1 //===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // A class to represent an relation over integer tuples. A relation is 10 // represented as a constraint system over a space of tuples of integer valued 11 // varaiables supporting symbolic identifiers and existential quantification. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "mlir/Analysis/Presburger/IntegerRelation.h" 16 #include "mlir/Analysis/Presburger/LinearTransform.h" 17 #include "mlir/Analysis/Presburger/PresburgerSet.h" 18 #include "mlir/Analysis/Presburger/Simplex.h" 19 #include "mlir/Analysis/Presburger/Utils.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/Support/Debug.h" 23 24 #define DEBUG_TYPE "presburger" 25 26 using namespace mlir; 27 using namespace presburger; 28 29 using llvm::SmallDenseMap; 30 using llvm::SmallDenseSet; 31 32 std::unique_ptr<IntegerRelation> IntegerRelation::clone() const { 33 return std::make_unique<IntegerRelation>(*this); 34 } 35 36 std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const { 37 return std::make_unique<IntegerPolyhedron>(*this); 38 } 39 40 void IntegerRelation::append(const IntegerRelation &other) { 41 assert(PresburgerLocalSpace::isEqual(other) && "Spaces must be equal."); 42 43 inequalities.reserveRows(inequalities.getNumRows() + 44 other.getNumInequalities()); 45 equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities()); 46 47 for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { 48 addInequality(other.getInequality(r)); 49 } 50 for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { 51 addEquality(other.getEquality(r)); 52 } 53 } 54 55 static IntegerPolyhedron createSetFromRelation(const IntegerRelation &rel) { 56 IntegerPolyhedron result(rel.getNumDimIds(), rel.getNumSymbolIds(), 57 rel.getNumLocalIds()); 58 59 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 60 result.addInequality(rel.getInequality(i)); 61 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 62 result.addEquality(rel.getEquality(i)); 63 64 return result; 65 } 66 67 bool IntegerRelation::isEqual(const IntegerRelation &other) const { 68 assert(PresburgerLocalSpace::isEqual(other) && "Spaces must be equal."); 69 return PresburgerSet(createSetFromRelation(*this)) 70 .isEqual(PresburgerSet(createSetFromRelation(other))); 71 } 72 73 bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const { 74 assert(PresburgerLocalSpace::isEqual(other) && "Spaces must be equal."); 75 return PresburgerSet(createSetFromRelation(*this)) 76 .isSubsetOf(PresburgerSet(createSetFromRelation(other))); 77 } 78 79 MaybeOptimum<SmallVector<Fraction, 8>> 80 IntegerRelation::findRationalLexMin() const { 81 assert(getNumSymbolIds() == 0 && "Symbols are not supported!"); 82 MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin = 83 LexSimplex(*this).findRationalLexMin(); 84 85 if (!maybeLexMin.isBounded()) 86 return maybeLexMin; 87 88 // The Simplex returns the lexmin over all the variables including locals. But 89 // locals are not actually part of the space and should not be returned in the 90 // result. Since the locals are placed last in the list of identifiers, they 91 // will be minimized last in the lexmin. So simply truncating out the locals 92 // from the end of the answer gives the desired lexmin over the dimensions. 93 assert(maybeLexMin->size() == getNumIds() && 94 "Incorrect number of vars in lexMin!"); 95 maybeLexMin->resize(getNumDimAndSymbolIds()); 96 return maybeLexMin; 97 } 98 99 MaybeOptimum<SmallVector<int64_t, 8>> 100 IntegerRelation::findIntegerLexMin() const { 101 assert(getNumSymbolIds() == 0 && "Symbols are not supported!"); 102 MaybeOptimum<SmallVector<int64_t, 8>> maybeLexMin = 103 LexSimplex(*this).findIntegerLexMin(); 104 105 if (!maybeLexMin.isBounded()) 106 return maybeLexMin.getKind(); 107 108 // The Simplex returns the lexmin over all the variables including locals. But 109 // locals are not actually part of the space and should not be returned in the 110 // result. Since the locals are placed last in the list of identifiers, they 111 // will be minimized last in the lexmin. So simply truncating out the locals 112 // from the end of the answer gives the desired lexmin over the dimensions. 113 assert(maybeLexMin->size() == getNumIds() && 114 "Incorrect number of vars in lexMin!"); 115 maybeLexMin->resize(getNumDimAndSymbolIds()); 116 return maybeLexMin; 117 } 118 119 unsigned IntegerRelation::insertId(IdKind kind, unsigned pos, unsigned num) { 120 assert(pos <= getNumIdKind(kind)); 121 122 unsigned insertPos = PresburgerLocalSpace::insertId(kind, pos, num); 123 inequalities.insertColumns(insertPos, num); 124 equalities.insertColumns(insertPos, num); 125 return insertPos; 126 } 127 128 unsigned IntegerRelation::appendId(IdKind kind, unsigned num) { 129 unsigned pos = getNumIdKind(kind); 130 return insertId(kind, pos, num); 131 } 132 133 void IntegerRelation::addEquality(ArrayRef<int64_t> eq) { 134 assert(eq.size() == getNumCols()); 135 unsigned row = equalities.appendExtraRow(); 136 for (unsigned i = 0, e = eq.size(); i < e; ++i) 137 equalities(row, i) = eq[i]; 138 } 139 140 void IntegerRelation::addInequality(ArrayRef<int64_t> inEq) { 141 assert(inEq.size() == getNumCols()); 142 unsigned row = inequalities.appendExtraRow(); 143 for (unsigned i = 0, e = inEq.size(); i < e; ++i) 144 inequalities(row, i) = inEq[i]; 145 } 146 147 void IntegerRelation::removeId(IdKind kind, unsigned pos) { 148 removeIdRange(kind, pos, pos + 1); 149 } 150 151 void IntegerRelation::removeId(unsigned pos) { removeIdRange(pos, pos + 1); } 152 153 void IntegerRelation::removeIdRange(IdKind kind, unsigned idStart, 154 unsigned idLimit) { 155 assert(idLimit <= getNumIdKind(kind)); 156 removeIdRange(getIdKindOffset(kind) + idStart, 157 getIdKindOffset(kind) + idLimit); 158 } 159 160 void IntegerRelation::removeIdRange(unsigned idStart, unsigned idLimit) { 161 // Update space paramaters. 162 PresburgerLocalSpace::removeIdRange(idStart, idLimit); 163 164 // Remove eliminated identifiers from the constraints.. 165 equalities.removeColumns(idStart, idLimit - idStart); 166 inequalities.removeColumns(idStart, idLimit - idStart); 167 } 168 169 void IntegerRelation::removeEquality(unsigned pos) { 170 equalities.removeRow(pos); 171 } 172 173 void IntegerRelation::removeInequality(unsigned pos) { 174 inequalities.removeRow(pos); 175 } 176 177 void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) { 178 if (start >= end) 179 return; 180 equalities.removeRows(start, end - start); 181 } 182 183 void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) { 184 if (start >= end) 185 return; 186 inequalities.removeRows(start, end - start); 187 } 188 189 void IntegerRelation::swapId(unsigned posA, unsigned posB) { 190 assert(posA < getNumIds() && "invalid position A"); 191 assert(posB < getNumIds() && "invalid position B"); 192 193 if (posA == posB) 194 return; 195 196 inequalities.swapColumns(posA, posB); 197 equalities.swapColumns(posA, posB); 198 } 199 200 void IntegerRelation::clearConstraints() { 201 equalities.resizeVertically(0); 202 inequalities.resizeVertically(0); 203 } 204 205 /// Gather all lower and upper bounds of the identifier at `pos`, and 206 /// optionally any equalities on it. In addition, the bounds are to be 207 /// independent of identifiers in position range [`offset`, `offset` + `num`). 208 void IntegerRelation::getLowerAndUpperBoundIndices( 209 unsigned pos, SmallVectorImpl<unsigned> *lbIndices, 210 SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices, 211 unsigned offset, unsigned num) const { 212 assert(pos < getNumIds() && "invalid position"); 213 assert(offset + num < getNumCols() && "invalid range"); 214 215 // Checks for a constraint that has a non-zero coeff for the identifiers in 216 // the position range [offset, offset + num) while ignoring `pos`. 217 auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) { 218 unsigned c, f; 219 auto cst = isEq ? getEquality(r) : getInequality(r); 220 for (c = offset, f = offset + num; c < f; ++c) { 221 if (c == pos) 222 continue; 223 if (cst[c] != 0) 224 break; 225 } 226 return c < f; 227 }; 228 229 // Gather all lower bounds and upper bounds of the variable. Since the 230 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower 231 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. 232 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { 233 // The bounds are to be independent of [offset, offset + num) columns. 234 if (containsConstraintDependentOnRange(r, /*isEq=*/false)) 235 continue; 236 if (atIneq(r, pos) >= 1) { 237 // Lower bound. 238 lbIndices->push_back(r); 239 } else if (atIneq(r, pos) <= -1) { 240 // Upper bound. 241 ubIndices->push_back(r); 242 } 243 } 244 245 // An equality is both a lower and upper bound. Record any equalities 246 // involving the pos^th identifier. 247 if (!eqIndices) 248 return; 249 250 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { 251 if (atEq(r, pos) == 0) 252 continue; 253 if (containsConstraintDependentOnRange(r, /*isEq=*/true)) 254 continue; 255 eqIndices->push_back(r); 256 } 257 } 258 259 bool IntegerRelation::hasConsistentState() const { 260 if (!inequalities.hasConsistentState()) 261 return false; 262 if (!equalities.hasConsistentState()) 263 return false; 264 return true; 265 } 266 267 void IntegerRelation::setAndEliminate(unsigned pos, ArrayRef<int64_t> values) { 268 if (values.empty()) 269 return; 270 assert(pos + values.size() <= getNumIds() && 271 "invalid position or too many values"); 272 // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the 273 // constant term and removing the id x_j. We do this for all the ids 274 // pos, pos + 1, ... pos + values.size() - 1. 275 unsigned constantColPos = getNumCols() - 1; 276 for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) 277 inequalities.addToColumn(i + pos, constantColPos, values[i]); 278 for (unsigned i = 0, numVals = values.size(); i < numVals; ++i) 279 equalities.addToColumn(i + pos, constantColPos, values[i]); 280 removeIdRange(pos, pos + values.size()); 281 } 282 283 void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) { 284 *this = other; 285 } 286 287 // Searches for a constraint with a non-zero coefficient at `colIdx` in 288 // equality (isEq=true) or inequality (isEq=false) constraints. 289 // Returns true and sets row found in search in `rowIdx`, false otherwise. 290 bool IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq, 291 unsigned *rowIdx) const { 292 assert(colIdx < getNumCols() && "position out of bounds"); 293 auto at = [&](unsigned rowIdx) -> int64_t { 294 return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx); 295 }; 296 unsigned e = isEq ? getNumEqualities() : getNumInequalities(); 297 for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) { 298 if (at(*rowIdx) != 0) { 299 return true; 300 } 301 } 302 return false; 303 } 304 305 void IntegerRelation::normalizeConstraintsByGCD() { 306 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) 307 equalities.normalizeRow(i); 308 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) 309 inequalities.normalizeRow(i); 310 } 311 312 bool IntegerRelation::hasInvalidConstraint() const { 313 assert(hasConsistentState()); 314 auto check = [&](bool isEq) -> bool { 315 unsigned numCols = getNumCols(); 316 unsigned numRows = isEq ? getNumEqualities() : getNumInequalities(); 317 for (unsigned i = 0, e = numRows; i < e; ++i) { 318 unsigned j; 319 for (j = 0; j < numCols - 1; ++j) { 320 int64_t v = isEq ? atEq(i, j) : atIneq(i, j); 321 // Skip rows with non-zero variable coefficients. 322 if (v != 0) 323 break; 324 } 325 if (j < numCols - 1) { 326 continue; 327 } 328 // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'. 329 // Example invalid constraints include: '1 == 0' or '-1 >= 0' 330 int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1); 331 if ((isEq && v != 0) || (!isEq && v < 0)) { 332 return true; 333 } 334 } 335 return false; 336 }; 337 if (check(/*isEq=*/true)) 338 return true; 339 return check(/*isEq=*/false); 340 } 341 342 /// Eliminate identifier from constraint at `rowIdx` based on coefficient at 343 /// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be 344 /// updated as they have already been eliminated. 345 static void eliminateFromConstraint(IntegerRelation *constraints, 346 unsigned rowIdx, unsigned pivotRow, 347 unsigned pivotCol, unsigned elimColStart, 348 bool isEq) { 349 // Skip if equality 'rowIdx' if same as 'pivotRow'. 350 if (isEq && rowIdx == pivotRow) 351 return; 352 auto at = [&](unsigned i, unsigned j) -> int64_t { 353 return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j); 354 }; 355 int64_t leadCoeff = at(rowIdx, pivotCol); 356 // Skip if leading coefficient at 'rowIdx' is already zero. 357 if (leadCoeff == 0) 358 return; 359 int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol); 360 int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1; 361 int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff); 362 int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff)); 363 int64_t rowMultiplier = lcm / std::abs(leadCoeff); 364 365 unsigned numCols = constraints->getNumCols(); 366 for (unsigned j = 0; j < numCols; ++j) { 367 // Skip updating column 'j' if it was just eliminated. 368 if (j >= elimColStart && j < pivotCol) 369 continue; 370 int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) + 371 rowMultiplier * at(rowIdx, j); 372 isEq ? constraints->atEq(rowIdx, j) = v 373 : constraints->atIneq(rowIdx, j) = v; 374 } 375 } 376 377 /// Returns the position of the identifier that has the minimum <number of lower 378 /// bounds> times <number of upper bounds> from the specified range of 379 /// identifiers [start, end). It is often best to eliminate in the increasing 380 /// order of these counts when doing Fourier-Motzkin elimination since FM adds 381 /// that many new constraints. 382 static unsigned getBestIdToEliminate(const IntegerRelation &cst, unsigned start, 383 unsigned end) { 384 assert(start < cst.getNumIds() && end < cst.getNumIds() + 1); 385 386 auto getProductOfNumLowerUpperBounds = [&](unsigned pos) { 387 unsigned numLb = 0; 388 unsigned numUb = 0; 389 for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { 390 if (cst.atIneq(r, pos) > 0) { 391 ++numLb; 392 } else if (cst.atIneq(r, pos) < 0) { 393 ++numUb; 394 } 395 } 396 return numLb * numUb; 397 }; 398 399 unsigned minLoc = start; 400 unsigned min = getProductOfNumLowerUpperBounds(start); 401 for (unsigned c = start + 1; c < end; c++) { 402 unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c); 403 if (numLbUbProduct < min) { 404 min = numLbUbProduct; 405 minLoc = c; 406 } 407 } 408 return minLoc; 409 } 410 411 // Checks for emptiness of the set by eliminating identifiers successively and 412 // using the GCD test (on all equality constraints) and checking for trivially 413 // invalid constraints. Returns 'true' if the constraint system is found to be 414 // empty; false otherwise. 415 bool IntegerRelation::isEmpty() const { 416 if (isEmptyByGCDTest() || hasInvalidConstraint()) 417 return true; 418 419 IntegerRelation tmpCst(*this); 420 421 // First, eliminate as many local variables as possible using equalities. 422 tmpCst.removeRedundantLocalVars(); 423 if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint()) 424 return true; 425 426 // Eliminate as many identifiers as possible using Gaussian elimination. 427 unsigned currentPos = 0; 428 while (currentPos < tmpCst.getNumIds()) { 429 tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds()); 430 ++currentPos; 431 // We check emptiness through trivial checks after eliminating each ID to 432 // detect emptiness early. Since the checks isEmptyByGCDTest() and 433 // hasInvalidConstraint() are linear time and single sweep on the constraint 434 // buffer, this appears reasonable - but can optimize in the future. 435 if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest()) 436 return true; 437 } 438 439 // Eliminate the remaining using FM. 440 for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) { 441 tmpCst.fourierMotzkinEliminate( 442 getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds())); 443 // Check for a constraint explosion. This rarely happens in practice, but 444 // this check exists as a safeguard against improperly constructed 445 // constraint systems or artificially created arbitrarily complex systems 446 // that aren't the intended use case for IntegerRelation. This is 447 // needed since FM has a worst case exponential complexity in theory. 448 if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) { 449 LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n"); 450 return false; 451 } 452 453 // FM wouldn't have modified the equalities in any way. So no need to again 454 // run GCD test. Check for trivial invalid constraints. 455 if (tmpCst.hasInvalidConstraint()) 456 return true; 457 } 458 return false; 459 } 460 461 // Runs the GCD test on all equality constraints. Returns 'true' if this test 462 // fails on any equality. Returns 'false' otherwise. 463 // This test can be used to disprove the existence of a solution. If it returns 464 // true, no integer solution to the equality constraints can exist. 465 // 466 // GCD test definition: 467 // 468 // The equality constraint: 469 // 470 // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0 471 // 472 // has an integer solution iff: 473 // 474 // GCD of c_1, c_2, ..., c_n divides c_0. 475 // 476 bool IntegerRelation::isEmptyByGCDTest() const { 477 assert(hasConsistentState()); 478 unsigned numCols = getNumCols(); 479 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { 480 uint64_t gcd = std::abs(atEq(i, 0)); 481 for (unsigned j = 1; j < numCols - 1; ++j) { 482 gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j))); 483 } 484 int64_t v = std::abs(atEq(i, numCols - 1)); 485 if (gcd > 0 && (v % gcd != 0)) { 486 return true; 487 } 488 } 489 return false; 490 } 491 492 // Returns a matrix where each row is a vector along which the polytope is 493 // bounded. The span of the returned vectors is guaranteed to contain all 494 // such vectors. The returned vectors are NOT guaranteed to be linearly 495 // independent. This function should not be called on empty sets. 496 // 497 // It is sufficient to check the perpendiculars of the constraints, as the set 498 // of perpendiculars which are bounded must span all bounded directions. 499 Matrix IntegerRelation::getBoundedDirections() const { 500 // Note that it is necessary to add the equalities too (which the constructor 501 // does) even though we don't need to check if they are bounded; whether an 502 // inequality is bounded or not depends on what other constraints, including 503 // equalities, are present. 504 Simplex simplex(*this); 505 506 assert(!simplex.isEmpty() && "It is not meaningful to ask whether a " 507 "direction is bounded in an empty set."); 508 509 SmallVector<unsigned, 8> boundedIneqs; 510 // The constructor adds the inequalities to the simplex first, so this 511 // processes all the inequalities. 512 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { 513 if (simplex.isBoundedAlongConstraint(i)) 514 boundedIneqs.push_back(i); 515 } 516 517 // The direction vector is given by the coefficients and does not include the 518 // constant term, so the matrix has one fewer column. 519 unsigned dirsNumCols = getNumCols() - 1; 520 Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols); 521 522 // Copy the bounded inequalities. 523 unsigned row = 0; 524 for (unsigned i : boundedIneqs) { 525 for (unsigned col = 0; col < dirsNumCols; ++col) 526 dirs(row, col) = atIneq(i, col); 527 ++row; 528 } 529 530 // Copy the equalities. All the equalities' perpendiculars are bounded. 531 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { 532 for (unsigned col = 0; col < dirsNumCols; ++col) 533 dirs(row, col) = atEq(i, col); 534 ++row; 535 } 536 537 return dirs; 538 } 539 540 bool eqInvolvesSuffixDims(const IntegerRelation &rel, unsigned eqIndex, 541 unsigned numDims) { 542 for (unsigned e = rel.getNumIds(), j = e - numDims; j < e; ++j) 543 if (rel.atEq(eqIndex, j) != 0) 544 return true; 545 return false; 546 } 547 bool ineqInvolvesSuffixDims(const IntegerRelation &rel, unsigned ineqIndex, 548 unsigned numDims) { 549 for (unsigned e = rel.getNumIds(), j = e - numDims; j < e; ++j) 550 if (rel.atIneq(ineqIndex, j) != 0) 551 return true; 552 return false; 553 } 554 555 void removeConstraintsInvolvingSuffixDims(IntegerRelation &rel, 556 unsigned unboundedDims) { 557 // We iterate backwards so that whether we remove constraint i - 1 or not, the 558 // next constraint to be tested is always i - 2. 559 for (unsigned i = rel.getNumEqualities(); i > 0; i--) 560 if (eqInvolvesSuffixDims(rel, i - 1, unboundedDims)) 561 rel.removeEquality(i - 1); 562 for (unsigned i = rel.getNumInequalities(); i > 0; i--) 563 if (ineqInvolvesSuffixDims(rel, i - 1, unboundedDims)) 564 rel.removeInequality(i - 1); 565 } 566 567 bool IntegerRelation::isIntegerEmpty() const { 568 return !findIntegerSample().hasValue(); 569 } 570 571 /// Let this set be S. If S is bounded then we directly call into the GBR 572 /// sampling algorithm. Otherwise, there are some unbounded directions, i.e., 573 /// vectors v such that S extends to infinity along v or -v. In this case we 574 /// use an algorithm described in the integer set library (isl) manual and used 575 /// by the isl_set_sample function in that library. The algorithm is: 576 /// 577 /// 1) Apply a unimodular transform T to S to obtain S*T, such that all 578 /// dimensions in which S*T is bounded lie in the linear span of a prefix of the 579 /// dimensions. 580 /// 581 /// 2) Construct a set B by removing all constraints that involve 582 /// the unbounded dimensions and then deleting the unbounded dimensions. Note 583 /// that B is a Bounded set. 584 /// 585 /// 3) Try to obtain a sample from B using the GBR sampling 586 /// algorithm. If no sample is found, return that S is empty. 587 /// 588 /// 4) Otherwise, substitute the obtained sample into S*T to obtain a set 589 /// C. C is a full-dimensional Cone and always contains a sample. 590 /// 591 /// 5) Obtain an integer sample from C. 592 /// 593 /// 6) Return T*v, where v is the concatenation of the samples from B and C. 594 /// 595 /// The following is a sketch of a proof that 596 /// a) If the algorithm returns empty, then S is empty. 597 /// b) If the algorithm returns a sample, it is a valid sample in S. 598 /// 599 /// The algorithm returns empty only if B is empty, in which case S*T is 600 /// certainly empty since B was obtained by removing constraints and then 601 /// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector 602 /// v is in S*T iff T*v is in S. So in this case, since 603 /// S*T is empty, S is empty too. 604 /// 605 /// Otherwise, the algorithm substitutes the sample from B into S*T. All the 606 /// constraints of S*T that did not involve unbounded dimensions are satisfied 607 /// by this substitution. All dimensions in the linear span of the dimensions 608 /// outside the prefix are unbounded in S*T (step 1). Substituting values for 609 /// the bounded dimensions cannot make these dimensions bounded, and these are 610 /// the only remaining dimensions in C, so C is unbounded along every vector (in 611 /// the positive or negative direction, or both). C is hence a full-dimensional 612 /// cone and therefore always contains an integer point. 613 /// 614 /// Concatenating the samples from B and C gives a sample v in S*T, so the 615 /// returned sample T*v is a sample in S. 616 Optional<SmallVector<int64_t, 8>> IntegerRelation::findIntegerSample() const { 617 // First, try the GCD test heuristic. 618 if (isEmptyByGCDTest()) 619 return {}; 620 621 Simplex simplex(*this); 622 if (simplex.isEmpty()) 623 return {}; 624 625 // For a bounded set, we directly call into the GBR sampling algorithm. 626 if (!simplex.isUnbounded()) 627 return simplex.findIntegerSample(); 628 629 // The set is unbounded. We cannot directly use the GBR algorithm. 630 // 631 // m is a matrix containing, in each row, a vector in which S is 632 // bounded, such that the linear span of all these dimensions contains all 633 // bounded dimensions in S. 634 Matrix m = getBoundedDirections(); 635 // In column echelon form, each row of m occupies only the first rank(m) 636 // columns and has zeros on the other columns. The transform T that brings S 637 // to column echelon form is unimodular as well, so this is a suitable 638 // transform to use in step 1 of the algorithm. 639 std::pair<unsigned, LinearTransform> result = 640 LinearTransform::makeTransformToColumnEchelon(std::move(m)); 641 const LinearTransform &transform = result.second; 642 // 1) Apply T to S to obtain S*T. 643 IntegerRelation transformedSet = transform.applyTo(*this); 644 645 // 2) Remove the unbounded dimensions and constraints involving them to 646 // obtain a bounded set. 647 IntegerRelation boundedSet(transformedSet); 648 unsigned numBoundedDims = result.first; 649 unsigned numUnboundedDims = getNumIds() - numBoundedDims; 650 removeConstraintsInvolvingSuffixDims(boundedSet, numUnboundedDims); 651 boundedSet.removeIdRange(numBoundedDims, boundedSet.getNumIds()); 652 653 // 3) Try to obtain a sample from the bounded set. 654 Optional<SmallVector<int64_t, 8>> boundedSample = 655 Simplex(boundedSet).findIntegerSample(); 656 if (!boundedSample) 657 return {}; 658 assert(boundedSet.containsPoint(*boundedSample) && 659 "Simplex returned an invalid sample!"); 660 661 // 4) Substitute the values of the bounded dimensions into S*T to obtain a 662 // full-dimensional cone, which necessarily contains an integer sample. 663 transformedSet.setAndEliminate(0, *boundedSample); 664 IntegerRelation &cone = transformedSet; 665 666 // 5) Obtain an integer sample from the cone. 667 // 668 // We shrink the cone such that for any rational point in the shrunken cone, 669 // rounding up each of the point's coordinates produces a point that still 670 // lies in the original cone. 671 // 672 // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i. 673 // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the 674 // shrunken cone will have the inequality tightened by some amount s, such 675 // that if x satisfies the shrunken cone's tightened inequality, then x + e 676 // satisfies the original inequality, i.e., 677 // 678 // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0 679 // 680 // for any e_i values in [0, 1). In fact, we will handle the slightly more 681 // general case where e_i can be in [0, 1]. For example, consider the 682 // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low 683 // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS 684 // is minimized when we add 1 to the x_i with negative coefficient a_i and 685 // keep the other x_i the same. In the example, we would get x = (3, 1, 1), 686 // changing the value of the LHS by -3 + -7 = -10. 687 // 688 // In general, the value of the LHS can change by at most the sum of the 689 // negative a_i, so we accomodate this by shifting the inequality by this 690 // amount for the shrunken cone. 691 for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) { 692 for (unsigned j = 0; j < cone.getNumIds(); ++j) { 693 int64_t coeff = cone.atIneq(i, j); 694 if (coeff < 0) 695 cone.atIneq(i, cone.getNumIds()) += coeff; 696 } 697 } 698 699 // Obtain an integer sample in the cone by rounding up a rational point from 700 // the shrunken cone. Shrinking the cone amounts to shifting its apex 701 // "inwards" without changing its "shape"; the shrunken cone is still a 702 // full-dimensional cone and is hence non-empty. 703 Simplex shrunkenConeSimplex(cone); 704 assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!"); 705 706 // The sample will always exist since the shrunken cone is non-empty. 707 SmallVector<Fraction, 8> shrunkenConeSample = 708 *shrunkenConeSimplex.getRationalSample(); 709 710 SmallVector<int64_t, 8> coneSample(llvm::map_range(shrunkenConeSample, ceil)); 711 712 // 6) Return transform * concat(boundedSample, coneSample). 713 SmallVector<int64_t, 8> &sample = boundedSample.getValue(); 714 sample.append(coneSample.begin(), coneSample.end()); 715 return transform.postMultiplyWithColumn(sample); 716 } 717 718 /// Helper to evaluate an affine expression at a point. 719 /// The expression is a list of coefficients for the dimensions followed by the 720 /// constant term. 721 static int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) { 722 assert(expr.size() == 1 + point.size() && 723 "Dimensionalities of point and expression don't match!"); 724 int64_t value = expr.back(); 725 for (unsigned i = 0; i < point.size(); ++i) 726 value += expr[i] * point[i]; 727 return value; 728 } 729 730 /// A point satisfies an equality iff the value of the equality at the 731 /// expression is zero, and it satisfies an inequality iff the value of the 732 /// inequality at that point is non-negative. 733 bool IntegerRelation::containsPoint(ArrayRef<int64_t> point) const { 734 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { 735 if (valueAt(getEquality(i), point) != 0) 736 return false; 737 } 738 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { 739 if (valueAt(getInequality(i), point) < 0) 740 return false; 741 } 742 return true; 743 } 744 745 void IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> &repr) const { 746 std::vector<SmallVector<int64_t, 8>> dividends(getNumLocalIds()); 747 SmallVector<unsigned, 4> denominators(getNumLocalIds()); 748 getLocalReprs(dividends, denominators, repr); 749 } 750 751 void IntegerRelation::getLocalReprs( 752 std::vector<SmallVector<int64_t, 8>> ÷nds, 753 SmallVector<unsigned, 4> &denominators) const { 754 std::vector<MaybeLocalRepr> repr(getNumLocalIds()); 755 getLocalReprs(dividends, denominators, repr); 756 } 757 758 void IntegerRelation::getLocalReprs( 759 std::vector<SmallVector<int64_t, 8>> ÷nds, 760 SmallVector<unsigned, 4> &denominators, 761 std::vector<MaybeLocalRepr> &repr) const { 762 763 repr.resize(getNumLocalIds()); 764 dividends.resize(getNumLocalIds()); 765 denominators.resize(getNumLocalIds()); 766 767 SmallVector<bool, 8> foundRepr(getNumIds(), false); 768 for (unsigned i = 0, e = getNumDimAndSymbolIds(); i < e; ++i) 769 foundRepr[i] = true; 770 771 unsigned divOffset = getNumDimAndSymbolIds(); 772 bool changed; 773 do { 774 // Each time changed is true, at end of this iteration, one or more local 775 // vars have been detected as floor divs. 776 changed = false; 777 for (unsigned i = 0, e = getNumLocalIds(); i < e; ++i) { 778 if (!foundRepr[i + divOffset]) { 779 MaybeLocalRepr res = computeSingleVarRepr( 780 *this, foundRepr, divOffset + i, dividends[i], denominators[i]); 781 if (!res) 782 continue; 783 foundRepr[i + divOffset] = true; 784 repr[i] = res; 785 changed = true; 786 } 787 } 788 } while (changed); 789 790 // Set 0 denominator for identifiers for which no division representation 791 // could be found. 792 for (unsigned i = 0, e = repr.size(); i < e; ++i) 793 if (!repr[i]) 794 denominators[i] = 0; 795 } 796 797 /// Tightens inequalities given that we are dealing with integer spaces. This is 798 /// analogous to the GCD test but applied to inequalities. The constant term can 799 /// be reduced to the preceding multiple of the GCD of the coefficients, i.e., 800 /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a 801 /// fast method - linear in the number of coefficients. 802 // Example on how this affects practical cases: consider the scenario: 803 // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield 804 // j >= 100 instead of the tighter (exact) j >= 128. 805 void IntegerRelation::gcdTightenInequalities() { 806 unsigned numCols = getNumCols(); 807 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { 808 // Normalize the constraint and tighten the constant term by the GCD. 809 uint64_t gcd = inequalities.normalizeRow(i, getNumCols() - 1); 810 if (gcd > 1) 811 atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcd); 812 } 813 } 814 815 // Eliminates all identifier variables in column range [posStart, posLimit). 816 // Returns the number of variables eliminated. 817 unsigned IntegerRelation::gaussianEliminateIds(unsigned posStart, 818 unsigned posLimit) { 819 // Return if identifier positions to eliminate are out of range. 820 assert(posLimit <= getNumIds()); 821 assert(hasConsistentState()); 822 823 if (posStart >= posLimit) 824 return 0; 825 826 gcdTightenInequalities(); 827 828 unsigned pivotCol = 0; 829 for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) { 830 // Find a row which has a non-zero coefficient in column 'j'. 831 unsigned pivotRow; 832 if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true, &pivotRow)) { 833 // No pivot row in equalities with non-zero at 'pivotCol'. 834 if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false, &pivotRow)) { 835 // If inequalities are also non-zero in 'pivotCol', it can be 836 // eliminated. 837 continue; 838 } 839 break; 840 } 841 842 // Eliminate identifier at 'pivotCol' from each equality row. 843 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { 844 eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart, 845 /*isEq=*/true); 846 equalities.normalizeRow(i); 847 } 848 849 // Eliminate identifier at 'pivotCol' from each inequality row. 850 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { 851 eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart, 852 /*isEq=*/false); 853 inequalities.normalizeRow(i); 854 } 855 removeEquality(pivotRow); 856 gcdTightenInequalities(); 857 } 858 // Update position limit based on number eliminated. 859 posLimit = pivotCol; 860 // Remove eliminated columns from all constraints. 861 removeIdRange(posStart, posLimit); 862 return posLimit - posStart; 863 } 864 865 // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin 866 // to check if a constraint is redundant. 867 void IntegerRelation::removeRedundantInequalities() { 868 SmallVector<bool, 32> redun(getNumInequalities(), false); 869 // To check if an inequality is redundant, we replace the inequality by its 870 // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting 871 // system is empty. If it is, the inequality is redundant. 872 IntegerRelation tmpCst(*this); 873 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { 874 // Change the inequality to its complement. 875 tmpCst.inequalities.negateRow(r); 876 tmpCst.atIneq(r, tmpCst.getNumCols() - 1)--; 877 if (tmpCst.isEmpty()) { 878 redun[r] = true; 879 // Zero fill the redundant inequality. 880 inequalities.fillRow(r, /*value=*/0); 881 tmpCst.inequalities.fillRow(r, /*value=*/0); 882 } else { 883 // Reverse the change (to avoid recreating tmpCst each time). 884 tmpCst.atIneq(r, tmpCst.getNumCols() - 1)++; 885 tmpCst.inequalities.negateRow(r); 886 } 887 } 888 889 unsigned pos = 0; 890 for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) { 891 if (!redun[r]) 892 inequalities.copyRow(r, pos++); 893 } 894 inequalities.resizeVertically(pos); 895 } 896 897 // A more complex check to eliminate redundant inequalities and equalities. Uses 898 // Simplex to check if a constraint is redundant. 899 void IntegerRelation::removeRedundantConstraints() { 900 // First, we run gcdTightenInequalities. This allows us to catch some 901 // constraints which are not redundant when considering rational solutions 902 // but are redundant in terms of integer solutions. 903 gcdTightenInequalities(); 904 Simplex simplex(*this); 905 simplex.detectRedundant(); 906 907 unsigned pos = 0; 908 unsigned numIneqs = getNumInequalities(); 909 // Scan to get rid of all inequalities marked redundant, in-place. In Simplex, 910 // the first constraints added are the inequalities. 911 for (unsigned r = 0; r < numIneqs; r++) { 912 if (!simplex.isMarkedRedundant(r)) 913 inequalities.copyRow(r, pos++); 914 } 915 inequalities.resizeVertically(pos); 916 917 // Scan to get rid of all equalities marked redundant, in-place. In Simplex, 918 // after the inequalities, a pair of constraints for each equality is added. 919 // An equality is redundant if both the inequalities in its pair are 920 // redundant. 921 pos = 0; 922 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { 923 if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) && 924 simplex.isMarkedRedundant(numIneqs + 2 * r + 1))) 925 equalities.copyRow(r, pos++); 926 } 927 equalities.resizeVertically(pos); 928 } 929 930 Optional<uint64_t> IntegerRelation::computeVolume() const { 931 assert(getNumSymbolIds() == 0 && "Symbols are not yet supported!"); 932 933 Simplex simplex(*this); 934 // If the polytope is rationally empty, there are certainly no integer 935 // points. 936 if (simplex.isEmpty()) 937 return 0; 938 939 // Just find the maximum and minimum integer value of each non-local id 940 // separately, thus finding the number of integer values each such id can 941 // take. Multiplying these together gives a valid overapproximation of the 942 // number of integer points in the relation. The result this gives is 943 // equivalent to projecting (rationally) the relation onto its non-local ids 944 // and returning the number of integer points in a minimal axis-parallel 945 // hyperrectangular overapproximation of that. 946 // 947 // We also handle the special case where one dimension is unbounded and 948 // another dimension can take no integer values. In this case, the volume is 949 // zero. 950 // 951 // If there is no such empty dimension, if any dimension is unbounded we 952 // just return the result as unbounded. 953 uint64_t count = 1; 954 SmallVector<int64_t, 8> dim(getNumIds() + 1); 955 bool hasUnboundedId = false; 956 for (unsigned i = 0, e = getNumDimAndSymbolIds(); i < e; ++i) { 957 dim[i] = 1; 958 MaybeOptimum<int64_t> min, max; 959 std::tie(min, max) = simplex.computeIntegerBounds(dim); 960 dim[i] = 0; 961 962 assert((!min.isEmpty() && !max.isEmpty()) && 963 "Polytope should be rationally non-empty!"); 964 965 // One of the dimensions is unbounded. Note this fact. We will return 966 // unbounded if none of the other dimensions makes the volume zero. 967 if (min.isUnbounded() || max.isUnbounded()) { 968 hasUnboundedId = true; 969 continue; 970 } 971 972 // In this case there are no valid integer points and the volume is 973 // definitely zero. 974 if (min.getBoundedOptimum() > max.getBoundedOptimum()) 975 return 0; 976 977 count *= (*max - *min + 1); 978 } 979 980 if (count == 0) 981 return 0; 982 if (hasUnboundedId) 983 return {}; 984 return count; 985 } 986 987 void IntegerRelation::eliminateRedundantLocalId(unsigned posA, unsigned posB) { 988 assert(posA < getNumLocalIds() && "Invalid local id position"); 989 assert(posB < getNumLocalIds() && "Invalid local id position"); 990 991 unsigned localOffset = getIdKindOffset(IdKind::Local); 992 posA += localOffset; 993 posB += localOffset; 994 inequalities.addToColumn(posB, posA, 1); 995 equalities.addToColumn(posB, posA, 1); 996 removeId(posB); 997 } 998 999 /// Adds additional local ids to the sets such that they both have the union 1000 /// of the local ids in each set, without changing the set of points that 1001 /// lie in `this` and `other`. 1002 /// 1003 /// To detect local ids that always take the same in both sets, each local id is 1004 /// represented as a floordiv with constant denominator in terms of other ids. 1005 /// After extracting these divisions, local ids with the same division 1006 /// representation are considered duplicate and are merged. It is possible that 1007 /// division representation for some local id cannot be obtained, and thus these 1008 /// local ids are not considered for detecting duplicates. 1009 void IntegerRelation::mergeLocalIds(IntegerRelation &other) { 1010 assert(PresburgerSpace::isEqual(other) && "Spaces should match."); 1011 1012 IntegerRelation &relA = *this; 1013 IntegerRelation &relB = other; 1014 1015 // Merge local ids of relA and relB without using division information, 1016 // i.e. append local ids of `relB` to `relA` and insert local ids of `relA` 1017 // to `relB` at start of its local ids. 1018 unsigned initLocals = relA.getNumLocalIds(); 1019 insertId(IdKind::Local, relA.getNumLocalIds(), relB.getNumLocalIds()); 1020 relB.insertId(IdKind::Local, 0, initLocals); 1021 1022 // Get division representations from each rel. 1023 std::vector<SmallVector<int64_t, 8>> divsA, divsB; 1024 SmallVector<unsigned, 4> denomsA, denomsB; 1025 relA.getLocalReprs(divsA, denomsA); 1026 relB.getLocalReprs(divsB, denomsB); 1027 1028 // Copy division information for relB into `divsA` and `denomsA`, so that 1029 // these have the combined division information of both rels. Since newly 1030 // added local variables in relA and relB have no constraints, they will not 1031 // have any division representation. 1032 std::copy(divsB.begin() + initLocals, divsB.end(), 1033 divsA.begin() + initLocals); 1034 std::copy(denomsB.begin() + initLocals, denomsB.end(), 1035 denomsA.begin() + initLocals); 1036 1037 // Merge function that merges the local variables in both sets by treating 1038 // them as the same identifier. 1039 auto merge = [&relA, &relB](unsigned i, unsigned j) -> bool { 1040 relA.eliminateRedundantLocalId(i, j); 1041 relB.eliminateRedundantLocalId(i, j); 1042 return true; 1043 }; 1044 1045 // Merge all divisions by removing duplicate divisions. 1046 unsigned localOffset = getIdKindOffset(IdKind::Local); 1047 removeDuplicateDivs(divsA, denomsA, localOffset, merge); 1048 } 1049 1050 /// Removes local variables using equalities. Each equality is checked if it 1051 /// can be reduced to the form: `e = affine-expr`, where `e` is a local 1052 /// variable and `affine-expr` is an affine expression not containing `e`. 1053 /// If an equality satisfies this form, the local variable is replaced in 1054 /// each constraint and then removed. The equality used to replace this local 1055 /// variable is also removed. 1056 void IntegerRelation::removeRedundantLocalVars() { 1057 // Normalize the equality constraints to reduce coefficients of local 1058 // variables to 1 wherever possible. 1059 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) 1060 equalities.normalizeRow(i); 1061 1062 while (true) { 1063 unsigned i, e, j, f; 1064 for (i = 0, e = getNumEqualities(); i < e; ++i) { 1065 // Find a local variable to eliminate using ith equality. 1066 for (j = getNumDimAndSymbolIds(), f = getNumIds(); j < f; ++j) 1067 if (std::abs(atEq(i, j)) == 1) 1068 break; 1069 1070 // Local variable can be eliminated using ith equality. 1071 if (j < f) 1072 break; 1073 } 1074 1075 // No equality can be used to eliminate a local variable. 1076 if (i == e) 1077 break; 1078 1079 // Use the ith equality to simplify other equalities. If any changes 1080 // are made to an equality constraint, it is normalized by GCD. 1081 for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) { 1082 if (atEq(k, j) != 0) { 1083 eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true); 1084 equalities.normalizeRow(k); 1085 } 1086 } 1087 1088 // Use the ith equality to simplify inequalities. 1089 for (unsigned k = 0, t = getNumInequalities(); k < t; ++k) 1090 eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false); 1091 1092 // Remove the ith equality and the found local variable. 1093 removeId(j); 1094 removeEquality(i); 1095 } 1096 } 1097 1098 void IntegerRelation::convertDimToLocal(unsigned dimStart, unsigned dimLimit) { 1099 assert(dimLimit <= getNumDimIds() && "Invalid dim pos range"); 1100 1101 if (dimStart >= dimLimit) 1102 return; 1103 1104 // Append new local variables corresponding to the dimensions to be converted. 1105 unsigned convertCount = dimLimit - dimStart; 1106 unsigned newLocalIdStart = getNumIds(); 1107 appendId(IdKind::Local, convertCount); 1108 1109 // Swap the new local variables with dimensions. 1110 for (unsigned i = 0; i < convertCount; ++i) 1111 swapId(i + dimStart, i + newLocalIdStart); 1112 1113 // Remove dimensions converted to local variables. 1114 removeIdRange(dimStart, dimLimit); 1115 } 1116 1117 void IntegerRelation::addBound(BoundType type, unsigned pos, int64_t value) { 1118 assert(pos < getNumCols()); 1119 if (type == BoundType::EQ) { 1120 unsigned row = equalities.appendExtraRow(); 1121 equalities(row, pos) = 1; 1122 equalities(row, getNumCols() - 1) = -value; 1123 } else { 1124 unsigned row = inequalities.appendExtraRow(); 1125 inequalities(row, pos) = type == BoundType::LB ? 1 : -1; 1126 inequalities(row, getNumCols() - 1) = 1127 type == BoundType::LB ? -value : value; 1128 } 1129 } 1130 1131 void IntegerRelation::addBound(BoundType type, ArrayRef<int64_t> expr, 1132 int64_t value) { 1133 assert(type != BoundType::EQ && "EQ not implemented"); 1134 assert(expr.size() == getNumCols()); 1135 unsigned row = inequalities.appendExtraRow(); 1136 for (unsigned i = 0, e = expr.size(); i < e; ++i) 1137 inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i]; 1138 inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) += 1139 type == BoundType::LB ? -value : value; 1140 } 1141 1142 /// Adds a new local identifier as the floordiv of an affine function of other 1143 /// identifiers, the coefficients of which are provided in 'dividend' and with 1144 /// respect to a positive constant 'divisor'. Two constraints are added to the 1145 /// system to capture equivalence with the floordiv. 1146 /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1. 1147 void IntegerRelation::addLocalFloorDiv(ArrayRef<int64_t> dividend, 1148 int64_t divisor) { 1149 assert(dividend.size() == getNumCols() && "incorrect dividend size"); 1150 assert(divisor > 0 && "positive divisor expected"); 1151 1152 appendId(IdKind::Local); 1153 1154 // Add two constraints for this new identifier 'q'. 1155 SmallVector<int64_t, 8> bound(dividend.size() + 1); 1156 1157 // dividend - q * divisor >= 0 1158 std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1, 1159 bound.begin()); 1160 bound.back() = dividend.back(); 1161 bound[getNumIds() - 1] = -divisor; 1162 addInequality(bound); 1163 1164 // -dividend +qdivisor * q + divisor - 1 >= 0 1165 std::transform(bound.begin(), bound.end(), bound.begin(), 1166 std::negate<int64_t>()); 1167 bound[bound.size() - 1] += divisor - 1; 1168 addInequality(bound); 1169 } 1170 1171 /// Finds an equality that equates the specified identifier to a constant. 1172 /// Returns the position of the equality row. If 'symbolic' is set to true, 1173 /// symbols are also treated like a constant, i.e., an affine function of the 1174 /// symbols is also treated like a constant. Returns -1 if such an equality 1175 /// could not be found. 1176 static int findEqualityToConstant(const IntegerRelation &cst, unsigned pos, 1177 bool symbolic = false) { 1178 assert(pos < cst.getNumIds() && "invalid position"); 1179 for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { 1180 int64_t v = cst.atEq(r, pos); 1181 if (v * v != 1) 1182 continue; 1183 unsigned c; 1184 unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds(); 1185 // This checks for zeros in all positions other than 'pos' in [0, f) 1186 for (c = 0; c < f; c++) { 1187 if (c == pos) 1188 continue; 1189 if (cst.atEq(r, c) != 0) { 1190 // Dependent on another identifier. 1191 break; 1192 } 1193 } 1194 if (c == f) 1195 // Equality is free of other identifiers. 1196 return r; 1197 } 1198 return -1; 1199 } 1200 1201 LogicalResult IntegerRelation::constantFoldId(unsigned pos) { 1202 assert(pos < getNumIds() && "invalid position"); 1203 int rowIdx; 1204 if ((rowIdx = findEqualityToConstant(*this, pos)) == -1) 1205 return failure(); 1206 1207 // atEq(rowIdx, pos) is either -1 or 1. 1208 assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1); 1209 int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos); 1210 setAndEliminate(pos, constVal); 1211 return success(); 1212 } 1213 1214 void IntegerRelation::constantFoldIdRange(unsigned pos, unsigned num) { 1215 for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) { 1216 if (failed(constantFoldId(t))) 1217 t++; 1218 } 1219 } 1220 1221 /// Returns a non-negative constant bound on the extent (upper bound - lower 1222 /// bound) of the specified identifier if it is found to be a constant; returns 1223 /// None if it's not a constant. This methods treats symbolic identifiers 1224 /// specially, i.e., it looks for constant differences between affine 1225 /// expressions involving only the symbolic identifiers. See comments at 1226 /// function definition for example. 'lb', if provided, is set to the lower 1227 /// bound associated with the constant difference. Note that 'lb' is purely 1228 /// symbolic and thus will contain the coefficients of the symbolic identifiers 1229 /// and the constant coefficient. 1230 // Egs: 0 <= i <= 15, return 16. 1231 // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol) 1232 // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16. 1233 // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb = 1234 // ceil(s0 - 7 / 8) = floor(s0 / 8)). 1235 Optional<int64_t> IntegerRelation::getConstantBoundOnDimSize( 1236 unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *boundFloorDivisor, 1237 SmallVectorImpl<int64_t> *ub, unsigned *minLbPos, 1238 unsigned *minUbPos) const { 1239 assert(pos < getNumDimIds() && "Invalid identifier position"); 1240 1241 // Find an equality for 'pos'^th identifier that equates it to some function 1242 // of the symbolic identifiers (+ constant). 1243 int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true); 1244 if (eqPos != -1) { 1245 auto eq = getEquality(eqPos); 1246 // If the equality involves a local var, punt for now. 1247 // TODO: this can be handled in the future by using the explicit 1248 // representation of the local vars. 1249 if (!std::all_of(eq.begin() + getNumDimAndSymbolIds(), eq.end() - 1, 1250 [](int64_t coeff) { return coeff == 0; })) 1251 return None; 1252 1253 // This identifier can only take a single value. 1254 if (lb) { 1255 // Set lb to that symbolic value. 1256 lb->resize(getNumSymbolIds() + 1); 1257 if (ub) 1258 ub->resize(getNumSymbolIds() + 1); 1259 for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) { 1260 int64_t v = atEq(eqPos, pos); 1261 // atEq(eqRow, pos) is either -1 or 1. 1262 assert(v * v == 1); 1263 (*lb)[c] = v < 0 ? atEq(eqPos, getNumDimIds() + c) / -v 1264 : -atEq(eqPos, getNumDimIds() + c) / v; 1265 // Since this is an equality, ub = lb. 1266 if (ub) 1267 (*ub)[c] = (*lb)[c]; 1268 } 1269 assert(boundFloorDivisor && 1270 "both lb and divisor or none should be provided"); 1271 *boundFloorDivisor = 1; 1272 } 1273 if (minLbPos) 1274 *minLbPos = eqPos; 1275 if (minUbPos) 1276 *minUbPos = eqPos; 1277 return 1; 1278 } 1279 1280 // Check if the identifier appears at all in any of the inequalities. 1281 unsigned r, e; 1282 for (r = 0, e = getNumInequalities(); r < e; r++) { 1283 if (atIneq(r, pos) != 0) 1284 break; 1285 } 1286 if (r == e) 1287 // If it doesn't, there isn't a bound on it. 1288 return None; 1289 1290 // Positions of constraints that are lower/upper bounds on the variable. 1291 SmallVector<unsigned, 4> lbIndices, ubIndices; 1292 1293 // Gather all symbolic lower bounds and upper bounds of the variable, i.e., 1294 // the bounds can only involve symbolic (and local) identifiers. Since the 1295 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower 1296 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. 1297 getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices, 1298 /*eqIndices=*/nullptr, /*offset=*/0, 1299 /*num=*/getNumDimIds()); 1300 1301 Optional<int64_t> minDiff = None; 1302 unsigned minLbPosition = 0, minUbPosition = 0; 1303 for (auto ubPos : ubIndices) { 1304 for (auto lbPos : lbIndices) { 1305 // Look for a lower bound and an upper bound that only differ by a 1306 // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst. 1307 // For example, if ii is the pos^th variable, we are looking for 1308 // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The 1309 // minimum among all such constant differences is kept since that's the 1310 // constant bounding the extent of the pos^th variable. 1311 unsigned j, e; 1312 for (j = 0, e = getNumCols() - 1; j < e; j++) 1313 if (atIneq(ubPos, j) != -atIneq(lbPos, j)) { 1314 break; 1315 } 1316 if (j < getNumCols() - 1) 1317 continue; 1318 int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) + 1319 atIneq(lbPos, getNumCols() - 1) + 1, 1320 atIneq(lbPos, pos)); 1321 // This bound is non-negative by definition. 1322 diff = std::max<int64_t>(diff, 0); 1323 if (minDiff == None || diff < minDiff) { 1324 minDiff = diff; 1325 minLbPosition = lbPos; 1326 minUbPosition = ubPos; 1327 } 1328 } 1329 } 1330 if (lb && minDiff.hasValue()) { 1331 // Set lb to the symbolic lower bound. 1332 lb->resize(getNumSymbolIds() + 1); 1333 if (ub) 1334 ub->resize(getNumSymbolIds() + 1); 1335 // The lower bound is the ceildiv of the lb constraint over the coefficient 1336 // of the variable at 'pos'. We express the ceildiv equivalently as a floor 1337 // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N + 1338 // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32). 1339 *boundFloorDivisor = atIneq(minLbPosition, pos); 1340 assert(*boundFloorDivisor == -atIneq(minUbPosition, pos)); 1341 for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) { 1342 (*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c); 1343 } 1344 if (ub) { 1345 for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) 1346 (*ub)[c] = atIneq(minUbPosition, getNumDimIds() + c); 1347 } 1348 // The lower bound leads to a ceildiv while the upper bound is a floordiv 1349 // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val + 1350 // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to 1351 // the constant term for the lower bound. 1352 (*lb)[getNumSymbolIds()] += atIneq(minLbPosition, pos) - 1; 1353 } 1354 if (minLbPos) 1355 *minLbPos = minLbPosition; 1356 if (minUbPos) 1357 *minUbPos = minUbPosition; 1358 return minDiff; 1359 } 1360 1361 template <bool isLower> 1362 Optional<int64_t> 1363 IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) { 1364 assert(pos < getNumIds() && "invalid position"); 1365 // Project to 'pos'. 1366 projectOut(0, pos); 1367 projectOut(1, getNumIds() - 1); 1368 // Check if there's an equality equating the '0'^th identifier to a constant. 1369 int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false); 1370 if (eqRowIdx != -1) 1371 // atEq(rowIdx, 0) is either -1 or 1. 1372 return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0); 1373 1374 // Check if the identifier appears at all in any of the inequalities. 1375 unsigned r, e; 1376 for (r = 0, e = getNumInequalities(); r < e; r++) { 1377 if (atIneq(r, 0) != 0) 1378 break; 1379 } 1380 if (r == e) 1381 // If it doesn't, there isn't a bound on it. 1382 return None; 1383 1384 Optional<int64_t> minOrMaxConst = None; 1385 1386 // Take the max across all const lower bounds (or min across all constant 1387 // upper bounds). 1388 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { 1389 if (isLower) { 1390 if (atIneq(r, 0) <= 0) 1391 // Not a lower bound. 1392 continue; 1393 } else if (atIneq(r, 0) >= 0) { 1394 // Not an upper bound. 1395 continue; 1396 } 1397 unsigned c, f; 1398 for (c = 0, f = getNumCols() - 1; c < f; c++) 1399 if (c != 0 && atIneq(r, c) != 0) 1400 break; 1401 if (c < getNumCols() - 1) 1402 // Not a constant bound. 1403 continue; 1404 1405 int64_t boundConst = 1406 isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0)) 1407 : mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0)); 1408 if (isLower) { 1409 if (minOrMaxConst == None || boundConst > minOrMaxConst) 1410 minOrMaxConst = boundConst; 1411 } else { 1412 if (minOrMaxConst == None || boundConst < minOrMaxConst) 1413 minOrMaxConst = boundConst; 1414 } 1415 } 1416 return minOrMaxConst; 1417 } 1418 1419 Optional<int64_t> IntegerRelation::getConstantBound(BoundType type, 1420 unsigned pos) const { 1421 if (type == BoundType::LB) 1422 return IntegerRelation(*this) 1423 .computeConstantLowerOrUpperBound</*isLower=*/true>(pos); 1424 if (type == BoundType::UB) 1425 return IntegerRelation(*this) 1426 .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); 1427 1428 assert(type == BoundType::EQ && "expected EQ"); 1429 Optional<int64_t> lb = 1430 IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>( 1431 pos); 1432 Optional<int64_t> ub = 1433 IntegerRelation(*this) 1434 .computeConstantLowerOrUpperBound</*isLower=*/false>(pos); 1435 return (lb && ub && *lb == *ub) ? Optional<int64_t>(*ub) : None; 1436 } 1437 1438 // A simple (naive and conservative) check for hyper-rectangularity. 1439 bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const { 1440 assert(pos < getNumCols() - 1); 1441 // Check for two non-zero coefficients in the range [pos, pos + sum). 1442 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { 1443 unsigned sum = 0; 1444 for (unsigned c = pos; c < pos + num; c++) { 1445 if (atIneq(r, c) != 0) 1446 sum++; 1447 } 1448 if (sum > 1) 1449 return false; 1450 } 1451 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { 1452 unsigned sum = 0; 1453 for (unsigned c = pos; c < pos + num; c++) { 1454 if (atEq(r, c) != 0) 1455 sum++; 1456 } 1457 if (sum > 1) 1458 return false; 1459 } 1460 return true; 1461 } 1462 1463 /// Removes duplicate constraints, trivially true constraints, and constraints 1464 /// that can be detected as redundant as a result of differing only in their 1465 /// constant term part. A constraint of the form <non-negative constant> >= 0 is 1466 /// considered trivially true. 1467 // Uses a DenseSet to hash and detect duplicates followed by a linear scan to 1468 // remove duplicates in place. 1469 void IntegerRelation::removeTrivialRedundancy() { 1470 gcdTightenInequalities(); 1471 normalizeConstraintsByGCD(); 1472 1473 // A map used to detect redundancy stemming from constraints that only differ 1474 // in their constant term. The value stored is <row position, const term> 1475 // for a given row. 1476 SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>> 1477 rowsWithoutConstTerm; 1478 // To unique rows. 1479 SmallDenseSet<ArrayRef<int64_t>, 8> rowSet; 1480 1481 // Check if constraint is of the form <non-negative-constant> >= 0. 1482 auto isTriviallyValid = [&](unsigned r) -> bool { 1483 for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) { 1484 if (atIneq(r, c) != 0) 1485 return false; 1486 } 1487 return atIneq(r, getNumCols() - 1) >= 0; 1488 }; 1489 1490 // Detect and mark redundant constraints. 1491 SmallVector<bool, 256> redunIneq(getNumInequalities(), false); 1492 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { 1493 int64_t *rowStart = &inequalities(r, 0); 1494 auto row = ArrayRef<int64_t>(rowStart, getNumCols()); 1495 if (isTriviallyValid(r) || !rowSet.insert(row).second) { 1496 redunIneq[r] = true; 1497 continue; 1498 } 1499 1500 // Among constraints that only differ in the constant term part, mark 1501 // everything other than the one with the smallest constant term redundant. 1502 // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the 1503 // former two are redundant). 1504 int64_t constTerm = atIneq(r, getNumCols() - 1); 1505 auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1); 1506 const auto &ret = 1507 rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}}); 1508 if (!ret.second) { 1509 // Check if the other constraint has a higher constant term. 1510 auto &val = ret.first->second; 1511 if (val.second > constTerm) { 1512 // The stored row is redundant. Mark it so, and update with this one. 1513 redunIneq[val.first] = true; 1514 val = {r, constTerm}; 1515 } else { 1516 // The one stored makes this one redundant. 1517 redunIneq[r] = true; 1518 } 1519 } 1520 } 1521 1522 // Scan to get rid of all rows marked redundant, in-place. 1523 unsigned pos = 0; 1524 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) 1525 if (!redunIneq[r]) 1526 inequalities.copyRow(r, pos++); 1527 1528 inequalities.resizeVertically(pos); 1529 1530 // TODO: consider doing this for equalities as well, but probably not worth 1531 // the savings. 1532 } 1533 1534 #undef DEBUG_TYPE 1535 #define DEBUG_TYPE "fm" 1536 1537 /// Eliminates identifier at the specified position using Fourier-Motzkin 1538 /// variable elimination. This technique is exact for rational spaces but 1539 /// conservative (in "rare" cases) for integer spaces. The operation corresponds 1540 /// to a projection operation yielding the (convex) set of integer points 1541 /// contained in the rational shadow of the set. An emptiness test that relies 1542 /// on this method will guarantee emptiness, i.e., it disproves the existence of 1543 /// a solution if it says it's empty. 1544 /// If a non-null isResultIntegerExact is passed, it is set to true if the 1545 /// result is also integer exact. If it's set to false, the obtained solution 1546 /// *may* not be exact, i.e., it may contain integer points that do not have an 1547 /// integer pre-image in the original set. 1548 /// 1549 /// Eg: 1550 /// j >= 0, j <= i + 1 1551 /// i >= 0, i <= N + 1 1552 /// Eliminating i yields, 1553 /// j >= 0, 0 <= N + 1, j - 1 <= N + 1 1554 /// 1555 /// If darkShadow = true, this method computes the dark shadow on elimination; 1556 /// the dark shadow is a convex integer subset of the exact integer shadow. A 1557 /// non-empty dark shadow proves the existence of an integer solution. The 1558 /// elimination in such a case could however be an under-approximation, and thus 1559 /// should not be used for scanning sets or used by itself for dependence 1560 /// checking. 1561 /// 1562 /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set. 1563 /// ^ 1564 /// | 1565 /// | * * * * o o 1566 /// i | * * o o o o 1567 /// | o * * * * * 1568 /// ---------------> 1569 /// j -> 1570 /// 1571 /// Eliminating i from this system (projecting on the j dimension): 1572 /// rational shadow / integer light shadow: 1 <= j <= 6 1573 /// dark shadow: 3 <= j <= 6 1574 /// exact integer shadow: j = 1 \union 3 <= j <= 6 1575 /// holes/splinters: j = 2 1576 /// 1577 /// darkShadow = false, isResultIntegerExact = nullptr are default values. 1578 // TODO: a slight modification to yield dark shadow version of FM (tightened), 1579 // which can prove the existence of a solution if there is one. 1580 void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow, 1581 bool *isResultIntegerExact) { 1582 LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n"); 1583 LLVM_DEBUG(dump()); 1584 assert(pos < getNumIds() && "invalid position"); 1585 assert(hasConsistentState()); 1586 1587 // Check if this identifier can be eliminated through a substitution. 1588 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { 1589 if (atEq(r, pos) != 0) { 1590 // Use Gaussian elimination here (since we have an equality). 1591 LogicalResult ret = gaussianEliminateId(pos); 1592 (void)ret; 1593 assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed"); 1594 LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n"); 1595 LLVM_DEBUG(dump()); 1596 return; 1597 } 1598 } 1599 1600 // A fast linear time tightening. 1601 gcdTightenInequalities(); 1602 1603 // Check if the identifier appears at all in any of the inequalities. 1604 if (isColZero(pos)) { 1605 // If it doesn't appear, just remove the column and return. 1606 // TODO: refactor removeColumns to use it from here. 1607 removeId(pos); 1608 LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); 1609 LLVM_DEBUG(dump()); 1610 return; 1611 } 1612 1613 // Positions of constraints that are lower bounds on the variable. 1614 SmallVector<unsigned, 4> lbIndices; 1615 // Positions of constraints that are lower bounds on the variable. 1616 SmallVector<unsigned, 4> ubIndices; 1617 // Positions of constraints that do not involve the variable. 1618 std::vector<unsigned> nbIndices; 1619 nbIndices.reserve(getNumInequalities()); 1620 1621 // Gather all lower bounds and upper bounds of the variable. Since the 1622 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower 1623 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. 1624 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { 1625 if (atIneq(r, pos) == 0) { 1626 // Id does not appear in bound. 1627 nbIndices.push_back(r); 1628 } else if (atIneq(r, pos) >= 1) { 1629 // Lower bound. 1630 lbIndices.push_back(r); 1631 } else { 1632 // Upper bound. 1633 ubIndices.push_back(r); 1634 } 1635 } 1636 1637 // Set the number of dimensions, symbols, locals in the resulting system. 1638 unsigned newNumDomain = 1639 getNumDomainIds() - getIdKindOverlap(IdKind::Domain, pos, pos + 1); 1640 unsigned newNumRange = 1641 getNumRangeIds() - getIdKindOverlap(IdKind::Range, pos, pos + 1); 1642 unsigned newNumSymbols = 1643 getNumSymbolIds() - getIdKindOverlap(IdKind::Symbol, pos, pos + 1); 1644 unsigned newNumLocals = 1645 getNumLocalIds() - getIdKindOverlap(IdKind::Local, pos, pos + 1); 1646 1647 /// Create the new system which has one identifier less. 1648 IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(), 1649 getNumEqualities(), getNumCols() - 1, newNumDomain, 1650 newNumRange, newNumSymbols, newNumLocals); 1651 1652 // This will be used to check if the elimination was integer exact. 1653 unsigned lcmProducts = 1; 1654 1655 // Let x be the variable we are eliminating. 1656 // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note 1657 // that c_l, c_u >= 1) we have: 1658 // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u 1659 // We thus generate a constraint: 1660 // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub. 1661 // Note if c_l = c_u = 1, all integer points captured by the resulting 1662 // constraint correspond to integer points in the original system (i.e., they 1663 // have integer pre-images). Hence, if the lcm's are all 1, the elimination is 1664 // integer exact. 1665 for (auto ubPos : ubIndices) { 1666 for (auto lbPos : lbIndices) { 1667 SmallVector<int64_t, 4> ineq; 1668 ineq.reserve(newRel.getNumCols()); 1669 int64_t lbCoeff = atIneq(lbPos, pos); 1670 // Note that in the comments above, ubCoeff is the negation of the 1671 // coefficient in the canonical form as the view taken here is that of the 1672 // term being moved to the other size of '>='. 1673 int64_t ubCoeff = -atIneq(ubPos, pos); 1674 // TODO: refactor this loop to avoid all branches inside. 1675 for (unsigned l = 0, e = getNumCols(); l < e; l++) { 1676 if (l == pos) 1677 continue; 1678 assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified"); 1679 int64_t lcm = mlir::lcm(lbCoeff, ubCoeff); 1680 ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) + 1681 atIneq(lbPos, l) * (lcm / lbCoeff)); 1682 lcmProducts *= lcm; 1683 } 1684 if (darkShadow) { 1685 // The dark shadow is a convex subset of the exact integer shadow. If 1686 // there is a point here, it proves the existence of a solution. 1687 ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1; 1688 } 1689 // TODO: we need to have a way to add inequalities in-place in 1690 // IntegerRelation instead of creating and copying over. 1691 newRel.addInequality(ineq); 1692 } 1693 } 1694 1695 LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1) 1696 << "\n"); 1697 if (lcmProducts == 1 && isResultIntegerExact) 1698 *isResultIntegerExact = true; 1699 1700 // Copy over the constraints not involving this variable. 1701 for (auto nbPos : nbIndices) { 1702 SmallVector<int64_t, 4> ineq; 1703 ineq.reserve(getNumCols() - 1); 1704 for (unsigned l = 0, e = getNumCols(); l < e; l++) { 1705 if (l == pos) 1706 continue; 1707 ineq.push_back(atIneq(nbPos, l)); 1708 } 1709 newRel.addInequality(ineq); 1710 } 1711 1712 assert(newRel.getNumConstraints() == 1713 lbIndices.size() * ubIndices.size() + nbIndices.size()); 1714 1715 // Copy over the equalities. 1716 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { 1717 SmallVector<int64_t, 4> eq; 1718 eq.reserve(newRel.getNumCols()); 1719 for (unsigned l = 0, e = getNumCols(); l < e; l++) { 1720 if (l == pos) 1721 continue; 1722 eq.push_back(atEq(r, l)); 1723 } 1724 newRel.addEquality(eq); 1725 } 1726 1727 // GCD tightening and normalization allows detection of more trivially 1728 // redundant constraints. 1729 newRel.gcdTightenInequalities(); 1730 newRel.normalizeConstraintsByGCD(); 1731 newRel.removeTrivialRedundancy(); 1732 clearAndCopyFrom(newRel); 1733 LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); 1734 LLVM_DEBUG(dump()); 1735 } 1736 1737 #undef DEBUG_TYPE 1738 #define DEBUG_TYPE "presburger" 1739 1740 void IntegerRelation::projectOut(unsigned pos, unsigned num) { 1741 if (num == 0) 1742 return; 1743 1744 // 'pos' can be at most getNumCols() - 2 if num > 0. 1745 assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position"); 1746 assert(pos + num < getNumCols() && "invalid range"); 1747 1748 // Eliminate as many identifiers as possible using Gaussian elimination. 1749 unsigned currentPos = pos; 1750 unsigned numToEliminate = num; 1751 unsigned numGaussianEliminated = 0; 1752 1753 while (currentPos < getNumIds()) { 1754 unsigned curNumEliminated = 1755 gaussianEliminateIds(currentPos, currentPos + numToEliminate); 1756 ++currentPos; 1757 numToEliminate -= curNumEliminated + 1; 1758 numGaussianEliminated += curNumEliminated; 1759 } 1760 1761 // Eliminate the remaining using Fourier-Motzkin. 1762 for (unsigned i = 0; i < num - numGaussianEliminated; i++) { 1763 unsigned numToEliminate = num - numGaussianEliminated - i; 1764 fourierMotzkinEliminate( 1765 getBestIdToEliminate(*this, pos, pos + numToEliminate)); 1766 } 1767 1768 // Fast/trivial simplifications. 1769 gcdTightenInequalities(); 1770 // Normalize constraints after tightening since the latter impacts this, but 1771 // not the other way round. 1772 normalizeConstraintsByGCD(); 1773 } 1774 1775 namespace { 1776 1777 enum BoundCmpResult { Greater, Less, Equal, Unknown }; 1778 1779 /// Compares two affine bounds whose coefficients are provided in 'first' and 1780 /// 'second'. The last coefficient is the constant term. 1781 static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 1782 assert(a.size() == b.size()); 1783 1784 // For the bounds to be comparable, their corresponding identifier 1785 // coefficients should be equal; the constant terms are then compared to 1786 // determine less/greater/equal. 1787 1788 if (!std::equal(a.begin(), a.end() - 1, b.begin())) 1789 return Unknown; 1790 1791 if (a.back() == b.back()) 1792 return Equal; 1793 1794 return a.back() < b.back() ? Less : Greater; 1795 } 1796 } // namespace 1797 1798 // Returns constraints that are common to both A & B. 1799 static void getCommonConstraints(const IntegerRelation &a, 1800 const IntegerRelation &b, IntegerRelation &c) { 1801 c = IntegerRelation(a.getNumDomainIds(), a.getNumRangeIds(), 1802 a.getNumSymbolIds(), a.getNumLocalIds()); 1803 // a naive O(n^2) check should be enough here given the input sizes. 1804 for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) { 1805 for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) { 1806 if (a.getInequality(r) == b.getInequality(s)) { 1807 c.addInequality(a.getInequality(r)); 1808 break; 1809 } 1810 } 1811 } 1812 for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) { 1813 for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) { 1814 if (a.getEquality(r) == b.getEquality(s)) { 1815 c.addEquality(a.getEquality(r)); 1816 break; 1817 } 1818 } 1819 } 1820 } 1821 1822 // Computes the bounding box with respect to 'other' by finding the min of the 1823 // lower bounds and the max of the upper bounds along each of the dimensions. 1824 LogicalResult 1825 IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) { 1826 assert(PresburgerLocalSpace::isEqual(otherCst) && "Spaces should match."); 1827 assert(getNumLocalIds() == 0 && "local ids not supported yet here"); 1828 1829 // Get the constraints common to both systems; these will be added as is to 1830 // the union. 1831 IntegerRelation commonCst; 1832 getCommonConstraints(*this, otherCst, commonCst); 1833 1834 std::vector<SmallVector<int64_t, 8>> boundingLbs; 1835 std::vector<SmallVector<int64_t, 8>> boundingUbs; 1836 boundingLbs.reserve(2 * getNumDimIds()); 1837 boundingUbs.reserve(2 * getNumDimIds()); 1838 1839 // To hold lower and upper bounds for each dimension. 1840 SmallVector<int64_t, 4> lb, otherLb, ub, otherUb; 1841 // To compute min of lower bounds and max of upper bounds for each dimension. 1842 SmallVector<int64_t, 4> minLb(getNumSymbolIds() + 1); 1843 SmallVector<int64_t, 4> maxUb(getNumSymbolIds() + 1); 1844 // To compute final new lower and upper bounds for the union. 1845 SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols()); 1846 1847 int64_t lbFloorDivisor, otherLbFloorDivisor; 1848 for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) { 1849 auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub); 1850 if (!extent.hasValue()) 1851 // TODO: symbolic extents when necessary. 1852 // TODO: handle union if a dimension is unbounded. 1853 return failure(); 1854 1855 auto otherExtent = otherCst.getConstantBoundOnDimSize( 1856 d, &otherLb, &otherLbFloorDivisor, &otherUb); 1857 if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor) 1858 // TODO: symbolic extents when necessary. 1859 return failure(); 1860 1861 assert(lbFloorDivisor > 0 && "divisor always expected to be positive"); 1862 1863 auto res = compareBounds(lb, otherLb); 1864 // Identify min. 1865 if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) { 1866 minLb = lb; 1867 // Since the divisor is for a floordiv, we need to convert to ceildiv, 1868 // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=> 1869 // div * i >= expr - div + 1. 1870 minLb.back() -= lbFloorDivisor - 1; 1871 } else if (res == BoundCmpResult::Greater) { 1872 minLb = otherLb; 1873 minLb.back() -= otherLbFloorDivisor - 1; 1874 } else { 1875 // Uncomparable - check for constant lower/upper bounds. 1876 auto constLb = getConstantBound(BoundType::LB, d); 1877 auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d); 1878 if (!constLb.hasValue() || !constOtherLb.hasValue()) 1879 return failure(); 1880 std::fill(minLb.begin(), minLb.end(), 0); 1881 minLb.back() = std::min(constLb.getValue(), constOtherLb.getValue()); 1882 } 1883 1884 // Do the same for ub's but max of upper bounds. Identify max. 1885 auto uRes = compareBounds(ub, otherUb); 1886 if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) { 1887 maxUb = ub; 1888 } else if (uRes == BoundCmpResult::Less) { 1889 maxUb = otherUb; 1890 } else { 1891 // Uncomparable - check for constant lower/upper bounds. 1892 auto constUb = getConstantBound(BoundType::UB, d); 1893 auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d); 1894 if (!constUb.hasValue() || !constOtherUb.hasValue()) 1895 return failure(); 1896 std::fill(maxUb.begin(), maxUb.end(), 0); 1897 maxUb.back() = std::max(constUb.getValue(), constOtherUb.getValue()); 1898 } 1899 1900 std::fill(newLb.begin(), newLb.end(), 0); 1901 std::fill(newUb.begin(), newUb.end(), 0); 1902 1903 // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor, 1904 // and so it's the divisor for newLb and newUb as well. 1905 newLb[d] = lbFloorDivisor; 1906 newUb[d] = -lbFloorDivisor; 1907 // Copy over the symbolic part + constant term. 1908 std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds()); 1909 std::transform(newLb.begin() + getNumDimIds(), newLb.end(), 1910 newLb.begin() + getNumDimIds(), std::negate<int64_t>()); 1911 std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds()); 1912 1913 boundingLbs.push_back(newLb); 1914 boundingUbs.push_back(newUb); 1915 } 1916 1917 // Clear all constraints and add the lower/upper bounds for the bounding box. 1918 clearConstraints(); 1919 for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) { 1920 addInequality(boundingLbs[d]); 1921 addInequality(boundingUbs[d]); 1922 } 1923 1924 // Add the constraints that were common to both systems. 1925 append(commonCst); 1926 removeTrivialRedundancy(); 1927 1928 // TODO: copy over pure symbolic constraints from this and 'other' over to the 1929 // union (since the above are just the union along dimensions); we shouldn't 1930 // be discarding any other constraints on the symbols. 1931 1932 return success(); 1933 } 1934 1935 bool IntegerRelation::isColZero(unsigned pos) const { 1936 unsigned rowPos; 1937 return !findConstraintWithNonZeroAt(pos, /*isEq=*/false, &rowPos) && 1938 !findConstraintWithNonZeroAt(pos, /*isEq=*/true, &rowPos); 1939 } 1940 1941 /// Find positions of inequalities and equalities that do not have a coefficient 1942 /// for [pos, pos + num) identifiers. 1943 static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos, 1944 unsigned num, 1945 SmallVectorImpl<unsigned> &nbIneqIndices, 1946 SmallVectorImpl<unsigned> &nbEqIndices) { 1947 assert(pos < cst.getNumIds() && "invalid start position"); 1948 assert(pos + num <= cst.getNumIds() && "invalid limit"); 1949 1950 for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { 1951 // The bounds are to be independent of [offset, offset + num) columns. 1952 unsigned c; 1953 for (c = pos; c < pos + num; ++c) { 1954 if (cst.atIneq(r, c) != 0) 1955 break; 1956 } 1957 if (c == pos + num) 1958 nbIneqIndices.push_back(r); 1959 } 1960 1961 for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { 1962 // The bounds are to be independent of [offset, offset + num) columns. 1963 unsigned c; 1964 for (c = pos; c < pos + num; ++c) { 1965 if (cst.atEq(r, c) != 0) 1966 break; 1967 } 1968 if (c == pos + num) 1969 nbEqIndices.push_back(r); 1970 } 1971 } 1972 1973 void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) { 1974 assert(pos + num <= getNumIds() && "invalid range"); 1975 1976 // Remove constraints that are independent of these identifiers. 1977 SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices; 1978 getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices); 1979 1980 // Iterate in reverse so that indices don't have to be updated. 1981 // TODO: This method can be made more efficient (because removal of each 1982 // inequality leads to much shifting/copying in the underlying buffer). 1983 for (auto nbIndex : llvm::reverse(nbIneqIndices)) 1984 removeInequality(nbIndex); 1985 for (auto nbIndex : llvm::reverse(nbEqIndices)) 1986 removeEquality(nbIndex); 1987 } 1988 1989 void IntegerRelation::printSpace(raw_ostream &os) const { 1990 PresburgerLocalSpace::print(os); 1991 os << getNumConstraints() << " constraints\n"; 1992 } 1993 1994 void IntegerRelation::print(raw_ostream &os) const { 1995 assert(hasConsistentState()); 1996 printSpace(os); 1997 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { 1998 for (unsigned j = 0, f = getNumCols(); j < f; ++j) { 1999 os << atEq(i, j) << " "; 2000 } 2001 os << "= 0\n"; 2002 } 2003 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { 2004 for (unsigned j = 0, f = getNumCols(); j < f; ++j) { 2005 os << atIneq(i, j) << " "; 2006 } 2007 os << ">= 0\n"; 2008 } 2009 os << '\n'; 2010 } 2011 2012 void IntegerRelation::dump() const { print(llvm::errs()); } 2013