1bb901355SGroverkss //===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===//
2bb901355SGroverkss //
3bb901355SGroverkss // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4bb901355SGroverkss // See https://llvm.org/LICENSE.txt for license information.
5bb901355SGroverkss // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6bb901355SGroverkss //
7bb901355SGroverkss //===----------------------------------------------------------------------===//
8bb901355SGroverkss //
9bb901355SGroverkss // A class to represent an relation over integer tuples. A relation is
10bb901355SGroverkss // represented as a constraint system over a space of tuples of integer valued
11d95140a5SGroverkss // variables supporting symbolic variables and existential quantification.
12bb901355SGroverkss //
13bb901355SGroverkss //===----------------------------------------------------------------------===//
14bb901355SGroverkss 
15bb901355SGroverkss #include "mlir/Analysis/Presburger/IntegerRelation.h"
16bb901355SGroverkss #include "mlir/Analysis/Presburger/LinearTransform.h"
1779ad5fb2SArjun P #include "mlir/Analysis/Presburger/PWMAFunction.h"
18ff1d9a4bSGroverkss #include "mlir/Analysis/Presburger/PresburgerRelation.h"
19bb901355SGroverkss #include "mlir/Analysis/Presburger/Simplex.h"
20bb901355SGroverkss #include "mlir/Analysis/Presburger/Utils.h"
21bb901355SGroverkss #include "llvm/ADT/DenseMap.h"
22bb901355SGroverkss #include "llvm/ADT/DenseSet.h"
23bb901355SGroverkss #include "llvm/Support/Debug.h"
24bb901355SGroverkss 
25bb901355SGroverkss #define DEBUG_TYPE "presburger"
26bb901355SGroverkss 
27bb901355SGroverkss using namespace mlir;
28bb901355SGroverkss using namespace presburger;
29bb901355SGroverkss 
30bb901355SGroverkss using llvm::SmallDenseMap;
31bb901355SGroverkss using llvm::SmallDenseSet;
32bb901355SGroverkss 
clone() const33bb901355SGroverkss std::unique_ptr<IntegerRelation> IntegerRelation::clone() const {
34bb901355SGroverkss   return std::make_unique<IntegerRelation>(*this);
35bb901355SGroverkss }
36bb901355SGroverkss 
clone() const37bb901355SGroverkss std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const {
38bb901355SGroverkss   return std::make_unique<IntegerPolyhedron>(*this);
39bb901355SGroverkss }
40bb901355SGroverkss 
setSpace(const PresburgerSpace & oSpace)418a7ead69SArjun P void IntegerRelation::setSpace(const PresburgerSpace &oSpace) {
42d95140a5SGroverkss   assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!");
438a7ead69SArjun P   space = oSpace;
448a7ead69SArjun P }
458a7ead69SArjun P 
setSpaceExceptLocals(const PresburgerSpace & oSpace)468a7ead69SArjun P void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) {
47d95140a5SGroverkss   assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!");
48d95140a5SGroverkss   assert(oSpace.getNumVars() <= getNumVars() && "invalid space!");
49d95140a5SGroverkss   unsigned newNumLocals = getNumVars() - oSpace.getNumVars();
508a7ead69SArjun P   space = oSpace;
51d95140a5SGroverkss   space.insertVar(VarKind::Local, 0, newNumLocals);
528a7ead69SArjun P }
538a7ead69SArjun P 
append(const IntegerRelation & other)54bb901355SGroverkss void IntegerRelation::append(const IntegerRelation &other) {
5520aedb14SGroverkss   assert(space.isEqual(other.getSpace()) && "Spaces must be equal.");
56bb901355SGroverkss 
57bb901355SGroverkss   inequalities.reserveRows(inequalities.getNumRows() +
58bb901355SGroverkss                            other.getNumInequalities());
59bb901355SGroverkss   equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities());
60bb901355SGroverkss 
61bb901355SGroverkss   for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
62bb901355SGroverkss     addInequality(other.getInequality(r));
63bb901355SGroverkss   }
64bb901355SGroverkss   for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
65bb901355SGroverkss     addEquality(other.getEquality(r));
66bb901355SGroverkss   }
67bb901355SGroverkss }
68bb901355SGroverkss 
intersect(IntegerRelation other) const69b68e78ceSArjun P IntegerRelation IntegerRelation::intersect(IntegerRelation other) const {
70b68e78ceSArjun P   IntegerRelation result = *this;
71d95140a5SGroverkss   result.mergeLocalVars(other);
72b68e78ceSArjun P   result.append(other);
73b68e78ceSArjun P   return result;
74b68e78ceSArjun P }
75b68e78ceSArjun P 
isEqual(const IntegerRelation & other) const76bb901355SGroverkss bool IntegerRelation::isEqual(const IntegerRelation &other) const {
778eebb47fSGroverkss   assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
78ff1d9a4bSGroverkss   return PresburgerRelation(*this).isEqual(PresburgerRelation(other));
79bb901355SGroverkss }
80bb901355SGroverkss 
isSubsetOf(const IntegerRelation & other) const81bb901355SGroverkss bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const {
828eebb47fSGroverkss   assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
83ff1d9a4bSGroverkss   return PresburgerRelation(*this).isSubsetOf(PresburgerRelation(other));
84bb901355SGroverkss }
85bb901355SGroverkss 
86bb901355SGroverkss MaybeOptimum<SmallVector<Fraction, 8>>
findRationalLexMin() const87bb901355SGroverkss IntegerRelation::findRationalLexMin() const {
88d95140a5SGroverkss   assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
89bb901355SGroverkss   MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin =
90bb901355SGroverkss       LexSimplex(*this).findRationalLexMin();
91bb901355SGroverkss 
92bb901355SGroverkss   if (!maybeLexMin.isBounded())
93bb901355SGroverkss     return maybeLexMin;
94bb901355SGroverkss 
95bb901355SGroverkss   // The Simplex returns the lexmin over all the variables including locals. But
96bb901355SGroverkss   // locals are not actually part of the space and should not be returned in the
97d95140a5SGroverkss   // result. Since the locals are placed last in the list of variables, they
98bb901355SGroverkss   // will be minimized last in the lexmin. So simply truncating out the locals
99bb901355SGroverkss   // from the end of the answer gives the desired lexmin over the dimensions.
100d95140a5SGroverkss   assert(maybeLexMin->size() == getNumVars() &&
101bb901355SGroverkss          "Incorrect number of vars in lexMin!");
102d95140a5SGroverkss   maybeLexMin->resize(getNumDimAndSymbolVars());
103bb901355SGroverkss   return maybeLexMin;
104bb901355SGroverkss }
105bb901355SGroverkss 
106bb901355SGroverkss MaybeOptimum<SmallVector<int64_t, 8>>
findIntegerLexMin() const107bb901355SGroverkss IntegerRelation::findIntegerLexMin() const {
108d95140a5SGroverkss   assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
109bb901355SGroverkss   MaybeOptimum<SmallVector<int64_t, 8>> maybeLexMin =
110bb901355SGroverkss       LexSimplex(*this).findIntegerLexMin();
111bb901355SGroverkss 
112bb901355SGroverkss   if (!maybeLexMin.isBounded())
113bb901355SGroverkss     return maybeLexMin.getKind();
114bb901355SGroverkss 
115bb901355SGroverkss   // The Simplex returns the lexmin over all the variables including locals. But
116bb901355SGroverkss   // locals are not actually part of the space and should not be returned in the
117d95140a5SGroverkss   // result. Since the locals are placed last in the list of variables, they
118bb901355SGroverkss   // will be minimized last in the lexmin. So simply truncating out the locals
119bb901355SGroverkss   // from the end of the answer gives the desired lexmin over the dimensions.
120d95140a5SGroverkss   assert(maybeLexMin->size() == getNumVars() &&
121bb901355SGroverkss          "Incorrect number of vars in lexMin!");
122d95140a5SGroverkss   maybeLexMin->resize(getNumDimAndSymbolVars());
123bb901355SGroverkss   return maybeLexMin;
124bb901355SGroverkss }
125bb901355SGroverkss 
rangeIsZero(ArrayRef<int64_t> range)1268a67c6eeSArjun P static bool rangeIsZero(ArrayRef<int64_t> range) {
1278a67c6eeSArjun P   return llvm::all_of(range, [](int64_t x) { return x == 0; });
1288a67c6eeSArjun P }
1298a67c6eeSArjun P 
removeConstraintsInvolvingVarRange(IntegerRelation & poly,unsigned begin,unsigned count)130d95140a5SGroverkss static void removeConstraintsInvolvingVarRange(IntegerRelation &poly,
131d95140a5SGroverkss                                                unsigned begin, unsigned count) {
1328a67c6eeSArjun P   // We loop until i > 0 and index into i - 1 to avoid sign issues.
1338a67c6eeSArjun P   //
1348a67c6eeSArjun P   // We iterate backwards so that whether we remove constraint i - 1 or not, the
1358a67c6eeSArjun P   // next constraint to be tested is always i - 2.
1368a67c6eeSArjun P   for (unsigned i = poly.getNumEqualities(); i > 0; i--)
1378a67c6eeSArjun P     if (!rangeIsZero(poly.getEquality(i - 1).slice(begin, count)))
1388a67c6eeSArjun P       poly.removeEquality(i - 1);
1398a67c6eeSArjun P   for (unsigned i = poly.getNumInequalities(); i > 0; i--)
1408a67c6eeSArjun P     if (!rangeIsZero(poly.getInequality(i - 1).slice(begin, count)))
1418a67c6eeSArjun P       poly.removeInequality(i - 1);
1428a67c6eeSArjun P }
14393b9f50bSArjun P 
getCounts() const14493b9f50bSArjun P IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const {
14520aedb14SGroverkss   return {getSpace(), getNumInequalities(), getNumEqualities()};
14620aedb14SGroverkss }
14720aedb14SGroverkss 
truncateVarKind(VarKind kind,unsigned num)148d95140a5SGroverkss void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) {
149d95140a5SGroverkss   unsigned curNum = getNumVarKind(kind);
150d95140a5SGroverkss   assert(num <= curNum && "Can't truncate to more vars!");
151d95140a5SGroverkss   removeVarRange(kind, num, curNum);
15293b9f50bSArjun P }
15393b9f50bSArjun P 
truncateVarKind(VarKind kind,const CountsSnapshot & counts)154d95140a5SGroverkss void IntegerRelation::truncateVarKind(VarKind kind,
15593b9f50bSArjun P                                       const CountsSnapshot &counts) {
156d95140a5SGroverkss   truncateVarKind(kind, counts.getSpace().getNumVarKind(kind));
15793b9f50bSArjun P }
15893b9f50bSArjun P 
truncate(const CountsSnapshot & counts)15993b9f50bSArjun P void IntegerRelation::truncate(const CountsSnapshot &counts) {
160d95140a5SGroverkss   truncateVarKind(VarKind::Domain, counts);
161d95140a5SGroverkss   truncateVarKind(VarKind::Range, counts);
162d95140a5SGroverkss   truncateVarKind(VarKind::Symbol, counts);
163d95140a5SGroverkss   truncateVarKind(VarKind::Local, counts);
16493b9f50bSArjun P   removeInequalityRange(counts.getNumIneqs(), getNumInequalities());
1659615d717SArjun P   removeEqualityRange(counts.getNumEqs(), getNumEqualities());
16693b9f50bSArjun P }
16793b9f50bSArjun P 
computeReprWithOnlyDivLocals() const168dda8b1ceSArjun P PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const {
1698a7ead69SArjun P   // If there are no locals, we're done.
170d95140a5SGroverkss   if (getNumLocalVars() == 0)
171dda8b1ceSArjun P     return PresburgerRelation(*this);
1728a7ead69SArjun P 
1738a7ead69SArjun P   // Move all the non-div locals to the end, as the current API to
1748a7ead69SArjun P   // SymbolicLexMin requires these to form a contiguous range.
1758a7ead69SArjun P   //
1768a7ead69SArjun P   // Take a copy so we can perform mutations.
177dda8b1ceSArjun P   IntegerRelation copy = *this;
178479c4f64SGroverkss   std::vector<MaybeLocalRepr> reprs(getNumLocalVars());
179479c4f64SGroverkss   copy.getLocalReprs(&reprs);
1808a7ead69SArjun P 
1818a7ead69SArjun P   // Iterate through all the locals. The last `numNonDivLocals` are the locals
1828a7ead69SArjun P   // that have been scanned already and do not have division representations.
1838a7ead69SArjun P   unsigned numNonDivLocals = 0;
184d95140a5SGroverkss   unsigned offset = copy.getVarKindOffset(VarKind::Local);
185d95140a5SGroverkss   for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) {
1868a7ead69SArjun P     if (!reprs[i]) {
1878a7ead69SArjun P       // Whenever we come across a local that does not have a division
1888a7ead69SArjun P       // representation, we swap it to the `numNonDivLocals`-th last position
1898a7ead69SArjun P       // and increment `numNonDivLocal`s. `reprs` also needs to be swapped.
190d95140a5SGroverkss       copy.swapVar(offset + i, offset + e - numNonDivLocals - 1);
1918a7ead69SArjun P       std::swap(reprs[i], reprs[e - numNonDivLocals - 1]);
1928a7ead69SArjun P       ++numNonDivLocals;
1938a7ead69SArjun P       continue;
1948a7ead69SArjun P     }
1958a7ead69SArjun P     ++i;
1968a7ead69SArjun P   }
1978a7ead69SArjun P 
1988a7ead69SArjun P   // If there are no non-div locals, we're done.
1998a7ead69SArjun P   if (numNonDivLocals == 0)
200dda8b1ceSArjun P     return PresburgerRelation(*this);
2018a7ead69SArjun P 
2028a7ead69SArjun P   // We computeSymbolicIntegerLexMin by considering the non-div locals as
2038a7ead69SArjun P   // "non-symbols" and considering everything else as "symbols". This will
2048a7ead69SArjun P   // compute a function mapping assignments to "symbols" to the
2058a7ead69SArjun P   // lexicographically minimal valid assignment of "non-symbols", when a
2068a7ead69SArjun P   // satisfying assignment exists. It separately returns the set of assignments
2078a7ead69SArjun P   // to the "symbols" such that a satisfying assignment to the "non-symbols"
2088a7ead69SArjun P   // exists but the lexmin is unbounded. We basically want to find the set of
2098a7ead69SArjun P   // values of the "symbols" such that an assignment to the "non-symbols"
2108a7ead69SArjun P   // exists, which is the union of the domain of the returned lexmin function
2118a7ead69SArjun P   // and the returned set of assignments to the "symbols" that makes the lexmin
2128a7ead69SArjun P   // unbounded.
2138a7ead69SArjun P   SymbolicLexMin lexminResult =
2148a7ead69SArjun P       SymbolicLexSimplex(copy, /*symbolOffset*/ 0,
2158a7ead69SArjun P                          IntegerPolyhedron(PresburgerSpace::getSetSpace(
216d95140a5SGroverkss                              /*numDims=*/copy.getNumVars() - numNonDivLocals)))
2178a7ead69SArjun P           .computeSymbolicIntegerLexMin();
218206a6037SBenjamin Kramer   PresburgerRelation result =
2198a7ead69SArjun P       lexminResult.lexmin.getDomain().unionSet(lexminResult.unboundedDomain);
2208a7ead69SArjun P 
2218a7ead69SArjun P   // The result set might lie in the wrong space -- all its ids are dims.
2228a7ead69SArjun P   // Set it to the desired space and return.
2238a7ead69SArjun P   PresburgerSpace space = getSpace();
224d95140a5SGroverkss   space.removeVarRange(VarKind::Local, 0, getNumLocalVars());
2258a7ead69SArjun P   result.setSpace(space);
2268a7ead69SArjun P   return result;
2278a7ead69SArjun P }
2288a7ead69SArjun P 
findSymbolicIntegerLexMin() const229c4abef28SArjun P SymbolicLexMin IntegerRelation::findSymbolicIntegerLexMin() const {
230c4abef28SArjun P   // Symbol and Domain vars will be used as symbols for symbolic lexmin.
231c4abef28SArjun P   // In other words, for every value of the symbols and domain, return the
232c4abef28SArjun P   // lexmin value of the (range, locals).
233c4abef28SArjun P   llvm::SmallBitVector isSymbol(getNumVars(), false);
234c4abef28SArjun P   isSymbol.set(getVarKindOffset(VarKind::Symbol),
235c4abef28SArjun P                getVarKindEnd(VarKind::Symbol));
236c4abef28SArjun P   isSymbol.set(getVarKindOffset(VarKind::Domain),
237c4abef28SArjun P                getVarKindEnd(VarKind::Domain));
23879ad5fb2SArjun P   // Compute the symbolic lexmin of the dims and locals, with the symbols being
23979ad5fb2SArjun P   // the actual symbols of this set.
24079ad5fb2SArjun P   SymbolicLexMin result =
241c4abef28SArjun P       SymbolicLexSimplex(*this,
242c4abef28SArjun P                          IntegerPolyhedron(PresburgerSpace::getSetSpace(
243c4abef28SArjun P                              /*numDims=*/getNumDomainVars(),
244c4abef28SArjun P                              /*numSymbols=*/getNumSymbolVars())),
245c4abef28SArjun P                          isSymbol)
24679ad5fb2SArjun P           .computeSymbolicIntegerLexMin();
24779ad5fb2SArjun P 
24879ad5fb2SArjun P   // We want to return only the lexmin over the dims, so strip the locals from
24979ad5fb2SArjun P   // the computed lexmin.
25079ad5fb2SArjun P   result.lexmin.truncateOutput(result.lexmin.getNumOutputs() -
251d95140a5SGroverkss                                getNumLocalVars());
25279ad5fb2SArjun P   return result;
25379ad5fb2SArjun P }
25479ad5fb2SArjun P 
255a18f843fSGroverkss PresburgerRelation
subtract(const PresburgerRelation & set) const256a18f843fSGroverkss IntegerRelation::subtract(const PresburgerRelation &set) const {
257a18f843fSGroverkss   return PresburgerRelation(*this).subtract(set);
258a18f843fSGroverkss }
259a18f843fSGroverkss 
insertVar(VarKind kind,unsigned pos,unsigned num)260d95140a5SGroverkss unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) {
261d95140a5SGroverkss   assert(pos <= getNumVarKind(kind));
262bb901355SGroverkss 
263d95140a5SGroverkss   unsigned insertPos = space.insertVar(kind, pos, num);
264bb901355SGroverkss   inequalities.insertColumns(insertPos, num);
265bb901355SGroverkss   equalities.insertColumns(insertPos, num);
266bb901355SGroverkss   return insertPos;
267bb901355SGroverkss }
268bb901355SGroverkss 
appendVar(VarKind kind,unsigned num)269d95140a5SGroverkss unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) {
270d95140a5SGroverkss   unsigned pos = getNumVarKind(kind);
271d95140a5SGroverkss   return insertVar(kind, pos, num);
272bb901355SGroverkss }
273bb901355SGroverkss 
addEquality(ArrayRef<int64_t> eq)274bb901355SGroverkss void IntegerRelation::addEquality(ArrayRef<int64_t> eq) {
275bb901355SGroverkss   assert(eq.size() == getNumCols());
276bb901355SGroverkss   unsigned row = equalities.appendExtraRow();
277bb901355SGroverkss   for (unsigned i = 0, e = eq.size(); i < e; ++i)
278bb901355SGroverkss     equalities(row, i) = eq[i];
279bb901355SGroverkss }
280bb901355SGroverkss 
addInequality(ArrayRef<int64_t> inEq)281bb901355SGroverkss void IntegerRelation::addInequality(ArrayRef<int64_t> inEq) {
282bb901355SGroverkss   assert(inEq.size() == getNumCols());
283bb901355SGroverkss   unsigned row = inequalities.appendExtraRow();
284bb901355SGroverkss   for (unsigned i = 0, e = inEq.size(); i < e; ++i)
285bb901355SGroverkss     inequalities(row, i) = inEq[i];
286bb901355SGroverkss }
287bb901355SGroverkss 
removeVar(VarKind kind,unsigned pos)288d95140a5SGroverkss void IntegerRelation::removeVar(VarKind kind, unsigned pos) {
289d95140a5SGroverkss   removeVarRange(kind, pos, pos + 1);
290bb901355SGroverkss }
291bb901355SGroverkss 
removeVar(unsigned pos)292d95140a5SGroverkss void IntegerRelation::removeVar(unsigned pos) { removeVarRange(pos, pos + 1); }
293bb901355SGroverkss 
removeVarRange(VarKind kind,unsigned varStart,unsigned varLimit)294d95140a5SGroverkss void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart,
295d95140a5SGroverkss                                      unsigned varLimit) {
296d95140a5SGroverkss   assert(varLimit <= getNumVarKind(kind));
297c896e654SGroverkss 
298d95140a5SGroverkss   if (varStart >= varLimit)
299c896e654SGroverkss     return;
300c896e654SGroverkss 
301d95140a5SGroverkss   // Remove eliminated variables from the constraints.
302d95140a5SGroverkss   unsigned offset = getVarKindOffset(kind);
303d95140a5SGroverkss   equalities.removeColumns(offset + varStart, varLimit - varStart);
304d95140a5SGroverkss   inequalities.removeColumns(offset + varStart, varLimit - varStart);
305c896e654SGroverkss 
306d95140a5SGroverkss   // Remove eliminated variables from the space.
307d95140a5SGroverkss   space.removeVarRange(kind, varStart, varLimit);
308bb901355SGroverkss }
309bb901355SGroverkss 
removeVarRange(unsigned varStart,unsigned varLimit)310d95140a5SGroverkss void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) {
311d95140a5SGroverkss   assert(varLimit <= getNumVars());
312bb901355SGroverkss 
313d95140a5SGroverkss   if (varStart >= varLimit)
314c896e654SGroverkss     return;
315c896e654SGroverkss 
316d95140a5SGroverkss   // Helper function to remove vars of the specified kind in the given range
317c896e654SGroverkss   // [start, limit), The range is absolute (i.e. it is not relative to the kind
318d95140a5SGroverkss   // of variable). Also updates `limit` to reflect the deleted variables.
319d95140a5SGroverkss   auto removeVarKindInRange = [this](VarKind kind, unsigned &start,
320c896e654SGroverkss                                      unsigned &limit) {
321c896e654SGroverkss     if (start >= limit)
322c896e654SGroverkss       return;
323c896e654SGroverkss 
324d95140a5SGroverkss     unsigned offset = getVarKindOffset(kind);
325d95140a5SGroverkss     unsigned num = getNumVarKind(kind);
326c896e654SGroverkss 
327c896e654SGroverkss     // Get `start`, `limit` relative to the specified kind.
328c896e654SGroverkss     unsigned relativeStart =
329c896e654SGroverkss         start <= offset ? 0 : std::min(num, start - offset);
330c896e654SGroverkss     unsigned relativeLimit =
331c896e654SGroverkss         limit <= offset ? 0 : std::min(num, limit - offset);
332c896e654SGroverkss 
333d95140a5SGroverkss     // Remove vars of the specified kind in the relative range.
334d95140a5SGroverkss     removeVarRange(kind, relativeStart, relativeLimit);
335c896e654SGroverkss 
336d95140a5SGroverkss     // Update `limit` to reflect deleted variables.
337d95140a5SGroverkss     // `start` does not need to be updated because any variables that are
338c896e654SGroverkss     // deleted are after position `start`.
339c896e654SGroverkss     limit -= relativeLimit - relativeStart;
340c896e654SGroverkss   };
341c896e654SGroverkss 
342d95140a5SGroverkss   removeVarKindInRange(VarKind::Domain, varStart, varLimit);
343d95140a5SGroverkss   removeVarKindInRange(VarKind::Range, varStart, varLimit);
344d95140a5SGroverkss   removeVarKindInRange(VarKind::Symbol, varStart, varLimit);
345d95140a5SGroverkss   removeVarKindInRange(VarKind::Local, varStart, varLimit);
346bb901355SGroverkss }
347bb901355SGroverkss 
removeEquality(unsigned pos)348bb901355SGroverkss void IntegerRelation::removeEquality(unsigned pos) {
349bb901355SGroverkss   equalities.removeRow(pos);
350bb901355SGroverkss }
351bb901355SGroverkss 
removeInequality(unsigned pos)352bb901355SGroverkss void IntegerRelation::removeInequality(unsigned pos) {
353bb901355SGroverkss   inequalities.removeRow(pos);
354bb901355SGroverkss }
355bb901355SGroverkss 
removeEqualityRange(unsigned start,unsigned end)356bb901355SGroverkss void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) {
357bb901355SGroverkss   if (start >= end)
358bb901355SGroverkss     return;
359bb901355SGroverkss   equalities.removeRows(start, end - start);
360bb901355SGroverkss }
361bb901355SGroverkss 
removeInequalityRange(unsigned start,unsigned end)362bb901355SGroverkss void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) {
363bb901355SGroverkss   if (start >= end)
364bb901355SGroverkss     return;
365bb901355SGroverkss   inequalities.removeRows(start, end - start);
366bb901355SGroverkss }
367bb901355SGroverkss 
swapVar(unsigned posA,unsigned posB)368d95140a5SGroverkss void IntegerRelation::swapVar(unsigned posA, unsigned posB) {
369d95140a5SGroverkss   assert(posA < getNumVars() && "invalid position A");
370d95140a5SGroverkss   assert(posB < getNumVars() && "invalid position B");
371bb901355SGroverkss 
372bb901355SGroverkss   if (posA == posB)
373bb901355SGroverkss     return;
374bb901355SGroverkss 
375bb901355SGroverkss   inequalities.swapColumns(posA, posB);
376bb901355SGroverkss   equalities.swapColumns(posA, posB);
377bb901355SGroverkss }
378bb901355SGroverkss 
clearConstraints()379bb901355SGroverkss void IntegerRelation::clearConstraints() {
380bb901355SGroverkss   equalities.resizeVertically(0);
381bb901355SGroverkss   inequalities.resizeVertically(0);
382bb901355SGroverkss }
383bb901355SGroverkss 
384d95140a5SGroverkss /// Gather all lower and upper bounds of the variable at `pos`, and
385bb901355SGroverkss /// optionally any equalities on it. In addition, the bounds are to be
386d95140a5SGroverkss /// independent of variables in position range [`offset`, `offset` + `num`).
getLowerAndUpperBoundIndices(unsigned pos,SmallVectorImpl<unsigned> * lbIndices,SmallVectorImpl<unsigned> * ubIndices,SmallVectorImpl<unsigned> * eqIndices,unsigned offset,unsigned num) const387bb901355SGroverkss void IntegerRelation::getLowerAndUpperBoundIndices(
388bb901355SGroverkss     unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
389bb901355SGroverkss     SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices,
390bb901355SGroverkss     unsigned offset, unsigned num) const {
391d95140a5SGroverkss   assert(pos < getNumVars() && "invalid position");
392bb901355SGroverkss   assert(offset + num < getNumCols() && "invalid range");
393bb901355SGroverkss 
394d95140a5SGroverkss   // Checks for a constraint that has a non-zero coeff for the variables in
395bb901355SGroverkss   // the position range [offset, offset + num) while ignoring `pos`.
396bb901355SGroverkss   auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
397bb901355SGroverkss     unsigned c, f;
398bb901355SGroverkss     auto cst = isEq ? getEquality(r) : getInequality(r);
399bb901355SGroverkss     for (c = offset, f = offset + num; c < f; ++c) {
400bb901355SGroverkss       if (c == pos)
401bb901355SGroverkss         continue;
402bb901355SGroverkss       if (cst[c] != 0)
403bb901355SGroverkss         break;
404bb901355SGroverkss     }
405bb901355SGroverkss     return c < f;
406bb901355SGroverkss   };
407bb901355SGroverkss 
408bb901355SGroverkss   // Gather all lower bounds and upper bounds of the variable. Since the
409bb901355SGroverkss   // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
410bb901355SGroverkss   // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
411bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
412bb901355SGroverkss     // The bounds are to be independent of [offset, offset + num) columns.
413bb901355SGroverkss     if (containsConstraintDependentOnRange(r, /*isEq=*/false))
414bb901355SGroverkss       continue;
415bb901355SGroverkss     if (atIneq(r, pos) >= 1) {
416bb901355SGroverkss       // Lower bound.
417bb901355SGroverkss       lbIndices->push_back(r);
418bb901355SGroverkss     } else if (atIneq(r, pos) <= -1) {
419bb901355SGroverkss       // Upper bound.
420bb901355SGroverkss       ubIndices->push_back(r);
421bb901355SGroverkss     }
422bb901355SGroverkss   }
423bb901355SGroverkss 
424bb901355SGroverkss   // An equality is both a lower and upper bound. Record any equalities
425d95140a5SGroverkss   // involving the pos^th variable.
426bb901355SGroverkss   if (!eqIndices)
427bb901355SGroverkss     return;
428bb901355SGroverkss 
429bb901355SGroverkss   for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
430bb901355SGroverkss     if (atEq(r, pos) == 0)
431bb901355SGroverkss       continue;
432bb901355SGroverkss     if (containsConstraintDependentOnRange(r, /*isEq=*/true))
433bb901355SGroverkss       continue;
434bb901355SGroverkss     eqIndices->push_back(r);
435bb901355SGroverkss   }
436bb901355SGroverkss }
437bb901355SGroverkss 
hasConsistentState() const438bb901355SGroverkss bool IntegerRelation::hasConsistentState() const {
439bb901355SGroverkss   if (!inequalities.hasConsistentState())
440bb901355SGroverkss     return false;
441bb901355SGroverkss   if (!equalities.hasConsistentState())
442bb901355SGroverkss     return false;
443bb901355SGroverkss   return true;
444bb901355SGroverkss }
445bb901355SGroverkss 
setAndEliminate(unsigned pos,ArrayRef<int64_t> values)446bb901355SGroverkss void IntegerRelation::setAndEliminate(unsigned pos, ArrayRef<int64_t> values) {
447bb901355SGroverkss   if (values.empty())
448bb901355SGroverkss     return;
449d95140a5SGroverkss   assert(pos + values.size() <= getNumVars() &&
450bb901355SGroverkss          "invalid position or too many values");
451bb901355SGroverkss   // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
452d95140a5SGroverkss   // constant term and removing the var x_j. We do this for all the vars
453bb901355SGroverkss   // pos, pos + 1, ... pos + values.size() - 1.
454bb901355SGroverkss   unsigned constantColPos = getNumCols() - 1;
455bb901355SGroverkss   for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
456bb901355SGroverkss     inequalities.addToColumn(i + pos, constantColPos, values[i]);
457bb901355SGroverkss   for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
458bb901355SGroverkss     equalities.addToColumn(i + pos, constantColPos, values[i]);
459d95140a5SGroverkss   removeVarRange(pos, pos + values.size());
460bb901355SGroverkss }
461bb901355SGroverkss 
clearAndCopyFrom(const IntegerRelation & other)462bb901355SGroverkss void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) {
463bb901355SGroverkss   *this = other;
464bb901355SGroverkss }
465bb901355SGroverkss 
466bb901355SGroverkss // Searches for a constraint with a non-zero coefficient at `colIdx` in
467bb901355SGroverkss // equality (isEq=true) or inequality (isEq=false) constraints.
468bb901355SGroverkss // Returns true and sets row found in search in `rowIdx`, false otherwise.
findConstraintWithNonZeroAt(unsigned colIdx,bool isEq,unsigned * rowIdx) const469bb901355SGroverkss bool IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq,
470bb901355SGroverkss                                                   unsigned *rowIdx) const {
471bb901355SGroverkss   assert(colIdx < getNumCols() && "position out of bounds");
472bb901355SGroverkss   auto at = [&](unsigned rowIdx) -> int64_t {
473bb901355SGroverkss     return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
474bb901355SGroverkss   };
475bb901355SGroverkss   unsigned e = isEq ? getNumEqualities() : getNumInequalities();
476bb901355SGroverkss   for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
477bb901355SGroverkss     if (at(*rowIdx) != 0) {
478bb901355SGroverkss       return true;
479bb901355SGroverkss     }
480bb901355SGroverkss   }
481bb901355SGroverkss   return false;
482bb901355SGroverkss }
483bb901355SGroverkss 
normalizeConstraintsByGCD()484bb901355SGroverkss void IntegerRelation::normalizeConstraintsByGCD() {
485bb901355SGroverkss   for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
486bb901355SGroverkss     equalities.normalizeRow(i);
487bb901355SGroverkss   for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
488bb901355SGroverkss     inequalities.normalizeRow(i);
489bb901355SGroverkss }
490bb901355SGroverkss 
hasInvalidConstraint() const491bb901355SGroverkss bool IntegerRelation::hasInvalidConstraint() const {
492bb901355SGroverkss   assert(hasConsistentState());
493bb901355SGroverkss   auto check = [&](bool isEq) -> bool {
494bb901355SGroverkss     unsigned numCols = getNumCols();
495bb901355SGroverkss     unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
496bb901355SGroverkss     for (unsigned i = 0, e = numRows; i < e; ++i) {
497bb901355SGroverkss       unsigned j;
498bb901355SGroverkss       for (j = 0; j < numCols - 1; ++j) {
499bb901355SGroverkss         int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
500bb901355SGroverkss         // Skip rows with non-zero variable coefficients.
501bb901355SGroverkss         if (v != 0)
502bb901355SGroverkss           break;
503bb901355SGroverkss       }
504bb901355SGroverkss       if (j < numCols - 1) {
505bb901355SGroverkss         continue;
506bb901355SGroverkss       }
507bb901355SGroverkss       // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
508bb901355SGroverkss       // Example invalid constraints include: '1 == 0' or '-1 >= 0'
509bb901355SGroverkss       int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
510bb901355SGroverkss       if ((isEq && v != 0) || (!isEq && v < 0)) {
511bb901355SGroverkss         return true;
512bb901355SGroverkss       }
513bb901355SGroverkss     }
514bb901355SGroverkss     return false;
515bb901355SGroverkss   };
516bb901355SGroverkss   if (check(/*isEq=*/true))
517bb901355SGroverkss     return true;
518bb901355SGroverkss   return check(/*isEq=*/false);
519bb901355SGroverkss }
520bb901355SGroverkss 
521d95140a5SGroverkss /// Eliminate variable from constraint at `rowIdx` based on coefficient at
522bb901355SGroverkss /// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
523bb901355SGroverkss /// updated as they have already been eliminated.
eliminateFromConstraint(IntegerRelation * constraints,unsigned rowIdx,unsigned pivotRow,unsigned pivotCol,unsigned elimColStart,bool isEq)524bb901355SGroverkss static void eliminateFromConstraint(IntegerRelation *constraints,
525bb901355SGroverkss                                     unsigned rowIdx, unsigned pivotRow,
526bb901355SGroverkss                                     unsigned pivotCol, unsigned elimColStart,
527bb901355SGroverkss                                     bool isEq) {
528bb901355SGroverkss   // Skip if equality 'rowIdx' if same as 'pivotRow'.
529bb901355SGroverkss   if (isEq && rowIdx == pivotRow)
530bb901355SGroverkss     return;
531bb901355SGroverkss   auto at = [&](unsigned i, unsigned j) -> int64_t {
532bb901355SGroverkss     return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
533bb901355SGroverkss   };
534bb901355SGroverkss   int64_t leadCoeff = at(rowIdx, pivotCol);
535bb901355SGroverkss   // Skip if leading coefficient at 'rowIdx' is already zero.
536bb901355SGroverkss   if (leadCoeff == 0)
537bb901355SGroverkss     return;
538bb901355SGroverkss   int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
539bb901355SGroverkss   int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
540bb901355SGroverkss   int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
541bb901355SGroverkss   int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
542bb901355SGroverkss   int64_t rowMultiplier = lcm / std::abs(leadCoeff);
543bb901355SGroverkss 
544bb901355SGroverkss   unsigned numCols = constraints->getNumCols();
545bb901355SGroverkss   for (unsigned j = 0; j < numCols; ++j) {
546bb901355SGroverkss     // Skip updating column 'j' if it was just eliminated.
547bb901355SGroverkss     if (j >= elimColStart && j < pivotCol)
548bb901355SGroverkss       continue;
549bb901355SGroverkss     int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
550bb901355SGroverkss                 rowMultiplier * at(rowIdx, j);
551bb901355SGroverkss     isEq ? constraints->atEq(rowIdx, j) = v
552bb901355SGroverkss          : constraints->atIneq(rowIdx, j) = v;
553bb901355SGroverkss   }
554bb901355SGroverkss }
555bb901355SGroverkss 
556d95140a5SGroverkss /// Returns the position of the variable that has the minimum <number of lower
557bb901355SGroverkss /// bounds> times <number of upper bounds> from the specified range of
558d95140a5SGroverkss /// variables [start, end). It is often best to eliminate in the increasing
559bb901355SGroverkss /// order of these counts when doing Fourier-Motzkin elimination since FM adds
560bb901355SGroverkss /// that many new constraints.
getBestVarToEliminate(const IntegerRelation & cst,unsigned start,unsigned end)561d95140a5SGroverkss static unsigned getBestVarToEliminate(const IntegerRelation &cst,
562d95140a5SGroverkss                                       unsigned start, unsigned end) {
563d95140a5SGroverkss   assert(start < cst.getNumVars() && end < cst.getNumVars() + 1);
564bb901355SGroverkss 
565bb901355SGroverkss   auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
566bb901355SGroverkss     unsigned numLb = 0;
567bb901355SGroverkss     unsigned numUb = 0;
568bb901355SGroverkss     for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
569bb901355SGroverkss       if (cst.atIneq(r, pos) > 0) {
570bb901355SGroverkss         ++numLb;
571bb901355SGroverkss       } else if (cst.atIneq(r, pos) < 0) {
572bb901355SGroverkss         ++numUb;
573bb901355SGroverkss       }
574bb901355SGroverkss     }
575bb901355SGroverkss     return numLb * numUb;
576bb901355SGroverkss   };
577bb901355SGroverkss 
578bb901355SGroverkss   unsigned minLoc = start;
579bb901355SGroverkss   unsigned min = getProductOfNumLowerUpperBounds(start);
580bb901355SGroverkss   for (unsigned c = start + 1; c < end; c++) {
581bb901355SGroverkss     unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
582bb901355SGroverkss     if (numLbUbProduct < min) {
583bb901355SGroverkss       min = numLbUbProduct;
584bb901355SGroverkss       minLoc = c;
585bb901355SGroverkss     }
586bb901355SGroverkss   }
587bb901355SGroverkss   return minLoc;
588bb901355SGroverkss }
589bb901355SGroverkss 
590d95140a5SGroverkss // Checks for emptiness of the set by eliminating variables successively and
591bb901355SGroverkss // using the GCD test (on all equality constraints) and checking for trivially
592bb901355SGroverkss // invalid constraints. Returns 'true' if the constraint system is found to be
593bb901355SGroverkss // empty; false otherwise.
isEmpty() const594bb901355SGroverkss bool IntegerRelation::isEmpty() const {
595bb901355SGroverkss   if (isEmptyByGCDTest() || hasInvalidConstraint())
596bb901355SGroverkss     return true;
597bb901355SGroverkss 
598bb901355SGroverkss   IntegerRelation tmpCst(*this);
599bb901355SGroverkss 
600bb901355SGroverkss   // First, eliminate as many local variables as possible using equalities.
601bb901355SGroverkss   tmpCst.removeRedundantLocalVars();
602bb901355SGroverkss   if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
603bb901355SGroverkss     return true;
604bb901355SGroverkss 
605d95140a5SGroverkss   // Eliminate as many variables as possible using Gaussian elimination.
606bb901355SGroverkss   unsigned currentPos = 0;
607d95140a5SGroverkss   while (currentPos < tmpCst.getNumVars()) {
608d95140a5SGroverkss     tmpCst.gaussianEliminateVars(currentPos, tmpCst.getNumVars());
609bb901355SGroverkss     ++currentPos;
610bb901355SGroverkss     // We check emptiness through trivial checks after eliminating each ID to
611bb901355SGroverkss     // detect emptiness early. Since the checks isEmptyByGCDTest() and
612bb901355SGroverkss     // hasInvalidConstraint() are linear time and single sweep on the constraint
613bb901355SGroverkss     // buffer, this appears reasonable - but can optimize in the future.
614bb901355SGroverkss     if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
615bb901355SGroverkss       return true;
616bb901355SGroverkss   }
617bb901355SGroverkss 
618bb901355SGroverkss   // Eliminate the remaining using FM.
619d95140a5SGroverkss   for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) {
620bb901355SGroverkss     tmpCst.fourierMotzkinEliminate(
621d95140a5SGroverkss         getBestVarToEliminate(tmpCst, 0, tmpCst.getNumVars()));
622bb901355SGroverkss     // Check for a constraint explosion. This rarely happens in practice, but
623bb901355SGroverkss     // this check exists as a safeguard against improperly constructed
624bb901355SGroverkss     // constraint systems or artificially created arbitrarily complex systems
625bb901355SGroverkss     // that aren't the intended use case for IntegerRelation. This is
626bb901355SGroverkss     // needed since FM has a worst case exponential complexity in theory.
627d95140a5SGroverkss     if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) {
628bb901355SGroverkss       LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
629bb901355SGroverkss       return false;
630bb901355SGroverkss     }
631bb901355SGroverkss 
632bb901355SGroverkss     // FM wouldn't have modified the equalities in any way. So no need to again
633bb901355SGroverkss     // run GCD test. Check for trivial invalid constraints.
634bb901355SGroverkss     if (tmpCst.hasInvalidConstraint())
635bb901355SGroverkss       return true;
636bb901355SGroverkss   }
637bb901355SGroverkss   return false;
638bb901355SGroverkss }
639bb901355SGroverkss 
640bb901355SGroverkss // Runs the GCD test on all equality constraints. Returns 'true' if this test
641bb901355SGroverkss // fails on any equality. Returns 'false' otherwise.
642bb901355SGroverkss // This test can be used to disprove the existence of a solution. If it returns
643bb901355SGroverkss // true, no integer solution to the equality constraints can exist.
644bb901355SGroverkss //
645bb901355SGroverkss // GCD test definition:
646bb901355SGroverkss //
647bb901355SGroverkss // The equality constraint:
648bb901355SGroverkss //
649bb901355SGroverkss //  c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
650bb901355SGroverkss //
651bb901355SGroverkss // has an integer solution iff:
652bb901355SGroverkss //
653bb901355SGroverkss //  GCD of c_1, c_2, ..., c_n divides c_0.
654bb901355SGroverkss //
isEmptyByGCDTest() const655bb901355SGroverkss bool IntegerRelation::isEmptyByGCDTest() const {
656bb901355SGroverkss   assert(hasConsistentState());
657bb901355SGroverkss   unsigned numCols = getNumCols();
658bb901355SGroverkss   for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
659bb901355SGroverkss     uint64_t gcd = std::abs(atEq(i, 0));
660bb901355SGroverkss     for (unsigned j = 1; j < numCols - 1; ++j) {
661bb901355SGroverkss       gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
662bb901355SGroverkss     }
663bb901355SGroverkss     int64_t v = std::abs(atEq(i, numCols - 1));
664bb901355SGroverkss     if (gcd > 0 && (v % gcd != 0)) {
665bb901355SGroverkss       return true;
666bb901355SGroverkss     }
667bb901355SGroverkss   }
668bb901355SGroverkss   return false;
669bb901355SGroverkss }
670bb901355SGroverkss 
671bb901355SGroverkss // Returns a matrix where each row is a vector along which the polytope is
672bb901355SGroverkss // bounded. The span of the returned vectors is guaranteed to contain all
673bb901355SGroverkss // such vectors. The returned vectors are NOT guaranteed to be linearly
674bb901355SGroverkss // independent. This function should not be called on empty sets.
675bb901355SGroverkss //
676bb901355SGroverkss // It is sufficient to check the perpendiculars of the constraints, as the set
677bb901355SGroverkss // of perpendiculars which are bounded must span all bounded directions.
getBoundedDirections() const678bb901355SGroverkss Matrix IntegerRelation::getBoundedDirections() const {
679bb901355SGroverkss   // Note that it is necessary to add the equalities too (which the constructor
680bb901355SGroverkss   // does) even though we don't need to check if they are bounded; whether an
681bb901355SGroverkss   // inequality is bounded or not depends on what other constraints, including
682bb901355SGroverkss   // equalities, are present.
683bb901355SGroverkss   Simplex simplex(*this);
684bb901355SGroverkss 
685bb901355SGroverkss   assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
686bb901355SGroverkss                                "direction is bounded in an empty set.");
687bb901355SGroverkss 
688bb901355SGroverkss   SmallVector<unsigned, 8> boundedIneqs;
689bb901355SGroverkss   // The constructor adds the inequalities to the simplex first, so this
690bb901355SGroverkss   // processes all the inequalities.
691bb901355SGroverkss   for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
692bb901355SGroverkss     if (simplex.isBoundedAlongConstraint(i))
693bb901355SGroverkss       boundedIneqs.push_back(i);
694bb901355SGroverkss   }
695bb901355SGroverkss 
696bb901355SGroverkss   // The direction vector is given by the coefficients and does not include the
697bb901355SGroverkss   // constant term, so the matrix has one fewer column.
698bb901355SGroverkss   unsigned dirsNumCols = getNumCols() - 1;
699bb901355SGroverkss   Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
700bb901355SGroverkss 
701bb901355SGroverkss   // Copy the bounded inequalities.
702bb901355SGroverkss   unsigned row = 0;
703bb901355SGroverkss   for (unsigned i : boundedIneqs) {
704bb901355SGroverkss     for (unsigned col = 0; col < dirsNumCols; ++col)
705bb901355SGroverkss       dirs(row, col) = atIneq(i, col);
706bb901355SGroverkss     ++row;
707bb901355SGroverkss   }
708bb901355SGroverkss 
709bb901355SGroverkss   // Copy the equalities. All the equalities' perpendiculars are bounded.
710bb901355SGroverkss   for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
711bb901355SGroverkss     for (unsigned col = 0; col < dirsNumCols; ++col)
712bb901355SGroverkss       dirs(row, col) = atEq(i, col);
713bb901355SGroverkss     ++row;
714bb901355SGroverkss   }
715bb901355SGroverkss 
716bb901355SGroverkss   return dirs;
717bb901355SGroverkss }
718bb901355SGroverkss 
isIntegerEmpty() const719d66cbc56SKazu Hirata bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); }
720bb901355SGroverkss 
721bb901355SGroverkss /// Let this set be S. If S is bounded then we directly call into the GBR
722bb901355SGroverkss /// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
723bb901355SGroverkss /// vectors v such that S extends to infinity along v or -v. In this case we
724bb901355SGroverkss /// use an algorithm described in the integer set library (isl) manual and used
725bb901355SGroverkss /// by the isl_set_sample function in that library. The algorithm is:
726bb901355SGroverkss ///
727bb901355SGroverkss /// 1) Apply a unimodular transform T to S to obtain S*T, such that all
728bb901355SGroverkss /// dimensions in which S*T is bounded lie in the linear span of a prefix of the
729bb901355SGroverkss /// dimensions.
730bb901355SGroverkss ///
731bb901355SGroverkss /// 2) Construct a set B by removing all constraints that involve
732bb901355SGroverkss /// the unbounded dimensions and then deleting the unbounded dimensions. Note
733bb901355SGroverkss /// that B is a Bounded set.
734bb901355SGroverkss ///
735bb901355SGroverkss /// 3) Try to obtain a sample from B using the GBR sampling
736bb901355SGroverkss /// algorithm. If no sample is found, return that S is empty.
737bb901355SGroverkss ///
738bb901355SGroverkss /// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
739bb901355SGroverkss /// C. C is a full-dimensional Cone and always contains a sample.
740bb901355SGroverkss ///
741bb901355SGroverkss /// 5) Obtain an integer sample from C.
742bb901355SGroverkss ///
743bb901355SGroverkss /// 6) Return T*v, where v is the concatenation of the samples from B and C.
744bb901355SGroverkss ///
745bb901355SGroverkss /// The following is a sketch of a proof that
746bb901355SGroverkss /// a) If the algorithm returns empty, then S is empty.
747bb901355SGroverkss /// b) If the algorithm returns a sample, it is a valid sample in S.
748bb901355SGroverkss ///
749bb901355SGroverkss /// The algorithm returns empty only if B is empty, in which case S*T is
750bb901355SGroverkss /// certainly empty since B was obtained by removing constraints and then
751bb901355SGroverkss /// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
752bb901355SGroverkss /// v is in S*T iff T*v is in S. So in this case, since
753bb901355SGroverkss /// S*T is empty, S is empty too.
754bb901355SGroverkss ///
755bb901355SGroverkss /// Otherwise, the algorithm substitutes the sample from B into S*T. All the
756bb901355SGroverkss /// constraints of S*T that did not involve unbounded dimensions are satisfied
757bb901355SGroverkss /// by this substitution. All dimensions in the linear span of the dimensions
758bb901355SGroverkss /// outside the prefix are unbounded in S*T (step 1). Substituting values for
759bb901355SGroverkss /// the bounded dimensions cannot make these dimensions bounded, and these are
760bb901355SGroverkss /// the only remaining dimensions in C, so C is unbounded along every vector (in
761bb901355SGroverkss /// the positive or negative direction, or both). C is hence a full-dimensional
762bb901355SGroverkss /// cone and therefore always contains an integer point.
763bb901355SGroverkss ///
764bb901355SGroverkss /// Concatenating the samples from B and C gives a sample v in S*T, so the
765bb901355SGroverkss /// returned sample T*v is a sample in S.
findIntegerSample() const766bb901355SGroverkss Optional<SmallVector<int64_t, 8>> IntegerRelation::findIntegerSample() const {
767bb901355SGroverkss   // First, try the GCD test heuristic.
768bb901355SGroverkss   if (isEmptyByGCDTest())
769bb901355SGroverkss     return {};
770bb901355SGroverkss 
771bb901355SGroverkss   Simplex simplex(*this);
772bb901355SGroverkss   if (simplex.isEmpty())
773bb901355SGroverkss     return {};
774bb901355SGroverkss 
775bb901355SGroverkss   // For a bounded set, we directly call into the GBR sampling algorithm.
776bb901355SGroverkss   if (!simplex.isUnbounded())
777bb901355SGroverkss     return simplex.findIntegerSample();
778bb901355SGroverkss 
779bb901355SGroverkss   // The set is unbounded. We cannot directly use the GBR algorithm.
780bb901355SGroverkss   //
781bb901355SGroverkss   // m is a matrix containing, in each row, a vector in which S is
782bb901355SGroverkss   // bounded, such that the linear span of all these dimensions contains all
783bb901355SGroverkss   // bounded dimensions in S.
784bb901355SGroverkss   Matrix m = getBoundedDirections();
785bb901355SGroverkss   // In column echelon form, each row of m occupies only the first rank(m)
786bb901355SGroverkss   // columns and has zeros on the other columns. The transform T that brings S
787bb901355SGroverkss   // to column echelon form is unimodular as well, so this is a suitable
788bb901355SGroverkss   // transform to use in step 1 of the algorithm.
789bb901355SGroverkss   std::pair<unsigned, LinearTransform> result =
790bb901355SGroverkss       LinearTransform::makeTransformToColumnEchelon(std::move(m));
791bb901355SGroverkss   const LinearTransform &transform = result.second;
792bb901355SGroverkss   // 1) Apply T to S to obtain S*T.
793bb901355SGroverkss   IntegerRelation transformedSet = transform.applyTo(*this);
794bb901355SGroverkss 
795bb901355SGroverkss   // 2) Remove the unbounded dimensions and constraints involving them to
796bb901355SGroverkss   // obtain a bounded set.
797bb901355SGroverkss   IntegerRelation boundedSet(transformedSet);
798bb901355SGroverkss   unsigned numBoundedDims = result.first;
799d95140a5SGroverkss   unsigned numUnboundedDims = getNumVars() - numBoundedDims;
800d95140a5SGroverkss   removeConstraintsInvolvingVarRange(boundedSet, numBoundedDims,
8018a67c6eeSArjun P                                      numUnboundedDims);
802d95140a5SGroverkss   boundedSet.removeVarRange(numBoundedDims, boundedSet.getNumVars());
803bb901355SGroverkss 
804bb901355SGroverkss   // 3) Try to obtain a sample from the bounded set.
805bb901355SGroverkss   Optional<SmallVector<int64_t, 8>> boundedSample =
806bb901355SGroverkss       Simplex(boundedSet).findIntegerSample();
807bb901355SGroverkss   if (!boundedSample)
808bb901355SGroverkss     return {};
809bb901355SGroverkss   assert(boundedSet.containsPoint(*boundedSample) &&
810bb901355SGroverkss          "Simplex returned an invalid sample!");
811bb901355SGroverkss 
812bb901355SGroverkss   // 4) Substitute the values of the bounded dimensions into S*T to obtain a
813bb901355SGroverkss   // full-dimensional cone, which necessarily contains an integer sample.
814bb901355SGroverkss   transformedSet.setAndEliminate(0, *boundedSample);
815bb901355SGroverkss   IntegerRelation &cone = transformedSet;
816bb901355SGroverkss 
817bb901355SGroverkss   // 5) Obtain an integer sample from the cone.
818bb901355SGroverkss   //
819bb901355SGroverkss   // We shrink the cone such that for any rational point in the shrunken cone,
820bb901355SGroverkss   // rounding up each of the point's coordinates produces a point that still
821bb901355SGroverkss   // lies in the original cone.
822bb901355SGroverkss   //
823bb901355SGroverkss   // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
824bb901355SGroverkss   // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
825bb901355SGroverkss   // shrunken cone will have the inequality tightened by some amount s, such
826bb901355SGroverkss   // that if x satisfies the shrunken cone's tightened inequality, then x + e
827bb901355SGroverkss   // satisfies the original inequality, i.e.,
828bb901355SGroverkss   //
829bb901355SGroverkss   // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
830bb901355SGroverkss   //
831bb901355SGroverkss   // for any e_i values in [0, 1). In fact, we will handle the slightly more
832bb901355SGroverkss   // general case where e_i can be in [0, 1]. For example, consider the
833bb901355SGroverkss   // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
834bb901355SGroverkss   // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
835bb901355SGroverkss   // is minimized when we add 1 to the x_i with negative coefficient a_i and
836bb901355SGroverkss   // keep the other x_i the same. In the example, we would get x = (3, 1, 1),
837bb901355SGroverkss   // changing the value of the LHS by -3 + -7 = -10.
838bb901355SGroverkss   //
839bb901355SGroverkss   // In general, the value of the LHS can change by at most the sum of the
840bb901355SGroverkss   // negative a_i, so we accomodate this by shifting the inequality by this
841bb901355SGroverkss   // amount for the shrunken cone.
842bb901355SGroverkss   for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
843d95140a5SGroverkss     for (unsigned j = 0; j < cone.getNumVars(); ++j) {
844bb901355SGroverkss       int64_t coeff = cone.atIneq(i, j);
845bb901355SGroverkss       if (coeff < 0)
846d95140a5SGroverkss         cone.atIneq(i, cone.getNumVars()) += coeff;
847bb901355SGroverkss     }
848bb901355SGroverkss   }
849bb901355SGroverkss 
850bb901355SGroverkss   // Obtain an integer sample in the cone by rounding up a rational point from
851bb901355SGroverkss   // the shrunken cone. Shrinking the cone amounts to shifting its apex
852bb901355SGroverkss   // "inwards" without changing its "shape"; the shrunken cone is still a
853bb901355SGroverkss   // full-dimensional cone and is hence non-empty.
854bb901355SGroverkss   Simplex shrunkenConeSimplex(cone);
855bb901355SGroverkss   assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
856bb901355SGroverkss 
857bb901355SGroverkss   // The sample will always exist since the shrunken cone is non-empty.
858bb901355SGroverkss   SmallVector<Fraction, 8> shrunkenConeSample =
859bb901355SGroverkss       *shrunkenConeSimplex.getRationalSample();
860bb901355SGroverkss 
861bb901355SGroverkss   SmallVector<int64_t, 8> coneSample(llvm::map_range(shrunkenConeSample, ceil));
862bb901355SGroverkss 
863bb901355SGroverkss   // 6) Return transform * concat(boundedSample, coneSample).
8646d5fc1e3SKazu Hirata   SmallVector<int64_t, 8> &sample = *boundedSample;
865bb901355SGroverkss   sample.append(coneSample.begin(), coneSample.end());
866bb901355SGroverkss   return transform.postMultiplyWithColumn(sample);
867bb901355SGroverkss }
868bb901355SGroverkss 
869bb901355SGroverkss /// Helper to evaluate an affine expression at a point.
870bb901355SGroverkss /// The expression is a list of coefficients for the dimensions followed by the
871bb901355SGroverkss /// constant term.
valueAt(ArrayRef<int64_t> expr,ArrayRef<int64_t> point)872bb901355SGroverkss static int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) {
873bb901355SGroverkss   assert(expr.size() == 1 + point.size() &&
874bb901355SGroverkss          "Dimensionalities of point and expression don't match!");
875bb901355SGroverkss   int64_t value = expr.back();
876bb901355SGroverkss   for (unsigned i = 0; i < point.size(); ++i)
877bb901355SGroverkss     value += expr[i] * point[i];
878bb901355SGroverkss   return value;
879bb901355SGroverkss }
880bb901355SGroverkss 
881bb901355SGroverkss /// A point satisfies an equality iff the value of the equality at the
882bb901355SGroverkss /// expression is zero, and it satisfies an inequality iff the value of the
883bb901355SGroverkss /// inequality at that point is non-negative.
containsPoint(ArrayRef<int64_t> point) const884bb901355SGroverkss bool IntegerRelation::containsPoint(ArrayRef<int64_t> point) const {
885bb901355SGroverkss   for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
886bb901355SGroverkss     if (valueAt(getEquality(i), point) != 0)
887bb901355SGroverkss       return false;
888bb901355SGroverkss   }
889bb901355SGroverkss   for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
890bb901355SGroverkss     if (valueAt(getInequality(i), point) < 0)
891bb901355SGroverkss       return false;
892bb901355SGroverkss   }
893bb901355SGroverkss   return true;
894bb901355SGroverkss }
895bb901355SGroverkss 
8964418669fSArjun P /// Just substitute the values given and check if an integer sample exists for
897d95140a5SGroverkss /// the local vars.
8984418669fSArjun P ///
8994418669fSArjun P /// TODO: this could be made more efficient by handling divisions separately.
9004418669fSArjun P /// Instead of finding an integer sample over all the locals, we can first
9014418669fSArjun P /// compute the values of the locals that have division representations and
9024418669fSArjun P /// only use the integer emptiness check for the locals that don't have this.
9034418669fSArjun P /// Handling this correctly requires ordering the divs, though.
9044418669fSArjun P Optional<SmallVector<int64_t, 8>>
containsPointNoLocal(ArrayRef<int64_t> point) const9054418669fSArjun P IntegerRelation::containsPointNoLocal(ArrayRef<int64_t> point) const {
906d95140a5SGroverkss   assert(point.size() == getNumVars() - getNumLocalVars() &&
907d95140a5SGroverkss          "Point should contain all vars except locals!");
908d95140a5SGroverkss   assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() &&
9094418669fSArjun P          "This function depends on locals being stored last!");
9104418669fSArjun P   IntegerRelation copy = *this;
9114418669fSArjun P   copy.setAndEliminate(0, point);
9124418669fSArjun P   return copy.findIntegerSample();
9134418669fSArjun P }
9144418669fSArjun P 
915479c4f64SGroverkss DivisionRepr
getLocalReprs(std::vector<MaybeLocalRepr> * repr) const916479c4f64SGroverkss IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const {
917d95140a5SGroverkss   SmallVector<bool, 8> foundRepr(getNumVars(), false);
918d95140a5SGroverkss   for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i)
919bb901355SGroverkss     foundRepr[i] = true;
920bb901355SGroverkss 
921479c4f64SGroverkss   unsigned localOffset = getVarKindOffset(VarKind::Local);
922479c4f64SGroverkss   DivisionRepr divs(getNumVars(), getNumLocalVars());
923bb901355SGroverkss   bool changed;
924bb901355SGroverkss   do {
925bb901355SGroverkss     // Each time changed is true, at end of this iteration, one or more local
926bb901355SGroverkss     // vars have been detected as floor divs.
927bb901355SGroverkss     changed = false;
928d95140a5SGroverkss     for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) {
929479c4f64SGroverkss       if (!foundRepr[i + localOffset]) {
930479c4f64SGroverkss         MaybeLocalRepr res =
931479c4f64SGroverkss             computeSingleVarRepr(*this, foundRepr, localOffset + i,
932479c4f64SGroverkss                                  divs.getDividend(i), divs.getDenom(i));
933479c4f64SGroverkss         if (!res) {
934479c4f64SGroverkss           // No representation was found, so clear the representation and
935479c4f64SGroverkss           // continue.
936479c4f64SGroverkss           divs.clearRepr(i);
937bb901355SGroverkss           continue;
938479c4f64SGroverkss         }
939479c4f64SGroverkss         foundRepr[localOffset + i] = true;
940479c4f64SGroverkss         if (repr)
941479c4f64SGroverkss           (*repr)[i] = res;
942bb901355SGroverkss         changed = true;
943bb901355SGroverkss       }
944bb901355SGroverkss     }
945bb901355SGroverkss   } while (changed);
946bb901355SGroverkss 
947479c4f64SGroverkss   return divs;
948bb901355SGroverkss }
949bb901355SGroverkss 
950bb901355SGroverkss /// Tightens inequalities given that we are dealing with integer spaces. This is
951bb901355SGroverkss /// analogous to the GCD test but applied to inequalities. The constant term can
952bb901355SGroverkss /// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
953bb901355SGroverkss ///  64*i - 100 >= 0  =>  64*i - 128 >= 0 (since 'i' is an integer). This is a
954bb901355SGroverkss /// fast method - linear in the number of coefficients.
955bb901355SGroverkss // Example on how this affects practical cases: consider the scenario:
956bb901355SGroverkss // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
957bb901355SGroverkss // j >= 100 instead of the tighter (exact) j >= 128.
gcdTightenInequalities()958bb901355SGroverkss void IntegerRelation::gcdTightenInequalities() {
959bb901355SGroverkss   unsigned numCols = getNumCols();
960bb901355SGroverkss   for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
961bb901355SGroverkss     // Normalize the constraint and tighten the constant term by the GCD.
962aafb4282SArjun P     int64_t gcd = inequalities.normalizeRow(i, getNumCols() - 1);
963bb901355SGroverkss     if (gcd > 1)
964bb901355SGroverkss       atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcd);
965bb901355SGroverkss   }
966bb901355SGroverkss }
967bb901355SGroverkss 
968d95140a5SGroverkss // Eliminates all variable variables in column range [posStart, posLimit).
969bb901355SGroverkss // Returns the number of variables eliminated.
gaussianEliminateVars(unsigned posStart,unsigned posLimit)970d95140a5SGroverkss unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart,
971bb901355SGroverkss                                                 unsigned posLimit) {
972d95140a5SGroverkss   // Return if variable positions to eliminate are out of range.
973d95140a5SGroverkss   assert(posLimit <= getNumVars());
974bb901355SGroverkss   assert(hasConsistentState());
975bb901355SGroverkss 
976bb901355SGroverkss   if (posStart >= posLimit)
977bb901355SGroverkss     return 0;
978bb901355SGroverkss 
979bb901355SGroverkss   gcdTightenInequalities();
980bb901355SGroverkss 
981bb901355SGroverkss   unsigned pivotCol = 0;
982bb901355SGroverkss   for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
983bb901355SGroverkss     // Find a row which has a non-zero coefficient in column 'j'.
984bb901355SGroverkss     unsigned pivotRow;
985bb901355SGroverkss     if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true, &pivotRow)) {
986bb901355SGroverkss       // No pivot row in equalities with non-zero at 'pivotCol'.
987bb901355SGroverkss       if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false, &pivotRow)) {
988bb901355SGroverkss         // If inequalities are also non-zero in 'pivotCol', it can be
989bb901355SGroverkss         // eliminated.
990bb901355SGroverkss         continue;
991bb901355SGroverkss       }
992bb901355SGroverkss       break;
993bb901355SGroverkss     }
994bb901355SGroverkss 
995d95140a5SGroverkss     // Eliminate variable at 'pivotCol' from each equality row.
996bb901355SGroverkss     for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
997bb901355SGroverkss       eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
998bb901355SGroverkss                               /*isEq=*/true);
999bb901355SGroverkss       equalities.normalizeRow(i);
1000bb901355SGroverkss     }
1001bb901355SGroverkss 
1002d95140a5SGroverkss     // Eliminate variable at 'pivotCol' from each inequality row.
1003bb901355SGroverkss     for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
1004bb901355SGroverkss       eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
1005bb901355SGroverkss                               /*isEq=*/false);
1006bb901355SGroverkss       inequalities.normalizeRow(i);
1007bb901355SGroverkss     }
1008bb901355SGroverkss     removeEquality(pivotRow);
1009bb901355SGroverkss     gcdTightenInequalities();
1010bb901355SGroverkss   }
1011bb901355SGroverkss   // Update position limit based on number eliminated.
1012bb901355SGroverkss   posLimit = pivotCol;
1013bb901355SGroverkss   // Remove eliminated columns from all constraints.
1014d95140a5SGroverkss   removeVarRange(posStart, posLimit);
1015bb901355SGroverkss   return posLimit - posStart;
1016bb901355SGroverkss }
1017bb901355SGroverkss 
1018bb901355SGroverkss // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
1019bb901355SGroverkss // to check if a constraint is redundant.
removeRedundantInequalities()1020bb901355SGroverkss void IntegerRelation::removeRedundantInequalities() {
1021bb901355SGroverkss   SmallVector<bool, 32> redun(getNumInequalities(), false);
1022bb901355SGroverkss   // To check if an inequality is redundant, we replace the inequality by its
1023bb901355SGroverkss   // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
1024bb901355SGroverkss   // system is empty. If it is, the inequality is redundant.
1025bb901355SGroverkss   IntegerRelation tmpCst(*this);
1026bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1027bb901355SGroverkss     // Change the inequality to its complement.
1028bb901355SGroverkss     tmpCst.inequalities.negateRow(r);
1029ef95a6e8SArjun P     --tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
1030bb901355SGroverkss     if (tmpCst.isEmpty()) {
1031bb901355SGroverkss       redun[r] = true;
1032bb901355SGroverkss       // Zero fill the redundant inequality.
1033bb901355SGroverkss       inequalities.fillRow(r, /*value=*/0);
1034bb901355SGroverkss       tmpCst.inequalities.fillRow(r, /*value=*/0);
1035bb901355SGroverkss     } else {
1036bb901355SGroverkss       // Reverse the change (to avoid recreating tmpCst each time).
1037ef95a6e8SArjun P       ++tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
1038bb901355SGroverkss       tmpCst.inequalities.negateRow(r);
1039bb901355SGroverkss     }
1040bb901355SGroverkss   }
1041bb901355SGroverkss 
1042bb901355SGroverkss   unsigned pos = 0;
1043bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
1044bb901355SGroverkss     if (!redun[r])
1045bb901355SGroverkss       inequalities.copyRow(r, pos++);
1046bb901355SGroverkss   }
1047bb901355SGroverkss   inequalities.resizeVertically(pos);
1048bb901355SGroverkss }
1049bb901355SGroverkss 
1050bb901355SGroverkss // A more complex check to eliminate redundant inequalities and equalities. Uses
1051bb901355SGroverkss // Simplex to check if a constraint is redundant.
removeRedundantConstraints()1052bb901355SGroverkss void IntegerRelation::removeRedundantConstraints() {
1053bb901355SGroverkss   // First, we run gcdTightenInequalities. This allows us to catch some
1054bb901355SGroverkss   // constraints which are not redundant when considering rational solutions
1055bb901355SGroverkss   // but are redundant in terms of integer solutions.
1056bb901355SGroverkss   gcdTightenInequalities();
1057bb901355SGroverkss   Simplex simplex(*this);
1058bb901355SGroverkss   simplex.detectRedundant();
1059bb901355SGroverkss 
1060bb901355SGroverkss   unsigned pos = 0;
1061bb901355SGroverkss   unsigned numIneqs = getNumInequalities();
1062bb901355SGroverkss   // Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
1063bb901355SGroverkss   // the first constraints added are the inequalities.
1064bb901355SGroverkss   for (unsigned r = 0; r < numIneqs; r++) {
1065bb901355SGroverkss     if (!simplex.isMarkedRedundant(r))
1066bb901355SGroverkss       inequalities.copyRow(r, pos++);
1067bb901355SGroverkss   }
1068bb901355SGroverkss   inequalities.resizeVertically(pos);
1069bb901355SGroverkss 
1070bb901355SGroverkss   // Scan to get rid of all equalities marked redundant, in-place. In Simplex,
1071bb901355SGroverkss   // after the inequalities, a pair of constraints for each equality is added.
1072bb901355SGroverkss   // An equality is redundant if both the inequalities in its pair are
1073bb901355SGroverkss   // redundant.
1074bb901355SGroverkss   pos = 0;
1075bb901355SGroverkss   for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1076bb901355SGroverkss     if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
1077bb901355SGroverkss           simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
1078bb901355SGroverkss       equalities.copyRow(r, pos++);
1079bb901355SGroverkss   }
1080bb901355SGroverkss   equalities.resizeVertically(pos);
1081bb901355SGroverkss }
1082bb901355SGroverkss 
computeVolume() const1083bb901355SGroverkss Optional<uint64_t> IntegerRelation::computeVolume() const {
1084d95140a5SGroverkss   assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
1085bb901355SGroverkss 
1086bb901355SGroverkss   Simplex simplex(*this);
1087bb901355SGroverkss   // If the polytope is rationally empty, there are certainly no integer
1088bb901355SGroverkss   // points.
1089bb901355SGroverkss   if (simplex.isEmpty())
1090bb901355SGroverkss     return 0;
1091bb901355SGroverkss 
1092d95140a5SGroverkss   // Just find the maximum and minimum integer value of each non-local var
1093d95140a5SGroverkss   // separately, thus finding the number of integer values each such var can
1094bb901355SGroverkss   // take. Multiplying these together gives a valid overapproximation of the
1095bb901355SGroverkss   // number of integer points in the relation. The result this gives is
1096d95140a5SGroverkss   // equivalent to projecting (rationally) the relation onto its non-local vars
1097bb901355SGroverkss   // and returning the number of integer points in a minimal axis-parallel
1098bb901355SGroverkss   // hyperrectangular overapproximation of that.
1099bb901355SGroverkss   //
1100bb901355SGroverkss   // We also handle the special case where one dimension is unbounded and
1101bb901355SGroverkss   // another dimension can take no integer values. In this case, the volume is
1102bb901355SGroverkss   // zero.
1103bb901355SGroverkss   //
1104bb901355SGroverkss   // If there is no such empty dimension, if any dimension is unbounded we
1105bb901355SGroverkss   // just return the result as unbounded.
1106bb901355SGroverkss   uint64_t count = 1;
1107d95140a5SGroverkss   SmallVector<int64_t, 8> dim(getNumVars() + 1);
1108d95140a5SGroverkss   bool hasUnboundedVar = false;
1109d95140a5SGroverkss   for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) {
1110bb901355SGroverkss     dim[i] = 1;
1111bb901355SGroverkss     MaybeOptimum<int64_t> min, max;
1112bb901355SGroverkss     std::tie(min, max) = simplex.computeIntegerBounds(dim);
1113bb901355SGroverkss     dim[i] = 0;
1114bb901355SGroverkss 
1115bb901355SGroverkss     assert((!min.isEmpty() && !max.isEmpty()) &&
1116bb901355SGroverkss            "Polytope should be rationally non-empty!");
1117bb901355SGroverkss 
1118bb901355SGroverkss     // One of the dimensions is unbounded. Note this fact. We will return
1119bb901355SGroverkss     // unbounded if none of the other dimensions makes the volume zero.
1120bb901355SGroverkss     if (min.isUnbounded() || max.isUnbounded()) {
1121d95140a5SGroverkss       hasUnboundedVar = true;
1122bb901355SGroverkss       continue;
1123bb901355SGroverkss     }
1124bb901355SGroverkss 
1125bb901355SGroverkss     // In this case there are no valid integer points and the volume is
1126bb901355SGroverkss     // definitely zero.
1127bb901355SGroverkss     if (min.getBoundedOptimum() > max.getBoundedOptimum())
1128bb901355SGroverkss       return 0;
1129bb901355SGroverkss 
1130bb901355SGroverkss     count *= (*max - *min + 1);
1131bb901355SGroverkss   }
1132bb901355SGroverkss 
1133bb901355SGroverkss   if (count == 0)
1134bb901355SGroverkss     return 0;
1135d95140a5SGroverkss   if (hasUnboundedVar)
1136bb901355SGroverkss     return {};
1137bb901355SGroverkss   return count;
1138bb901355SGroverkss }
1139bb901355SGroverkss 
eliminateRedundantLocalVar(unsigned posA,unsigned posB)1140d95140a5SGroverkss void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) {
1141d95140a5SGroverkss   assert(posA < getNumLocalVars() && "Invalid local var position");
1142d95140a5SGroverkss   assert(posB < getNumLocalVars() && "Invalid local var position");
1143bb901355SGroverkss 
1144d95140a5SGroverkss   unsigned localOffset = getVarKindOffset(VarKind::Local);
1145bb901355SGroverkss   posA += localOffset;
1146bb901355SGroverkss   posB += localOffset;
1147bb901355SGroverkss   inequalities.addToColumn(posB, posA, 1);
1148bb901355SGroverkss   equalities.addToColumn(posB, posA, 1);
1149d95140a5SGroverkss   removeVar(posB);
1150bb901355SGroverkss }
1151bb901355SGroverkss 
1152bb901355SGroverkss /// Adds additional local ids to the sets such that they both have the union
1153bb901355SGroverkss /// of the local ids in each set, without changing the set of points that
1154bb901355SGroverkss /// lie in `this` and `other`.
1155bb901355SGroverkss ///
11564ffd0b6fSGroverkss /// To detect local ids that always take the same value, each local id is
1157bb901355SGroverkss /// represented as a floordiv with constant denominator in terms of other ids.
11584ffd0b6fSGroverkss /// After extracting these divisions, local ids in `other` with the same
11594ffd0b6fSGroverkss /// division representation as some other local id in any set are considered
11604ffd0b6fSGroverkss /// duplicate and are merged.
11614ffd0b6fSGroverkss ///
11624ffd0b6fSGroverkss /// It is possible that division representation for some local id cannot be
11634ffd0b6fSGroverkss /// obtained, and thus these local ids are not considered for detecting
11644ffd0b6fSGroverkss /// duplicates.
mergeLocalVars(IntegerRelation & other)1165d95140a5SGroverkss unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) {
1166bb901355SGroverkss   IntegerRelation &relA = *this;
1167bb901355SGroverkss   IntegerRelation &relB = other;
1168bb901355SGroverkss 
1169d95140a5SGroverkss   unsigned oldALocals = relA.getNumLocalVars();
11704ffd0b6fSGroverkss 
1171bb901355SGroverkss   // Merge function that merges the local variables in both sets by treating
1172d95140a5SGroverkss   // them as the same variable.
11734ffd0b6fSGroverkss   auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool {
11744ffd0b6fSGroverkss     // We only merge from local at pos j to local at pos i, where j > i.
11754ffd0b6fSGroverkss     if (i >= j)
11764ffd0b6fSGroverkss       return false;
11774ffd0b6fSGroverkss 
11784ffd0b6fSGroverkss     // If i < oldALocals, we are trying to merge duplicate divs. Since we do not
11794ffd0b6fSGroverkss     // want to merge duplicates in A, we ignore this call.
11804ffd0b6fSGroverkss     if (j < oldALocals)
11814ffd0b6fSGroverkss       return false;
11824ffd0b6fSGroverkss 
11834ffd0b6fSGroverkss     // Merge local at pos j into local at position i.
1184d95140a5SGroverkss     relA.eliminateRedundantLocalVar(i, j);
1185d95140a5SGroverkss     relB.eliminateRedundantLocalVar(i, j);
1186bb901355SGroverkss     return true;
1187bb901355SGroverkss   };
1188bb901355SGroverkss 
1189d95140a5SGroverkss   presburger::mergeLocalVars(*this, other, merge);
11904ffd0b6fSGroverkss 
11914ffd0b6fSGroverkss   // Since we do not remove duplicate divisions in relA, this is guranteed to be
11924ffd0b6fSGroverkss   // non-negative.
1193d95140a5SGroverkss   return relA.getNumLocalVars() - oldALocals;
119431cb9995SArjun P }
119531cb9995SArjun P 
hasOnlyDivLocals() const11968a7ead69SArjun P bool IntegerRelation::hasOnlyDivLocals() const {
1197479c4f64SGroverkss   return getLocalReprs().hasAllReprs();
11988a7ead69SArjun P }
11998a7ead69SArjun P 
removeDuplicateDivs()120031cb9995SArjun P void IntegerRelation::removeDuplicateDivs() {
1201479c4f64SGroverkss   DivisionRepr divs = getLocalReprs();
120231cb9995SArjun P   auto merge = [this](unsigned i, unsigned j) -> bool {
1203d95140a5SGroverkss     eliminateRedundantLocalVar(i, j);
120431cb9995SArjun P     return true;
120531cb9995SArjun P   };
1206479c4f64SGroverkss   divs.removeDuplicateDivs(merge);
1207bb901355SGroverkss }
1208bb901355SGroverkss 
1209bb901355SGroverkss /// Removes local variables using equalities. Each equality is checked if it
1210bb901355SGroverkss /// can be reduced to the form: `e = affine-expr`, where `e` is a local
1211bb901355SGroverkss /// variable and `affine-expr` is an affine expression not containing `e`.
1212bb901355SGroverkss /// If an equality satisfies this form, the local variable is replaced in
1213bb901355SGroverkss /// each constraint and then removed. The equality used to replace this local
1214bb901355SGroverkss /// variable is also removed.
removeRedundantLocalVars()1215bb901355SGroverkss void IntegerRelation::removeRedundantLocalVars() {
1216bb901355SGroverkss   // Normalize the equality constraints to reduce coefficients of local
1217bb901355SGroverkss   // variables to 1 wherever possible.
1218bb901355SGroverkss   for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
1219bb901355SGroverkss     equalities.normalizeRow(i);
1220bb901355SGroverkss 
1221bb901355SGroverkss   while (true) {
1222bb901355SGroverkss     unsigned i, e, j, f;
1223bb901355SGroverkss     for (i = 0, e = getNumEqualities(); i < e; ++i) {
1224bb901355SGroverkss       // Find a local variable to eliminate using ith equality.
1225d95140a5SGroverkss       for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j)
1226bb901355SGroverkss         if (std::abs(atEq(i, j)) == 1)
1227bb901355SGroverkss           break;
1228bb901355SGroverkss 
1229bb901355SGroverkss       // Local variable can be eliminated using ith equality.
1230bb901355SGroverkss       if (j < f)
1231bb901355SGroverkss         break;
1232bb901355SGroverkss     }
1233bb901355SGroverkss 
1234bb901355SGroverkss     // No equality can be used to eliminate a local variable.
1235bb901355SGroverkss     if (i == e)
1236bb901355SGroverkss       break;
1237bb901355SGroverkss 
1238bb901355SGroverkss     // Use the ith equality to simplify other equalities. If any changes
1239bb901355SGroverkss     // are made to an equality constraint, it is normalized by GCD.
1240bb901355SGroverkss     for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
1241bb901355SGroverkss       if (atEq(k, j) != 0) {
1242bb901355SGroverkss         eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
1243bb901355SGroverkss         equalities.normalizeRow(k);
1244bb901355SGroverkss       }
1245bb901355SGroverkss     }
1246bb901355SGroverkss 
1247bb901355SGroverkss     // Use the ith equality to simplify inequalities.
1248bb901355SGroverkss     for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
1249bb901355SGroverkss       eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
1250bb901355SGroverkss 
1251bb901355SGroverkss     // Remove the ith equality and the found local variable.
1252d95140a5SGroverkss     removeVar(j);
1253bb901355SGroverkss     removeEquality(i);
1254bb901355SGroverkss   }
1255bb901355SGroverkss }
1256bb901355SGroverkss 
convertVarKind(VarKind srcKind,unsigned varStart,unsigned varLimit,VarKind dstKind,unsigned pos)1257d08522f5SArjun P void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart,
1258d08522f5SArjun P                                      unsigned varLimit, VarKind dstKind,
1259dac27da7SGroverkss                                      unsigned pos) {
1260d08522f5SArjun P   assert(varLimit <= getNumVarKind(srcKind) && "Invalid id range");
1261bb901355SGroverkss 
1262d08522f5SArjun P   if (varStart >= varLimit)
1263bb901355SGroverkss     return;
1264bb901355SGroverkss 
1265bb901355SGroverkss   // Append new local variables corresponding to the dimensions to be converted.
1266d08522f5SArjun P   unsigned convertCount = varLimit - varStart;
1267d95140a5SGroverkss   unsigned newVarsBegin = insertVar(dstKind, pos, convertCount);
1268bb901355SGroverkss 
1269bb901355SGroverkss   // Swap the new local variables with dimensions.
127087cffeb6SArjun P   //
127187cffeb6SArjun P   // Essentially, this moves the information corresponding to the specified ids
127287cffeb6SArjun P   // of kind `srcKind` to the `convertCount` newly created ids of kind
127387cffeb6SArjun P   // `dstKind`. In particular, this moves the columns in the constraint
127487cffeb6SArjun P   // matrices, and zeros out the initially occupied columns (because the newly
127587cffeb6SArjun P   // created ids we're swapping with were zero-initialized).
1276d95140a5SGroverkss   unsigned offset = getVarKindOffset(srcKind);
1277bb901355SGroverkss   for (unsigned i = 0; i < convertCount; ++i)
1278d08522f5SArjun P     swapVar(offset + varStart + i, newVarsBegin + i);
1279bb901355SGroverkss 
128087cffeb6SArjun P   // Complete the move by deleting the initially occupied columns.
1281d08522f5SArjun P   removeVarRange(srcKind, varStart, varLimit);
1282bb901355SGroverkss }
1283bb901355SGroverkss 
addBound(BoundType type,unsigned pos,int64_t value)1284bb901355SGroverkss void IntegerRelation::addBound(BoundType type, unsigned pos, int64_t value) {
1285bb901355SGroverkss   assert(pos < getNumCols());
1286bb901355SGroverkss   if (type == BoundType::EQ) {
1287bb901355SGroverkss     unsigned row = equalities.appendExtraRow();
1288bb901355SGroverkss     equalities(row, pos) = 1;
1289bb901355SGroverkss     equalities(row, getNumCols() - 1) = -value;
1290bb901355SGroverkss   } else {
1291bb901355SGroverkss     unsigned row = inequalities.appendExtraRow();
1292bb901355SGroverkss     inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
1293bb901355SGroverkss     inequalities(row, getNumCols() - 1) =
1294bb901355SGroverkss         type == BoundType::LB ? -value : value;
1295bb901355SGroverkss   }
1296bb901355SGroverkss }
1297bb901355SGroverkss 
addBound(BoundType type,ArrayRef<int64_t> expr,int64_t value)1298bb901355SGroverkss void IntegerRelation::addBound(BoundType type, ArrayRef<int64_t> expr,
1299bb901355SGroverkss                                int64_t value) {
1300bb901355SGroverkss   assert(type != BoundType::EQ && "EQ not implemented");
1301bb901355SGroverkss   assert(expr.size() == getNumCols());
1302bb901355SGroverkss   unsigned row = inequalities.appendExtraRow();
1303bb901355SGroverkss   for (unsigned i = 0, e = expr.size(); i < e; ++i)
1304bb901355SGroverkss     inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
1305bb901355SGroverkss   inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
1306bb901355SGroverkss       type == BoundType::LB ? -value : value;
1307bb901355SGroverkss }
1308bb901355SGroverkss 
1309d95140a5SGroverkss /// Adds a new local variable as the floordiv of an affine function of other
1310d95140a5SGroverkss /// variables, the coefficients of which are provided in 'dividend' and with
1311bb901355SGroverkss /// respect to a positive constant 'divisor'. Two constraints are added to the
1312bb901355SGroverkss /// system to capture equivalence with the floordiv.
1313bb901355SGroverkss ///      q = expr floordiv c    <=>   c*q <= expr <= c*q + c - 1.
addLocalFloorDiv(ArrayRef<int64_t> dividend,int64_t divisor)1314bb901355SGroverkss void IntegerRelation::addLocalFloorDiv(ArrayRef<int64_t> dividend,
1315bb901355SGroverkss                                        int64_t divisor) {
1316bb901355SGroverkss   assert(dividend.size() == getNumCols() && "incorrect dividend size");
1317bb901355SGroverkss   assert(divisor > 0 && "positive divisor expected");
1318bb901355SGroverkss 
1319d95140a5SGroverkss   appendVar(VarKind::Local);
1320bb901355SGroverkss 
1321fd26d86fSArjun P   SmallVector<int64_t, 8> dividendCopy(dividend.begin(), dividend.end());
1322fd26d86fSArjun P   dividendCopy.insert(dividendCopy.end() - 1, 0);
1323fd26d86fSArjun P   addInequality(
1324fd26d86fSArjun P       getDivLowerBound(dividendCopy, divisor, dividendCopy.size() - 2));
1325fd26d86fSArjun P   addInequality(
1326fd26d86fSArjun P       getDivUpperBound(dividendCopy, divisor, dividendCopy.size() - 2));
1327bb901355SGroverkss }
1328bb901355SGroverkss 
1329d95140a5SGroverkss /// Finds an equality that equates the specified variable to a constant.
1330bb901355SGroverkss /// Returns the position of the equality row. If 'symbolic' is set to true,
1331bb901355SGroverkss /// symbols are also treated like a constant, i.e., an affine function of the
1332bb901355SGroverkss /// symbols is also treated like a constant. Returns -1 if such an equality
1333bb901355SGroverkss /// could not be found.
findEqualityToConstant(const IntegerRelation & cst,unsigned pos,bool symbolic=false)1334bb901355SGroverkss static int findEqualityToConstant(const IntegerRelation &cst, unsigned pos,
1335bb901355SGroverkss                                   bool symbolic = false) {
1336d95140a5SGroverkss   assert(pos < cst.getNumVars() && "invalid position");
1337bb901355SGroverkss   for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
1338bb901355SGroverkss     int64_t v = cst.atEq(r, pos);
1339bb901355SGroverkss     if (v * v != 1)
1340bb901355SGroverkss       continue;
1341bb901355SGroverkss     unsigned c;
1342d95140a5SGroverkss     unsigned f = symbolic ? cst.getNumDimVars() : cst.getNumVars();
1343bb901355SGroverkss     // This checks for zeros in all positions other than 'pos' in [0, f)
1344bb901355SGroverkss     for (c = 0; c < f; c++) {
1345bb901355SGroverkss       if (c == pos)
1346bb901355SGroverkss         continue;
1347bb901355SGroverkss       if (cst.atEq(r, c) != 0) {
1348d95140a5SGroverkss         // Dependent on another variable.
1349bb901355SGroverkss         break;
1350bb901355SGroverkss       }
1351bb901355SGroverkss     }
1352bb901355SGroverkss     if (c == f)
1353d95140a5SGroverkss       // Equality is free of other variables.
1354bb901355SGroverkss       return r;
1355bb901355SGroverkss   }
1356bb901355SGroverkss   return -1;
1357bb901355SGroverkss }
1358bb901355SGroverkss 
constantFoldVar(unsigned pos)1359d95140a5SGroverkss LogicalResult IntegerRelation::constantFoldVar(unsigned pos) {
1360d95140a5SGroverkss   assert(pos < getNumVars() && "invalid position");
1361bb901355SGroverkss   int rowIdx;
1362bb901355SGroverkss   if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
1363bb901355SGroverkss     return failure();
1364bb901355SGroverkss 
1365bb901355SGroverkss   // atEq(rowIdx, pos) is either -1 or 1.
1366bb901355SGroverkss   assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
1367bb901355SGroverkss   int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
1368bb901355SGroverkss   setAndEliminate(pos, constVal);
1369bb901355SGroverkss   return success();
1370bb901355SGroverkss }
1371bb901355SGroverkss 
constantFoldVarRange(unsigned pos,unsigned num)1372d95140a5SGroverkss void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) {
1373bb901355SGroverkss   for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
1374d95140a5SGroverkss     if (failed(constantFoldVar(t)))
1375bb901355SGroverkss       t++;
1376bb901355SGroverkss   }
1377bb901355SGroverkss }
1378bb901355SGroverkss 
1379bb901355SGroverkss /// Returns a non-negative constant bound on the extent (upper bound - lower
1380d95140a5SGroverkss /// bound) of the specified variable if it is found to be a constant; returns
1381d95140a5SGroverkss /// None if it's not a constant. This methods treats symbolic variables
1382bb901355SGroverkss /// specially, i.e., it looks for constant differences between affine
1383d95140a5SGroverkss /// expressions involving only the symbolic variables. See comments at
1384bb901355SGroverkss /// function definition for example. 'lb', if provided, is set to the lower
1385bb901355SGroverkss /// bound associated with the constant difference. Note that 'lb' is purely
1386d95140a5SGroverkss /// symbolic and thus will contain the coefficients of the symbolic variables
1387bb901355SGroverkss /// and the constant coefficient.
1388bb901355SGroverkss //  Egs: 0 <= i <= 15, return 16.
1389bb901355SGroverkss //       s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
1390bb901355SGroverkss //       s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
1391bb901355SGroverkss //       s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
1392bb901355SGroverkss //       ceil(s0 - 7 / 8) = floor(s0 / 8)).
getConstantBoundOnDimSize(unsigned pos,SmallVectorImpl<int64_t> * lb,int64_t * boundFloorDivisor,SmallVectorImpl<int64_t> * ub,unsigned * minLbPos,unsigned * minUbPos) const1393bb901355SGroverkss Optional<int64_t> IntegerRelation::getConstantBoundOnDimSize(
1394bb901355SGroverkss     unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *boundFloorDivisor,
1395bb901355SGroverkss     SmallVectorImpl<int64_t> *ub, unsigned *minLbPos,
1396bb901355SGroverkss     unsigned *minUbPos) const {
1397d95140a5SGroverkss   assert(pos < getNumDimVars() && "Invalid variable position");
1398bb901355SGroverkss 
1399d95140a5SGroverkss   // Find an equality for 'pos'^th variable that equates it to some function
1400d95140a5SGroverkss   // of the symbolic variables (+ constant).
1401bb901355SGroverkss   int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true);
1402bb901355SGroverkss   if (eqPos != -1) {
1403bb901355SGroverkss     auto eq = getEquality(eqPos);
1404bb901355SGroverkss     // If the equality involves a local var, punt for now.
1405bb901355SGroverkss     // TODO: this can be handled in the future by using the explicit
1406bb901355SGroverkss     // representation of the local vars.
1407d95140a5SGroverkss     if (!std::all_of(eq.begin() + getNumDimAndSymbolVars(), eq.end() - 1,
1408bb901355SGroverkss                      [](int64_t coeff) { return coeff == 0; }))
1409bb901355SGroverkss       return None;
1410bb901355SGroverkss 
1411d95140a5SGroverkss     // This variable can only take a single value.
1412bb901355SGroverkss     if (lb) {
1413bb901355SGroverkss       // Set lb to that symbolic value.
1414d95140a5SGroverkss       lb->resize(getNumSymbolVars() + 1);
1415bb901355SGroverkss       if (ub)
1416d95140a5SGroverkss         ub->resize(getNumSymbolVars() + 1);
1417d95140a5SGroverkss       for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) {
1418bb901355SGroverkss         int64_t v = atEq(eqPos, pos);
1419bb901355SGroverkss         // atEq(eqRow, pos) is either -1 or 1.
1420bb901355SGroverkss         assert(v * v == 1);
1421d95140a5SGroverkss         (*lb)[c] = v < 0 ? atEq(eqPos, getNumDimVars() + c) / -v
1422d95140a5SGroverkss                          : -atEq(eqPos, getNumDimVars() + c) / v;
1423bb901355SGroverkss         // Since this is an equality, ub = lb.
1424bb901355SGroverkss         if (ub)
1425bb901355SGroverkss           (*ub)[c] = (*lb)[c];
1426bb901355SGroverkss       }
1427bb901355SGroverkss       assert(boundFloorDivisor &&
1428bb901355SGroverkss              "both lb and divisor or none should be provided");
1429bb901355SGroverkss       *boundFloorDivisor = 1;
1430bb901355SGroverkss     }
1431bb901355SGroverkss     if (minLbPos)
1432bb901355SGroverkss       *minLbPos = eqPos;
1433bb901355SGroverkss     if (minUbPos)
1434bb901355SGroverkss       *minUbPos = eqPos;
1435bb901355SGroverkss     return 1;
1436bb901355SGroverkss   }
1437bb901355SGroverkss 
1438d95140a5SGroverkss   // Check if the variable appears at all in any of the inequalities.
1439bb901355SGroverkss   unsigned r, e;
1440bb901355SGroverkss   for (r = 0, e = getNumInequalities(); r < e; r++) {
1441bb901355SGroverkss     if (atIneq(r, pos) != 0)
1442bb901355SGroverkss       break;
1443bb901355SGroverkss   }
1444bb901355SGroverkss   if (r == e)
1445bb901355SGroverkss     // If it doesn't, there isn't a bound on it.
1446bb901355SGroverkss     return None;
1447bb901355SGroverkss 
1448bb901355SGroverkss   // Positions of constraints that are lower/upper bounds on the variable.
1449bb901355SGroverkss   SmallVector<unsigned, 4> lbIndices, ubIndices;
1450bb901355SGroverkss 
1451bb901355SGroverkss   // Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
1452d95140a5SGroverkss   // the bounds can only involve symbolic (and local) variables. Since the
1453bb901355SGroverkss   // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
1454bb901355SGroverkss   // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
1455bb901355SGroverkss   getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
1456bb901355SGroverkss                                /*eqIndices=*/nullptr, /*offset=*/0,
1457d95140a5SGroverkss                                /*num=*/getNumDimVars());
1458bb901355SGroverkss 
1459bb901355SGroverkss   Optional<int64_t> minDiff = None;
1460bb901355SGroverkss   unsigned minLbPosition = 0, minUbPosition = 0;
1461bb901355SGroverkss   for (auto ubPos : ubIndices) {
1462bb901355SGroverkss     for (auto lbPos : lbIndices) {
1463bb901355SGroverkss       // Look for a lower bound and an upper bound that only differ by a
1464bb901355SGroverkss       // constant, i.e., pairs of the form  0 <= c_pos - f(c_i's) <= diffConst.
1465bb901355SGroverkss       // For example, if ii is the pos^th variable, we are looking for
1466bb901355SGroverkss       // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
1467bb901355SGroverkss       // minimum among all such constant differences is kept since that's the
1468bb901355SGroverkss       // constant bounding the extent of the pos^th variable.
1469bb901355SGroverkss       unsigned j, e;
1470bb901355SGroverkss       for (j = 0, e = getNumCols() - 1; j < e; j++)
1471bb901355SGroverkss         if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
1472bb901355SGroverkss           break;
1473bb901355SGroverkss         }
1474bb901355SGroverkss       if (j < getNumCols() - 1)
1475bb901355SGroverkss         continue;
1476bb901355SGroverkss       int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
1477bb901355SGroverkss                                  atIneq(lbPos, getNumCols() - 1) + 1,
1478bb901355SGroverkss                              atIneq(lbPos, pos));
1479bb901355SGroverkss       // This bound is non-negative by definition.
1480bb901355SGroverkss       diff = std::max<int64_t>(diff, 0);
1481bb901355SGroverkss       if (minDiff == None || diff < minDiff) {
1482bb901355SGroverkss         minDiff = diff;
1483bb901355SGroverkss         minLbPosition = lbPos;
1484bb901355SGroverkss         minUbPosition = ubPos;
1485bb901355SGroverkss       }
1486bb901355SGroverkss     }
1487bb901355SGroverkss   }
1488037f0995SKazu Hirata   if (lb && minDiff) {
1489bb901355SGroverkss     // Set lb to the symbolic lower bound.
1490d95140a5SGroverkss     lb->resize(getNumSymbolVars() + 1);
1491bb901355SGroverkss     if (ub)
1492d95140a5SGroverkss       ub->resize(getNumSymbolVars() + 1);
1493bb901355SGroverkss     // The lower bound is the ceildiv of the lb constraint over the coefficient
1494bb901355SGroverkss     // of the variable at 'pos'. We express the ceildiv equivalently as a floor
1495bb901355SGroverkss     // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
1496bb901355SGroverkss     // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
1497bb901355SGroverkss     *boundFloorDivisor = atIneq(minLbPosition, pos);
1498bb901355SGroverkss     assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
1499d95140a5SGroverkss     for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) {
1500d95140a5SGroverkss       (*lb)[c] = -atIneq(minLbPosition, getNumDimVars() + c);
1501bb901355SGroverkss     }
1502bb901355SGroverkss     if (ub) {
1503d95140a5SGroverkss       for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++)
1504d95140a5SGroverkss         (*ub)[c] = atIneq(minUbPosition, getNumDimVars() + c);
1505bb901355SGroverkss     }
1506bb901355SGroverkss     // The lower bound leads to a ceildiv while the upper bound is a floordiv
1507bb901355SGroverkss     // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
1508bb901355SGroverkss     // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
1509bb901355SGroverkss     // the constant term for the lower bound.
1510d95140a5SGroverkss     (*lb)[getNumSymbolVars()] += atIneq(minLbPosition, pos) - 1;
1511bb901355SGroverkss   }
1512bb901355SGroverkss   if (minLbPos)
1513bb901355SGroverkss     *minLbPos = minLbPosition;
1514bb901355SGroverkss   if (minUbPos)
1515bb901355SGroverkss     *minUbPos = minUbPosition;
1516bb901355SGroverkss   return minDiff;
1517bb901355SGroverkss }
1518bb901355SGroverkss 
1519bb901355SGroverkss template <bool isLower>
1520bb901355SGroverkss Optional<int64_t>
computeConstantLowerOrUpperBound(unsigned pos)1521bb901355SGroverkss IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) {
1522d95140a5SGroverkss   assert(pos < getNumVars() && "invalid position");
1523bb901355SGroverkss   // Project to 'pos'.
1524bb901355SGroverkss   projectOut(0, pos);
1525d95140a5SGroverkss   projectOut(1, getNumVars() - 1);
1526d95140a5SGroverkss   // Check if there's an equality equating the '0'^th variable to a constant.
1527bb901355SGroverkss   int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
1528bb901355SGroverkss   if (eqRowIdx != -1)
1529bb901355SGroverkss     // atEq(rowIdx, 0) is either -1 or 1.
1530bb901355SGroverkss     return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
1531bb901355SGroverkss 
1532d95140a5SGroverkss   // Check if the variable appears at all in any of the inequalities.
1533bb901355SGroverkss   unsigned r, e;
1534bb901355SGroverkss   for (r = 0, e = getNumInequalities(); r < e; r++) {
1535bb901355SGroverkss     if (atIneq(r, 0) != 0)
1536bb901355SGroverkss       break;
1537bb901355SGroverkss   }
1538bb901355SGroverkss   if (r == e)
1539bb901355SGroverkss     // If it doesn't, there isn't a bound on it.
1540bb901355SGroverkss     return None;
1541bb901355SGroverkss 
1542bb901355SGroverkss   Optional<int64_t> minOrMaxConst = None;
1543bb901355SGroverkss 
1544bb901355SGroverkss   // Take the max across all const lower bounds (or min across all constant
1545bb901355SGroverkss   // upper bounds).
1546bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1547bb901355SGroverkss     if (isLower) {
1548bb901355SGroverkss       if (atIneq(r, 0) <= 0)
1549bb901355SGroverkss         // Not a lower bound.
1550bb901355SGroverkss         continue;
1551bb901355SGroverkss     } else if (atIneq(r, 0) >= 0) {
1552bb901355SGroverkss       // Not an upper bound.
1553bb901355SGroverkss       continue;
1554bb901355SGroverkss     }
1555bb901355SGroverkss     unsigned c, f;
1556bb901355SGroverkss     for (c = 0, f = getNumCols() - 1; c < f; c++)
1557bb901355SGroverkss       if (c != 0 && atIneq(r, c) != 0)
1558bb901355SGroverkss         break;
1559bb901355SGroverkss     if (c < getNumCols() - 1)
1560bb901355SGroverkss       // Not a constant bound.
1561bb901355SGroverkss       continue;
1562bb901355SGroverkss 
1563bb901355SGroverkss     int64_t boundConst =
1564bb901355SGroverkss         isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
1565bb901355SGroverkss                 : mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
1566bb901355SGroverkss     if (isLower) {
1567bb901355SGroverkss       if (minOrMaxConst == None || boundConst > minOrMaxConst)
1568bb901355SGroverkss         minOrMaxConst = boundConst;
1569bb901355SGroverkss     } else {
1570bb901355SGroverkss       if (minOrMaxConst == None || boundConst < minOrMaxConst)
1571bb901355SGroverkss         minOrMaxConst = boundConst;
1572bb901355SGroverkss     }
1573bb901355SGroverkss   }
1574bb901355SGroverkss   return minOrMaxConst;
1575bb901355SGroverkss }
1576bb901355SGroverkss 
getConstantBound(BoundType type,unsigned pos) const1577bb901355SGroverkss Optional<int64_t> IntegerRelation::getConstantBound(BoundType type,
1578bb901355SGroverkss                                                     unsigned pos) const {
1579bb901355SGroverkss   if (type == BoundType::LB)
1580bb901355SGroverkss     return IntegerRelation(*this)
1581bb901355SGroverkss         .computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
1582bb901355SGroverkss   if (type == BoundType::UB)
1583bb901355SGroverkss     return IntegerRelation(*this)
1584bb901355SGroverkss         .computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
1585bb901355SGroverkss 
1586bb901355SGroverkss   assert(type == BoundType::EQ && "expected EQ");
1587bb901355SGroverkss   Optional<int64_t> lb =
1588bb901355SGroverkss       IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>(
1589bb901355SGroverkss           pos);
1590bb901355SGroverkss   Optional<int64_t> ub =
1591bb901355SGroverkss       IntegerRelation(*this)
1592bb901355SGroverkss           .computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
1593bb901355SGroverkss   return (lb && ub && *lb == *ub) ? Optional<int64_t>(*ub) : None;
1594bb901355SGroverkss }
1595bb901355SGroverkss 
1596bb901355SGroverkss // A simple (naive and conservative) check for hyper-rectangularity.
isHyperRectangular(unsigned pos,unsigned num) const1597bb901355SGroverkss bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const {
1598bb901355SGroverkss   assert(pos < getNumCols() - 1);
1599bb901355SGroverkss   // Check for two non-zero coefficients in the range [pos, pos + sum).
1600bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1601bb901355SGroverkss     unsigned sum = 0;
1602bb901355SGroverkss     for (unsigned c = pos; c < pos + num; c++) {
1603bb901355SGroverkss       if (atIneq(r, c) != 0)
1604bb901355SGroverkss         sum++;
1605bb901355SGroverkss     }
1606bb901355SGroverkss     if (sum > 1)
1607bb901355SGroverkss       return false;
1608bb901355SGroverkss   }
1609bb901355SGroverkss   for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1610bb901355SGroverkss     unsigned sum = 0;
1611bb901355SGroverkss     for (unsigned c = pos; c < pos + num; c++) {
1612bb901355SGroverkss       if (atEq(r, c) != 0)
1613bb901355SGroverkss         sum++;
1614bb901355SGroverkss     }
1615bb901355SGroverkss     if (sum > 1)
1616bb901355SGroverkss       return false;
1617bb901355SGroverkss   }
1618bb901355SGroverkss   return true;
1619bb901355SGroverkss }
1620bb901355SGroverkss 
1621bb901355SGroverkss /// Removes duplicate constraints, trivially true constraints, and constraints
1622bb901355SGroverkss /// that can be detected as redundant as a result of differing only in their
1623bb901355SGroverkss /// constant term part. A constraint of the form <non-negative constant> >= 0 is
1624bb901355SGroverkss /// considered trivially true.
1625bb901355SGroverkss //  Uses a DenseSet to hash and detect duplicates followed by a linear scan to
1626bb901355SGroverkss //  remove duplicates in place.
removeTrivialRedundancy()1627bb901355SGroverkss void IntegerRelation::removeTrivialRedundancy() {
1628bb901355SGroverkss   gcdTightenInequalities();
1629bb901355SGroverkss   normalizeConstraintsByGCD();
1630bb901355SGroverkss 
1631bb901355SGroverkss   // A map used to detect redundancy stemming from constraints that only differ
1632bb901355SGroverkss   // in their constant term. The value stored is <row position, const term>
1633bb901355SGroverkss   // for a given row.
1634bb901355SGroverkss   SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>>
1635bb901355SGroverkss       rowsWithoutConstTerm;
1636bb901355SGroverkss   // To unique rows.
1637bb901355SGroverkss   SmallDenseSet<ArrayRef<int64_t>, 8> rowSet;
1638bb901355SGroverkss 
1639bb901355SGroverkss   // Check if constraint is of the form <non-negative-constant> >= 0.
1640bb901355SGroverkss   auto isTriviallyValid = [&](unsigned r) -> bool {
1641bb901355SGroverkss     for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
1642bb901355SGroverkss       if (atIneq(r, c) != 0)
1643bb901355SGroverkss         return false;
1644bb901355SGroverkss     }
1645bb901355SGroverkss     return atIneq(r, getNumCols() - 1) >= 0;
1646bb901355SGroverkss   };
1647bb901355SGroverkss 
1648bb901355SGroverkss   // Detect and mark redundant constraints.
1649bb901355SGroverkss   SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
1650bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1651bb901355SGroverkss     int64_t *rowStart = &inequalities(r, 0);
1652bb901355SGroverkss     auto row = ArrayRef<int64_t>(rowStart, getNumCols());
1653bb901355SGroverkss     if (isTriviallyValid(r) || !rowSet.insert(row).second) {
1654bb901355SGroverkss       redunIneq[r] = true;
1655bb901355SGroverkss       continue;
1656bb901355SGroverkss     }
1657bb901355SGroverkss 
1658bb901355SGroverkss     // Among constraints that only differ in the constant term part, mark
1659bb901355SGroverkss     // everything other than the one with the smallest constant term redundant.
1660bb901355SGroverkss     // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
1661bb901355SGroverkss     // former two are redundant).
1662bb901355SGroverkss     int64_t constTerm = atIneq(r, getNumCols() - 1);
1663bb901355SGroverkss     auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1);
1664bb901355SGroverkss     const auto &ret =
1665bb901355SGroverkss         rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
1666bb901355SGroverkss     if (!ret.second) {
1667bb901355SGroverkss       // Check if the other constraint has a higher constant term.
1668bb901355SGroverkss       auto &val = ret.first->second;
1669bb901355SGroverkss       if (val.second > constTerm) {
1670bb901355SGroverkss         // The stored row is redundant. Mark it so, and update with this one.
1671bb901355SGroverkss         redunIneq[val.first] = true;
1672bb901355SGroverkss         val = {r, constTerm};
1673bb901355SGroverkss       } else {
1674bb901355SGroverkss         // The one stored makes this one redundant.
1675bb901355SGroverkss         redunIneq[r] = true;
1676bb901355SGroverkss       }
1677bb901355SGroverkss     }
1678bb901355SGroverkss   }
1679bb901355SGroverkss 
1680bb901355SGroverkss   // Scan to get rid of all rows marked redundant, in-place.
1681bb901355SGroverkss   unsigned pos = 0;
1682bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
1683bb901355SGroverkss     if (!redunIneq[r])
1684bb901355SGroverkss       inequalities.copyRow(r, pos++);
1685bb901355SGroverkss 
1686bb901355SGroverkss   inequalities.resizeVertically(pos);
1687bb901355SGroverkss 
1688bb901355SGroverkss   // TODO: consider doing this for equalities as well, but probably not worth
1689bb901355SGroverkss   // the savings.
1690bb901355SGroverkss }
1691bb901355SGroverkss 
1692bb901355SGroverkss #undef DEBUG_TYPE
1693bb901355SGroverkss #define DEBUG_TYPE "fm"
1694bb901355SGroverkss 
1695d95140a5SGroverkss /// Eliminates variable at the specified position using Fourier-Motzkin
1696bb901355SGroverkss /// variable elimination. This technique is exact for rational spaces but
1697bb901355SGroverkss /// conservative (in "rare" cases) for integer spaces. The operation corresponds
1698bb901355SGroverkss /// to a projection operation yielding the (convex) set of integer points
1699bb901355SGroverkss /// contained in the rational shadow of the set. An emptiness test that relies
1700bb901355SGroverkss /// on this method will guarantee emptiness, i.e., it disproves the existence of
1701bb901355SGroverkss /// a solution if it says it's empty.
1702bb901355SGroverkss /// If a non-null isResultIntegerExact is passed, it is set to true if the
1703bb901355SGroverkss /// result is also integer exact. If it's set to false, the obtained solution
1704bb901355SGroverkss /// *may* not be exact, i.e., it may contain integer points that do not have an
1705bb901355SGroverkss /// integer pre-image in the original set.
1706bb901355SGroverkss ///
1707bb901355SGroverkss /// Eg:
1708bb901355SGroverkss /// j >= 0, j <= i + 1
1709bb901355SGroverkss /// i >= 0, i <= N + 1
1710bb901355SGroverkss /// Eliminating i yields,
1711bb901355SGroverkss ///   j >= 0, 0 <= N + 1, j - 1 <= N + 1
1712bb901355SGroverkss ///
1713bb901355SGroverkss /// If darkShadow = true, this method computes the dark shadow on elimination;
1714bb901355SGroverkss /// the dark shadow is a convex integer subset of the exact integer shadow. A
1715bb901355SGroverkss /// non-empty dark shadow proves the existence of an integer solution. The
1716bb901355SGroverkss /// elimination in such a case could however be an under-approximation, and thus
1717bb901355SGroverkss /// should not be used for scanning sets or used by itself for dependence
1718bb901355SGroverkss /// checking.
1719bb901355SGroverkss ///
1720bb901355SGroverkss /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
1721bb901355SGroverkss ///            ^
1722bb901355SGroverkss ///            |
1723bb901355SGroverkss ///            | * * * * o o
1724bb901355SGroverkss ///         i  | * * o o o o
1725bb901355SGroverkss ///            | o * * * * *
1726bb901355SGroverkss ///            --------------->
1727bb901355SGroverkss ///                 j ->
1728bb901355SGroverkss ///
1729bb901355SGroverkss /// Eliminating i from this system (projecting on the j dimension):
1730bb901355SGroverkss /// rational shadow / integer light shadow:  1 <= j <= 6
1731bb901355SGroverkss /// dark shadow:                             3 <= j <= 6
1732bb901355SGroverkss /// exact integer shadow:                    j = 1 \union  3 <= j <= 6
1733bb901355SGroverkss /// holes/splinters:                         j = 2
1734bb901355SGroverkss ///
1735bb901355SGroverkss /// darkShadow = false, isResultIntegerExact = nullptr are default values.
1736bb901355SGroverkss // TODO: a slight modification to yield dark shadow version of FM (tightened),
1737bb901355SGroverkss // which can prove the existence of a solution if there is one.
fourierMotzkinEliminate(unsigned pos,bool darkShadow,bool * isResultIntegerExact)1738bb901355SGroverkss void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow,
1739bb901355SGroverkss                                               bool *isResultIntegerExact) {
1740bb901355SGroverkss   LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
1741bb901355SGroverkss   LLVM_DEBUG(dump());
1742d95140a5SGroverkss   assert(pos < getNumVars() && "invalid position");
1743bb901355SGroverkss   assert(hasConsistentState());
1744bb901355SGroverkss 
1745d95140a5SGroverkss   // Check if this variable can be eliminated through a substitution.
1746bb901355SGroverkss   for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1747bb901355SGroverkss     if (atEq(r, pos) != 0) {
1748bb901355SGroverkss       // Use Gaussian elimination here (since we have an equality).
1749d95140a5SGroverkss       LogicalResult ret = gaussianEliminateVar(pos);
1750bb901355SGroverkss       (void)ret;
1751bb901355SGroverkss       assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
1752bb901355SGroverkss       LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
1753bb901355SGroverkss       LLVM_DEBUG(dump());
1754bb901355SGroverkss       return;
1755bb901355SGroverkss     }
1756bb901355SGroverkss   }
1757bb901355SGroverkss 
1758bb901355SGroverkss   // A fast linear time tightening.
1759bb901355SGroverkss   gcdTightenInequalities();
1760bb901355SGroverkss 
1761d95140a5SGroverkss   // Check if the variable appears at all in any of the inequalities.
1762bb901355SGroverkss   if (isColZero(pos)) {
1763bb901355SGroverkss     // If it doesn't appear, just remove the column and return.
1764bb901355SGroverkss     // TODO: refactor removeColumns to use it from here.
1765d95140a5SGroverkss     removeVar(pos);
1766bb901355SGroverkss     LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
1767bb901355SGroverkss     LLVM_DEBUG(dump());
1768bb901355SGroverkss     return;
1769bb901355SGroverkss   }
1770bb901355SGroverkss 
1771bb901355SGroverkss   // Positions of constraints that are lower bounds on the variable.
1772bb901355SGroverkss   SmallVector<unsigned, 4> lbIndices;
1773bb901355SGroverkss   // Positions of constraints that are lower bounds on the variable.
1774bb901355SGroverkss   SmallVector<unsigned, 4> ubIndices;
1775bb901355SGroverkss   // Positions of constraints that do not involve the variable.
1776bb901355SGroverkss   std::vector<unsigned> nbIndices;
1777bb901355SGroverkss   nbIndices.reserve(getNumInequalities());
1778bb901355SGroverkss 
1779bb901355SGroverkss   // Gather all lower bounds and upper bounds of the variable. Since the
1780bb901355SGroverkss   // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
1781bb901355SGroverkss   // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
1782bb901355SGroverkss   for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1783bb901355SGroverkss     if (atIneq(r, pos) == 0) {
1784d95140a5SGroverkss       // Var does not appear in bound.
1785bb901355SGroverkss       nbIndices.push_back(r);
1786bb901355SGroverkss     } else if (atIneq(r, pos) >= 1) {
1787bb901355SGroverkss       // Lower bound.
1788bb901355SGroverkss       lbIndices.push_back(r);
1789bb901355SGroverkss     } else {
1790bb901355SGroverkss       // Upper bound.
1791bb901355SGroverkss       ubIndices.push_back(r);
1792bb901355SGroverkss     }
1793bb901355SGroverkss   }
1794bb901355SGroverkss 
1795a5a598beSGroverkss   PresburgerSpace newSpace = getSpace();
1796d95140a5SGroverkss   VarKind idKindRemove = newSpace.getVarKindAt(pos);
1797d95140a5SGroverkss   unsigned relativePos = pos - newSpace.getVarKindOffset(idKindRemove);
1798d95140a5SGroverkss   newSpace.removeVarRange(idKindRemove, relativePos, relativePos + 1);
1799bb901355SGroverkss 
1800d95140a5SGroverkss   /// Create the new system which has one variable less.
1801bb901355SGroverkss   IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(),
1802a5a598beSGroverkss                          getNumEqualities(), getNumCols() - 1, newSpace);
1803bb901355SGroverkss 
1804bb901355SGroverkss   // This will be used to check if the elimination was integer exact.
1805bb901355SGroverkss   unsigned lcmProducts = 1;
1806bb901355SGroverkss 
1807bb901355SGroverkss   // Let x be the variable we are eliminating.
1808bb901355SGroverkss   // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
1809bb901355SGroverkss   // that c_l, c_u >= 1) we have:
1810bb901355SGroverkss   // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
1811bb901355SGroverkss   // We thus generate a constraint:
1812bb901355SGroverkss   // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
1813bb901355SGroverkss   // Note if c_l = c_u = 1, all integer points captured by the resulting
1814bb901355SGroverkss   // constraint correspond to integer points in the original system (i.e., they
1815bb901355SGroverkss   // have integer pre-images). Hence, if the lcm's are all 1, the elimination is
1816bb901355SGroverkss   // integer exact.
1817bb901355SGroverkss   for (auto ubPos : ubIndices) {
1818bb901355SGroverkss     for (auto lbPos : lbIndices) {
1819bb901355SGroverkss       SmallVector<int64_t, 4> ineq;
1820bb901355SGroverkss       ineq.reserve(newRel.getNumCols());
1821bb901355SGroverkss       int64_t lbCoeff = atIneq(lbPos, pos);
1822bb901355SGroverkss       // Note that in the comments above, ubCoeff is the negation of the
1823bb901355SGroverkss       // coefficient in the canonical form as the view taken here is that of the
1824bb901355SGroverkss       // term being moved to the other size of '>='.
1825bb901355SGroverkss       int64_t ubCoeff = -atIneq(ubPos, pos);
1826bb901355SGroverkss       // TODO: refactor this loop to avoid all branches inside.
1827bb901355SGroverkss       for (unsigned l = 0, e = getNumCols(); l < e; l++) {
1828bb901355SGroverkss         if (l == pos)
1829bb901355SGroverkss           continue;
1830bb901355SGroverkss         assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
1831bb901355SGroverkss         int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
1832bb901355SGroverkss         ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
1833bb901355SGroverkss                        atIneq(lbPos, l) * (lcm / lbCoeff));
1834bb901355SGroverkss         lcmProducts *= lcm;
1835bb901355SGroverkss       }
1836bb901355SGroverkss       if (darkShadow) {
1837bb901355SGroverkss         // The dark shadow is a convex subset of the exact integer shadow. If
1838bb901355SGroverkss         // there is a point here, it proves the existence of a solution.
1839bb901355SGroverkss         ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
1840bb901355SGroverkss       }
1841bb901355SGroverkss       // TODO: we need to have a way to add inequalities in-place in
1842bb901355SGroverkss       // IntegerRelation instead of creating and copying over.
1843bb901355SGroverkss       newRel.addInequality(ineq);
1844bb901355SGroverkss     }
1845bb901355SGroverkss   }
1846bb901355SGroverkss 
1847bb901355SGroverkss   LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1)
1848bb901355SGroverkss                           << "\n");
1849bb901355SGroverkss   if (lcmProducts == 1 && isResultIntegerExact)
1850bb901355SGroverkss     *isResultIntegerExact = true;
1851bb901355SGroverkss 
1852bb901355SGroverkss   // Copy over the constraints not involving this variable.
1853bb901355SGroverkss   for (auto nbPos : nbIndices) {
1854bb901355SGroverkss     SmallVector<int64_t, 4> ineq;
1855bb901355SGroverkss     ineq.reserve(getNumCols() - 1);
1856bb901355SGroverkss     for (unsigned l = 0, e = getNumCols(); l < e; l++) {
1857bb901355SGroverkss       if (l == pos)
1858bb901355SGroverkss         continue;
1859bb901355SGroverkss       ineq.push_back(atIneq(nbPos, l));
1860bb901355SGroverkss     }
1861bb901355SGroverkss     newRel.addInequality(ineq);
1862bb901355SGroverkss   }
1863bb901355SGroverkss 
1864bb901355SGroverkss   assert(newRel.getNumConstraints() ==
1865bb901355SGroverkss          lbIndices.size() * ubIndices.size() + nbIndices.size());
1866bb901355SGroverkss 
1867bb901355SGroverkss   // Copy over the equalities.
1868bb901355SGroverkss   for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1869bb901355SGroverkss     SmallVector<int64_t, 4> eq;
1870bb901355SGroverkss     eq.reserve(newRel.getNumCols());
1871bb901355SGroverkss     for (unsigned l = 0, e = getNumCols(); l < e; l++) {
1872bb901355SGroverkss       if (l == pos)
1873bb901355SGroverkss         continue;
1874bb901355SGroverkss       eq.push_back(atEq(r, l));
1875bb901355SGroverkss     }
1876bb901355SGroverkss     newRel.addEquality(eq);
1877bb901355SGroverkss   }
1878bb901355SGroverkss 
1879bb901355SGroverkss   // GCD tightening and normalization allows detection of more trivially
1880bb901355SGroverkss   // redundant constraints.
1881bb901355SGroverkss   newRel.gcdTightenInequalities();
1882bb901355SGroverkss   newRel.normalizeConstraintsByGCD();
1883bb901355SGroverkss   newRel.removeTrivialRedundancy();
1884bb901355SGroverkss   clearAndCopyFrom(newRel);
1885bb901355SGroverkss   LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
1886bb901355SGroverkss   LLVM_DEBUG(dump());
1887bb901355SGroverkss }
1888bb901355SGroverkss 
1889bb901355SGroverkss #undef DEBUG_TYPE
1890bb901355SGroverkss #define DEBUG_TYPE "presburger"
1891bb901355SGroverkss 
projectOut(unsigned pos,unsigned num)1892bb901355SGroverkss void IntegerRelation::projectOut(unsigned pos, unsigned num) {
1893bb901355SGroverkss   if (num == 0)
1894bb901355SGroverkss     return;
1895bb901355SGroverkss 
1896bb901355SGroverkss   // 'pos' can be at most getNumCols() - 2 if num > 0.
1897bb901355SGroverkss   assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
1898bb901355SGroverkss   assert(pos + num < getNumCols() && "invalid range");
1899bb901355SGroverkss 
1900d95140a5SGroverkss   // Eliminate as many variables as possible using Gaussian elimination.
1901bb901355SGroverkss   unsigned currentPos = pos;
1902bb901355SGroverkss   unsigned numToEliminate = num;
1903bb901355SGroverkss   unsigned numGaussianEliminated = 0;
1904bb901355SGroverkss 
1905d95140a5SGroverkss   while (currentPos < getNumVars()) {
1906bb901355SGroverkss     unsigned curNumEliminated =
1907d95140a5SGroverkss         gaussianEliminateVars(currentPos, currentPos + numToEliminate);
1908bb901355SGroverkss     ++currentPos;
1909bb901355SGroverkss     numToEliminate -= curNumEliminated + 1;
1910bb901355SGroverkss     numGaussianEliminated += curNumEliminated;
1911bb901355SGroverkss   }
1912bb901355SGroverkss 
1913bb901355SGroverkss   // Eliminate the remaining using Fourier-Motzkin.
1914bb901355SGroverkss   for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
1915bb901355SGroverkss     unsigned numToEliminate = num - numGaussianEliminated - i;
1916bb901355SGroverkss     fourierMotzkinEliminate(
1917d95140a5SGroverkss         getBestVarToEliminate(*this, pos, pos + numToEliminate));
1918bb901355SGroverkss   }
1919bb901355SGroverkss 
1920bb901355SGroverkss   // Fast/trivial simplifications.
1921bb901355SGroverkss   gcdTightenInequalities();
1922bb901355SGroverkss   // Normalize constraints after tightening since the latter impacts this, but
1923bb901355SGroverkss   // not the other way round.
1924bb901355SGroverkss   normalizeConstraintsByGCD();
1925bb901355SGroverkss }
1926bb901355SGroverkss 
1927bb901355SGroverkss namespace {
1928bb901355SGroverkss 
1929bb901355SGroverkss enum BoundCmpResult { Greater, Less, Equal, Unknown };
1930bb901355SGroverkss 
1931bb901355SGroverkss /// Compares two affine bounds whose coefficients are provided in 'first' and
1932bb901355SGroverkss /// 'second'. The last coefficient is the constant term.
compareBounds(ArrayRef<int64_t> a,ArrayRef<int64_t> b)1933bb901355SGroverkss static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
1934bb901355SGroverkss   assert(a.size() == b.size());
1935bb901355SGroverkss 
1936d95140a5SGroverkss   // For the bounds to be comparable, their corresponding variable
1937bb901355SGroverkss   // coefficients should be equal; the constant terms are then compared to
1938bb901355SGroverkss   // determine less/greater/equal.
1939bb901355SGroverkss 
1940bb901355SGroverkss   if (!std::equal(a.begin(), a.end() - 1, b.begin()))
1941bb901355SGroverkss     return Unknown;
1942bb901355SGroverkss 
1943bb901355SGroverkss   if (a.back() == b.back())
1944bb901355SGroverkss     return Equal;
1945bb901355SGroverkss 
1946bb901355SGroverkss   return a.back() < b.back() ? Less : Greater;
1947bb901355SGroverkss }
1948bb901355SGroverkss } // namespace
1949bb901355SGroverkss 
1950bb901355SGroverkss // Returns constraints that are common to both A & B.
getCommonConstraints(const IntegerRelation & a,const IntegerRelation & b,IntegerRelation & c)1951bb901355SGroverkss static void getCommonConstraints(const IntegerRelation &a,
1952bb901355SGroverkss                                  const IntegerRelation &b, IntegerRelation &c) {
1953a5a598beSGroverkss   c = IntegerRelation(a.getSpace());
1954bb901355SGroverkss   // a naive O(n^2) check should be enough here given the input sizes.
1955bb901355SGroverkss   for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
1956bb901355SGroverkss     for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
1957bb901355SGroverkss       if (a.getInequality(r) == b.getInequality(s)) {
1958bb901355SGroverkss         c.addInequality(a.getInequality(r));
1959bb901355SGroverkss         break;
1960bb901355SGroverkss       }
1961bb901355SGroverkss     }
1962bb901355SGroverkss   }
1963bb901355SGroverkss   for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
1964bb901355SGroverkss     for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
1965bb901355SGroverkss       if (a.getEquality(r) == b.getEquality(s)) {
1966bb901355SGroverkss         c.addEquality(a.getEquality(r));
1967bb901355SGroverkss         break;
1968bb901355SGroverkss       }
1969bb901355SGroverkss     }
1970bb901355SGroverkss   }
1971bb901355SGroverkss }
1972bb901355SGroverkss 
1973bb901355SGroverkss // Computes the bounding box with respect to 'other' by finding the min of the
1974bb901355SGroverkss // lower bounds and the max of the upper bounds along each of the dimensions.
1975bb901355SGroverkss LogicalResult
unionBoundingBox(const IntegerRelation & otherCst)1976bb901355SGroverkss IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) {
197720aedb14SGroverkss   assert(space.isEqual(otherCst.getSpace()) && "Spaces should match.");
1978d95140a5SGroverkss   assert(getNumLocalVars() == 0 && "local ids not supported yet here");
1979bb901355SGroverkss 
1980bb901355SGroverkss   // Get the constraints common to both systems; these will be added as is to
1981bb901355SGroverkss   // the union.
1982a5a598beSGroverkss   IntegerRelation commonCst(PresburgerSpace::getRelationSpace());
1983bb901355SGroverkss   getCommonConstraints(*this, otherCst, commonCst);
1984bb901355SGroverkss 
1985bb901355SGroverkss   std::vector<SmallVector<int64_t, 8>> boundingLbs;
1986bb901355SGroverkss   std::vector<SmallVector<int64_t, 8>> boundingUbs;
1987d95140a5SGroverkss   boundingLbs.reserve(2 * getNumDimVars());
1988d95140a5SGroverkss   boundingUbs.reserve(2 * getNumDimVars());
1989bb901355SGroverkss 
1990bb901355SGroverkss   // To hold lower and upper bounds for each dimension.
1991bb901355SGroverkss   SmallVector<int64_t, 4> lb, otherLb, ub, otherUb;
1992bb901355SGroverkss   // To compute min of lower bounds and max of upper bounds for each dimension.
1993d95140a5SGroverkss   SmallVector<int64_t, 4> minLb(getNumSymbolVars() + 1);
1994d95140a5SGroverkss   SmallVector<int64_t, 4> maxUb(getNumSymbolVars() + 1);
1995bb901355SGroverkss   // To compute final new lower and upper bounds for the union.
1996bb901355SGroverkss   SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols());
1997bb901355SGroverkss 
1998bb901355SGroverkss   int64_t lbFloorDivisor, otherLbFloorDivisor;
1999d95140a5SGroverkss   for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
2000bb901355SGroverkss     auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
2001491d2701SKazu Hirata     if (!extent.has_value())
2002bb901355SGroverkss       // TODO: symbolic extents when necessary.
2003bb901355SGroverkss       // TODO: handle union if a dimension is unbounded.
2004bb901355SGroverkss       return failure();
2005bb901355SGroverkss 
2006bb901355SGroverkss     auto otherExtent = otherCst.getConstantBoundOnDimSize(
2007bb901355SGroverkss         d, &otherLb, &otherLbFloorDivisor, &otherUb);
2008491d2701SKazu Hirata     if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor)
2009bb901355SGroverkss       // TODO: symbolic extents when necessary.
2010bb901355SGroverkss       return failure();
2011bb901355SGroverkss 
2012bb901355SGroverkss     assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
2013bb901355SGroverkss 
2014bb901355SGroverkss     auto res = compareBounds(lb, otherLb);
2015bb901355SGroverkss     // Identify min.
2016bb901355SGroverkss     if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
2017bb901355SGroverkss       minLb = lb;
2018bb901355SGroverkss       // Since the divisor is for a floordiv, we need to convert to ceildiv,
2019bb901355SGroverkss       // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
2020bb901355SGroverkss       // div * i >= expr - div + 1.
2021bb901355SGroverkss       minLb.back() -= lbFloorDivisor - 1;
2022bb901355SGroverkss     } else if (res == BoundCmpResult::Greater) {
2023bb901355SGroverkss       minLb = otherLb;
2024bb901355SGroverkss       minLb.back() -= otherLbFloorDivisor - 1;
2025bb901355SGroverkss     } else {
2026bb901355SGroverkss       // Uncomparable - check for constant lower/upper bounds.
2027bb901355SGroverkss       auto constLb = getConstantBound(BoundType::LB, d);
2028bb901355SGroverkss       auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
2029491d2701SKazu Hirata       if (!constLb.has_value() || !constOtherLb.has_value())
2030bb901355SGroverkss         return failure();
2031bb901355SGroverkss       std::fill(minLb.begin(), minLb.end(), 0);
2032*c27d8152SKazu Hirata       minLb.back() = std::min(constLb.value(), constOtherLb.value());
2033bb901355SGroverkss     }
2034bb901355SGroverkss 
2035bb901355SGroverkss     // Do the same for ub's but max of upper bounds. Identify max.
2036bb901355SGroverkss     auto uRes = compareBounds(ub, otherUb);
2037bb901355SGroverkss     if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
2038bb901355SGroverkss       maxUb = ub;
2039bb901355SGroverkss     } else if (uRes == BoundCmpResult::Less) {
2040bb901355SGroverkss       maxUb = otherUb;
2041bb901355SGroverkss     } else {
2042bb901355SGroverkss       // Uncomparable - check for constant lower/upper bounds.
2043bb901355SGroverkss       auto constUb = getConstantBound(BoundType::UB, d);
2044bb901355SGroverkss       auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
2045491d2701SKazu Hirata       if (!constUb.has_value() || !constOtherUb.has_value())
2046bb901355SGroverkss         return failure();
2047bb901355SGroverkss       std::fill(maxUb.begin(), maxUb.end(), 0);
2048*c27d8152SKazu Hirata       maxUb.back() = std::max(constUb.value(), constOtherUb.value());
2049bb901355SGroverkss     }
2050bb901355SGroverkss 
2051bb901355SGroverkss     std::fill(newLb.begin(), newLb.end(), 0);
2052bb901355SGroverkss     std::fill(newUb.begin(), newUb.end(), 0);
2053bb901355SGroverkss 
2054bb901355SGroverkss     // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
2055bb901355SGroverkss     // and so it's the divisor for newLb and newUb as well.
2056bb901355SGroverkss     newLb[d] = lbFloorDivisor;
2057bb901355SGroverkss     newUb[d] = -lbFloorDivisor;
2058bb901355SGroverkss     // Copy over the symbolic part + constant term.
2059d95140a5SGroverkss     std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimVars());
2060d95140a5SGroverkss     std::transform(newLb.begin() + getNumDimVars(), newLb.end(),
2061d95140a5SGroverkss                    newLb.begin() + getNumDimVars(), std::negate<int64_t>());
2062d95140a5SGroverkss     std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimVars());
2063bb901355SGroverkss 
2064bb901355SGroverkss     boundingLbs.push_back(newLb);
2065bb901355SGroverkss     boundingUbs.push_back(newUb);
2066bb901355SGroverkss   }
2067bb901355SGroverkss 
2068bb901355SGroverkss   // Clear all constraints and add the lower/upper bounds for the bounding box.
2069bb901355SGroverkss   clearConstraints();
2070d95140a5SGroverkss   for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
2071bb901355SGroverkss     addInequality(boundingLbs[d]);
2072bb901355SGroverkss     addInequality(boundingUbs[d]);
2073bb901355SGroverkss   }
2074bb901355SGroverkss 
2075bb901355SGroverkss   // Add the constraints that were common to both systems.
2076bb901355SGroverkss   append(commonCst);
2077bb901355SGroverkss   removeTrivialRedundancy();
2078bb901355SGroverkss 
2079bb901355SGroverkss   // TODO: copy over pure symbolic constraints from this and 'other' over to the
2080bb901355SGroverkss   // union (since the above are just the union along dimensions); we shouldn't
2081bb901355SGroverkss   // be discarding any other constraints on the symbols.
2082bb901355SGroverkss 
2083bb901355SGroverkss   return success();
2084bb901355SGroverkss }
2085bb901355SGroverkss 
isColZero(unsigned pos) const2086bb901355SGroverkss bool IntegerRelation::isColZero(unsigned pos) const {
2087bb901355SGroverkss   unsigned rowPos;
2088bb901355SGroverkss   return !findConstraintWithNonZeroAt(pos, /*isEq=*/false, &rowPos) &&
2089bb901355SGroverkss          !findConstraintWithNonZeroAt(pos, /*isEq=*/true, &rowPos);
2090bb901355SGroverkss }
2091bb901355SGroverkss 
2092bb901355SGroverkss /// Find positions of inequalities and equalities that do not have a coefficient
2093d95140a5SGroverkss /// for [pos, pos + num) variables.
getIndependentConstraints(const IntegerRelation & cst,unsigned pos,unsigned num,SmallVectorImpl<unsigned> & nbIneqIndices,SmallVectorImpl<unsigned> & nbEqIndices)2094bb901355SGroverkss static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos,
2095bb901355SGroverkss                                       unsigned num,
2096bb901355SGroverkss                                       SmallVectorImpl<unsigned> &nbIneqIndices,
2097bb901355SGroverkss                                       SmallVectorImpl<unsigned> &nbEqIndices) {
2098d95140a5SGroverkss   assert(pos < cst.getNumVars() && "invalid start position");
2099d95140a5SGroverkss   assert(pos + num <= cst.getNumVars() && "invalid limit");
2100bb901355SGroverkss 
2101bb901355SGroverkss   for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
2102bb901355SGroverkss     // The bounds are to be independent of [offset, offset + num) columns.
2103bb901355SGroverkss     unsigned c;
2104bb901355SGroverkss     for (c = pos; c < pos + num; ++c) {
2105bb901355SGroverkss       if (cst.atIneq(r, c) != 0)
2106bb901355SGroverkss         break;
2107bb901355SGroverkss     }
2108bb901355SGroverkss     if (c == pos + num)
2109bb901355SGroverkss       nbIneqIndices.push_back(r);
2110bb901355SGroverkss   }
2111bb901355SGroverkss 
2112bb901355SGroverkss   for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
2113bb901355SGroverkss     // The bounds are to be independent of [offset, offset + num) columns.
2114bb901355SGroverkss     unsigned c;
2115bb901355SGroverkss     for (c = pos; c < pos + num; ++c) {
2116bb901355SGroverkss       if (cst.atEq(r, c) != 0)
2117bb901355SGroverkss         break;
2118bb901355SGroverkss     }
2119bb901355SGroverkss     if (c == pos + num)
2120bb901355SGroverkss       nbEqIndices.push_back(r);
2121bb901355SGroverkss   }
2122bb901355SGroverkss }
2123bb901355SGroverkss 
removeIndependentConstraints(unsigned pos,unsigned num)2124bb901355SGroverkss void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) {
2125d95140a5SGroverkss   assert(pos + num <= getNumVars() && "invalid range");
2126bb901355SGroverkss 
2127d95140a5SGroverkss   // Remove constraints that are independent of these variables.
2128bb901355SGroverkss   SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
2129bb901355SGroverkss   getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
2130bb901355SGroverkss 
2131bb901355SGroverkss   // Iterate in reverse so that indices don't have to be updated.
2132bb901355SGroverkss   // TODO: This method can be made more efficient (because removal of each
2133bb901355SGroverkss   // inequality leads to much shifting/copying in the underlying buffer).
2134bb901355SGroverkss   for (auto nbIndex : llvm::reverse(nbIneqIndices))
2135bb901355SGroverkss     removeInequality(nbIndex);
2136bb901355SGroverkss   for (auto nbIndex : llvm::reverse(nbEqIndices))
2137bb901355SGroverkss     removeEquality(nbIndex);
2138bb901355SGroverkss }
2139bb901355SGroverkss 
getDomainSet() const21403c057ac2SGroverkss IntegerPolyhedron IntegerRelation::getDomainSet() const {
21413c057ac2SGroverkss   IntegerRelation copyRel = *this;
21423c057ac2SGroverkss 
21433c057ac2SGroverkss   // Convert Range variables to Local variables.
2144d95140a5SGroverkss   copyRel.convertVarKind(VarKind::Range, 0, getNumVarKind(VarKind::Range),
2145d95140a5SGroverkss                          VarKind::Local);
21463c057ac2SGroverkss 
21473c057ac2SGroverkss   // Convert Domain variables to SetDim(Range) variables.
2148d95140a5SGroverkss   copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
2149d95140a5SGroverkss                          VarKind::SetDim);
21503c057ac2SGroverkss 
21513c057ac2SGroverkss   return IntegerPolyhedron(std::move(copyRel));
21523c057ac2SGroverkss }
21533c057ac2SGroverkss 
getRangeSet() const21543c057ac2SGroverkss IntegerPolyhedron IntegerRelation::getRangeSet() const {
21553c057ac2SGroverkss   IntegerRelation copyRel = *this;
21563c057ac2SGroverkss 
21573c057ac2SGroverkss   // Convert Domain variables to Local variables.
2158d95140a5SGroverkss   copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
2159d95140a5SGroverkss                          VarKind::Local);
21603c057ac2SGroverkss 
21613c057ac2SGroverkss   // We do not need to do anything to Range variables since they are already in
21623c057ac2SGroverkss   // SetDim position.
21633c057ac2SGroverkss 
21643c057ac2SGroverkss   return IntegerPolyhedron(std::move(copyRel));
21653c057ac2SGroverkss }
21663c057ac2SGroverkss 
intersectDomain(const IntegerPolyhedron & poly)2167f168a659SGroverkss void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) {
2168f168a659SGroverkss   assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) &&
2169f168a659SGroverkss          "Domain set is not compatible with poly");
2170f168a659SGroverkss 
2171f168a659SGroverkss   // Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`.
2172f168a659SGroverkss   IntegerRelation rel = poly;
2173f168a659SGroverkss   rel.inverse();
2174f168a659SGroverkss 
2175f168a659SGroverkss   // Append dummy range variables to make the spaces compatible.
2176d95140a5SGroverkss   rel.appendVar(VarKind::Range, getNumRangeVars());
2177f168a659SGroverkss 
2178f168a659SGroverkss   // Intersect in place.
2179d95140a5SGroverkss   mergeLocalVars(rel);
2180f168a659SGroverkss   append(rel);
2181f168a659SGroverkss }
2182f168a659SGroverkss 
intersectRange(const IntegerPolyhedron & poly)2183f168a659SGroverkss void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) {
2184f168a659SGroverkss   assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) &&
2185f168a659SGroverkss          "Range set is not compatible with poly");
2186f168a659SGroverkss 
2187f168a659SGroverkss   IntegerRelation rel = poly;
2188f168a659SGroverkss 
2189f168a659SGroverkss   // Append dummy domain variables to make the spaces compatible.
2190d95140a5SGroverkss   rel.appendVar(VarKind::Domain, getNumDomainVars());
2191f168a659SGroverkss 
2192d95140a5SGroverkss   mergeLocalVars(rel);
2193f168a659SGroverkss   append(rel);
2194f168a659SGroverkss }
2195f168a659SGroverkss 
inverse()2196fb857dedSGroverkss void IntegerRelation::inverse() {
2197d95140a5SGroverkss   unsigned numRangeVars = getNumVarKind(VarKind::Range);
2198d95140a5SGroverkss   convertVarKind(VarKind::Domain, 0, getVarKindEnd(VarKind::Domain),
2199d95140a5SGroverkss                  VarKind::Range);
2200d95140a5SGroverkss   convertVarKind(VarKind::Range, 0, numRangeVars, VarKind::Domain);
2201fb857dedSGroverkss }
2202fb857dedSGroverkss 
compose(const IntegerRelation & rel)2203dac27da7SGroverkss void IntegerRelation::compose(const IntegerRelation &rel) {
2204dac27da7SGroverkss   assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) &&
2205dac27da7SGroverkss          "Range of `this` should be compatible with Domain of `rel`");
2206dac27da7SGroverkss 
2207dac27da7SGroverkss   IntegerRelation copyRel = rel;
2208dac27da7SGroverkss 
2209dac27da7SGroverkss   // Let relation `this` be R1: A -> B, and `rel` be R2: B -> C.
2210dac27da7SGroverkss   // We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of
2211dac27da7SGroverkss   // R1 with R2. After this, we get R1: A -> C, by projecting out B.
2212dac27da7SGroverkss   // TODO: Using nested spaces here would help, since we could directly
2213dac27da7SGroverkss   // intersect the range with another relation.
2214d95140a5SGroverkss   unsigned numBVars = getNumRangeVars();
2215dac27da7SGroverkss 
2216dac27da7SGroverkss   // Convert R1 from A -> B to A -> (B X C).
2217d95140a5SGroverkss   appendVar(VarKind::Range, copyRel.getNumRangeVars());
2218dac27da7SGroverkss 
2219dac27da7SGroverkss   // Convert R2 to B X C.
2220d08522f5SArjun P   copyRel.convertVarKind(VarKind::Domain, 0, numBVars, VarKind::Range, 0);
2221dac27da7SGroverkss 
2222dac27da7SGroverkss   // Intersect R2 to range of R1.
2223dac27da7SGroverkss   intersectRange(IntegerPolyhedron(copyRel));
2224dac27da7SGroverkss 
2225dac27da7SGroverkss   // Project out B in R1.
2226d95140a5SGroverkss   convertVarKind(VarKind::Range, 0, numBVars, VarKind::Local);
2227dac27da7SGroverkss }
2228dac27da7SGroverkss 
applyDomain(const IntegerRelation & rel)2229dac27da7SGroverkss void IntegerRelation::applyDomain(const IntegerRelation &rel) {
2230dac27da7SGroverkss   inverse();
2231dac27da7SGroverkss   compose(rel);
2232dac27da7SGroverkss   inverse();
2233dac27da7SGroverkss }
2234dac27da7SGroverkss 
applyRange(const IntegerRelation & rel)2235dac27da7SGroverkss void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); }
2236dac27da7SGroverkss 
printSpace(raw_ostream & os) const2237bb901355SGroverkss void IntegerRelation::printSpace(raw_ostream &os) const {
223820aedb14SGroverkss   space.print(os);
2239bb901355SGroverkss   os << getNumConstraints() << " constraints\n";
2240bb901355SGroverkss }
2241bb901355SGroverkss 
print(raw_ostream & os) const2242bb901355SGroverkss void IntegerRelation::print(raw_ostream &os) const {
2243bb901355SGroverkss   assert(hasConsistentState());
2244bb901355SGroverkss   printSpace(os);
2245bb901355SGroverkss   for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
2246bb901355SGroverkss     for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
2247bb901355SGroverkss       os << atEq(i, j) << " ";
2248bb901355SGroverkss     }
2249bb901355SGroverkss     os << "= 0\n";
2250bb901355SGroverkss   }
2251bb901355SGroverkss   for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
2252bb901355SGroverkss     for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
2253bb901355SGroverkss       os << atIneq(i, j) << " ";
2254bb901355SGroverkss     }
2255bb901355SGroverkss     os << ">= 0\n";
2256bb901355SGroverkss   }
2257bb901355SGroverkss   os << '\n';
2258bb901355SGroverkss }
2259bb901355SGroverkss 
dump() const2260bb901355SGroverkss void IntegerRelation::dump() const { print(llvm::errs()); }
226158966dd4SGroverkss 
insertVar(VarKind kind,unsigned pos,unsigned num)2262d95140a5SGroverkss unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos,
2263d95140a5SGroverkss                                       unsigned num) {
2264d95140a5SGroverkss   assert((kind != VarKind::Domain || num == 0) &&
226558966dd4SGroverkss          "Domain has to be zero in a set");
2266d95140a5SGroverkss   return IntegerRelation::insertVar(kind, pos, num);
226758966dd4SGroverkss }
2268a18f843fSGroverkss IntegerPolyhedron
intersect(const IntegerPolyhedron & other) const2269a18f843fSGroverkss IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const {
2270a18f843fSGroverkss   return IntegerPolyhedron(IntegerRelation::intersect(other));
2271a18f843fSGroverkss }
2272a18f843fSGroverkss 
subtract(const PresburgerSet & other) const2273a18f843fSGroverkss PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const {
2274a18f843fSGroverkss   return PresburgerSet(IntegerRelation::subtract(other));
2275a18f843fSGroverkss }
2276