 Token tok = parser.getToken();
1763
1764 // Check to see if we are parsing a location alias.
1765 // Otherwise, we parse the location directly.
1766 if (tok.is(Token::hash_identifier)) {
1767 if (parser.parseLocationAlias(directLoc))
1768 return failure();
1769 } else if (parser.parseLocationInstance(directLoc)) {
1770 return failure();
1771 }
1772
1773 if (parser.parseToken(Token::r_paren, "expected ')' in location"))
1774 return failure();
1775
1776 result = directLoc;
1777 return success();
1778 }
1779
1780 private:
1781 /// Information about the result name specifiers.
1782 ArrayRef<OperationParser::ResultRecord> resultIDs;
1783
1784 /// The abstract information of the operation.
1785 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly;
1786 bool isIsolatedFromAbove;
1787 StringRef opName;
1788
1789 /// The backing operation parser.
1790 OperationParser &parser;
1791 };
1792 } // namespace
1793
parseCustomOperationName()1794 FailureOr<OperationName> OperationParser::parseCustomOperationName() {
1795 Token nameTok = getToken();
1796 StringRef opName = nameTok.getSpelling();
1797 if (opName.empty())
1798 return (emitError("empty operation name is invalid"), failure());
1799 consumeToken();
1800
1801 // Check to see if this operation name is already registered.
1802 Optional<RegisteredOperationName> opInfo =
1803 RegisteredOperationName::lookup(opName, getContext());
1804 if (opInfo)
1805 return *opInfo;
1806
1807 // If the operation doesn't have a dialect prefix try using the default
1808 // dialect.
1809 auto opNameSplit = opName.split('.');
1810 StringRef dialectName = opNameSplit.first;
1811 std::string opNameStorage;
1812 if (opNameSplit.second.empty()) {
1813 // If the name didn't have a prefix, check for a code completion request.
1814 if (getToken().isCodeCompletion() && opName.back() == '.')
1815 return codeCompleteOperationName(dialectName);
1816
1817 dialectName = getState().defaultDialectStack.back();
1818 opNameStorage = (dialectName + "." + opName).str();
1819 opName = opNameStorage;
1820 }
1821
1822 // Try to load the dialect before returning the operation name to make sure
1823 // the operation has a chance to be registered.
1824 getContext()->getOrLoadDialect(dialectName);
1825 return OperationName(opName, getContext());
1826 }
1827
1828 Operation *
parseCustomOperation(ArrayRef<ResultRecord> resultIDs)1829 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
1830 SMLoc opLoc = getToken().getLoc();
1831 StringRef originalOpName = getTokenSpelling();
1832
1833 FailureOr<OperationName> opNameInfo = parseCustomOperationName();
1834 if (failed(opNameInfo))
1835 return nullptr;
1836 StringRef opName = opNameInfo->getStringRef();
1837
1838 // This is the actual hook for the custom op parsing, usually implemented by
1839 // the op itself (`Op::parse()`). We retrieve it either from the
1840 // RegisteredOperationName or from the Dialect.
1841 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn;
1842 bool isIsolatedFromAbove = false;
1843
1844 StringRef defaultDialect = "";
1845 if (auto opInfo = opNameInfo->getRegisteredInfo()) {
1846 parseAssemblyFn = opInfo->getParseAssemblyFn();
1847 isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>();
1848 auto *iface = opInfo->getInterface<OpAsmOpInterface>();
1849 if (iface && !iface->getDefaultDialect().empty())
1850 defaultDialect = iface->getDefaultDialect();
1851 } else {
1852 Optional<Dialect::ParseOpHook> dialectHook;
1853 if (Dialect *dialect = opNameInfo->getDialect())
1854 dialectHook = dialect->getParseOperationHook(opName);
1855 if (!dialectHook) {
1856 InFlightDiagnostic diag =
1857 emitError(opLoc) << "custom op '" << originalOpName << "' is unknown";
1858 if (originalOpName != opName)
1859 diag << " (tried '" << opName << "' as well)";
1860 return nullptr;
1861 }
1862 parseAssemblyFn = *dialectHook;
1863 }
1864 getState().defaultDialectStack.push_back(defaultDialect);
1865 auto restoreDefaultDialect = llvm::make_scope_exit(
1866 [&]() { getState().defaultDialectStack.pop_back(); });
1867
1868 // If the custom op parser crashes, produce some indication to help
1869 // debugging.
1870 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
1871 opNameInfo->getIdentifier().data());
1872
1873 // Get location information for the operation.
1874 auto srcLocation = getEncodedSourceLocation(opLoc);
1875 OperationState opState(srcLocation, *opNameInfo);
1876
1877 // If we are populating the parser state, start a new operation definition.
1878 if (state.asmState)
1879 state.asmState->startOperationDefinition(opState.name);
1880
1881 // Have the op implementation take a crack and parsing this.
1882 CleanupOpStateRegions guard{opState};
1883 CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn,
1884 isIsolatedFromAbove, opName, *this);
1885 if (opAsmParser.parseOperation(opState))
1886 return nullptr;
1887
1888 // If it emitted an error, we failed.
1889 if (opAsmParser.didEmitError())
1890 return nullptr;
1891
1892 // Otherwise, create the operation and try to parse a location for it.
1893 Operation *op = opBuilder.create(opState);
1894 if (parseTrailingLocationSpecifier(op))
1895 return nullptr;
1896 return op;
1897 }
1898
parseLocationAlias(LocationAttr & loc)1899 ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) {
1900 Token tok = getToken();
1901 consumeToken(Token::hash_identifier);
1902 StringRef identifier = tok.getSpelling().drop_front();
1903 if (identifier.contains('.')) {
1904 return emitError(tok.getLoc())
1905 << "expected location, but found dialect attribute: '#" << identifier
1906 << "'";
1907 }
1908
1909 // If this alias can be resolved, do it now.
1910 Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier);
1911 if (attr) {
1912 if (!(loc = attr.dyn_cast<LocationAttr>()))
1913 return emitError(tok.getLoc())
1914 << "expected location, but found '" << attr << "'";
1915 } else {
1916 // Otherwise, remember this operation and resolve its location later.
1917 // In the meantime, use a special OpaqueLoc as a marker.
1918 loc = OpaqueLoc::get(deferredLocsReferences.size(),
1919 TypeID::get<DeferredLocInfo *>(),
1920 UnknownLoc::get(getContext()));
1921 deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier});
1922 }
1923 return success();
1924 }
1925
1926 ParseResult
parseTrailingLocationSpecifier(OpOrArgument opOrArgument)1927 OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) {
1928 // If there is a 'loc' we parse a trailing location.
1929 if (!consumeIf(Token::kw_loc))
1930 return success();
1931 if (parseToken(Token::l_paren, "expected '(' in location"))
1932 return failure();
1933 Token tok = getToken();
1934
1935 // Check to see if we are parsing a location alias.
1936 // Otherwise, we parse the location directly.
1937 LocationAttr directLoc;
1938 if (tok.is(Token::hash_identifier)) {
1939 if (parseLocationAlias(directLoc))
1940 return failure();
1941 } else if (parseLocationInstance(directLoc)) {
1942 return failure();
1943 }
1944
1945 if (parseToken(Token::r_paren, "expected ')' in location"))
1946 return failure();
1947
1948 if (auto *op = opOrArgument.dyn_cast<Operation *>())
1949 op->setLoc(directLoc);
1950 else
1951 opOrArgument.get<BlockArgument>().setLoc(directLoc);
1952 return success();
1953 }
1954
1955 //===----------------------------------------------------------------------===//
1956 // Region Parsing
1957 //===----------------------------------------------------------------------===//
1958
parseRegion(Region & region,ArrayRef<Argument> entryArguments,bool isIsolatedNameScope)1959 ParseResult OperationParser::parseRegion(Region ®ion,
1960 ArrayRef<Argument> entryArguments,
1961 bool isIsolatedNameScope) {
1962 // Parse the '{'.
1963 Token lBraceTok = getToken();
1964 if (parseToken(Token::l_brace, "expected '{' to begin a region"))
1965 return failure();
1966
1967 // If we are populating the parser state, start a new region definition.
1968 if (state.asmState)
1969 state.asmState->startRegionDefinition();
1970
1971 // Parse the region body.
1972 if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) &&
1973 parseRegionBody(region, lBraceTok.getLoc(), entryArguments,
1974 isIsolatedNameScope)) {
1975 return failure();
1976 }
1977 consumeToken(Token::r_brace);
1978
1979 // If we are populating the parser state, finalize this region.
1980 if (state.asmState)
1981 state.asmState->finalizeRegionDefinition();
1982
1983 return success();
1984 }
1985
parseRegionBody(Region & region,SMLoc startLoc,ArrayRef<Argument> entryArguments,bool isIsolatedNameScope)1986 ParseResult OperationParser::parseRegionBody(Region ®ion, SMLoc startLoc,
1987 ArrayRef<Argument> entryArguments,
1988 bool isIsolatedNameScope) {
1989 auto currentPt = opBuilder.saveInsertionPoint();
1990
1991 // Push a new named value scope.
1992 pushSSANameScope(isIsolatedNameScope);
1993
1994 // Parse the first block directly to allow for it to be unnamed.
1995 auto owningBlock = std::make_unique<Block>();
1996 Block *block = owningBlock.get();
1997
1998 // If this block is not defined in the source file, add a definition for it
1999 // now in the assembly state. Blocks with a name will be defined when the name
2000 // is parsed.
2001 if (state.asmState && getToken().isNot(Token::caret_identifier))
2002 state.asmState->addDefinition(block, startLoc);
2003
2004 // Add arguments to the entry block if we had the form with explicit names.
2005 if (!entryArguments.empty() && !entryArguments[0].ssaName.name.empty()) {
2006 // If we had named arguments, then don't allow a block name.
2007 if (getToken().is(Token::caret_identifier))
2008 return emitError("invalid block name in region with named arguments");
2009
2010 for (auto &entryArg : entryArguments) {
2011 auto &argInfo = entryArg.ssaName;
2012
2013 // Ensure that the argument was not already defined.
2014 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
2015 return emitError(argInfo.location, "region entry argument '" +
2016 argInfo.name +
2017 "' is already in use")
2018 .attachNote(getEncodedSourceLocation(*defLoc))
2019 << "previously referenced here";
2020 }
2021 Location loc = entryArg.sourceLoc.has_value()
2022 ? entryArg.sourceLoc.value()
2023 : getEncodedSourceLocation(argInfo.location);
2024 BlockArgument arg = block->addArgument(entryArg.type, loc);
2025
2026 // Add a definition of this arg to the assembly state if provided.
2027 if (state.asmState)
2028 state.asmState->addDefinition(arg, argInfo.location);
2029
2030 // Record the definition for this argument.
2031 if (addDefinition(argInfo, arg))
2032 return failure();
2033 }
2034 }
2035
2036 if (parseBlock(block))
2037 return failure();
2038
2039 // Verify that no other arguments were parsed.
2040 if (!entryArguments.empty() &&
2041 block->getNumArguments() > entryArguments.size()) {
2042 return emitError("entry block arguments were already defined");
2043 }
2044
2045 // Parse the rest of the region.
2046 region.push_back(owningBlock.release());
2047 while (getToken().isNot(Token::r_brace)) {
2048 Block *newBlock = nullptr;
2049 if (parseBlock(newBlock))
2050 return failure();
2051 region.push_back(newBlock);
2052 }
2053
2054 // Pop the SSA value scope for this region.
2055 if (popSSANameScope())
2056 return failure();
2057
2058 // Reset the original insertion point.
2059 opBuilder.restoreInsertionPoint(currentPt);
2060 return success();
2061 }
2062
2063 //===----------------------------------------------------------------------===//
2064 // Block Parsing
2065 //===----------------------------------------------------------------------===//
2066
2067 /// Block declaration.
2068 ///
2069 /// block ::= block-label? operation*
2070 /// block-label ::= block-id block-arg-list? `:`
2071 /// block-id ::= caret-id
2072 /// block-arg-list ::= `(` ssa-id-and-type-list? `)`
2073 ///
parseBlock(Block * & block)2074 ParseResult OperationParser::parseBlock(Block *&block) {
2075 // The first block of a region may already exist, if it does the caret
2076 // identifier is optional.
2077 if (block && getToken().isNot(Token::caret_identifier))
2078 return parseBlockBody(block);
2079
2080 SMLoc nameLoc = getToken().getLoc();
2081 auto name = getTokenSpelling();
2082 if (parseToken(Token::caret_identifier, "expected block name"))
2083 return failure();
2084
2085 // Define the block with the specified name.
2086 auto &blockAndLoc = getBlockInfoByName(name);
2087 blockAndLoc.loc = nameLoc;
2088
2089 // Use a unique pointer for in-flight block being parsed. Release ownership
2090 // only in the case of a successful parse. This ensures that the Block
2091 // allocated is released if the parse fails and control returns early.
2092 std::unique_ptr<Block> inflightBlock;
2093 auto cleanupOnFailure = llvm::make_scope_exit([&] {
2094 if (inflightBlock)
2095 inflightBlock->dropAllDefinedValueUses();
2096 });
2097
2098 // If a block has yet to be set, this is a new definition. If the caller
2099 // provided a block, use it. Otherwise create a new one.
2100 if (!blockAndLoc.block) {
2101 if (block) {
2102 blockAndLoc.block = block;
2103 } else {
2104 inflightBlock = std::make_unique<Block>();
2105 blockAndLoc.block = inflightBlock.get();
2106 }
2107
2108 // Otherwise, the block has a forward declaration. Forward declarations are
2109 // removed once defined, so if we are defining a existing block and it is
2110 // not a forward declaration, then it is a redeclaration. Fail if the block
2111 // was already defined.
2112 } else if (!eraseForwardRef(blockAndLoc.block)) {
2113 return emitError(nameLoc, "redefinition of block '") << name << "'";
2114 } else {
2115 // This was a forward reference block that is now floating. Keep track of it
2116 // as inflight in case of error, so that it gets cleaned up properly.
2117 inflightBlock.reset(blockAndLoc.block);
2118 }
2119
2120 // Populate the high level assembly state if necessary.
2121 if (state.asmState)
2122 state.asmState->addDefinition(blockAndLoc.block, nameLoc);
2123 block = blockAndLoc.block;
2124
2125 // If an argument list is present, parse it.
2126 if (getToken().is(Token::l_paren))
2127 if (parseOptionalBlockArgList(block))
2128 return failure();
2129 if (parseToken(Token::colon, "expected ':' after block name"))
2130 return failure();
2131
2132 // Parse the body of the block.
2133 ParseResult res = parseBlockBody(block);
2134
2135 // If parsing was successful, drop the inflight block. We relinquish ownership
2136 // back up to the caller.
2137 if (succeeded(res))
2138 (void)inflightBlock.release();
2139 return res;
2140 }
2141
parseBlockBody(Block * block)2142 ParseResult OperationParser::parseBlockBody(Block *block) {
2143 // Set the insertion point to the end of the block to parse.
2144 opBuilder.setInsertionPointToEnd(block);
2145
2146 // Parse the list of operations that make up the body of the block.
2147 while (getToken().isNot(Token::caret_identifier, Token::r_brace))
2148 if (parseOperation())
2149 return failure();
2150
2151 return success();
2152 }
2153
2154 /// Get the block with the specified name, creating it if it doesn't already
2155 /// exist. The location specified is the point of use, which allows
2156 /// us to diagnose references to blocks that are not defined precisely.
getBlockNamed(StringRef name,SMLoc loc)2157 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
2158 BlockDefinition &blockDef = getBlockInfoByName(name);
2159 if (!blockDef.block) {
2160 blockDef = {new Block(), loc};
2161 insertForwardRef(blockDef.block, blockDef.loc);
2162 }
2163
2164 // Populate the high level assembly state if necessary.
2165 if (state.asmState)
2166 state.asmState->addUses(blockDef.block, loc);
2167
2168 return blockDef.block;
2169 }
2170
2171 /// Parse a (possibly empty) list of SSA operands with types as block arguments
2172 /// enclosed in parentheses.
2173 ///
2174 /// value-id-and-type-list ::= value-id-and-type (`,` ssa-id-and-type)*
2175 /// block-arg-list ::= `(` value-id-and-type-list? `)`
2176 ///
parseOptionalBlockArgList(Block * owner)2177 ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) {
2178 if (getToken().is(Token::r_brace))
2179 return success();
2180
2181 // If the block already has arguments, then we're handling the entry block.
2182 // Parse and register the names for the arguments, but do not add them.
2183 bool definingExistingArgs = owner->getNumArguments() != 0;
2184 unsigned nextArgument = 0;
2185
2186 return parseCommaSeparatedList(Delimiter::Paren, [&]() -> ParseResult {
2187 return parseSSADefOrUseAndType(
2188 [&](UnresolvedOperand useInfo, Type type) -> ParseResult {
2189 BlockArgument arg;
2190
2191 // If we are defining existing arguments, ensure that the argument
2192 // has already been created with the right type.
2193 if (definingExistingArgs) {
2194 // Otherwise, ensure that this argument has already been created.
2195 if (nextArgument >= owner->getNumArguments())
2196 return emitError("too many arguments specified in argument list");
2197
2198 // Finally, make sure the existing argument has the correct type.
2199 arg = owner->getArgument(nextArgument++);
2200 if (arg.getType() != type)
2201 return emitError("argument and block argument type mismatch");
2202 } else {
2203 auto loc = getEncodedSourceLocation(useInfo.location);
2204 arg = owner->addArgument(type, loc);
2205 }
2206
2207 // If the argument has an explicit loc(...) specifier, parse and apply
2208 // it.
2209 if (parseTrailingLocationSpecifier(arg))
2210 return failure();
2211
2212 // Mark this block argument definition in the parser state if it was
2213 // provided.
2214 if (state.asmState)
2215 state.asmState->addDefinition(arg, useInfo.location);
2216
2217 return addDefinition(useInfo, arg);
2218 });
2219 });
2220 }
2221
2222 //===----------------------------------------------------------------------===//
2223 // Code Completion
2224 //===----------------------------------------------------------------------===//
2225
codeCompleteSSAUse()2226 ParseResult OperationParser::codeCompleteSSAUse() {
2227 std::string detailData;
2228 llvm::raw_string_ostream detailOS(detailData);
2229 for (IsolatedSSANameScope &scope : isolatedNameScopes) {
2230 for (auto &it : scope.values) {
2231 if (it.second.empty())
2232 continue;
2233 Value frontValue = it.second.front().value;
2234
2235 // If the value isn't a forward reference, we also add the name of the op
2236 // to the detail.
2237 if (auto result = frontValue.dyn_cast<OpResult>()) {
2238 if (!forwardRefPlaceholders.count(result))
2239 detailOS << result.getOwner()->getName() << ": ";
2240 } else {
2241 detailOS << "arg #" << frontValue.cast<BlockArgument>().getArgNumber()
2242 << ": ";
2243 }
2244
2245 // Emit the type of the values to aid with completion selection.
2246 detailOS << frontValue.getType();
2247
2248 // FIXME: We should define a policy for packed values, e.g. with a limit
2249 // on the detail size, but it isn't clear what would be useful right now.
2250 // For now we just only emit the first type.
2251 if (it.second.size() > 1)
2252 detailOS << ", ...";
2253
2254 state.codeCompleteContext->appendSSAValueCompletion(
2255 it.getKey(), std::move(detailOS.str()));
2256 }
2257 }
2258
2259 return failure();
2260 }
2261
codeCompleteBlock()2262 ParseResult OperationParser::codeCompleteBlock() {
2263 // Don't provide completions if the token isn't empty, e.g. this avoids
2264 // weirdness when we encounter a `.` within the identifier.
2265 StringRef spelling = getTokenSpelling();
2266 if (!(spelling.empty() || spelling == "^"))
2267 return failure();
2268
2269 for (const auto &it : blocksByName.back())
2270 state.codeCompleteContext->appendBlockCompletion(it.getFirst());
2271 return failure();
2272 }
2273
2274 //===----------------------------------------------------------------------===//
2275 // Top-level entity parsing.
2276 //===----------------------------------------------------------------------===//
2277
2278 namespace {
2279 /// This parser handles entities that are only valid at the top level of the
2280 /// file.
2281 class TopLevelOperationParser : public Parser {
2282 public:
TopLevelOperationParser(ParserState & state)2283 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {}
2284
2285 /// Parse a set of operations into the end of the given Block.
2286 ParseResult parse(Block *topLevelBlock, Location parserLoc);
2287
2288 private:
2289 /// Parse an attribute alias declaration.
2290 ///
2291 /// attribute-alias-def ::= '#' alias-name `=` attribute-value
2292 ///
2293 ParseResult parseAttributeAliasDef();
2294
2295 /// Parse a type alias declaration.
2296 ///
2297 /// type-alias-def ::= '!' alias-name `=` type
2298 ///
2299 ParseResult parseTypeAliasDef();
2300
2301 /// Parse a top-level file metadata dictionary.
2302 ///
2303 /// file-metadata-dict ::= '{-#' file-metadata-entry* `#-}'
2304 ///
2305 ParseResult parseFileMetadataDictionary();
2306
2307 /// Parse a resource metadata dictionary.
2308 ParseResult parseResourceFileMetadata(
2309 function_ref<ParseResult(StringRef, SMLoc)> parseBody);
2310 ParseResult parseDialectResourceFileMetadata();
2311 ParseResult parseExternalResourceFileMetadata();
2312 };
2313
2314 /// This class represents an implementation of a resource entry for the MLIR
2315 /// textual format.
2316 class ParsedResourceEntry : public AsmParsedResourceEntry {
2317 public:
ParsedResourceEntry(StringRef key,SMLoc keyLoc,Token value,Parser & p)2318 ParsedResourceEntry(StringRef key, SMLoc keyLoc, Token value, Parser &p)
2319 : key(key), keyLoc(keyLoc), value(value), p(p) {}
2320 ~ParsedResourceEntry() override = default;
2321
getKey() const2322 StringRef getKey() const final { return key; }
2323
emitError() const2324 InFlightDiagnostic emitError() const final { return p.emitError(keyLoc); }
2325
parseAsBool() const2326 FailureOr<bool> parseAsBool() const final {
2327 if (value.is(Token::kw_true))
2328 return true;
2329 if (value.is(Token::kw_false))
2330 return false;
2331 return p.emitError(value.getLoc(),
2332 "expected 'true' or 'false' value for key '" + key +
2333 "'");
2334 }
2335
parseAsString() const2336 FailureOr<std::string> parseAsString() const final {
2337 if (value.isNot(Token::string))
2338 return p.emitError(value.getLoc(),
2339 "expected string value for key '" + key + "'");
2340 return value.getStringValue();
2341 }
2342
2343 FailureOr<AsmResourceBlob>
parseAsBlob(BlobAllocatorFn allocator) const2344 parseAsBlob(BlobAllocatorFn allocator) const final {
2345 // Blob data within then textual format is represented as a hex string.
2346 // TODO: We could avoid an additional alloc+copy here if we pre-allocated
2347 // the buffer to use during hex processing.
2348 Optional<std::string> blobData =
2349 value.is(Token::string) ? value.getHexStringValue() : llvm::None;
2350 if (!blobData)
2351 return p.emitError(value.getLoc(),
2352 "expected hex string blob for key '" + key + "'");
2353
2354 // Extract the alignment of the blob data, which gets stored at the
2355 // beginning of the string.
2356 if (blobData->size() < sizeof(uint32_t)) {
2357 return p.emitError(value.getLoc(),
2358 "expected hex string blob for key '" + key +
2359 "' to encode alignment in first 4 bytes");
2360 }
2361 llvm::support::ulittle32_t align;
2362 memcpy(&align, blobData->data(), sizeof(uint32_t));
2363
2364 // Get the data portion of the blob.
2365 StringRef data = StringRef(*blobData).drop_front(sizeof(uint32_t));
2366 if (data.empty())
2367 return AsmResourceBlob();
2368
2369 // Allocate memory for the blob using the provided allocator and copy the
2370 // data into it.
2371 AsmResourceBlob blob = allocator(data.size(), align);
2372 assert(llvm::isAddrAligned(llvm::Align(align), blob.getData().data()) &&
2373 blob.isMutable() &&
2374 "blob allocator did not return a properly aligned address");
2375 memcpy(blob.getMutableData().data(), data.data(), data.size());
2376 return blob;
2377 }
2378
2379 private:
2380 StringRef key;
2381 SMLoc keyLoc;
2382 Token value;
2383 Parser &p;
2384 };
2385 } // namespace
2386
parseAttributeAliasDef()2387 ParseResult TopLevelOperationParser::parseAttributeAliasDef() {
2388 assert(getToken().is(Token::hash_identifier));
2389 StringRef aliasName = getTokenSpelling().drop_front();
2390
2391 // Check for redefinitions.
2392 if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0)
2393 return emitError("redefinition of attribute alias id '" + aliasName + "'");
2394
2395 // Make sure this isn't invading the dialect attribute namespace.
2396 if (aliasName.contains('.'))
2397 return emitError("attribute names with a '.' are reserved for "
2398 "dialect-defined names");
2399
2400 consumeToken(Token::hash_identifier);
2401
2402 // Parse the '='.
2403 if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
2404 return failure();
2405
2406 // Parse the attribute value.
2407 Attribute attr = parseAttribute();
2408 if (!attr)
2409 return failure();
2410
2411 state.symbols.attributeAliasDefinitions[aliasName] = attr;
2412 return success();
2413 }
2414
parseTypeAliasDef()2415 ParseResult TopLevelOperationParser::parseTypeAliasDef() {
2416 assert(getToken().is(Token::exclamation_identifier));
2417 StringRef aliasName = getTokenSpelling().drop_front();
2418
2419 // Check for redefinitions.
2420 if (state.symbols.typeAliasDefinitions.count(aliasName) > 0)
2421 return emitError("redefinition of type alias id '" + aliasName + "'");
2422
2423 // Make sure this isn't invading the dialect type namespace.
2424 if (aliasName.contains('.'))
2425 return emitError("type names with a '.' are reserved for "
2426 "dialect-defined names");
2427 consumeToken(Token::exclamation_identifier);
2428
2429 // Parse the '='.
2430 if (parseToken(Token::equal, "expected '=' in type alias definition"))
2431 return failure();
2432
2433 // Parse the type.
2434 Type aliasedType = parseType();
2435 if (!aliasedType)
2436 return failure();
2437
2438 // Register this alias with the parser state.
2439 state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
2440 return success();
2441 }
2442
parseFileMetadataDictionary()2443 ParseResult TopLevelOperationParser::parseFileMetadataDictionary() {
2444 consumeToken(Token::file_metadata_begin);
2445 return parseCommaSeparatedListUntil(
2446 Token::file_metadata_end, [&]() -> ParseResult {
2447 // Parse the key of the metadata dictionary.
2448 SMLoc keyLoc = getToken().getLoc();
2449 StringRef key;
2450 if (failed(parseOptionalKeyword(&key)))
2451 return emitError("expected identifier key in file "
2452 "metadata dictionary");
2453 if (parseToken(Token::colon, "expected ':'"))
2454 return failure();
2455
2456 // Process the metadata entry.
2457 if (key == "dialect_resources")
2458 return parseDialectResourceFileMetadata();
2459 if (key == "external_resources")
2460 return parseExternalResourceFileMetadata();
2461 return emitError(keyLoc, "unknown key '" + key +
2462 "' in file metadata dictionary");
2463 });
2464 }
2465
parseResourceFileMetadata(function_ref<ParseResult (StringRef,SMLoc)> parseBody)2466 ParseResult TopLevelOperationParser::parseResourceFileMetadata(
2467 function_ref<ParseResult(StringRef, SMLoc)> parseBody) {
2468 if (parseToken(Token::l_brace, "expected '{'"))
2469 return failure();
2470
2471 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult {
2472 // Parse the top-level name entry.
2473 SMLoc nameLoc = getToken().getLoc();
2474 StringRef name;
2475 if (failed(parseOptionalKeyword(&name)))
2476 return emitError("expected identifier key for 'resource' entry");
2477
2478 if (parseToken(Token::colon, "expected ':'") ||
2479 parseToken(Token::l_brace, "expected '{'"))
2480 return failure();
2481 return parseBody(name, nameLoc);
2482 });
2483 }
2484
parseDialectResourceFileMetadata()2485 ParseResult TopLevelOperationParser::parseDialectResourceFileMetadata() {
2486 return parseResourceFileMetadata([&](StringRef name,
2487 SMLoc nameLoc) -> ParseResult {
2488 // Lookup the dialect and check that it can handle a resource entry.
2489 Dialect *dialect = getContext()->getOrLoadDialect(name);
2490 if (!dialect)
2491 return emitError(nameLoc, "dialect '" + name + "' is unknown");
2492 const auto *handler = dyn_cast<OpAsmDialectInterface>(dialect);
2493 if (!handler) {
2494 return emitError() << "unexpected 'resource' section for dialect '"
2495 << dialect->getNamespace() << "'";
2496 }
2497
2498 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult {
2499 // Parse the name of the resource entry.
2500 SMLoc keyLoc = getToken().getLoc();
2501 StringRef key;
2502 if (failed(parseResourceHandle(handler, key)) ||
2503 parseToken(Token::colon, "expected ':'"))
2504 return failure();
2505 Token valueTok = getToken();
2506 consumeToken();
2507
2508 ParsedResourceEntry entry(key, keyLoc, valueTok, *this);
2509 return handler->parseResource(entry);
2510 });
2511 });
2512 }
2513
parseExternalResourceFileMetadata()2514 ParseResult TopLevelOperationParser::parseExternalResourceFileMetadata() {
2515 return parseResourceFileMetadata([&](StringRef name,
2516 SMLoc nameLoc) -> ParseResult {
2517 AsmResourceParser *handler = state.config.getResourceParser(name);
2518
2519 // TODO: Should we require handling external resources in some scenarios?
2520 if (!handler) {
2521 emitWarning(getEncodedSourceLocation(nameLoc))
2522 << "ignoring unknown external resources for '" << name << "'";
2523 }
2524
2525 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult {
2526 // Parse the name of the resource entry.
2527 SMLoc keyLoc = getToken().getLoc();
2528 StringRef key;
2529 if (failed(parseOptionalKeyword(&key)))
2530 return emitError(
2531 "expected identifier key for 'external_resources' entry");
2532 if (parseToken(Token::colon, "expected ':'"))
2533 return failure();
2534 Token valueTok = getToken();
2535 consumeToken();
2536
2537 if (!handler)
2538 return success();
2539 ParsedResourceEntry entry(key, keyLoc, valueTok, *this);
2540 return handler->parseResource(entry);
2541 });
2542 });
2543 }
2544
parse(Block * topLevelBlock,Location parserLoc)2545 ParseResult TopLevelOperationParser::parse(Block *topLevelBlock,
2546 Location parserLoc) {
2547 // Create a top-level operation to contain the parsed state.
2548 OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc));
2549 OperationParser opParser(state, topLevelOp.get());
2550 while (true) {
2551 switch (getToken().getKind()) {
2552 default:
2553 // Parse a top-level operation.
2554 if (opParser.parseOperation())
2555 return failure();
2556 break;
2557
2558 // If we got to the end of the file, then we're done.
2559 case Token::eof: {
2560 if (opParser.finalize())
2561 return failure();
2562
2563 // Splice the blocks of the parsed operation over to the provided
2564 // top-level block.
2565 auto &parsedOps = topLevelOp->getBody()->getOperations();
2566 auto &destOps = topLevelBlock->getOperations();
2567 destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()),
2568 parsedOps, parsedOps.begin(), parsedOps.end());
2569 return success();
2570 }
2571
2572 // If we got an error token, then the lexer already emitted an error, just
2573 // stop. Someday we could introduce error recovery if there was demand
2574 // for it.
2575 case Token::error:
2576 return failure();
2577
2578 // Parse an attribute alias.
2579 case Token::hash_identifier:
2580 if (parseAttributeAliasDef())
2581 return failure();
2582 break;
2583
2584 // Parse a type alias.
2585 case Token::exclamation_identifier:
2586 if (parseTypeAliasDef())
2587 return failure();
2588 break;
2589
2590 // Parse a file-level metadata dictionary.
2591 case Token::file_metadata_begin:
2592 if (parseFileMetadataDictionary())
2593 return failure();
2594 break;
2595 }
2596 }
2597 }
2598
2599 //===----------------------------------------------------------------------===//
2600
2601 LogicalResult
parseAsmSourceFile(const llvm::SourceMgr & sourceMgr,Block * block,const ParserConfig & config,AsmParserState * asmState,AsmParserCodeCompleteContext * codeCompleteContext)2602 mlir::parseAsmSourceFile(const llvm::SourceMgr &sourceMgr, Block *block,
2603 const ParserConfig &config, AsmParserState *asmState,
2604 AsmParserCodeCompleteContext *codeCompleteContext) {
2605 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
2606
2607 Location parserLoc =
2608 FileLineColLoc::get(config.getContext(), sourceBuf->getBufferIdentifier(),
2609 /*line=*/0, /*column=*/0);
2610
2611 SymbolState aliasState;
2612 ParserState state(sourceMgr, config, aliasState, asmState,
2613 codeCompleteContext);
2614 return TopLevelOperationParser(state).parse(block, parserLoc);
2615 }
2616