1 //===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A class to represent an relation over integer tuples. A relation is
10 // represented as a constraint system over a space of tuples of integer valued
11 // variables supporting symbolic variables and existential quantification.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "mlir/Analysis/Presburger/IntegerRelation.h"
16 #include "mlir/Analysis/Presburger/LinearTransform.h"
17 #include "mlir/Analysis/Presburger/PWMAFunction.h"
18 #include "mlir/Analysis/Presburger/PresburgerRelation.h"
19 #include "mlir/Analysis/Presburger/Simplex.h"
20 #include "mlir/Analysis/Presburger/Utils.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/Support/Debug.h"
24
25 #define DEBUG_TYPE "presburger"
26
27 using namespace mlir;
28 using namespace presburger;
29
30 using llvm::SmallDenseMap;
31 using llvm::SmallDenseSet;
32
clone() const33 std::unique_ptr<IntegerRelation> IntegerRelation::clone() const {
34 return std::make_unique<IntegerRelation>(*this);
35 }
36
clone() const37 std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const {
38 return std::make_unique<IntegerPolyhedron>(*this);
39 }
40
setSpace(const PresburgerSpace & oSpace)41 void IntegerRelation::setSpace(const PresburgerSpace &oSpace) {
42 assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!");
43 space = oSpace;
44 }
45
setSpaceExceptLocals(const PresburgerSpace & oSpace)46 void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) {
47 assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!");
48 assert(oSpace.getNumVars() <= getNumVars() && "invalid space!");
49 unsigned newNumLocals = getNumVars() - oSpace.getNumVars();
50 space = oSpace;
51 space.insertVar(VarKind::Local, 0, newNumLocals);
52 }
53
append(const IntegerRelation & other)54 void IntegerRelation::append(const IntegerRelation &other) {
55 assert(space.isEqual(other.getSpace()) && "Spaces must be equal.");
56
57 inequalities.reserveRows(inequalities.getNumRows() +
58 other.getNumInequalities());
59 equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities());
60
61 for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
62 addInequality(other.getInequality(r));
63 }
64 for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
65 addEquality(other.getEquality(r));
66 }
67 }
68
intersect(IntegerRelation other) const69 IntegerRelation IntegerRelation::intersect(IntegerRelation other) const {
70 IntegerRelation result = *this;
71 result.mergeLocalVars(other);
72 result.append(other);
73 return result;
74 }
75
isEqual(const IntegerRelation & other) const76 bool IntegerRelation::isEqual(const IntegerRelation &other) const {
77 assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
78 return PresburgerRelation(*this).isEqual(PresburgerRelation(other));
79 }
80
isSubsetOf(const IntegerRelation & other) const81 bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const {
82 assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
83 return PresburgerRelation(*this).isSubsetOf(PresburgerRelation(other));
84 }
85
86 MaybeOptimum<SmallVector<Fraction, 8>>
findRationalLexMin() const87 IntegerRelation::findRationalLexMin() const {
88 assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
89 MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin =
90 LexSimplex(*this).findRationalLexMin();
91
92 if (!maybeLexMin.isBounded())
93 return maybeLexMin;
94
95 // The Simplex returns the lexmin over all the variables including locals. But
96 // locals are not actually part of the space and should not be returned in the
97 // result. Since the locals are placed last in the list of variables, they
98 // will be minimized last in the lexmin. So simply truncating out the locals
99 // from the end of the answer gives the desired lexmin over the dimensions.
100 assert(maybeLexMin->size() == getNumVars() &&
101 "Incorrect number of vars in lexMin!");
102 maybeLexMin->resize(getNumDimAndSymbolVars());
103 return maybeLexMin;
104 }
105
106 MaybeOptimum<SmallVector<int64_t, 8>>
findIntegerLexMin() const107 IntegerRelation::findIntegerLexMin() const {
108 assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
109 MaybeOptimum<SmallVector<int64_t, 8>> maybeLexMin =
110 LexSimplex(*this).findIntegerLexMin();
111
112 if (!maybeLexMin.isBounded())
113 return maybeLexMin.getKind();
114
115 // The Simplex returns the lexmin over all the variables including locals. But
116 // locals are not actually part of the space and should not be returned in the
117 // result. Since the locals are placed last in the list of variables, they
118 // will be minimized last in the lexmin. So simply truncating out the locals
119 // from the end of the answer gives the desired lexmin over the dimensions.
120 assert(maybeLexMin->size() == getNumVars() &&
121 "Incorrect number of vars in lexMin!");
122 maybeLexMin->resize(getNumDimAndSymbolVars());
123 return maybeLexMin;
124 }
125
rangeIsZero(ArrayRef<int64_t> range)126 static bool rangeIsZero(ArrayRef<int64_t> range) {
127 return llvm::all_of(range, [](int64_t x) { return x == 0; });
128 }
129
removeConstraintsInvolvingVarRange(IntegerRelation & poly,unsigned begin,unsigned count)130 static void removeConstraintsInvolvingVarRange(IntegerRelation &poly,
131 unsigned begin, unsigned count) {
132 // We loop until i > 0 and index into i - 1 to avoid sign issues.
133 //
134 // We iterate backwards so that whether we remove constraint i - 1 or not, the
135 // next constraint to be tested is always i - 2.
136 for (unsigned i = poly.getNumEqualities(); i > 0; i--)
137 if (!rangeIsZero(poly.getEquality(i - 1).slice(begin, count)))
138 poly.removeEquality(i - 1);
139 for (unsigned i = poly.getNumInequalities(); i > 0; i--)
140 if (!rangeIsZero(poly.getInequality(i - 1).slice(begin, count)))
141 poly.removeInequality(i - 1);
142 }
143
getCounts() const144 IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const {
145 return {getSpace(), getNumInequalities(), getNumEqualities()};
146 }
147
truncateVarKind(VarKind kind,unsigned num)148 void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) {
149 unsigned curNum = getNumVarKind(kind);
150 assert(num <= curNum && "Can't truncate to more vars!");
151 removeVarRange(kind, num, curNum);
152 }
153
truncateVarKind(VarKind kind,const CountsSnapshot & counts)154 void IntegerRelation::truncateVarKind(VarKind kind,
155 const CountsSnapshot &counts) {
156 truncateVarKind(kind, counts.getSpace().getNumVarKind(kind));
157 }
158
truncate(const CountsSnapshot & counts)159 void IntegerRelation::truncate(const CountsSnapshot &counts) {
160 truncateVarKind(VarKind::Domain, counts);
161 truncateVarKind(VarKind::Range, counts);
162 truncateVarKind(VarKind::Symbol, counts);
163 truncateVarKind(VarKind::Local, counts);
164 removeInequalityRange(counts.getNumIneqs(), getNumInequalities());
165 removeEqualityRange(counts.getNumEqs(), getNumEqualities());
166 }
167
computeReprWithOnlyDivLocals() const168 PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const {
169 // If there are no locals, we're done.
170 if (getNumLocalVars() == 0)
171 return PresburgerRelation(*this);
172
173 // Move all the non-div locals to the end, as the current API to
174 // SymbolicLexMin requires these to form a contiguous range.
175 //
176 // Take a copy so we can perform mutations.
177 IntegerRelation copy = *this;
178 std::vector<MaybeLocalRepr> reprs(getNumLocalVars());
179 copy.getLocalReprs(&reprs);
180
181 // Iterate through all the locals. The last `numNonDivLocals` are the locals
182 // that have been scanned already and do not have division representations.
183 unsigned numNonDivLocals = 0;
184 unsigned offset = copy.getVarKindOffset(VarKind::Local);
185 for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) {
186 if (!reprs[i]) {
187 // Whenever we come across a local that does not have a division
188 // representation, we swap it to the `numNonDivLocals`-th last position
189 // and increment `numNonDivLocal`s. `reprs` also needs to be swapped.
190 copy.swapVar(offset + i, offset + e - numNonDivLocals - 1);
191 std::swap(reprs[i], reprs[e - numNonDivLocals - 1]);
192 ++numNonDivLocals;
193 continue;
194 }
195 ++i;
196 }
197
198 // If there are no non-div locals, we're done.
199 if (numNonDivLocals == 0)
200 return PresburgerRelation(*this);
201
202 // We computeSymbolicIntegerLexMin by considering the non-div locals as
203 // "non-symbols" and considering everything else as "symbols". This will
204 // compute a function mapping assignments to "symbols" to the
205 // lexicographically minimal valid assignment of "non-symbols", when a
206 // satisfying assignment exists. It separately returns the set of assignments
207 // to the "symbols" such that a satisfying assignment to the "non-symbols"
208 // exists but the lexmin is unbounded. We basically want to find the set of
209 // values of the "symbols" such that an assignment to the "non-symbols"
210 // exists, which is the union of the domain of the returned lexmin function
211 // and the returned set of assignments to the "symbols" that makes the lexmin
212 // unbounded.
213 SymbolicLexMin lexminResult =
214 SymbolicLexSimplex(copy, /*symbolOffset*/ 0,
215 IntegerPolyhedron(PresburgerSpace::getSetSpace(
216 /*numDims=*/copy.getNumVars() - numNonDivLocals)))
217 .computeSymbolicIntegerLexMin();
218 PresburgerRelation result =
219 lexminResult.lexmin.getDomain().unionSet(lexminResult.unboundedDomain);
220
221 // The result set might lie in the wrong space -- all its ids are dims.
222 // Set it to the desired space and return.
223 PresburgerSpace space = getSpace();
224 space.removeVarRange(VarKind::Local, 0, getNumLocalVars());
225 result.setSpace(space);
226 return result;
227 }
228
findSymbolicIntegerLexMin() const229 SymbolicLexMin IntegerRelation::findSymbolicIntegerLexMin() const {
230 // Symbol and Domain vars will be used as symbols for symbolic lexmin.
231 // In other words, for every value of the symbols and domain, return the
232 // lexmin value of the (range, locals).
233 llvm::SmallBitVector isSymbol(getNumVars(), false);
234 isSymbol.set(getVarKindOffset(VarKind::Symbol),
235 getVarKindEnd(VarKind::Symbol));
236 isSymbol.set(getVarKindOffset(VarKind::Domain),
237 getVarKindEnd(VarKind::Domain));
238 // Compute the symbolic lexmin of the dims and locals, with the symbols being
239 // the actual symbols of this set.
240 SymbolicLexMin result =
241 SymbolicLexSimplex(*this,
242 IntegerPolyhedron(PresburgerSpace::getSetSpace(
243 /*numDims=*/getNumDomainVars(),
244 /*numSymbols=*/getNumSymbolVars())),
245 isSymbol)
246 .computeSymbolicIntegerLexMin();
247
248 // We want to return only the lexmin over the dims, so strip the locals from
249 // the computed lexmin.
250 result.lexmin.truncateOutput(result.lexmin.getNumOutputs() -
251 getNumLocalVars());
252 return result;
253 }
254
255 PresburgerRelation
subtract(const PresburgerRelation & set) const256 IntegerRelation::subtract(const PresburgerRelation &set) const {
257 return PresburgerRelation(*this).subtract(set);
258 }
259
insertVar(VarKind kind,unsigned pos,unsigned num)260 unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) {
261 assert(pos <= getNumVarKind(kind));
262
263 unsigned insertPos = space.insertVar(kind, pos, num);
264 inequalities.insertColumns(insertPos, num);
265 equalities.insertColumns(insertPos, num);
266 return insertPos;
267 }
268
appendVar(VarKind kind,unsigned num)269 unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) {
270 unsigned pos = getNumVarKind(kind);
271 return insertVar(kind, pos, num);
272 }
273
addEquality(ArrayRef<int64_t> eq)274 void IntegerRelation::addEquality(ArrayRef<int64_t> eq) {
275 assert(eq.size() == getNumCols());
276 unsigned row = equalities.appendExtraRow();
277 for (unsigned i = 0, e = eq.size(); i < e; ++i)
278 equalities(row, i) = eq[i];
279 }
280
addInequality(ArrayRef<int64_t> inEq)281 void IntegerRelation::addInequality(ArrayRef<int64_t> inEq) {
282 assert(inEq.size() == getNumCols());
283 unsigned row = inequalities.appendExtraRow();
284 for (unsigned i = 0, e = inEq.size(); i < e; ++i)
285 inequalities(row, i) = inEq[i];
286 }
287
removeVar(VarKind kind,unsigned pos)288 void IntegerRelation::removeVar(VarKind kind, unsigned pos) {
289 removeVarRange(kind, pos, pos + 1);
290 }
291
removeVar(unsigned pos)292 void IntegerRelation::removeVar(unsigned pos) { removeVarRange(pos, pos + 1); }
293
removeVarRange(VarKind kind,unsigned varStart,unsigned varLimit)294 void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart,
295 unsigned varLimit) {
296 assert(varLimit <= getNumVarKind(kind));
297
298 if (varStart >= varLimit)
299 return;
300
301 // Remove eliminated variables from the constraints.
302 unsigned offset = getVarKindOffset(kind);
303 equalities.removeColumns(offset + varStart, varLimit - varStart);
304 inequalities.removeColumns(offset + varStart, varLimit - varStart);
305
306 // Remove eliminated variables from the space.
307 space.removeVarRange(kind, varStart, varLimit);
308 }
309
removeVarRange(unsigned varStart,unsigned varLimit)310 void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) {
311 assert(varLimit <= getNumVars());
312
313 if (varStart >= varLimit)
314 return;
315
316 // Helper function to remove vars of the specified kind in the given range
317 // [start, limit), The range is absolute (i.e. it is not relative to the kind
318 // of variable). Also updates `limit` to reflect the deleted variables.
319 auto removeVarKindInRange = [this](VarKind kind, unsigned &start,
320 unsigned &limit) {
321 if (start >= limit)
322 return;
323
324 unsigned offset = getVarKindOffset(kind);
325 unsigned num = getNumVarKind(kind);
326
327 // Get `start`, `limit` relative to the specified kind.
328 unsigned relativeStart =
329 start <= offset ? 0 : std::min(num, start - offset);
330 unsigned relativeLimit =
331 limit <= offset ? 0 : std::min(num, limit - offset);
332
333 // Remove vars of the specified kind in the relative range.
334 removeVarRange(kind, relativeStart, relativeLimit);
335
336 // Update `limit` to reflect deleted variables.
337 // `start` does not need to be updated because any variables that are
338 // deleted are after position `start`.
339 limit -= relativeLimit - relativeStart;
340 };
341
342 removeVarKindInRange(VarKind::Domain, varStart, varLimit);
343 removeVarKindInRange(VarKind::Range, varStart, varLimit);
344 removeVarKindInRange(VarKind::Symbol, varStart, varLimit);
345 removeVarKindInRange(VarKind::Local, varStart, varLimit);
346 }
347
removeEquality(unsigned pos)348 void IntegerRelation::removeEquality(unsigned pos) {
349 equalities.removeRow(pos);
350 }
351
removeInequality(unsigned pos)352 void IntegerRelation::removeInequality(unsigned pos) {
353 inequalities.removeRow(pos);
354 }
355
removeEqualityRange(unsigned start,unsigned end)356 void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) {
357 if (start >= end)
358 return;
359 equalities.removeRows(start, end - start);
360 }
361
removeInequalityRange(unsigned start,unsigned end)362 void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) {
363 if (start >= end)
364 return;
365 inequalities.removeRows(start, end - start);
366 }
367
swapVar(unsigned posA,unsigned posB)368 void IntegerRelation::swapVar(unsigned posA, unsigned posB) {
369 assert(posA < getNumVars() && "invalid position A");
370 assert(posB < getNumVars() && "invalid position B");
371
372 if (posA == posB)
373 return;
374
375 inequalities.swapColumns(posA, posB);
376 equalities.swapColumns(posA, posB);
377 }
378
clearConstraints()379 void IntegerRelation::clearConstraints() {
380 equalities.resizeVertically(0);
381 inequalities.resizeVertically(0);
382 }
383
384 /// Gather all lower and upper bounds of the variable at `pos`, and
385 /// optionally any equalities on it. In addition, the bounds are to be
386 /// independent of variables in position range [`offset`, `offset` + `num`).
getLowerAndUpperBoundIndices(unsigned pos,SmallVectorImpl<unsigned> * lbIndices,SmallVectorImpl<unsigned> * ubIndices,SmallVectorImpl<unsigned> * eqIndices,unsigned offset,unsigned num) const387 void IntegerRelation::getLowerAndUpperBoundIndices(
388 unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
389 SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices,
390 unsigned offset, unsigned num) const {
391 assert(pos < getNumVars() && "invalid position");
392 assert(offset + num < getNumCols() && "invalid range");
393
394 // Checks for a constraint that has a non-zero coeff for the variables in
395 // the position range [offset, offset + num) while ignoring `pos`.
396 auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
397 unsigned c, f;
398 auto cst = isEq ? getEquality(r) : getInequality(r);
399 for (c = offset, f = offset + num; c < f; ++c) {
400 if (c == pos)
401 continue;
402 if (cst[c] != 0)
403 break;
404 }
405 return c < f;
406 };
407
408 // Gather all lower bounds and upper bounds of the variable. Since the
409 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
410 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
411 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
412 // The bounds are to be independent of [offset, offset + num) columns.
413 if (containsConstraintDependentOnRange(r, /*isEq=*/false))
414 continue;
415 if (atIneq(r, pos) >= 1) {
416 // Lower bound.
417 lbIndices->push_back(r);
418 } else if (atIneq(r, pos) <= -1) {
419 // Upper bound.
420 ubIndices->push_back(r);
421 }
422 }
423
424 // An equality is both a lower and upper bound. Record any equalities
425 // involving the pos^th variable.
426 if (!eqIndices)
427 return;
428
429 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
430 if (atEq(r, pos) == 0)
431 continue;
432 if (containsConstraintDependentOnRange(r, /*isEq=*/true))
433 continue;
434 eqIndices->push_back(r);
435 }
436 }
437
hasConsistentState() const438 bool IntegerRelation::hasConsistentState() const {
439 if (!inequalities.hasConsistentState())
440 return false;
441 if (!equalities.hasConsistentState())
442 return false;
443 return true;
444 }
445
setAndEliminate(unsigned pos,ArrayRef<int64_t> values)446 void IntegerRelation::setAndEliminate(unsigned pos, ArrayRef<int64_t> values) {
447 if (values.empty())
448 return;
449 assert(pos + values.size() <= getNumVars() &&
450 "invalid position or too many values");
451 // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
452 // constant term and removing the var x_j. We do this for all the vars
453 // pos, pos + 1, ... pos + values.size() - 1.
454 unsigned constantColPos = getNumCols() - 1;
455 for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
456 inequalities.addToColumn(i + pos, constantColPos, values[i]);
457 for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
458 equalities.addToColumn(i + pos, constantColPos, values[i]);
459 removeVarRange(pos, pos + values.size());
460 }
461
clearAndCopyFrom(const IntegerRelation & other)462 void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) {
463 *this = other;
464 }
465
466 // Searches for a constraint with a non-zero coefficient at `colIdx` in
467 // equality (isEq=true) or inequality (isEq=false) constraints.
468 // Returns true and sets row found in search in `rowIdx`, false otherwise.
findConstraintWithNonZeroAt(unsigned colIdx,bool isEq,unsigned * rowIdx) const469 bool IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq,
470 unsigned *rowIdx) const {
471 assert(colIdx < getNumCols() && "position out of bounds");
472 auto at = [&](unsigned rowIdx) -> int64_t {
473 return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
474 };
475 unsigned e = isEq ? getNumEqualities() : getNumInequalities();
476 for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
477 if (at(*rowIdx) != 0) {
478 return true;
479 }
480 }
481 return false;
482 }
483
normalizeConstraintsByGCD()484 void IntegerRelation::normalizeConstraintsByGCD() {
485 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
486 equalities.normalizeRow(i);
487 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
488 inequalities.normalizeRow(i);
489 }
490
hasInvalidConstraint() const491 bool IntegerRelation::hasInvalidConstraint() const {
492 assert(hasConsistentState());
493 auto check = [&](bool isEq) -> bool {
494 unsigned numCols = getNumCols();
495 unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
496 for (unsigned i = 0, e = numRows; i < e; ++i) {
497 unsigned j;
498 for (j = 0; j < numCols - 1; ++j) {
499 int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
500 // Skip rows with non-zero variable coefficients.
501 if (v != 0)
502 break;
503 }
504 if (j < numCols - 1) {
505 continue;
506 }
507 // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
508 // Example invalid constraints include: '1 == 0' or '-1 >= 0'
509 int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
510 if ((isEq && v != 0) || (!isEq && v < 0)) {
511 return true;
512 }
513 }
514 return false;
515 };
516 if (check(/*isEq=*/true))
517 return true;
518 return check(/*isEq=*/false);
519 }
520
521 /// Eliminate variable from constraint at `rowIdx` based on coefficient at
522 /// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
523 /// updated as they have already been eliminated.
eliminateFromConstraint(IntegerRelation * constraints,unsigned rowIdx,unsigned pivotRow,unsigned pivotCol,unsigned elimColStart,bool isEq)524 static void eliminateFromConstraint(IntegerRelation *constraints,
525 unsigned rowIdx, unsigned pivotRow,
526 unsigned pivotCol, unsigned elimColStart,
527 bool isEq) {
528 // Skip if equality 'rowIdx' if same as 'pivotRow'.
529 if (isEq && rowIdx == pivotRow)
530 return;
531 auto at = [&](unsigned i, unsigned j) -> int64_t {
532 return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
533 };
534 int64_t leadCoeff = at(rowIdx, pivotCol);
535 // Skip if leading coefficient at 'rowIdx' is already zero.
536 if (leadCoeff == 0)
537 return;
538 int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
539 int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
540 int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
541 int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
542 int64_t rowMultiplier = lcm / std::abs(leadCoeff);
543
544 unsigned numCols = constraints->getNumCols();
545 for (unsigned j = 0; j < numCols; ++j) {
546 // Skip updating column 'j' if it was just eliminated.
547 if (j >= elimColStart && j < pivotCol)
548 continue;
549 int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
550 rowMultiplier * at(rowIdx, j);
551 isEq ? constraints->atEq(rowIdx, j) = v
552 : constraints->atIneq(rowIdx, j) = v;
553 }
554 }
555
556 /// Returns the position of the variable that has the minimum <number of lower
557 /// bounds> times <number of upper bounds> from the specified range of
558 /// variables [start, end). It is often best to eliminate in the increasing
559 /// order of these counts when doing Fourier-Motzkin elimination since FM adds
560 /// that many new constraints.
getBestVarToEliminate(const IntegerRelation & cst,unsigned start,unsigned end)561 static unsigned getBestVarToEliminate(const IntegerRelation &cst,
562 unsigned start, unsigned end) {
563 assert(start < cst.getNumVars() && end < cst.getNumVars() + 1);
564
565 auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
566 unsigned numLb = 0;
567 unsigned numUb = 0;
568 for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
569 if (cst.atIneq(r, pos) > 0) {
570 ++numLb;
571 } else if (cst.atIneq(r, pos) < 0) {
572 ++numUb;
573 }
574 }
575 return numLb * numUb;
576 };
577
578 unsigned minLoc = start;
579 unsigned min = getProductOfNumLowerUpperBounds(start);
580 for (unsigned c = start + 1; c < end; c++) {
581 unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
582 if (numLbUbProduct < min) {
583 min = numLbUbProduct;
584 minLoc = c;
585 }
586 }
587 return minLoc;
588 }
589
590 // Checks for emptiness of the set by eliminating variables successively and
591 // using the GCD test (on all equality constraints) and checking for trivially
592 // invalid constraints. Returns 'true' if the constraint system is found to be
593 // empty; false otherwise.
isEmpty() const594 bool IntegerRelation::isEmpty() const {
595 if (isEmptyByGCDTest() || hasInvalidConstraint())
596 return true;
597
598 IntegerRelation tmpCst(*this);
599
600 // First, eliminate as many local variables as possible using equalities.
601 tmpCst.removeRedundantLocalVars();
602 if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
603 return true;
604
605 // Eliminate as many variables as possible using Gaussian elimination.
606 unsigned currentPos = 0;
607 while (currentPos < tmpCst.getNumVars()) {
608 tmpCst.gaussianEliminateVars(currentPos, tmpCst.getNumVars());
609 ++currentPos;
610 // We check emptiness through trivial checks after eliminating each ID to
611 // detect emptiness early. Since the checks isEmptyByGCDTest() and
612 // hasInvalidConstraint() are linear time and single sweep on the constraint
613 // buffer, this appears reasonable - but can optimize in the future.
614 if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
615 return true;
616 }
617
618 // Eliminate the remaining using FM.
619 for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) {
620 tmpCst.fourierMotzkinEliminate(
621 getBestVarToEliminate(tmpCst, 0, tmpCst.getNumVars()));
622 // Check for a constraint explosion. This rarely happens in practice, but
623 // this check exists as a safeguard against improperly constructed
624 // constraint systems or artificially created arbitrarily complex systems
625 // that aren't the intended use case for IntegerRelation. This is
626 // needed since FM has a worst case exponential complexity in theory.
627 if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) {
628 LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
629 return false;
630 }
631
632 // FM wouldn't have modified the equalities in any way. So no need to again
633 // run GCD test. Check for trivial invalid constraints.
634 if (tmpCst.hasInvalidConstraint())
635 return true;
636 }
637 return false;
638 }
639
640 // Runs the GCD test on all equality constraints. Returns 'true' if this test
641 // fails on any equality. Returns 'false' otherwise.
642 // This test can be used to disprove the existence of a solution. If it returns
643 // true, no integer solution to the equality constraints can exist.
644 //
645 // GCD test definition:
646 //
647 // The equality constraint:
648 //
649 // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
650 //
651 // has an integer solution iff:
652 //
653 // GCD of c_1, c_2, ..., c_n divides c_0.
654 //
isEmptyByGCDTest() const655 bool IntegerRelation::isEmptyByGCDTest() const {
656 assert(hasConsistentState());
657 unsigned numCols = getNumCols();
658 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
659 uint64_t gcd = std::abs(atEq(i, 0));
660 for (unsigned j = 1; j < numCols - 1; ++j) {
661 gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
662 }
663 int64_t v = std::abs(atEq(i, numCols - 1));
664 if (gcd > 0 && (v % gcd != 0)) {
665 return true;
666 }
667 }
668 return false;
669 }
670
671 // Returns a matrix where each row is a vector along which the polytope is
672 // bounded. The span of the returned vectors is guaranteed to contain all
673 // such vectors. The returned vectors are NOT guaranteed to be linearly
674 // independent. This function should not be called on empty sets.
675 //
676 // It is sufficient to check the perpendiculars of the constraints, as the set
677 // of perpendiculars which are bounded must span all bounded directions.
getBoundedDirections() const678 Matrix IntegerRelation::getBoundedDirections() const {
679 // Note that it is necessary to add the equalities too (which the constructor
680 // does) even though we don't need to check if they are bounded; whether an
681 // inequality is bounded or not depends on what other constraints, including
682 // equalities, are present.
683 Simplex simplex(*this);
684
685 assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
686 "direction is bounded in an empty set.");
687
688 SmallVector<unsigned, 8> boundedIneqs;
689 // The constructor adds the inequalities to the simplex first, so this
690 // processes all the inequalities.
691 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
692 if (simplex.isBoundedAlongConstraint(i))
693 boundedIneqs.push_back(i);
694 }
695
696 // The direction vector is given by the coefficients and does not include the
697 // constant term, so the matrix has one fewer column.
698 unsigned dirsNumCols = getNumCols() - 1;
699 Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
700
701 // Copy the bounded inequalities.
702 unsigned row = 0;
703 for (unsigned i : boundedIneqs) {
704 for (unsigned col = 0; col < dirsNumCols; ++col)
705 dirs(row, col) = atIneq(i, col);
706 ++row;
707 }
708
709 // Copy the equalities. All the equalities' perpendiculars are bounded.
710 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
711 for (unsigned col = 0; col < dirsNumCols; ++col)
712 dirs(row, col) = atEq(i, col);
713 ++row;
714 }
715
716 return dirs;
717 }
718
isIntegerEmpty() const719 bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); }
720
721 /// Let this set be S. If S is bounded then we directly call into the GBR
722 /// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
723 /// vectors v such that S extends to infinity along v or -v. In this case we
724 /// use an algorithm described in the integer set library (isl) manual and used
725 /// by the isl_set_sample function in that library. The algorithm is:
726 ///
727 /// 1) Apply a unimodular transform T to S to obtain S*T, such that all
728 /// dimensions in which S*T is bounded lie in the linear span of a prefix of the
729 /// dimensions.
730 ///
731 /// 2) Construct a set B by removing all constraints that involve
732 /// the unbounded dimensions and then deleting the unbounded dimensions. Note
733 /// that B is a Bounded set.
734 ///
735 /// 3) Try to obtain a sample from B using the GBR sampling
736 /// algorithm. If no sample is found, return that S is empty.
737 ///
738 /// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
739 /// C. C is a full-dimensional Cone and always contains a sample.
740 ///
741 /// 5) Obtain an integer sample from C.
742 ///
743 /// 6) Return T*v, where v is the concatenation of the samples from B and C.
744 ///
745 /// The following is a sketch of a proof that
746 /// a) If the algorithm returns empty, then S is empty.
747 /// b) If the algorithm returns a sample, it is a valid sample in S.
748 ///
749 /// The algorithm returns empty only if B is empty, in which case S*T is
750 /// certainly empty since B was obtained by removing constraints and then
751 /// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
752 /// v is in S*T iff T*v is in S. So in this case, since
753 /// S*T is empty, S is empty too.
754 ///
755 /// Otherwise, the algorithm substitutes the sample from B into S*T. All the
756 /// constraints of S*T that did not involve unbounded dimensions are satisfied
757 /// by this substitution. All dimensions in the linear span of the dimensions
758 /// outside the prefix are unbounded in S*T (step 1). Substituting values for
759 /// the bounded dimensions cannot make these dimensions bounded, and these are
760 /// the only remaining dimensions in C, so C is unbounded along every vector (in
761 /// the positive or negative direction, or both). C is hence a full-dimensional
762 /// cone and therefore always contains an integer point.
763 ///
764 /// Concatenating the samples from B and C gives a sample v in S*T, so the
765 /// returned sample T*v is a sample in S.
findIntegerSample() const766 Optional<SmallVector<int64_t, 8>> IntegerRelation::findIntegerSample() const {
767 // First, try the GCD test heuristic.
768 if (isEmptyByGCDTest())
769 return {};
770
771 Simplex simplex(*this);
772 if (simplex.isEmpty())
773 return {};
774
775 // For a bounded set, we directly call into the GBR sampling algorithm.
776 if (!simplex.isUnbounded())
777 return simplex.findIntegerSample();
778
779 // The set is unbounded. We cannot directly use the GBR algorithm.
780 //
781 // m is a matrix containing, in each row, a vector in which S is
782 // bounded, such that the linear span of all these dimensions contains all
783 // bounded dimensions in S.
784 Matrix m = getBoundedDirections();
785 // In column echelon form, each row of m occupies only the first rank(m)
786 // columns and has zeros on the other columns. The transform T that brings S
787 // to column echelon form is unimodular as well, so this is a suitable
788 // transform to use in step 1 of the algorithm.
789 std::pair<unsigned, LinearTransform> result =
790 LinearTransform::makeTransformToColumnEchelon(std::move(m));
791 const LinearTransform &transform = result.second;
792 // 1) Apply T to S to obtain S*T.
793 IntegerRelation transformedSet = transform.applyTo(*this);
794
795 // 2) Remove the unbounded dimensions and constraints involving them to
796 // obtain a bounded set.
797 IntegerRelation boundedSet(transformedSet);
798 unsigned numBoundedDims = result.first;
799 unsigned numUnboundedDims = getNumVars() - numBoundedDims;
800 removeConstraintsInvolvingVarRange(boundedSet, numBoundedDims,
801 numUnboundedDims);
802 boundedSet.removeVarRange(numBoundedDims, boundedSet.getNumVars());
803
804 // 3) Try to obtain a sample from the bounded set.
805 Optional<SmallVector<int64_t, 8>> boundedSample =
806 Simplex(boundedSet).findIntegerSample();
807 if (!boundedSample)
808 return {};
809 assert(boundedSet.containsPoint(*boundedSample) &&
810 "Simplex returned an invalid sample!");
811
812 // 4) Substitute the values of the bounded dimensions into S*T to obtain a
813 // full-dimensional cone, which necessarily contains an integer sample.
814 transformedSet.setAndEliminate(0, *boundedSample);
815 IntegerRelation &cone = transformedSet;
816
817 // 5) Obtain an integer sample from the cone.
818 //
819 // We shrink the cone such that for any rational point in the shrunken cone,
820 // rounding up each of the point's coordinates produces a point that still
821 // lies in the original cone.
822 //
823 // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
824 // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
825 // shrunken cone will have the inequality tightened by some amount s, such
826 // that if x satisfies the shrunken cone's tightened inequality, then x + e
827 // satisfies the original inequality, i.e.,
828 //
829 // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
830 //
831 // for any e_i values in [0, 1). In fact, we will handle the slightly more
832 // general case where e_i can be in [0, 1]. For example, consider the
833 // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
834 // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
835 // is minimized when we add 1 to the x_i with negative coefficient a_i and
836 // keep the other x_i the same. In the example, we would get x = (3, 1, 1),
837 // changing the value of the LHS by -3 + -7 = -10.
838 //
839 // In general, the value of the LHS can change by at most the sum of the
840 // negative a_i, so we accomodate this by shifting the inequality by this
841 // amount for the shrunken cone.
842 for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
843 for (unsigned j = 0; j < cone.getNumVars(); ++j) {
844 int64_t coeff = cone.atIneq(i, j);
845 if (coeff < 0)
846 cone.atIneq(i, cone.getNumVars()) += coeff;
847 }
848 }
849
850 // Obtain an integer sample in the cone by rounding up a rational point from
851 // the shrunken cone. Shrinking the cone amounts to shifting its apex
852 // "inwards" without changing its "shape"; the shrunken cone is still a
853 // full-dimensional cone and is hence non-empty.
854 Simplex shrunkenConeSimplex(cone);
855 assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
856
857 // The sample will always exist since the shrunken cone is non-empty.
858 SmallVector<Fraction, 8> shrunkenConeSample =
859 *shrunkenConeSimplex.getRationalSample();
860
861 SmallVector<int64_t, 8> coneSample(llvm::map_range(shrunkenConeSample, ceil));
862
863 // 6) Return transform * concat(boundedSample, coneSample).
864 SmallVector<int64_t, 8> &sample = *boundedSample;
865 sample.append(coneSample.begin(), coneSample.end());
866 return transform.postMultiplyWithColumn(sample);
867 }
868
869 /// Helper to evaluate an affine expression at a point.
870 /// The expression is a list of coefficients for the dimensions followed by the
871 /// constant term.
valueAt(ArrayRef<int64_t> expr,ArrayRef<int64_t> point)872 static int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) {
873 assert(expr.size() == 1 + point.size() &&
874 "Dimensionalities of point and expression don't match!");
875 int64_t value = expr.back();
876 for (unsigned i = 0; i < point.size(); ++i)
877 value += expr[i] * point[i];
878 return value;
879 }
880
881 /// A point satisfies an equality iff the value of the equality at the
882 /// expression is zero, and it satisfies an inequality iff the value of the
883 /// inequality at that point is non-negative.
containsPoint(ArrayRef<int64_t> point) const884 bool IntegerRelation::containsPoint(ArrayRef<int64_t> point) const {
885 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
886 if (valueAt(getEquality(i), point) != 0)
887 return false;
888 }
889 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
890 if (valueAt(getInequality(i), point) < 0)
891 return false;
892 }
893 return true;
894 }
895
896 /// Just substitute the values given and check if an integer sample exists for
897 /// the local vars.
898 ///
899 /// TODO: this could be made more efficient by handling divisions separately.
900 /// Instead of finding an integer sample over all the locals, we can first
901 /// compute the values of the locals that have division representations and
902 /// only use the integer emptiness check for the locals that don't have this.
903 /// Handling this correctly requires ordering the divs, though.
904 Optional<SmallVector<int64_t, 8>>
containsPointNoLocal(ArrayRef<int64_t> point) const905 IntegerRelation::containsPointNoLocal(ArrayRef<int64_t> point) const {
906 assert(point.size() == getNumVars() - getNumLocalVars() &&
907 "Point should contain all vars except locals!");
908 assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() &&
909 "This function depends on locals being stored last!");
910 IntegerRelation copy = *this;
911 copy.setAndEliminate(0, point);
912 return copy.findIntegerSample();
913 }
914
915 DivisionRepr
getLocalReprs(std::vector<MaybeLocalRepr> * repr) const916 IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const {
917 SmallVector<bool, 8> foundRepr(getNumVars(), false);
918 for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i)
919 foundRepr[i] = true;
920
921 unsigned localOffset = getVarKindOffset(VarKind::Local);
922 DivisionRepr divs(getNumVars(), getNumLocalVars());
923 bool changed;
924 do {
925 // Each time changed is true, at end of this iteration, one or more local
926 // vars have been detected as floor divs.
927 changed = false;
928 for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) {
929 if (!foundRepr[i + localOffset]) {
930 MaybeLocalRepr res =
931 computeSingleVarRepr(*this, foundRepr, localOffset + i,
932 divs.getDividend(i), divs.getDenom(i));
933 if (!res) {
934 // No representation was found, so clear the representation and
935 // continue.
936 divs.clearRepr(i);
937 continue;
938 }
939 foundRepr[localOffset + i] = true;
940 if (repr)
941 (*repr)[i] = res;
942 changed = true;
943 }
944 }
945 } while (changed);
946
947 return divs;
948 }
949
950 /// Tightens inequalities given that we are dealing with integer spaces. This is
951 /// analogous to the GCD test but applied to inequalities. The constant term can
952 /// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
953 /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
954 /// fast method - linear in the number of coefficients.
955 // Example on how this affects practical cases: consider the scenario:
956 // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
957 // j >= 100 instead of the tighter (exact) j >= 128.
gcdTightenInequalities()958 void IntegerRelation::gcdTightenInequalities() {
959 unsigned numCols = getNumCols();
960 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
961 // Normalize the constraint and tighten the constant term by the GCD.
962 int64_t gcd = inequalities.normalizeRow(i, getNumCols() - 1);
963 if (gcd > 1)
964 atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcd);
965 }
966 }
967
968 // Eliminates all variable variables in column range [posStart, posLimit).
969 // Returns the number of variables eliminated.
gaussianEliminateVars(unsigned posStart,unsigned posLimit)970 unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart,
971 unsigned posLimit) {
972 // Return if variable positions to eliminate are out of range.
973 assert(posLimit <= getNumVars());
974 assert(hasConsistentState());
975
976 if (posStart >= posLimit)
977 return 0;
978
979 gcdTightenInequalities();
980
981 unsigned pivotCol = 0;
982 for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
983 // Find a row which has a non-zero coefficient in column 'j'.
984 unsigned pivotRow;
985 if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true, &pivotRow)) {
986 // No pivot row in equalities with non-zero at 'pivotCol'.
987 if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false, &pivotRow)) {
988 // If inequalities are also non-zero in 'pivotCol', it can be
989 // eliminated.
990 continue;
991 }
992 break;
993 }
994
995 // Eliminate variable at 'pivotCol' from each equality row.
996 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
997 eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
998 /*isEq=*/true);
999 equalities.normalizeRow(i);
1000 }
1001
1002 // Eliminate variable at 'pivotCol' from each inequality row.
1003 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
1004 eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
1005 /*isEq=*/false);
1006 inequalities.normalizeRow(i);
1007 }
1008 removeEquality(pivotRow);
1009 gcdTightenInequalities();
1010 }
1011 // Update position limit based on number eliminated.
1012 posLimit = pivotCol;
1013 // Remove eliminated columns from all constraints.
1014 removeVarRange(posStart, posLimit);
1015 return posLimit - posStart;
1016 }
1017
1018 // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
1019 // to check if a constraint is redundant.
removeRedundantInequalities()1020 void IntegerRelation::removeRedundantInequalities() {
1021 SmallVector<bool, 32> redun(getNumInequalities(), false);
1022 // To check if an inequality is redundant, we replace the inequality by its
1023 // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
1024 // system is empty. If it is, the inequality is redundant.
1025 IntegerRelation tmpCst(*this);
1026 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1027 // Change the inequality to its complement.
1028 tmpCst.inequalities.negateRow(r);
1029 --tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
1030 if (tmpCst.isEmpty()) {
1031 redun[r] = true;
1032 // Zero fill the redundant inequality.
1033 inequalities.fillRow(r, /*value=*/0);
1034 tmpCst.inequalities.fillRow(r, /*value=*/0);
1035 } else {
1036 // Reverse the change (to avoid recreating tmpCst each time).
1037 ++tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
1038 tmpCst.inequalities.negateRow(r);
1039 }
1040 }
1041
1042 unsigned pos = 0;
1043 for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
1044 if (!redun[r])
1045 inequalities.copyRow(r, pos++);
1046 }
1047 inequalities.resizeVertically(pos);
1048 }
1049
1050 // A more complex check to eliminate redundant inequalities and equalities. Uses
1051 // Simplex to check if a constraint is redundant.
removeRedundantConstraints()1052 void IntegerRelation::removeRedundantConstraints() {
1053 // First, we run gcdTightenInequalities. This allows us to catch some
1054 // constraints which are not redundant when considering rational solutions
1055 // but are redundant in terms of integer solutions.
1056 gcdTightenInequalities();
1057 Simplex simplex(*this);
1058 simplex.detectRedundant();
1059
1060 unsigned pos = 0;
1061 unsigned numIneqs = getNumInequalities();
1062 // Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
1063 // the first constraints added are the inequalities.
1064 for (unsigned r = 0; r < numIneqs; r++) {
1065 if (!simplex.isMarkedRedundant(r))
1066 inequalities.copyRow(r, pos++);
1067 }
1068 inequalities.resizeVertically(pos);
1069
1070 // Scan to get rid of all equalities marked redundant, in-place. In Simplex,
1071 // after the inequalities, a pair of constraints for each equality is added.
1072 // An equality is redundant if both the inequalities in its pair are
1073 // redundant.
1074 pos = 0;
1075 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1076 if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
1077 simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
1078 equalities.copyRow(r, pos++);
1079 }
1080 equalities.resizeVertically(pos);
1081 }
1082
computeVolume() const1083 Optional<uint64_t> IntegerRelation::computeVolume() const {
1084 assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
1085
1086 Simplex simplex(*this);
1087 // If the polytope is rationally empty, there are certainly no integer
1088 // points.
1089 if (simplex.isEmpty())
1090 return 0;
1091
1092 // Just find the maximum and minimum integer value of each non-local var
1093 // separately, thus finding the number of integer values each such var can
1094 // take. Multiplying these together gives a valid overapproximation of the
1095 // number of integer points in the relation. The result this gives is
1096 // equivalent to projecting (rationally) the relation onto its non-local vars
1097 // and returning the number of integer points in a minimal axis-parallel
1098 // hyperrectangular overapproximation of that.
1099 //
1100 // We also handle the special case where one dimension is unbounded and
1101 // another dimension can take no integer values. In this case, the volume is
1102 // zero.
1103 //
1104 // If there is no such empty dimension, if any dimension is unbounded we
1105 // just return the result as unbounded.
1106 uint64_t count = 1;
1107 SmallVector<int64_t, 8> dim(getNumVars() + 1);
1108 bool hasUnboundedVar = false;
1109 for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) {
1110 dim[i] = 1;
1111 MaybeOptimum<int64_t> min, max;
1112 std::tie(min, max) = simplex.computeIntegerBounds(dim);
1113 dim[i] = 0;
1114
1115 assert((!min.isEmpty() && !max.isEmpty()) &&
1116 "Polytope should be rationally non-empty!");
1117
1118 // One of the dimensions is unbounded. Note this fact. We will return
1119 // unbounded if none of the other dimensions makes the volume zero.
1120 if (min.isUnbounded() || max.isUnbounded()) {
1121 hasUnboundedVar = true;
1122 continue;
1123 }
1124
1125 // In this case there are no valid integer points and the volume is
1126 // definitely zero.
1127 if (min.getBoundedOptimum() > max.getBoundedOptimum())
1128 return 0;
1129
1130 count *= (*max - *min + 1);
1131 }
1132
1133 if (count == 0)
1134 return 0;
1135 if (hasUnboundedVar)
1136 return {};
1137 return count;
1138 }
1139
eliminateRedundantLocalVar(unsigned posA,unsigned posB)1140 void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) {
1141 assert(posA < getNumLocalVars() && "Invalid local var position");
1142 assert(posB < getNumLocalVars() && "Invalid local var position");
1143
1144 unsigned localOffset = getVarKindOffset(VarKind::Local);
1145 posA += localOffset;
1146 posB += localOffset;
1147 inequalities.addToColumn(posB, posA, 1);
1148 equalities.addToColumn(posB, posA, 1);
1149 removeVar(posB);
1150 }
1151
1152 /// Adds additional local ids to the sets such that they both have the union
1153 /// of the local ids in each set, without changing the set of points that
1154 /// lie in `this` and `other`.
1155 ///
1156 /// To detect local ids that always take the same value, each local id is
1157 /// represented as a floordiv with constant denominator in terms of other ids.
1158 /// After extracting these divisions, local ids in `other` with the same
1159 /// division representation as some other local id in any set are considered
1160 /// duplicate and are merged.
1161 ///
1162 /// It is possible that division representation for some local id cannot be
1163 /// obtained, and thus these local ids are not considered for detecting
1164 /// duplicates.
mergeLocalVars(IntegerRelation & other)1165 unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) {
1166 IntegerRelation &relA = *this;
1167 IntegerRelation &relB = other;
1168
1169 unsigned oldALocals = relA.getNumLocalVars();
1170
1171 // Merge function that merges the local variables in both sets by treating
1172 // them as the same variable.
1173 auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool {
1174 // We only merge from local at pos j to local at pos i, where j > i.
1175 if (i >= j)
1176 return false;
1177
1178 // If i < oldALocals, we are trying to merge duplicate divs. Since we do not
1179 // want to merge duplicates in A, we ignore this call.
1180 if (j < oldALocals)
1181 return false;
1182
1183 // Merge local at pos j into local at position i.
1184 relA.eliminateRedundantLocalVar(i, j);
1185 relB.eliminateRedundantLocalVar(i, j);
1186 return true;
1187 };
1188
1189 presburger::mergeLocalVars(*this, other, merge);
1190
1191 // Since we do not remove duplicate divisions in relA, this is guranteed to be
1192 // non-negative.
1193 return relA.getNumLocalVars() - oldALocals;
1194 }
1195
hasOnlyDivLocals() const1196 bool IntegerRelation::hasOnlyDivLocals() const {
1197 return getLocalReprs().hasAllReprs();
1198 }
1199
removeDuplicateDivs()1200 void IntegerRelation::removeDuplicateDivs() {
1201 DivisionRepr divs = getLocalReprs();
1202 auto merge = [this](unsigned i, unsigned j) -> bool {
1203 eliminateRedundantLocalVar(i, j);
1204 return true;
1205 };
1206 divs.removeDuplicateDivs(merge);
1207 }
1208
1209 /// Removes local variables using equalities. Each equality is checked if it
1210 /// can be reduced to the form: `e = affine-expr`, where `e` is a local
1211 /// variable and `affine-expr` is an affine expression not containing `e`.
1212 /// If an equality satisfies this form, the local variable is replaced in
1213 /// each constraint and then removed. The equality used to replace this local
1214 /// variable is also removed.
removeRedundantLocalVars()1215 void IntegerRelation::removeRedundantLocalVars() {
1216 // Normalize the equality constraints to reduce coefficients of local
1217 // variables to 1 wherever possible.
1218 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
1219 equalities.normalizeRow(i);
1220
1221 while (true) {
1222 unsigned i, e, j, f;
1223 for (i = 0, e = getNumEqualities(); i < e; ++i) {
1224 // Find a local variable to eliminate using ith equality.
1225 for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j)
1226 if (std::abs(atEq(i, j)) == 1)
1227 break;
1228
1229 // Local variable can be eliminated using ith equality.
1230 if (j < f)
1231 break;
1232 }
1233
1234 // No equality can be used to eliminate a local variable.
1235 if (i == e)
1236 break;
1237
1238 // Use the ith equality to simplify other equalities. If any changes
1239 // are made to an equality constraint, it is normalized by GCD.
1240 for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
1241 if (atEq(k, j) != 0) {
1242 eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
1243 equalities.normalizeRow(k);
1244 }
1245 }
1246
1247 // Use the ith equality to simplify inequalities.
1248 for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
1249 eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
1250
1251 // Remove the ith equality and the found local variable.
1252 removeVar(j);
1253 removeEquality(i);
1254 }
1255 }
1256
convertVarKind(VarKind srcKind,unsigned varStart,unsigned varLimit,VarKind dstKind,unsigned pos)1257 void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart,
1258 unsigned varLimit, VarKind dstKind,
1259 unsigned pos) {
1260 assert(varLimit <= getNumVarKind(srcKind) && "Invalid id range");
1261
1262 if (varStart >= varLimit)
1263 return;
1264
1265 // Append new local variables corresponding to the dimensions to be converted.
1266 unsigned convertCount = varLimit - varStart;
1267 unsigned newVarsBegin = insertVar(dstKind, pos, convertCount);
1268
1269 // Swap the new local variables with dimensions.
1270 //
1271 // Essentially, this moves the information corresponding to the specified ids
1272 // of kind `srcKind` to the `convertCount` newly created ids of kind
1273 // `dstKind`. In particular, this moves the columns in the constraint
1274 // matrices, and zeros out the initially occupied columns (because the newly
1275 // created ids we're swapping with were zero-initialized).
1276 unsigned offset = getVarKindOffset(srcKind);
1277 for (unsigned i = 0; i < convertCount; ++i)
1278 swapVar(offset + varStart + i, newVarsBegin + i);
1279
1280 // Complete the move by deleting the initially occupied columns.
1281 removeVarRange(srcKind, varStart, varLimit);
1282 }
1283
addBound(BoundType type,unsigned pos,int64_t value)1284 void IntegerRelation::addBound(BoundType type, unsigned pos, int64_t value) {
1285 assert(pos < getNumCols());
1286 if (type == BoundType::EQ) {
1287 unsigned row = equalities.appendExtraRow();
1288 equalities(row, pos) = 1;
1289 equalities(row, getNumCols() - 1) = -value;
1290 } else {
1291 unsigned row = inequalities.appendExtraRow();
1292 inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
1293 inequalities(row, getNumCols() - 1) =
1294 type == BoundType::LB ? -value : value;
1295 }
1296 }
1297
addBound(BoundType type,ArrayRef<int64_t> expr,int64_t value)1298 void IntegerRelation::addBound(BoundType type, ArrayRef<int64_t> expr,
1299 int64_t value) {
1300 assert(type != BoundType::EQ && "EQ not implemented");
1301 assert(expr.size() == getNumCols());
1302 unsigned row = inequalities.appendExtraRow();
1303 for (unsigned i = 0, e = expr.size(); i < e; ++i)
1304 inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
1305 inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
1306 type == BoundType::LB ? -value : value;
1307 }
1308
1309 /// Adds a new local variable as the floordiv of an affine function of other
1310 /// variables, the coefficients of which are provided in 'dividend' and with
1311 /// respect to a positive constant 'divisor'. Two constraints are added to the
1312 /// system to capture equivalence with the floordiv.
1313 /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
addLocalFloorDiv(ArrayRef<int64_t> dividend,int64_t divisor)1314 void IntegerRelation::addLocalFloorDiv(ArrayRef<int64_t> dividend,
1315 int64_t divisor) {
1316 assert(dividend.size() == getNumCols() && "incorrect dividend size");
1317 assert(divisor > 0 && "positive divisor expected");
1318
1319 appendVar(VarKind::Local);
1320
1321 SmallVector<int64_t, 8> dividendCopy(dividend.begin(), dividend.end());
1322 dividendCopy.insert(dividendCopy.end() - 1, 0);
1323 addInequality(
1324 getDivLowerBound(dividendCopy, divisor, dividendCopy.size() - 2));
1325 addInequality(
1326 getDivUpperBound(dividendCopy, divisor, dividendCopy.size() - 2));
1327 }
1328
1329 /// Finds an equality that equates the specified variable to a constant.
1330 /// Returns the position of the equality row. If 'symbolic' is set to true,
1331 /// symbols are also treated like a constant, i.e., an affine function of the
1332 /// symbols is also treated like a constant. Returns -1 if such an equality
1333 /// could not be found.
findEqualityToConstant(const IntegerRelation & cst,unsigned pos,bool symbolic=false)1334 static int findEqualityToConstant(const IntegerRelation &cst, unsigned pos,
1335 bool symbolic = false) {
1336 assert(pos < cst.getNumVars() && "invalid position");
1337 for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
1338 int64_t v = cst.atEq(r, pos);
1339 if (v * v != 1)
1340 continue;
1341 unsigned c;
1342 unsigned f = symbolic ? cst.getNumDimVars() : cst.getNumVars();
1343 // This checks for zeros in all positions other than 'pos' in [0, f)
1344 for (c = 0; c < f; c++) {
1345 if (c == pos)
1346 continue;
1347 if (cst.atEq(r, c) != 0) {
1348 // Dependent on another variable.
1349 break;
1350 }
1351 }
1352 if (c == f)
1353 // Equality is free of other variables.
1354 return r;
1355 }
1356 return -1;
1357 }
1358
constantFoldVar(unsigned pos)1359 LogicalResult IntegerRelation::constantFoldVar(unsigned pos) {
1360 assert(pos < getNumVars() && "invalid position");
1361 int rowIdx;
1362 if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
1363 return failure();
1364
1365 // atEq(rowIdx, pos) is either -1 or 1.
1366 assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
1367 int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
1368 setAndEliminate(pos, constVal);
1369 return success();
1370 }
1371
constantFoldVarRange(unsigned pos,unsigned num)1372 void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) {
1373 for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
1374 if (failed(constantFoldVar(t)))
1375 t++;
1376 }
1377 }
1378
1379 /// Returns a non-negative constant bound on the extent (upper bound - lower
1380 /// bound) of the specified variable if it is found to be a constant; returns
1381 /// None if it's not a constant. This methods treats symbolic variables
1382 /// specially, i.e., it looks for constant differences between affine
1383 /// expressions involving only the symbolic variables. See comments at
1384 /// function definition for example. 'lb', if provided, is set to the lower
1385 /// bound associated with the constant difference. Note that 'lb' is purely
1386 /// symbolic and thus will contain the coefficients of the symbolic variables
1387 /// and the constant coefficient.
1388 // Egs: 0 <= i <= 15, return 16.
1389 // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
1390 // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
1391 // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
1392 // ceil(s0 - 7 / 8) = floor(s0 / 8)).
getConstantBoundOnDimSize(unsigned pos,SmallVectorImpl<int64_t> * lb,int64_t * boundFloorDivisor,SmallVectorImpl<int64_t> * ub,unsigned * minLbPos,unsigned * minUbPos) const1393 Optional<int64_t> IntegerRelation::getConstantBoundOnDimSize(
1394 unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *boundFloorDivisor,
1395 SmallVectorImpl<int64_t> *ub, unsigned *minLbPos,
1396 unsigned *minUbPos) const {
1397 assert(pos < getNumDimVars() && "Invalid variable position");
1398
1399 // Find an equality for 'pos'^th variable that equates it to some function
1400 // of the symbolic variables (+ constant).
1401 int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true);
1402 if (eqPos != -1) {
1403 auto eq = getEquality(eqPos);
1404 // If the equality involves a local var, punt for now.
1405 // TODO: this can be handled in the future by using the explicit
1406 // representation of the local vars.
1407 if (!std::all_of(eq.begin() + getNumDimAndSymbolVars(), eq.end() - 1,
1408 [](int64_t coeff) { return coeff == 0; }))
1409 return None;
1410
1411 // This variable can only take a single value.
1412 if (lb) {
1413 // Set lb to that symbolic value.
1414 lb->resize(getNumSymbolVars() + 1);
1415 if (ub)
1416 ub->resize(getNumSymbolVars() + 1);
1417 for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) {
1418 int64_t v = atEq(eqPos, pos);
1419 // atEq(eqRow, pos) is either -1 or 1.
1420 assert(v * v == 1);
1421 (*lb)[c] = v < 0 ? atEq(eqPos, getNumDimVars() + c) / -v
1422 : -atEq(eqPos, getNumDimVars() + c) / v;
1423 // Since this is an equality, ub = lb.
1424 if (ub)
1425 (*ub)[c] = (*lb)[c];
1426 }
1427 assert(boundFloorDivisor &&
1428 "both lb and divisor or none should be provided");
1429 *boundFloorDivisor = 1;
1430 }
1431 if (minLbPos)
1432 *minLbPos = eqPos;
1433 if (minUbPos)
1434 *minUbPos = eqPos;
1435 return 1;
1436 }
1437
1438 // Check if the variable appears at all in any of the inequalities.
1439 unsigned r, e;
1440 for (r = 0, e = getNumInequalities(); r < e; r++) {
1441 if (atIneq(r, pos) != 0)
1442 break;
1443 }
1444 if (r == e)
1445 // If it doesn't, there isn't a bound on it.
1446 return None;
1447
1448 // Positions of constraints that are lower/upper bounds on the variable.
1449 SmallVector<unsigned, 4> lbIndices, ubIndices;
1450
1451 // Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
1452 // the bounds can only involve symbolic (and local) variables. Since the
1453 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
1454 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
1455 getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
1456 /*eqIndices=*/nullptr, /*offset=*/0,
1457 /*num=*/getNumDimVars());
1458
1459 Optional<int64_t> minDiff = None;
1460 unsigned minLbPosition = 0, minUbPosition = 0;
1461 for (auto ubPos : ubIndices) {
1462 for (auto lbPos : lbIndices) {
1463 // Look for a lower bound and an upper bound that only differ by a
1464 // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
1465 // For example, if ii is the pos^th variable, we are looking for
1466 // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
1467 // minimum among all such constant differences is kept since that's the
1468 // constant bounding the extent of the pos^th variable.
1469 unsigned j, e;
1470 for (j = 0, e = getNumCols() - 1; j < e; j++)
1471 if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
1472 break;
1473 }
1474 if (j < getNumCols() - 1)
1475 continue;
1476 int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
1477 atIneq(lbPos, getNumCols() - 1) + 1,
1478 atIneq(lbPos, pos));
1479 // This bound is non-negative by definition.
1480 diff = std::max<int64_t>(diff, 0);
1481 if (minDiff == None || diff < minDiff) {
1482 minDiff = diff;
1483 minLbPosition = lbPos;
1484 minUbPosition = ubPos;
1485 }
1486 }
1487 }
1488 if (lb && minDiff) {
1489 // Set lb to the symbolic lower bound.
1490 lb->resize(getNumSymbolVars() + 1);
1491 if (ub)
1492 ub->resize(getNumSymbolVars() + 1);
1493 // The lower bound is the ceildiv of the lb constraint over the coefficient
1494 // of the variable at 'pos'. We express the ceildiv equivalently as a floor
1495 // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
1496 // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
1497 *boundFloorDivisor = atIneq(minLbPosition, pos);
1498 assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
1499 for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) {
1500 (*lb)[c] = -atIneq(minLbPosition, getNumDimVars() + c);
1501 }
1502 if (ub) {
1503 for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++)
1504 (*ub)[c] = atIneq(minUbPosition, getNumDimVars() + c);
1505 }
1506 // The lower bound leads to a ceildiv while the upper bound is a floordiv
1507 // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
1508 // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
1509 // the constant term for the lower bound.
1510 (*lb)[getNumSymbolVars()] += atIneq(minLbPosition, pos) - 1;
1511 }
1512 if (minLbPos)
1513 *minLbPos = minLbPosition;
1514 if (minUbPos)
1515 *minUbPos = minUbPosition;
1516 return minDiff;
1517 }
1518
1519 template <bool isLower>
1520 Optional<int64_t>
computeConstantLowerOrUpperBound(unsigned pos)1521 IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) {
1522 assert(pos < getNumVars() && "invalid position");
1523 // Project to 'pos'.
1524 projectOut(0, pos);
1525 projectOut(1, getNumVars() - 1);
1526 // Check if there's an equality equating the '0'^th variable to a constant.
1527 int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
1528 if (eqRowIdx != -1)
1529 // atEq(rowIdx, 0) is either -1 or 1.
1530 return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
1531
1532 // Check if the variable appears at all in any of the inequalities.
1533 unsigned r, e;
1534 for (r = 0, e = getNumInequalities(); r < e; r++) {
1535 if (atIneq(r, 0) != 0)
1536 break;
1537 }
1538 if (r == e)
1539 // If it doesn't, there isn't a bound on it.
1540 return None;
1541
1542 Optional<int64_t> minOrMaxConst = None;
1543
1544 // Take the max across all const lower bounds (or min across all constant
1545 // upper bounds).
1546 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1547 if (isLower) {
1548 if (atIneq(r, 0) <= 0)
1549 // Not a lower bound.
1550 continue;
1551 } else if (atIneq(r, 0) >= 0) {
1552 // Not an upper bound.
1553 continue;
1554 }
1555 unsigned c, f;
1556 for (c = 0, f = getNumCols() - 1; c < f; c++)
1557 if (c != 0 && atIneq(r, c) != 0)
1558 break;
1559 if (c < getNumCols() - 1)
1560 // Not a constant bound.
1561 continue;
1562
1563 int64_t boundConst =
1564 isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
1565 : mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
1566 if (isLower) {
1567 if (minOrMaxConst == None || boundConst > minOrMaxConst)
1568 minOrMaxConst = boundConst;
1569 } else {
1570 if (minOrMaxConst == None || boundConst < minOrMaxConst)
1571 minOrMaxConst = boundConst;
1572 }
1573 }
1574 return minOrMaxConst;
1575 }
1576
getConstantBound(BoundType type,unsigned pos) const1577 Optional<int64_t> IntegerRelation::getConstantBound(BoundType type,
1578 unsigned pos) const {
1579 if (type == BoundType::LB)
1580 return IntegerRelation(*this)
1581 .computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
1582 if (type == BoundType::UB)
1583 return IntegerRelation(*this)
1584 .computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
1585
1586 assert(type == BoundType::EQ && "expected EQ");
1587 Optional<int64_t> lb =
1588 IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>(
1589 pos);
1590 Optional<int64_t> ub =
1591 IntegerRelation(*this)
1592 .computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
1593 return (lb && ub && *lb == *ub) ? Optional<int64_t>(*ub) : None;
1594 }
1595
1596 // A simple (naive and conservative) check for hyper-rectangularity.
isHyperRectangular(unsigned pos,unsigned num) const1597 bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const {
1598 assert(pos < getNumCols() - 1);
1599 // Check for two non-zero coefficients in the range [pos, pos + sum).
1600 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1601 unsigned sum = 0;
1602 for (unsigned c = pos; c < pos + num; c++) {
1603 if (atIneq(r, c) != 0)
1604 sum++;
1605 }
1606 if (sum > 1)
1607 return false;
1608 }
1609 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1610 unsigned sum = 0;
1611 for (unsigned c = pos; c < pos + num; c++) {
1612 if (atEq(r, c) != 0)
1613 sum++;
1614 }
1615 if (sum > 1)
1616 return false;
1617 }
1618 return true;
1619 }
1620
1621 /// Removes duplicate constraints, trivially true constraints, and constraints
1622 /// that can be detected as redundant as a result of differing only in their
1623 /// constant term part. A constraint of the form <non-negative constant> >= 0 is
1624 /// considered trivially true.
1625 // Uses a DenseSet to hash and detect duplicates followed by a linear scan to
1626 // remove duplicates in place.
removeTrivialRedundancy()1627 void IntegerRelation::removeTrivialRedundancy() {
1628 gcdTightenInequalities();
1629 normalizeConstraintsByGCD();
1630
1631 // A map used to detect redundancy stemming from constraints that only differ
1632 // in their constant term. The value stored is <row position, const term>
1633 // for a given row.
1634 SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>>
1635 rowsWithoutConstTerm;
1636 // To unique rows.
1637 SmallDenseSet<ArrayRef<int64_t>, 8> rowSet;
1638
1639 // Check if constraint is of the form <non-negative-constant> >= 0.
1640 auto isTriviallyValid = [&](unsigned r) -> bool {
1641 for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
1642 if (atIneq(r, c) != 0)
1643 return false;
1644 }
1645 return atIneq(r, getNumCols() - 1) >= 0;
1646 };
1647
1648 // Detect and mark redundant constraints.
1649 SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
1650 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1651 int64_t *rowStart = &inequalities(r, 0);
1652 auto row = ArrayRef<int64_t>(rowStart, getNumCols());
1653 if (isTriviallyValid(r) || !rowSet.insert(row).second) {
1654 redunIneq[r] = true;
1655 continue;
1656 }
1657
1658 // Among constraints that only differ in the constant term part, mark
1659 // everything other than the one with the smallest constant term redundant.
1660 // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
1661 // former two are redundant).
1662 int64_t constTerm = atIneq(r, getNumCols() - 1);
1663 auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1);
1664 const auto &ret =
1665 rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
1666 if (!ret.second) {
1667 // Check if the other constraint has a higher constant term.
1668 auto &val = ret.first->second;
1669 if (val.second > constTerm) {
1670 // The stored row is redundant. Mark it so, and update with this one.
1671 redunIneq[val.first] = true;
1672 val = {r, constTerm};
1673 } else {
1674 // The one stored makes this one redundant.
1675 redunIneq[r] = true;
1676 }
1677 }
1678 }
1679
1680 // Scan to get rid of all rows marked redundant, in-place.
1681 unsigned pos = 0;
1682 for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
1683 if (!redunIneq[r])
1684 inequalities.copyRow(r, pos++);
1685
1686 inequalities.resizeVertically(pos);
1687
1688 // TODO: consider doing this for equalities as well, but probably not worth
1689 // the savings.
1690 }
1691
1692 #undef DEBUG_TYPE
1693 #define DEBUG_TYPE "fm"
1694
1695 /// Eliminates variable at the specified position using Fourier-Motzkin
1696 /// variable elimination. This technique is exact for rational spaces but
1697 /// conservative (in "rare" cases) for integer spaces. The operation corresponds
1698 /// to a projection operation yielding the (convex) set of integer points
1699 /// contained in the rational shadow of the set. An emptiness test that relies
1700 /// on this method will guarantee emptiness, i.e., it disproves the existence of
1701 /// a solution if it says it's empty.
1702 /// If a non-null isResultIntegerExact is passed, it is set to true if the
1703 /// result is also integer exact. If it's set to false, the obtained solution
1704 /// *may* not be exact, i.e., it may contain integer points that do not have an
1705 /// integer pre-image in the original set.
1706 ///
1707 /// Eg:
1708 /// j >= 0, j <= i + 1
1709 /// i >= 0, i <= N + 1
1710 /// Eliminating i yields,
1711 /// j >= 0, 0 <= N + 1, j - 1 <= N + 1
1712 ///
1713 /// If darkShadow = true, this method computes the dark shadow on elimination;
1714 /// the dark shadow is a convex integer subset of the exact integer shadow. A
1715 /// non-empty dark shadow proves the existence of an integer solution. The
1716 /// elimination in such a case could however be an under-approximation, and thus
1717 /// should not be used for scanning sets or used by itself for dependence
1718 /// checking.
1719 ///
1720 /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
1721 /// ^
1722 /// |
1723 /// | * * * * o o
1724 /// i | * * o o o o
1725 /// | o * * * * *
1726 /// --------------->
1727 /// j ->
1728 ///
1729 /// Eliminating i from this system (projecting on the j dimension):
1730 /// rational shadow / integer light shadow: 1 <= j <= 6
1731 /// dark shadow: 3 <= j <= 6
1732 /// exact integer shadow: j = 1 \union 3 <= j <= 6
1733 /// holes/splinters: j = 2
1734 ///
1735 /// darkShadow = false, isResultIntegerExact = nullptr are default values.
1736 // TODO: a slight modification to yield dark shadow version of FM (tightened),
1737 // which can prove the existence of a solution if there is one.
fourierMotzkinEliminate(unsigned pos,bool darkShadow,bool * isResultIntegerExact)1738 void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow,
1739 bool *isResultIntegerExact) {
1740 LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
1741 LLVM_DEBUG(dump());
1742 assert(pos < getNumVars() && "invalid position");
1743 assert(hasConsistentState());
1744
1745 // Check if this variable can be eliminated through a substitution.
1746 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1747 if (atEq(r, pos) != 0) {
1748 // Use Gaussian elimination here (since we have an equality).
1749 LogicalResult ret = gaussianEliminateVar(pos);
1750 (void)ret;
1751 assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
1752 LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
1753 LLVM_DEBUG(dump());
1754 return;
1755 }
1756 }
1757
1758 // A fast linear time tightening.
1759 gcdTightenInequalities();
1760
1761 // Check if the variable appears at all in any of the inequalities.
1762 if (isColZero(pos)) {
1763 // If it doesn't appear, just remove the column and return.
1764 // TODO: refactor removeColumns to use it from here.
1765 removeVar(pos);
1766 LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
1767 LLVM_DEBUG(dump());
1768 return;
1769 }
1770
1771 // Positions of constraints that are lower bounds on the variable.
1772 SmallVector<unsigned, 4> lbIndices;
1773 // Positions of constraints that are lower bounds on the variable.
1774 SmallVector<unsigned, 4> ubIndices;
1775 // Positions of constraints that do not involve the variable.
1776 std::vector<unsigned> nbIndices;
1777 nbIndices.reserve(getNumInequalities());
1778
1779 // Gather all lower bounds and upper bounds of the variable. Since the
1780 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
1781 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
1782 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1783 if (atIneq(r, pos) == 0) {
1784 // Var does not appear in bound.
1785 nbIndices.push_back(r);
1786 } else if (atIneq(r, pos) >= 1) {
1787 // Lower bound.
1788 lbIndices.push_back(r);
1789 } else {
1790 // Upper bound.
1791 ubIndices.push_back(r);
1792 }
1793 }
1794
1795 PresburgerSpace newSpace = getSpace();
1796 VarKind idKindRemove = newSpace.getVarKindAt(pos);
1797 unsigned relativePos = pos - newSpace.getVarKindOffset(idKindRemove);
1798 newSpace.removeVarRange(idKindRemove, relativePos, relativePos + 1);
1799
1800 /// Create the new system which has one variable less.
1801 IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(),
1802 getNumEqualities(), getNumCols() - 1, newSpace);
1803
1804 // This will be used to check if the elimination was integer exact.
1805 unsigned lcmProducts = 1;
1806
1807 // Let x be the variable we are eliminating.
1808 // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
1809 // that c_l, c_u >= 1) we have:
1810 // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
1811 // We thus generate a constraint:
1812 // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
1813 // Note if c_l = c_u = 1, all integer points captured by the resulting
1814 // constraint correspond to integer points in the original system (i.e., they
1815 // have integer pre-images). Hence, if the lcm's are all 1, the elimination is
1816 // integer exact.
1817 for (auto ubPos : ubIndices) {
1818 for (auto lbPos : lbIndices) {
1819 SmallVector<int64_t, 4> ineq;
1820 ineq.reserve(newRel.getNumCols());
1821 int64_t lbCoeff = atIneq(lbPos, pos);
1822 // Note that in the comments above, ubCoeff is the negation of the
1823 // coefficient in the canonical form as the view taken here is that of the
1824 // term being moved to the other size of '>='.
1825 int64_t ubCoeff = -atIneq(ubPos, pos);
1826 // TODO: refactor this loop to avoid all branches inside.
1827 for (unsigned l = 0, e = getNumCols(); l < e; l++) {
1828 if (l == pos)
1829 continue;
1830 assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
1831 int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
1832 ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
1833 atIneq(lbPos, l) * (lcm / lbCoeff));
1834 lcmProducts *= lcm;
1835 }
1836 if (darkShadow) {
1837 // The dark shadow is a convex subset of the exact integer shadow. If
1838 // there is a point here, it proves the existence of a solution.
1839 ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
1840 }
1841 // TODO: we need to have a way to add inequalities in-place in
1842 // IntegerRelation instead of creating and copying over.
1843 newRel.addInequality(ineq);
1844 }
1845 }
1846
1847 LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1)
1848 << "\n");
1849 if (lcmProducts == 1 && isResultIntegerExact)
1850 *isResultIntegerExact = true;
1851
1852 // Copy over the constraints not involving this variable.
1853 for (auto nbPos : nbIndices) {
1854 SmallVector<int64_t, 4> ineq;
1855 ineq.reserve(getNumCols() - 1);
1856 for (unsigned l = 0, e = getNumCols(); l < e; l++) {
1857 if (l == pos)
1858 continue;
1859 ineq.push_back(atIneq(nbPos, l));
1860 }
1861 newRel.addInequality(ineq);
1862 }
1863
1864 assert(newRel.getNumConstraints() ==
1865 lbIndices.size() * ubIndices.size() + nbIndices.size());
1866
1867 // Copy over the equalities.
1868 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1869 SmallVector<int64_t, 4> eq;
1870 eq.reserve(newRel.getNumCols());
1871 for (unsigned l = 0, e = getNumCols(); l < e; l++) {
1872 if (l == pos)
1873 continue;
1874 eq.push_back(atEq(r, l));
1875 }
1876 newRel.addEquality(eq);
1877 }
1878
1879 // GCD tightening and normalization allows detection of more trivially
1880 // redundant constraints.
1881 newRel.gcdTightenInequalities();
1882 newRel.normalizeConstraintsByGCD();
1883 newRel.removeTrivialRedundancy();
1884 clearAndCopyFrom(newRel);
1885 LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
1886 LLVM_DEBUG(dump());
1887 }
1888
1889 #undef DEBUG_TYPE
1890 #define DEBUG_TYPE "presburger"
1891
projectOut(unsigned pos,unsigned num)1892 void IntegerRelation::projectOut(unsigned pos, unsigned num) {
1893 if (num == 0)
1894 return;
1895
1896 // 'pos' can be at most getNumCols() - 2 if num > 0.
1897 assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
1898 assert(pos + num < getNumCols() && "invalid range");
1899
1900 // Eliminate as many variables as possible using Gaussian elimination.
1901 unsigned currentPos = pos;
1902 unsigned numToEliminate = num;
1903 unsigned numGaussianEliminated = 0;
1904
1905 while (currentPos < getNumVars()) {
1906 unsigned curNumEliminated =
1907 gaussianEliminateVars(currentPos, currentPos + numToEliminate);
1908 ++currentPos;
1909 numToEliminate -= curNumEliminated + 1;
1910 numGaussianEliminated += curNumEliminated;
1911 }
1912
1913 // Eliminate the remaining using Fourier-Motzkin.
1914 for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
1915 unsigned numToEliminate = num - numGaussianEliminated - i;
1916 fourierMotzkinEliminate(
1917 getBestVarToEliminate(*this, pos, pos + numToEliminate));
1918 }
1919
1920 // Fast/trivial simplifications.
1921 gcdTightenInequalities();
1922 // Normalize constraints after tightening since the latter impacts this, but
1923 // not the other way round.
1924 normalizeConstraintsByGCD();
1925 }
1926
1927 namespace {
1928
1929 enum BoundCmpResult { Greater, Less, Equal, Unknown };
1930
1931 /// Compares two affine bounds whose coefficients are provided in 'first' and
1932 /// 'second'. The last coefficient is the constant term.
compareBounds(ArrayRef<int64_t> a,ArrayRef<int64_t> b)1933 static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
1934 assert(a.size() == b.size());
1935
1936 // For the bounds to be comparable, their corresponding variable
1937 // coefficients should be equal; the constant terms are then compared to
1938 // determine less/greater/equal.
1939
1940 if (!std::equal(a.begin(), a.end() - 1, b.begin()))
1941 return Unknown;
1942
1943 if (a.back() == b.back())
1944 return Equal;
1945
1946 return a.back() < b.back() ? Less : Greater;
1947 }
1948 } // namespace
1949
1950 // Returns constraints that are common to both A & B.
getCommonConstraints(const IntegerRelation & a,const IntegerRelation & b,IntegerRelation & c)1951 static void getCommonConstraints(const IntegerRelation &a,
1952 const IntegerRelation &b, IntegerRelation &c) {
1953 c = IntegerRelation(a.getSpace());
1954 // a naive O(n^2) check should be enough here given the input sizes.
1955 for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
1956 for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
1957 if (a.getInequality(r) == b.getInequality(s)) {
1958 c.addInequality(a.getInequality(r));
1959 break;
1960 }
1961 }
1962 }
1963 for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
1964 for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
1965 if (a.getEquality(r) == b.getEquality(s)) {
1966 c.addEquality(a.getEquality(r));
1967 break;
1968 }
1969 }
1970 }
1971 }
1972
1973 // Computes the bounding box with respect to 'other' by finding the min of the
1974 // lower bounds and the max of the upper bounds along each of the dimensions.
1975 LogicalResult
unionBoundingBox(const IntegerRelation & otherCst)1976 IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) {
1977 assert(space.isEqual(otherCst.getSpace()) && "Spaces should match.");
1978 assert(getNumLocalVars() == 0 && "local ids not supported yet here");
1979
1980 // Get the constraints common to both systems; these will be added as is to
1981 // the union.
1982 IntegerRelation commonCst(PresburgerSpace::getRelationSpace());
1983 getCommonConstraints(*this, otherCst, commonCst);
1984
1985 std::vector<SmallVector<int64_t, 8>> boundingLbs;
1986 std::vector<SmallVector<int64_t, 8>> boundingUbs;
1987 boundingLbs.reserve(2 * getNumDimVars());
1988 boundingUbs.reserve(2 * getNumDimVars());
1989
1990 // To hold lower and upper bounds for each dimension.
1991 SmallVector<int64_t, 4> lb, otherLb, ub, otherUb;
1992 // To compute min of lower bounds and max of upper bounds for each dimension.
1993 SmallVector<int64_t, 4> minLb(getNumSymbolVars() + 1);
1994 SmallVector<int64_t, 4> maxUb(getNumSymbolVars() + 1);
1995 // To compute final new lower and upper bounds for the union.
1996 SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols());
1997
1998 int64_t lbFloorDivisor, otherLbFloorDivisor;
1999 for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
2000 auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
2001 if (!extent.has_value())
2002 // TODO: symbolic extents when necessary.
2003 // TODO: handle union if a dimension is unbounded.
2004 return failure();
2005
2006 auto otherExtent = otherCst.getConstantBoundOnDimSize(
2007 d, &otherLb, &otherLbFloorDivisor, &otherUb);
2008 if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor)
2009 // TODO: symbolic extents when necessary.
2010 return failure();
2011
2012 assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
2013
2014 auto res = compareBounds(lb, otherLb);
2015 // Identify min.
2016 if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
2017 minLb = lb;
2018 // Since the divisor is for a floordiv, we need to convert to ceildiv,
2019 // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
2020 // div * i >= expr - div + 1.
2021 minLb.back() -= lbFloorDivisor - 1;
2022 } else if (res == BoundCmpResult::Greater) {
2023 minLb = otherLb;
2024 minLb.back() -= otherLbFloorDivisor - 1;
2025 } else {
2026 // Uncomparable - check for constant lower/upper bounds.
2027 auto constLb = getConstantBound(BoundType::LB, d);
2028 auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
2029 if (!constLb.has_value() || !constOtherLb.has_value())
2030 return failure();
2031 std::fill(minLb.begin(), minLb.end(), 0);
2032 minLb.back() = std::min(constLb.value(), constOtherLb.value());
2033 }
2034
2035 // Do the same for ub's but max of upper bounds. Identify max.
2036 auto uRes = compareBounds(ub, otherUb);
2037 if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
2038 maxUb = ub;
2039 } else if (uRes == BoundCmpResult::Less) {
2040 maxUb = otherUb;
2041 } else {
2042 // Uncomparable - check for constant lower/upper bounds.
2043 auto constUb = getConstantBound(BoundType::UB, d);
2044 auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
2045 if (!constUb.has_value() || !constOtherUb.has_value())
2046 return failure();
2047 std::fill(maxUb.begin(), maxUb.end(), 0);
2048 maxUb.back() = std::max(constUb.value(), constOtherUb.value());
2049 }
2050
2051 std::fill(newLb.begin(), newLb.end(), 0);
2052 std::fill(newUb.begin(), newUb.end(), 0);
2053
2054 // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
2055 // and so it's the divisor for newLb and newUb as well.
2056 newLb[d] = lbFloorDivisor;
2057 newUb[d] = -lbFloorDivisor;
2058 // Copy over the symbolic part + constant term.
2059 std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimVars());
2060 std::transform(newLb.begin() + getNumDimVars(), newLb.end(),
2061 newLb.begin() + getNumDimVars(), std::negate<int64_t>());
2062 std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimVars());
2063
2064 boundingLbs.push_back(newLb);
2065 boundingUbs.push_back(newUb);
2066 }
2067
2068 // Clear all constraints and add the lower/upper bounds for the bounding box.
2069 clearConstraints();
2070 for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
2071 addInequality(boundingLbs[d]);
2072 addInequality(boundingUbs[d]);
2073 }
2074
2075 // Add the constraints that were common to both systems.
2076 append(commonCst);
2077 removeTrivialRedundancy();
2078
2079 // TODO: copy over pure symbolic constraints from this and 'other' over to the
2080 // union (since the above are just the union along dimensions); we shouldn't
2081 // be discarding any other constraints on the symbols.
2082
2083 return success();
2084 }
2085
isColZero(unsigned pos) const2086 bool IntegerRelation::isColZero(unsigned pos) const {
2087 unsigned rowPos;
2088 return !findConstraintWithNonZeroAt(pos, /*isEq=*/false, &rowPos) &&
2089 !findConstraintWithNonZeroAt(pos, /*isEq=*/true, &rowPos);
2090 }
2091
2092 /// Find positions of inequalities and equalities that do not have a coefficient
2093 /// for [pos, pos + num) variables.
getIndependentConstraints(const IntegerRelation & cst,unsigned pos,unsigned num,SmallVectorImpl<unsigned> & nbIneqIndices,SmallVectorImpl<unsigned> & nbEqIndices)2094 static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos,
2095 unsigned num,
2096 SmallVectorImpl<unsigned> &nbIneqIndices,
2097 SmallVectorImpl<unsigned> &nbEqIndices) {
2098 assert(pos < cst.getNumVars() && "invalid start position");
2099 assert(pos + num <= cst.getNumVars() && "invalid limit");
2100
2101 for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
2102 // The bounds are to be independent of [offset, offset + num) columns.
2103 unsigned c;
2104 for (c = pos; c < pos + num; ++c) {
2105 if (cst.atIneq(r, c) != 0)
2106 break;
2107 }
2108 if (c == pos + num)
2109 nbIneqIndices.push_back(r);
2110 }
2111
2112 for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
2113 // The bounds are to be independent of [offset, offset + num) columns.
2114 unsigned c;
2115 for (c = pos; c < pos + num; ++c) {
2116 if (cst.atEq(r, c) != 0)
2117 break;
2118 }
2119 if (c == pos + num)
2120 nbEqIndices.push_back(r);
2121 }
2122 }
2123
removeIndependentConstraints(unsigned pos,unsigned num)2124 void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) {
2125 assert(pos + num <= getNumVars() && "invalid range");
2126
2127 // Remove constraints that are independent of these variables.
2128 SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
2129 getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
2130
2131 // Iterate in reverse so that indices don't have to be updated.
2132 // TODO: This method can be made more efficient (because removal of each
2133 // inequality leads to much shifting/copying in the underlying buffer).
2134 for (auto nbIndex : llvm::reverse(nbIneqIndices))
2135 removeInequality(nbIndex);
2136 for (auto nbIndex : llvm::reverse(nbEqIndices))
2137 removeEquality(nbIndex);
2138 }
2139
getDomainSet() const2140 IntegerPolyhedron IntegerRelation::getDomainSet() const {
2141 IntegerRelation copyRel = *this;
2142
2143 // Convert Range variables to Local variables.
2144 copyRel.convertVarKind(VarKind::Range, 0, getNumVarKind(VarKind::Range),
2145 VarKind::Local);
2146
2147 // Convert Domain variables to SetDim(Range) variables.
2148 copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
2149 VarKind::SetDim);
2150
2151 return IntegerPolyhedron(std::move(copyRel));
2152 }
2153
getRangeSet() const2154 IntegerPolyhedron IntegerRelation::getRangeSet() const {
2155 IntegerRelation copyRel = *this;
2156
2157 // Convert Domain variables to Local variables.
2158 copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
2159 VarKind::Local);
2160
2161 // We do not need to do anything to Range variables since they are already in
2162 // SetDim position.
2163
2164 return IntegerPolyhedron(std::move(copyRel));
2165 }
2166
intersectDomain(const IntegerPolyhedron & poly)2167 void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) {
2168 assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) &&
2169 "Domain set is not compatible with poly");
2170
2171 // Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`.
2172 IntegerRelation rel = poly;
2173 rel.inverse();
2174
2175 // Append dummy range variables to make the spaces compatible.
2176 rel.appendVar(VarKind::Range, getNumRangeVars());
2177
2178 // Intersect in place.
2179 mergeLocalVars(rel);
2180 append(rel);
2181 }
2182
intersectRange(const IntegerPolyhedron & poly)2183 void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) {
2184 assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) &&
2185 "Range set is not compatible with poly");
2186
2187 IntegerRelation rel = poly;
2188
2189 // Append dummy domain variables to make the spaces compatible.
2190 rel.appendVar(VarKind::Domain, getNumDomainVars());
2191
2192 mergeLocalVars(rel);
2193 append(rel);
2194 }
2195
inverse()2196 void IntegerRelation::inverse() {
2197 unsigned numRangeVars = getNumVarKind(VarKind::Range);
2198 convertVarKind(VarKind::Domain, 0, getVarKindEnd(VarKind::Domain),
2199 VarKind::Range);
2200 convertVarKind(VarKind::Range, 0, numRangeVars, VarKind::Domain);
2201 }
2202
compose(const IntegerRelation & rel)2203 void IntegerRelation::compose(const IntegerRelation &rel) {
2204 assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) &&
2205 "Range of `this` should be compatible with Domain of `rel`");
2206
2207 IntegerRelation copyRel = rel;
2208
2209 // Let relation `this` be R1: A -> B, and `rel` be R2: B -> C.
2210 // We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of
2211 // R1 with R2. After this, we get R1: A -> C, by projecting out B.
2212 // TODO: Using nested spaces here would help, since we could directly
2213 // intersect the range with another relation.
2214 unsigned numBVars = getNumRangeVars();
2215
2216 // Convert R1 from A -> B to A -> (B X C).
2217 appendVar(VarKind::Range, copyRel.getNumRangeVars());
2218
2219 // Convert R2 to B X C.
2220 copyRel.convertVarKind(VarKind::Domain, 0, numBVars, VarKind::Range, 0);
2221
2222 // Intersect R2 to range of R1.
2223 intersectRange(IntegerPolyhedron(copyRel));
2224
2225 // Project out B in R1.
2226 convertVarKind(VarKind::Range, 0, numBVars, VarKind::Local);
2227 }
2228
applyDomain(const IntegerRelation & rel)2229 void IntegerRelation::applyDomain(const IntegerRelation &rel) {
2230 inverse();
2231 compose(rel);
2232 inverse();
2233 }
2234
applyRange(const IntegerRelation & rel)2235 void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); }
2236
printSpace(raw_ostream & os) const2237 void IntegerRelation::printSpace(raw_ostream &os) const {
2238 space.print(os);
2239 os << getNumConstraints() << " constraints\n";
2240 }
2241
print(raw_ostream & os) const2242 void IntegerRelation::print(raw_ostream &os) const {
2243 assert(hasConsistentState());
2244 printSpace(os);
2245 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
2246 for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
2247 os << atEq(i, j) << " ";
2248 }
2249 os << "= 0\n";
2250 }
2251 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
2252 for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
2253 os << atIneq(i, j) << " ";
2254 }
2255 os << ">= 0\n";
2256 }
2257 os << '\n';
2258 }
2259
dump() const2260 void IntegerRelation::dump() const { print(llvm::errs()); }
2261
insertVar(VarKind kind,unsigned pos,unsigned num)2262 unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos,
2263 unsigned num) {
2264 assert((kind != VarKind::Domain || num == 0) &&
2265 "Domain has to be zero in a set");
2266 return IntegerRelation::insertVar(kind, pos, num);
2267 }
2268 IntegerPolyhedron
intersect(const IntegerPolyhedron & other) const2269 IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const {
2270 return IntegerPolyhedron(IntegerRelation::intersect(other));
2271 }
2272
subtract(const PresburgerSet & other) const2273 PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const {
2274 return PresburgerSet(IntegerRelation::subtract(other));
2275 }
2276