1 //===- UseDefAnalysis.cpp - Analysis for Transitive UseDef chains ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements Analysis functions specific to slicing in Function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "mlir/Analysis/SliceAnalysis.h"
14 #include "mlir/IR/BuiltinOps.h"
15 #include "mlir/IR/Operation.h"
16 #include "mlir/Support/LLVM.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19
20 ///
21 /// Implements Analysis functions specific to slicing in Function.
22 ///
23
24 using namespace mlir;
25
getForwardSliceImpl(Operation * op,SetVector<Operation * > * forwardSlice,TransitiveFilter filter)26 static void getForwardSliceImpl(Operation *op,
27 SetVector<Operation *> *forwardSlice,
28 TransitiveFilter filter) {
29 if (!op)
30 return;
31
32 // Evaluate whether we should keep this use.
33 // This is useful in particular to implement scoping; i.e. return the
34 // transitive forwardSlice in the current scope.
35 if (filter && !filter(op))
36 return;
37
38 for (Region ®ion : op->getRegions())
39 for (Block &block : region)
40 for (Operation &blockOp : block)
41 if (forwardSlice->count(&blockOp) == 0)
42 getForwardSliceImpl(&blockOp, forwardSlice, filter);
43 for (Value result : op->getResults()) {
44 for (Operation *userOp : result.getUsers())
45 if (forwardSlice->count(userOp) == 0)
46 getForwardSliceImpl(userOp, forwardSlice, filter);
47 }
48
49 forwardSlice->insert(op);
50 }
51
getForwardSlice(Operation * op,SetVector<Operation * > * forwardSlice,TransitiveFilter filter)52 void mlir::getForwardSlice(Operation *op, SetVector<Operation *> *forwardSlice,
53 TransitiveFilter filter) {
54 getForwardSliceImpl(op, forwardSlice, filter);
55 // Don't insert the top level operation, we just queried on it and don't
56 // want it in the results.
57 forwardSlice->remove(op);
58
59 // Reverse to get back the actual topological order.
60 // std::reverse does not work out of the box on SetVector and I want an
61 // in-place swap based thing (the real std::reverse, not the LLVM adapter).
62 std::vector<Operation *> v(forwardSlice->takeVector());
63 forwardSlice->insert(v.rbegin(), v.rend());
64 }
65
getForwardSlice(Value root,SetVector<Operation * > * forwardSlice,TransitiveFilter filter)66 void mlir::getForwardSlice(Value root, SetVector<Operation *> *forwardSlice,
67 TransitiveFilter filter) {
68 for (Operation *user : root.getUsers())
69 getForwardSliceImpl(user, forwardSlice, filter);
70
71 // Reverse to get back the actual topological order.
72 // std::reverse does not work out of the box on SetVector and I want an
73 // in-place swap based thing (the real std::reverse, not the LLVM adapter).
74 std::vector<Operation *> v(forwardSlice->takeVector());
75 forwardSlice->insert(v.rbegin(), v.rend());
76 }
77
getBackwardSliceImpl(Operation * op,SetVector<Operation * > * backwardSlice,TransitiveFilter filter)78 static void getBackwardSliceImpl(Operation *op,
79 SetVector<Operation *> *backwardSlice,
80 TransitiveFilter filter) {
81 if (!op || op->hasTrait<OpTrait::IsIsolatedFromAbove>())
82 return;
83
84 // Evaluate whether we should keep this def.
85 // This is useful in particular to implement scoping; i.e. return the
86 // transitive backwardSlice in the current scope.
87 if (filter && !filter(op))
88 return;
89
90 for (const auto &en : llvm::enumerate(op->getOperands())) {
91 auto operand = en.value();
92 if (auto *definingOp = operand.getDefiningOp()) {
93 if (backwardSlice->count(definingOp) == 0)
94 getBackwardSliceImpl(definingOp, backwardSlice, filter);
95 } else if (auto blockArg = operand.dyn_cast<BlockArgument>()) {
96 Block *block = blockArg.getOwner();
97 Operation *parentOp = block->getParentOp();
98 // TODO: determine whether we want to recurse backward into the other
99 // blocks of parentOp, which are not technically backward unless they flow
100 // into us. For now, just bail.
101 assert(parentOp->getNumRegions() == 1 &&
102 parentOp->getRegion(0).getBlocks().size() == 1);
103 if (backwardSlice->count(parentOp) == 0)
104 getBackwardSliceImpl(parentOp, backwardSlice, filter);
105 } else {
106 llvm_unreachable("No definingOp and not a block argument.");
107 }
108 }
109
110 backwardSlice->insert(op);
111 }
112
getBackwardSlice(Operation * op,SetVector<Operation * > * backwardSlice,TransitiveFilter filter)113 void mlir::getBackwardSlice(Operation *op,
114 SetVector<Operation *> *backwardSlice,
115 TransitiveFilter filter) {
116 getBackwardSliceImpl(op, backwardSlice, filter);
117
118 // Don't insert the top level operation, we just queried on it and don't
119 // want it in the results.
120 backwardSlice->remove(op);
121 }
122
getBackwardSlice(Value root,SetVector<Operation * > * backwardSlice,TransitiveFilter filter)123 void mlir::getBackwardSlice(Value root, SetVector<Operation *> *backwardSlice,
124 TransitiveFilter filter) {
125 if (Operation *definingOp = root.getDefiningOp()) {
126 getBackwardSlice(definingOp, backwardSlice, filter);
127 return;
128 }
129 Operation *bbAargOwner = root.cast<BlockArgument>().getOwner()->getParentOp();
130 getBackwardSlice(bbAargOwner, backwardSlice, filter);
131 }
132
getSlice(Operation * op,TransitiveFilter backwardFilter,TransitiveFilter forwardFilter)133 SetVector<Operation *> mlir::getSlice(Operation *op,
134 TransitiveFilter backwardFilter,
135 TransitiveFilter forwardFilter) {
136 SetVector<Operation *> slice;
137 slice.insert(op);
138
139 unsigned currentIndex = 0;
140 SetVector<Operation *> backwardSlice;
141 SetVector<Operation *> forwardSlice;
142 while (currentIndex != slice.size()) {
143 auto *currentOp = (slice)[currentIndex];
144 // Compute and insert the backwardSlice starting from currentOp.
145 backwardSlice.clear();
146 getBackwardSlice(currentOp, &backwardSlice, backwardFilter);
147 slice.insert(backwardSlice.begin(), backwardSlice.end());
148
149 // Compute and insert the forwardSlice starting from currentOp.
150 forwardSlice.clear();
151 getForwardSlice(currentOp, &forwardSlice, forwardFilter);
152 slice.insert(forwardSlice.begin(), forwardSlice.end());
153 ++currentIndex;
154 }
155 return topologicalSort(slice);
156 }
157
158 namespace {
159 /// DFS post-order implementation that maintains a global count to work across
160 /// multiple invocations, to help implement topological sort on multi-root DAGs.
161 /// We traverse all operations but only record the ones that appear in
162 /// `toSort` for the final result.
163 struct DFSState {
DFSState__anonfb076aa00111::DFSState164 DFSState(const SetVector<Operation *> &set)
165 : toSort(set), topologicalCounts(), seen() {}
166 const SetVector<Operation *> &toSort;
167 SmallVector<Operation *, 16> topologicalCounts;
168 DenseSet<Operation *> seen;
169 };
170 } // namespace
171
dfsPostorder(Operation * root,DFSState * state)172 static void dfsPostorder(Operation *root, DFSState *state) {
173 SmallVector<Operation *> queue(1, root);
174 std::vector<Operation *> ops;
175 while (!queue.empty()) {
176 Operation *current = queue.pop_back_val();
177 ops.push_back(current);
178 for (Value result : current->getResults()) {
179 for (Operation *op : result.getUsers())
180 queue.push_back(op);
181 }
182 for (Region ®ion : current->getRegions()) {
183 for (Operation &op : region.getOps())
184 queue.push_back(&op);
185 }
186 }
187
188 for (Operation *op : llvm::reverse(ops)) {
189 if (state->seen.insert(op).second && state->toSort.count(op) > 0)
190 state->topologicalCounts.push_back(op);
191 }
192 }
193
194 SetVector<Operation *>
topologicalSort(const SetVector<Operation * > & toSort)195 mlir::topologicalSort(const SetVector<Operation *> &toSort) {
196 if (toSort.empty()) {
197 return toSort;
198 }
199
200 // Run from each root with global count and `seen` set.
201 DFSState state(toSort);
202 for (auto *s : toSort) {
203 assert(toSort.count(s) == 1 && "NYI: multi-sets not supported");
204 dfsPostorder(s, &state);
205 }
206
207 // Reorder and return.
208 SetVector<Operation *> res;
209 for (auto it = state.topologicalCounts.rbegin(),
210 eit = state.topologicalCounts.rend();
211 it != eit; ++it) {
212 res.insert(*it);
213 }
214 return res;
215 }
216
217 /// Returns true if `value` (transitively) depends on iteration-carried values
218 /// of the given `ancestorOp`.
dependsOnCarriedVals(Value value,ArrayRef<BlockArgument> iterCarriedArgs,Operation * ancestorOp)219 static bool dependsOnCarriedVals(Value value,
220 ArrayRef<BlockArgument> iterCarriedArgs,
221 Operation *ancestorOp) {
222 // Compute the backward slice of the value.
223 SetVector<Operation *> slice;
224 getBackwardSlice(value, &slice,
225 [&](Operation *op) { return !ancestorOp->isAncestor(op); });
226
227 // Check that none of the operands of the operations in the backward slice are
228 // loop iteration arguments, and neither is the value itself.
229 SmallPtrSet<Value, 8> iterCarriedValSet(iterCarriedArgs.begin(),
230 iterCarriedArgs.end());
231 if (iterCarriedValSet.contains(value))
232 return true;
233
234 for (Operation *op : slice)
235 for (Value operand : op->getOperands())
236 if (iterCarriedValSet.contains(operand))
237 return true;
238
239 return false;
240 }
241
242 /// Utility to match a generic reduction given a list of iteration-carried
243 /// arguments, `iterCarriedArgs` and the position of the potential reduction
244 /// argument within the list, `redPos`. If a reduction is matched, returns the
245 /// reduced value and the topologically-sorted list of combiner operations
246 /// involved in the reduction. Otherwise, returns a null value.
247 ///
248 /// The matching algorithm relies on the following invariants, which are subject
249 /// to change:
250 /// 1. The first combiner operation must be a binary operation with the
251 /// iteration-carried value and the reduced value as operands.
252 /// 2. The iteration-carried value and combiner operations must be side
253 /// effect-free, have single result and a single use.
254 /// 3. Combiner operations must be immediately nested in the region op
255 /// performing the reduction.
256 /// 4. Reduction def-use chain must end in a terminator op that yields the
257 /// next iteration/output values in the same order as the iteration-carried
258 /// values in `iterCarriedArgs`.
259 /// 5. `iterCarriedArgs` must contain all the iteration-carried/output values
260 /// of the region op performing the reduction.
261 ///
262 /// This utility is generic enough to detect reductions involving multiple
263 /// combiner operations (disabled for now) across multiple dialects, including
264 /// Linalg, Affine and SCF. For the sake of genericity, it does not return
265 /// specific enum values for the combiner operations since its goal is also
266 /// matching reductions without pre-defined semantics in core MLIR. It's up to
267 /// each client to make sense out of the list of combiner operations. It's also
268 /// up to each client to check for additional invariants on the expected
269 /// reductions not covered by this generic matching.
matchReduction(ArrayRef<BlockArgument> iterCarriedArgs,unsigned redPos,SmallVectorImpl<Operation * > & combinerOps)270 Value mlir::matchReduction(ArrayRef<BlockArgument> iterCarriedArgs,
271 unsigned redPos,
272 SmallVectorImpl<Operation *> &combinerOps) {
273 assert(redPos < iterCarriedArgs.size() && "'redPos' is out of bounds");
274
275 BlockArgument redCarriedVal = iterCarriedArgs[redPos];
276 if (!redCarriedVal.hasOneUse())
277 return nullptr;
278
279 // For now, the first combiner op must be a binary op.
280 Operation *combinerOp = *redCarriedVal.getUsers().begin();
281 if (combinerOp->getNumOperands() != 2)
282 return nullptr;
283 Value reducedVal = combinerOp->getOperand(0) == redCarriedVal
284 ? combinerOp->getOperand(1)
285 : combinerOp->getOperand(0);
286
287 Operation *redRegionOp =
288 iterCarriedArgs.front().getOwner()->getParent()->getParentOp();
289 if (dependsOnCarriedVals(reducedVal, iterCarriedArgs, redRegionOp))
290 return nullptr;
291
292 // Traverse the def-use chain starting from the first combiner op until a
293 // terminator is found. Gather all the combiner ops along the way in
294 // topological order.
295 while (!combinerOp->mightHaveTrait<OpTrait::IsTerminator>()) {
296 if (!MemoryEffectOpInterface::hasNoEffect(combinerOp) ||
297 combinerOp->getNumResults() != 1 || !combinerOp->hasOneUse() ||
298 combinerOp->getParentOp() != redRegionOp)
299 return nullptr;
300
301 combinerOps.push_back(combinerOp);
302 combinerOp = *combinerOp->getUsers().begin();
303 }
304
305 // Limit matching to single combiner op until we can properly test reductions
306 // involving multiple combiners.
307 if (combinerOps.size() != 1)
308 return nullptr;
309
310 // Check that the yielded value is in the same position as in
311 // `iterCarriedArgs`.
312 Operation *terminatorOp = combinerOp;
313 if (terminatorOp->getOperand(redPos) != combinerOps.back()->getResults()[0])
314 return nullptr;
315
316 return reducedVal;
317 }
318