1 //===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/Analysis/Presburger/LinearTransform.h"
10 #include "mlir/Analysis/Presburger/IntegerRelation.h"
11
12 using namespace mlir;
13 using namespace presburger;
14
LinearTransform(Matrix && oMatrix)15 LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {}
LinearTransform(const Matrix & oMatrix)16 LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {}
17
18 // Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
19 // by subtracting from column targetCol an appropriate integer multiple of
20 // sourceCol. This brings M(row, targetCol) to the range [0, M(row, sourceCol)).
21 // Apply the same column operation to otherMatrix, with the same integer
22 // multiple.
modEntryColumnOperation(Matrix & m,unsigned row,unsigned sourceCol,unsigned targetCol,Matrix & otherMatrix)23 static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
24 unsigned targetCol, Matrix &otherMatrix) {
25 assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
26 assert((m(row, sourceCol) > 0 && m(row, targetCol) > 0) &&
27 "Operands must be positive!");
28 int64_t ratio = m(row, targetCol) / m(row, sourceCol);
29 m.addToColumn(sourceCol, targetCol, -ratio);
30 otherMatrix.addToColumn(sourceCol, targetCol, -ratio);
31 }
32
33 std::pair<unsigned, LinearTransform>
makeTransformToColumnEchelon(Matrix m)34 LinearTransform::makeTransformToColumnEchelon(Matrix m) {
35 // We start with an identity result matrix and perform operations on m
36 // until m is in column echelon form. We apply the same sequence of operations
37 // on resultMatrix to obtain a transform that takes m to column echelon
38 // form.
39 Matrix resultMatrix = Matrix::identity(m.getNumColumns());
40
41 unsigned echelonCol = 0;
42 // Invariant: in all rows above row, all columns from echelonCol onwards
43 // are all zero elements. In an iteration, if the curent row has any non-zero
44 // elements echelonCol onwards, we bring one to echelonCol and use it to
45 // make all elements echelonCol + 1 onwards zero.
46 for (unsigned row = 0; row < m.getNumRows(); ++row) {
47 // Search row for a non-empty entry, starting at echelonCol.
48 unsigned nonZeroCol = echelonCol;
49 for (unsigned e = m.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
50 if (m(row, nonZeroCol) == 0)
51 continue;
52 break;
53 }
54
55 // Continue to the next row with the same echelonCol if this row is all
56 // zeros from echelonCol onwards.
57 if (nonZeroCol == m.getNumColumns())
58 continue;
59
60 // Bring the non-zero column to echelonCol. This doesn't affect rows
61 // above since they are all zero at these columns.
62 if (nonZeroCol != echelonCol) {
63 m.swapColumns(nonZeroCol, echelonCol);
64 resultMatrix.swapColumns(nonZeroCol, echelonCol);
65 }
66
67 // Make m(row, echelonCol) non-negative.
68 if (m(row, echelonCol) < 0) {
69 m.negateColumn(echelonCol);
70 resultMatrix.negateColumn(echelonCol);
71 }
72
73 // Make all the entries in row after echelonCol zero.
74 for (unsigned i = echelonCol + 1, e = m.getNumColumns(); i < e; ++i) {
75 // We make m(row, i) non-negative, and then apply the Euclidean GCD
76 // algorithm to (row, i) and (row, echelonCol). At the end, one of them
77 // has value equal to the gcd of the two entries, and the other is zero.
78
79 if (m(row, i) < 0) {
80 m.negateColumn(i);
81 resultMatrix.negateColumn(i);
82 }
83
84 unsigned targetCol = i, sourceCol = echelonCol;
85 // At every step, we set m(row, targetCol) %= m(row, sourceCol), and
86 // swap the indices sourceCol and targetCol. (not the columns themselves)
87 // This modulo is implemented as a subtraction
88 // m(row, targetCol) -= quotient * m(row, sourceCol),
89 // where quotient = floor(m(row, targetCol) / m(row, sourceCol)),
90 // which brings m(row, targetCol) to the range [0, m(row, sourceCol)).
91 //
92 // We are only allowed column operations; we perform the above
93 // for every row, i.e., the above subtraction is done as a column
94 // operation. This does not affect any rows above us since they are
95 // guaranteed to be zero at these columns.
96 while (m(row, targetCol) != 0 && m(row, sourceCol) != 0) {
97 modEntryColumnOperation(m, row, sourceCol, targetCol, resultMatrix);
98 std::swap(targetCol, sourceCol);
99 }
100
101 // One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
102 // Make it so that (row, echelonCol) holds the non-zero value.
103 if (m(row, echelonCol) == 0) {
104 m.swapColumns(i, echelonCol);
105 resultMatrix.swapColumns(i, echelonCol);
106 }
107 }
108
109 ++echelonCol;
110 }
111
112 return {echelonCol, LinearTransform(std::move(resultMatrix))};
113 }
114
applyTo(const IntegerRelation & rel) const115 IntegerRelation LinearTransform::applyTo(const IntegerRelation &rel) const {
116 IntegerRelation result(rel.getSpace());
117
118 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) {
119 ArrayRef<int64_t> eq = rel.getEquality(i);
120
121 int64_t c = eq.back();
122
123 SmallVector<int64_t, 8> newEq = preMultiplyWithRow(eq.drop_back());
124 newEq.push_back(c);
125 result.addEquality(newEq);
126 }
127
128 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) {
129 ArrayRef<int64_t> ineq = rel.getInequality(i);
130
131 int64_t c = ineq.back();
132
133 SmallVector<int64_t, 8> newIneq = preMultiplyWithRow(ineq.drop_back());
134 newIneq.push_back(c);
135 result.addInequality(newIneq);
136 }
137
138 return result;
139 }
140