1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) \ 40 MAP(D4, 47) \ 41 MAP(D8, 48) \ 42 MAP(D9, 49) \ 43 MAP(DA, 50) \ 44 MAP(DB, 51) \ 45 MAP(DC, 52) \ 46 MAP(DD, 53) \ 47 MAP(DE, 54) \ 48 MAP(DF, 55) 49 50 // A clone of X86 since we can't depend on something that is generated. 51 namespace X86Local { 52 enum { 53 Pseudo = 0, 54 RawFrm = 1, 55 AddRegFrm = 2, 56 MRMDestReg = 3, 57 MRMDestMem = 4, 58 MRMSrcReg = 5, 59 MRMSrcMem = 6, 60 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 61 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 62 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 63 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 64 MRMInitReg = 32, 65 #define MAP(from, to) MRM_##from = to, 66 MRM_MAPPING 67 #undef MAP 68 RawFrmImm8 = 43, 69 RawFrmImm16 = 44, 70 lastMRM 71 }; 72 73 enum { 74 TB = 1, 75 REP = 2, 76 D8 = 3, D9 = 4, DA = 5, DB = 6, 77 DC = 7, DD = 8, DE = 9, DF = 10, 78 XD = 11, XS = 12, 79 T8 = 13, P_TA = 14, 80 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19 81 }; 82 } 83 84 // If rows are added to the opcode extension tables, then corresponding entries 85 // must be added here. 86 // 87 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 88 // that byte to ONE_BYTE_EXTENSION_TABLES. 89 // 90 // If the row corresponds to two bytes where the first is 0f, add an entry for 91 // the second byte to TWO_BYTE_EXTENSION_TABLES. 92 // 93 // If the row corresponds to some other set of bytes, you will need to modify 94 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 95 // to the X86 TD files, except in two cases: if the first two bytes of such a 96 // new combination are 0f 38 or 0f 3a, you just have to add maps called 97 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 98 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 99 // in RecognizableInstr::emitDecodePath(). 100 101 #define ONE_BYTE_EXTENSION_TABLES \ 102 EXTENSION_TABLE(80) \ 103 EXTENSION_TABLE(81) \ 104 EXTENSION_TABLE(82) \ 105 EXTENSION_TABLE(83) \ 106 EXTENSION_TABLE(8f) \ 107 EXTENSION_TABLE(c0) \ 108 EXTENSION_TABLE(c1) \ 109 EXTENSION_TABLE(c6) \ 110 EXTENSION_TABLE(c7) \ 111 EXTENSION_TABLE(d0) \ 112 EXTENSION_TABLE(d1) \ 113 EXTENSION_TABLE(d2) \ 114 EXTENSION_TABLE(d3) \ 115 EXTENSION_TABLE(f6) \ 116 EXTENSION_TABLE(f7) \ 117 EXTENSION_TABLE(fe) \ 118 EXTENSION_TABLE(ff) 119 120 #define TWO_BYTE_EXTENSION_TABLES \ 121 EXTENSION_TABLE(00) \ 122 EXTENSION_TABLE(01) \ 123 EXTENSION_TABLE(18) \ 124 EXTENSION_TABLE(71) \ 125 EXTENSION_TABLE(72) \ 126 EXTENSION_TABLE(73) \ 127 EXTENSION_TABLE(ae) \ 128 EXTENSION_TABLE(ba) \ 129 EXTENSION_TABLE(c7) 130 131 #define THREE_BYTE_38_EXTENSION_TABLES \ 132 EXTENSION_TABLE(F3) 133 134 using namespace X86Disassembler; 135 136 /// needsModRMForDecode - Indicates whether a particular instruction requires a 137 /// ModR/M byte for the instruction to be properly decoded. For example, a 138 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 139 /// 0b11. 140 /// 141 /// @param form - The form of the instruction. 142 /// @return - true if the form implies that a ModR/M byte is required, false 143 /// otherwise. 144 static bool needsModRMForDecode(uint8_t form) { 145 if (form == X86Local::MRMDestReg || 146 form == X86Local::MRMDestMem || 147 form == X86Local::MRMSrcReg || 148 form == X86Local::MRMSrcMem || 149 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 150 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 151 return true; 152 else 153 return false; 154 } 155 156 /// isRegFormat - Indicates whether a particular form requires the Mod field of 157 /// the ModR/M byte to be 0b11. 158 /// 159 /// @param form - The form of the instruction. 160 /// @return - true if the form implies that Mod must be 0b11, false 161 /// otherwise. 162 static bool isRegFormat(uint8_t form) { 163 if (form == X86Local::MRMDestReg || 164 form == X86Local::MRMSrcReg || 165 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 166 return true; 167 else 168 return false; 169 } 170 171 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 172 /// Useful for switch statements and the like. 173 /// 174 /// @param init - A reference to the BitsInit to be decoded. 175 /// @return - The field, with the first bit in the BitsInit as the lowest 176 /// order bit. 177 static uint8_t byteFromBitsInit(BitsInit &init) { 178 int width = init.getNumBits(); 179 180 assert(width <= 8 && "Field is too large for uint8_t!"); 181 182 int index; 183 uint8_t mask = 0x01; 184 185 uint8_t ret = 0; 186 187 for (index = 0; index < width; index++) { 188 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 189 ret |= mask; 190 191 mask <<= 1; 192 } 193 194 return ret; 195 } 196 197 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 198 /// name of the field. 199 /// 200 /// @param rec - The record from which to extract the value. 201 /// @param name - The name of the field in the record. 202 /// @return - The field, as translated by byteFromBitsInit(). 203 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 204 BitsInit* bits = rec->getValueAsBitsInit(name); 205 return byteFromBitsInit(*bits); 206 } 207 208 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 209 const CodeGenInstruction &insn, 210 InstrUID uid) { 211 UID = uid; 212 213 Rec = insn.TheDef; 214 Name = Rec->getName(); 215 Spec = &tables.specForUID(UID); 216 217 if (!Rec->isSubClassOf("X86Inst")) { 218 ShouldBeEmitted = false; 219 return; 220 } 221 222 Prefix = byteFromRec(Rec, "Prefix"); 223 Opcode = byteFromRec(Rec, "Opcode"); 224 Form = byteFromRec(Rec, "FormBits"); 225 SegOvr = byteFromRec(Rec, "SegOvrBits"); 226 227 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 228 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 229 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 230 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 231 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 232 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 233 HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); 234 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 235 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 236 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 237 238 Name = Rec->getName(); 239 AsmString = Rec->getValueAsString("AsmString"); 240 241 Operands = &insn.Operands.OperandList; 242 243 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 244 (Name.find("CRC32") != Name.npos); 245 HasFROperands = hasFROperands(); 246 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 247 248 // Check for 64-bit inst which does not require REX 249 Is32Bit = false; 250 Is64Bit = false; 251 // FIXME: Is there some better way to check for In64BitMode? 252 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 253 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 254 if (Predicates[i]->getName().find("32Bit") != Name.npos) { 255 Is32Bit = true; 256 break; 257 } 258 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 259 Is64Bit = true; 260 break; 261 } 262 } 263 // FIXME: These instructions aren't marked as 64-bit in any way 264 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 265 Rec->getName() == "MASKMOVDQU64" || 266 Rec->getName() == "POPFS64" || 267 Rec->getName() == "POPGS64" || 268 Rec->getName() == "PUSHFS64" || 269 Rec->getName() == "PUSHGS64" || 270 Rec->getName() == "REX64_PREFIX" || 271 Rec->getName().find("MOV64") != Name.npos || 272 Rec->getName().find("PUSH64") != Name.npos || 273 Rec->getName().find("POP64") != Name.npos; 274 275 ShouldBeEmitted = true; 276 } 277 278 void RecognizableInstr::processInstr(DisassemblerTables &tables, 279 const CodeGenInstruction &insn, 280 InstrUID uid) 281 { 282 // Ignore "asm parser only" instructions. 283 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 284 return; 285 286 RecognizableInstr recogInstr(tables, insn, uid); 287 288 recogInstr.emitInstructionSpecifier(tables); 289 290 if (recogInstr.shouldBeEmitted()) 291 recogInstr.emitDecodePath(tables); 292 } 293 294 InstructionContext RecognizableInstr::insnContext() const { 295 InstructionContext insnContext; 296 297 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 298 if (HasVEX_LPrefix && HasVEX_WPrefix) { 299 if (HasOpSizePrefix) 300 insnContext = IC_VEX_L_W_OPSIZE; 301 else 302 llvm_unreachable("Don't support VEX.L and VEX.W together"); 303 } else if (HasOpSizePrefix && HasVEX_LPrefix) 304 insnContext = IC_VEX_L_OPSIZE; 305 else if (HasOpSizePrefix && HasVEX_WPrefix) 306 insnContext = IC_VEX_W_OPSIZE; 307 else if (HasOpSizePrefix) 308 insnContext = IC_VEX_OPSIZE; 309 else if (HasVEX_LPrefix && 310 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 311 insnContext = IC_VEX_L_XS; 312 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 313 Prefix == X86Local::T8XD || 314 Prefix == X86Local::TAXD)) 315 insnContext = IC_VEX_L_XD; 316 else if (HasVEX_WPrefix && 317 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 318 insnContext = IC_VEX_W_XS; 319 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 320 Prefix == X86Local::T8XD || 321 Prefix == X86Local::TAXD)) 322 insnContext = IC_VEX_W_XD; 323 else if (HasVEX_WPrefix) 324 insnContext = IC_VEX_W; 325 else if (HasVEX_LPrefix) 326 insnContext = IC_VEX_L; 327 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 328 Prefix == X86Local::TAXD) 329 insnContext = IC_VEX_XD; 330 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 331 insnContext = IC_VEX_XS; 332 else 333 insnContext = IC_VEX; 334 } else if (Is64Bit || HasREX_WPrefix) { 335 if (HasREX_WPrefix && HasOpSizePrefix) 336 insnContext = IC_64BIT_REXW_OPSIZE; 337 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 338 Prefix == X86Local::T8XD || 339 Prefix == X86Local::TAXD)) 340 insnContext = IC_64BIT_XD_OPSIZE; 341 else if (HasOpSizePrefix && 342 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 343 insnContext = IC_64BIT_XS_OPSIZE; 344 else if (HasOpSizePrefix) 345 insnContext = IC_64BIT_OPSIZE; 346 else if (HasREX_WPrefix && 347 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 348 insnContext = IC_64BIT_REXW_XS; 349 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 350 Prefix == X86Local::T8XD || 351 Prefix == X86Local::TAXD)) 352 insnContext = IC_64BIT_REXW_XD; 353 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 354 Prefix == X86Local::TAXD) 355 insnContext = IC_64BIT_XD; 356 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 357 insnContext = IC_64BIT_XS; 358 else if (HasREX_WPrefix) 359 insnContext = IC_64BIT_REXW; 360 else 361 insnContext = IC_64BIT; 362 } else { 363 if (HasOpSizePrefix && (Prefix == X86Local::XD || 364 Prefix == X86Local::T8XD || 365 Prefix == X86Local::TAXD)) 366 insnContext = IC_XD_OPSIZE; 367 else if (HasOpSizePrefix && 368 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 369 insnContext = IC_XS_OPSIZE; 370 else if (HasOpSizePrefix) 371 insnContext = IC_OPSIZE; 372 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 373 Prefix == X86Local::TAXD) 374 insnContext = IC_XD; 375 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 376 Prefix == X86Local::REP) 377 insnContext = IC_XS; 378 else 379 insnContext = IC; 380 } 381 382 return insnContext; 383 } 384 385 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 386 /////////////////// 387 // FILTER_STRONG 388 // 389 390 // Filter out intrinsics 391 392 if (!Rec->isSubClassOf("X86Inst")) 393 return FILTER_STRONG; 394 395 if (Form == X86Local::Pseudo || 396 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 397 return FILTER_STRONG; 398 399 if (Form == X86Local::MRMInitReg) 400 return FILTER_STRONG; 401 402 403 // Filter out artificial instructions 404 405 if (Name.find("_Int") != Name.npos || 406 Name.find("Int_") != Name.npos || 407 Name.find("_NOREX") != Name.npos || 408 Name.find("2SDL") != Name.npos || 409 Name == "LOCK_PREFIX") 410 return FILTER_STRONG; 411 412 // Filter out instructions with segment override prefixes. 413 // They're too messy to handle now and we'll special case them if needed. 414 415 if (SegOvr) 416 return FILTER_STRONG; 417 418 // Filter out instructions that can't be printed. 419 420 if (AsmString.size() == 0) 421 return FILTER_STRONG; 422 423 // Filter out instructions with subreg operands. 424 425 if (AsmString.find("subreg") != AsmString.npos) 426 return FILTER_STRONG; 427 428 ///////////////// 429 // FILTER_WEAK 430 // 431 432 433 // Filter out instructions with a LOCK prefix; 434 // prefer forms that do not have the prefix 435 if (HasLockPrefix) 436 return FILTER_WEAK; 437 438 // Filter out alternate forms of AVX instructions 439 if (Name.find("_alt") != Name.npos || 440 Name.find("XrYr") != Name.npos || 441 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) || 442 Name.find("_64mr") != Name.npos || 443 Name.find("Xrr") != Name.npos || 444 Name.find("rr64") != Name.npos) 445 return FILTER_WEAK; 446 447 // Special cases. 448 449 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 450 return FILTER_WEAK; 451 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 452 return FILTER_WEAK; 453 454 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 455 return FILTER_WEAK; 456 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 457 return FILTER_WEAK; 458 if (Name.find("Fs") != Name.npos) 459 return FILTER_WEAK; 460 if (Name == "PUSH64i16" || 461 Name == "MOVPQI2QImr" || 462 Name == "VMOVPQI2QImr" || 463 Name == "MMX_MOVD64rrv164" || 464 Name == "MOV64ri64i32" || 465 Name == "VMASKMOVDQU64" || 466 Name == "VEXTRACTPSrr64" || 467 Name == "VMOVQd64rr" || 468 Name == "VMOVQs64rr") 469 return FILTER_WEAK; 470 471 if (HasFROperands && Name.find("MOV") != Name.npos && 472 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 473 (Name.find("to") != Name.npos))) 474 return FILTER_WEAK; 475 476 return FILTER_NORMAL; 477 } 478 479 bool RecognizableInstr::hasFROperands() const { 480 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 481 unsigned numOperands = OperandList.size(); 482 483 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 484 const std::string &recName = OperandList[operandIndex].Rec->getName(); 485 486 if (recName.find("FR") != recName.npos) 487 return true; 488 } 489 return false; 490 } 491 492 bool RecognizableInstr::has256BitOperands() const { 493 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 494 unsigned numOperands = OperandList.size(); 495 496 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 497 const std::string &recName = OperandList[operandIndex].Rec->getName(); 498 499 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 500 return true; 501 } 502 } 503 return false; 504 } 505 506 void RecognizableInstr::handleOperand( 507 bool optional, 508 unsigned &operandIndex, 509 unsigned &physicalOperandIndex, 510 unsigned &numPhysicalOperands, 511 unsigned *operandMapping, 512 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 513 if (optional) { 514 if (physicalOperandIndex >= numPhysicalOperands) 515 return; 516 } else { 517 assert(physicalOperandIndex < numPhysicalOperands); 518 } 519 520 while (operandMapping[operandIndex] != operandIndex) { 521 Spec->operands[operandIndex].encoding = ENCODING_DUP; 522 Spec->operands[operandIndex].type = 523 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 524 ++operandIndex; 525 } 526 527 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 528 529 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 530 HasOpSizePrefix); 531 Spec->operands[operandIndex].type = typeFromString(typeName, 532 IsSSE, 533 HasREX_WPrefix, 534 HasOpSizePrefix); 535 536 ++operandIndex; 537 ++physicalOperandIndex; 538 } 539 540 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 541 Spec->name = Name; 542 543 if (!Rec->isSubClassOf("X86Inst")) 544 return; 545 546 switch (filter()) { 547 case FILTER_WEAK: 548 Spec->filtered = true; 549 break; 550 case FILTER_STRONG: 551 ShouldBeEmitted = false; 552 return; 553 case FILTER_NORMAL: 554 break; 555 } 556 557 Spec->insnContext = insnContext(); 558 559 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 560 561 unsigned operandIndex; 562 unsigned numOperands = OperandList.size(); 563 unsigned numPhysicalOperands = 0; 564 565 // operandMapping maps from operands in OperandList to their originals. 566 // If operandMapping[i] != i, then the entry is a duplicate. 567 unsigned operandMapping[X86_MAX_OPERANDS]; 568 569 bool hasFROperands = false; 570 571 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 572 573 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 574 if (OperandList[operandIndex].Constraints.size()) { 575 const CGIOperandList::ConstraintInfo &Constraint = 576 OperandList[operandIndex].Constraints[0]; 577 if (Constraint.isTied()) { 578 operandMapping[operandIndex] = Constraint.getTiedOperand(); 579 } else { 580 ++numPhysicalOperands; 581 operandMapping[operandIndex] = operandIndex; 582 } 583 } else { 584 ++numPhysicalOperands; 585 operandMapping[operandIndex] = operandIndex; 586 } 587 588 const std::string &recName = OperandList[operandIndex].Rec->getName(); 589 590 if (recName.find("FR") != recName.npos) 591 hasFROperands = true; 592 } 593 594 if (hasFROperands && Name.find("MOV") != Name.npos && 595 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 596 (Name.find("to") != Name.npos))) 597 ShouldBeEmitted = false; 598 599 if (!ShouldBeEmitted) 600 return; 601 602 #define HANDLE_OPERAND(class) \ 603 handleOperand(false, \ 604 operandIndex, \ 605 physicalOperandIndex, \ 606 numPhysicalOperands, \ 607 operandMapping, \ 608 class##EncodingFromString); 609 610 #define HANDLE_OPTIONAL(class) \ 611 handleOperand(true, \ 612 operandIndex, \ 613 physicalOperandIndex, \ 614 numPhysicalOperands, \ 615 operandMapping, \ 616 class##EncodingFromString); 617 618 // operandIndex should always be < numOperands 619 operandIndex = 0; 620 // physicalOperandIndex should always be < numPhysicalOperands 621 unsigned physicalOperandIndex = 0; 622 623 switch (Form) { 624 case X86Local::RawFrm: 625 // Operand 1 (optional) is an address or immediate. 626 // Operand 2 (optional) is an immediate. 627 assert(numPhysicalOperands <= 2 && 628 "Unexpected number of operands for RawFrm"); 629 HANDLE_OPTIONAL(relocation) 630 HANDLE_OPTIONAL(immediate) 631 break; 632 case X86Local::AddRegFrm: 633 // Operand 1 is added to the opcode. 634 // Operand 2 (optional) is an address. 635 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 636 "Unexpected number of operands for AddRegFrm"); 637 HANDLE_OPERAND(opcodeModifier) 638 HANDLE_OPTIONAL(relocation) 639 break; 640 case X86Local::MRMDestReg: 641 // Operand 1 is a register operand in the R/M field. 642 // Operand 2 is a register operand in the Reg/Opcode field. 643 // - In AVX, there is a register operand in the VEX.vvvv field here - 644 // Operand 3 (optional) is an immediate. 645 if (HasVEX_4VPrefix) 646 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 647 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 648 else 649 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 650 "Unexpected number of operands for MRMDestRegFrm"); 651 652 HANDLE_OPERAND(rmRegister) 653 654 if (HasVEX_4VPrefix) 655 // FIXME: In AVX, the register below becomes the one encoded 656 // in ModRMVEX and the one above the one in the VEX.VVVV field 657 HANDLE_OPERAND(vvvvRegister) 658 659 HANDLE_OPERAND(roRegister) 660 HANDLE_OPTIONAL(immediate) 661 break; 662 case X86Local::MRMDestMem: 663 // Operand 1 is a memory operand (possibly SIB-extended) 664 // Operand 2 is a register operand in the Reg/Opcode field. 665 // - In AVX, there is a register operand in the VEX.vvvv field here - 666 // Operand 3 (optional) is an immediate. 667 if (HasVEX_4VPrefix) 668 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 669 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 670 else 671 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 672 "Unexpected number of operands for MRMDestMemFrm"); 673 HANDLE_OPERAND(memory) 674 675 if (HasVEX_4VPrefix) 676 // FIXME: In AVX, the register below becomes the one encoded 677 // in ModRMVEX and the one above the one in the VEX.VVVV field 678 HANDLE_OPERAND(vvvvRegister) 679 680 HANDLE_OPERAND(roRegister) 681 HANDLE_OPTIONAL(immediate) 682 break; 683 case X86Local::MRMSrcReg: 684 // Operand 1 is a register operand in the Reg/Opcode field. 685 // Operand 2 is a register operand in the R/M field. 686 // - In AVX, there is a register operand in the VEX.vvvv field here - 687 // Operand 3 (optional) is an immediate. 688 689 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 690 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 691 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 692 else 693 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 694 "Unexpected number of operands for MRMSrcRegFrm"); 695 696 HANDLE_OPERAND(roRegister) 697 698 if (HasVEX_4VPrefix) 699 // FIXME: In AVX, the register below becomes the one encoded 700 // in ModRMVEX and the one above the one in the VEX.VVVV field 701 HANDLE_OPERAND(vvvvRegister) 702 703 if (HasMemOp4Prefix) 704 HANDLE_OPERAND(immediate) 705 706 HANDLE_OPERAND(rmRegister) 707 708 if (HasVEX_4VOp3Prefix) 709 HANDLE_OPERAND(vvvvRegister) 710 711 if (!HasMemOp4Prefix) 712 HANDLE_OPTIONAL(immediate) 713 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 714 break; 715 case X86Local::MRMSrcMem: 716 // Operand 1 is a register operand in the Reg/Opcode field. 717 // Operand 2 is a memory operand (possibly SIB-extended) 718 // - In AVX, there is a register operand in the VEX.vvvv field here - 719 // Operand 3 (optional) is an immediate. 720 721 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 722 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 723 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 724 else 725 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 726 "Unexpected number of operands for MRMSrcMemFrm"); 727 728 HANDLE_OPERAND(roRegister) 729 730 if (HasVEX_4VPrefix) 731 // FIXME: In AVX, the register below becomes the one encoded 732 // in ModRMVEX and the one above the one in the VEX.VVVV field 733 HANDLE_OPERAND(vvvvRegister) 734 735 if (HasMemOp4Prefix) 736 HANDLE_OPERAND(immediate) 737 738 HANDLE_OPERAND(memory) 739 740 if (HasVEX_4VOp3Prefix) 741 HANDLE_OPERAND(vvvvRegister) 742 743 if (!HasMemOp4Prefix) 744 HANDLE_OPTIONAL(immediate) 745 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 746 break; 747 case X86Local::MRM0r: 748 case X86Local::MRM1r: 749 case X86Local::MRM2r: 750 case X86Local::MRM3r: 751 case X86Local::MRM4r: 752 case X86Local::MRM5r: 753 case X86Local::MRM6r: 754 case X86Local::MRM7r: 755 // Operand 1 is a register operand in the R/M field. 756 // Operand 2 (optional) is an immediate or relocation. 757 if (HasVEX_4VPrefix) 758 assert(numPhysicalOperands <= 3 && 759 "Unexpected number of operands for MRMnRFrm with VEX_4V"); 760 else 761 assert(numPhysicalOperands <= 2 && 762 "Unexpected number of operands for MRMnRFrm"); 763 if (HasVEX_4VPrefix) 764 HANDLE_OPERAND(vvvvRegister) 765 HANDLE_OPTIONAL(rmRegister) 766 HANDLE_OPTIONAL(relocation) 767 break; 768 case X86Local::MRM0m: 769 case X86Local::MRM1m: 770 case X86Local::MRM2m: 771 case X86Local::MRM3m: 772 case X86Local::MRM4m: 773 case X86Local::MRM5m: 774 case X86Local::MRM6m: 775 case X86Local::MRM7m: 776 // Operand 1 is a memory operand (possibly SIB-extended) 777 // Operand 2 (optional) is an immediate or relocation. 778 if (HasVEX_4VPrefix) 779 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 780 "Unexpected number of operands for MRMnMFrm"); 781 else 782 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 783 "Unexpected number of operands for MRMnMFrm"); 784 if (HasVEX_4VPrefix) 785 HANDLE_OPERAND(vvvvRegister) 786 HANDLE_OPERAND(memory) 787 HANDLE_OPTIONAL(relocation) 788 break; 789 case X86Local::RawFrmImm8: 790 // operand 1 is a 16-bit immediate 791 // operand 2 is an 8-bit immediate 792 assert(numPhysicalOperands == 2 && 793 "Unexpected number of operands for X86Local::RawFrmImm8"); 794 HANDLE_OPERAND(immediate) 795 HANDLE_OPERAND(immediate) 796 break; 797 case X86Local::RawFrmImm16: 798 // operand 1 is a 16-bit immediate 799 // operand 2 is a 16-bit immediate 800 HANDLE_OPERAND(immediate) 801 HANDLE_OPERAND(immediate) 802 break; 803 case X86Local::MRMInitReg: 804 // Ignored. 805 break; 806 } 807 808 #undef HANDLE_OPERAND 809 #undef HANDLE_OPTIONAL 810 } 811 812 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 813 // Special cases where the LLVM tables are not complete 814 815 #define MAP(from, to) \ 816 case X86Local::MRM_##from: \ 817 filter = new ExactFilter(0x##from); \ 818 break; 819 820 OpcodeType opcodeType = (OpcodeType)-1; 821 822 ModRMFilter* filter = NULL; 823 uint8_t opcodeToSet = 0; 824 825 switch (Prefix) { 826 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 827 case X86Local::XD: 828 case X86Local::XS: 829 case X86Local::TB: 830 opcodeType = TWOBYTE; 831 832 switch (Opcode) { 833 default: 834 if (needsModRMForDecode(Form)) 835 filter = new ModFilter(isRegFormat(Form)); 836 else 837 filter = new DumbFilter(); 838 break; 839 #define EXTENSION_TABLE(n) case 0x##n: 840 TWO_BYTE_EXTENSION_TABLES 841 #undef EXTENSION_TABLE 842 switch (Form) { 843 default: 844 llvm_unreachable("Unhandled two-byte extended opcode"); 845 case X86Local::MRM0r: 846 case X86Local::MRM1r: 847 case X86Local::MRM2r: 848 case X86Local::MRM3r: 849 case X86Local::MRM4r: 850 case X86Local::MRM5r: 851 case X86Local::MRM6r: 852 case X86Local::MRM7r: 853 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 854 break; 855 case X86Local::MRM0m: 856 case X86Local::MRM1m: 857 case X86Local::MRM2m: 858 case X86Local::MRM3m: 859 case X86Local::MRM4m: 860 case X86Local::MRM5m: 861 case X86Local::MRM6m: 862 case X86Local::MRM7m: 863 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 864 break; 865 MRM_MAPPING 866 } // switch (Form) 867 break; 868 } // switch (Opcode) 869 opcodeToSet = Opcode; 870 break; 871 case X86Local::T8: 872 case X86Local::T8XD: 873 case X86Local::T8XS: 874 opcodeType = THREEBYTE_38; 875 switch (Opcode) { 876 default: 877 if (needsModRMForDecode(Form)) 878 filter = new ModFilter(isRegFormat(Form)); 879 else 880 filter = new DumbFilter(); 881 break; 882 #define EXTENSION_TABLE(n) case 0x##n: 883 THREE_BYTE_38_EXTENSION_TABLES 884 #undef EXTENSION_TABLE 885 switch (Form) { 886 default: 887 llvm_unreachable("Unhandled two-byte extended opcode"); 888 case X86Local::MRM0r: 889 case X86Local::MRM1r: 890 case X86Local::MRM2r: 891 case X86Local::MRM3r: 892 case X86Local::MRM4r: 893 case X86Local::MRM5r: 894 case X86Local::MRM6r: 895 case X86Local::MRM7r: 896 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 897 break; 898 case X86Local::MRM0m: 899 case X86Local::MRM1m: 900 case X86Local::MRM2m: 901 case X86Local::MRM3m: 902 case X86Local::MRM4m: 903 case X86Local::MRM5m: 904 case X86Local::MRM6m: 905 case X86Local::MRM7m: 906 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 907 break; 908 MRM_MAPPING 909 } // switch (Form) 910 break; 911 } // switch (Opcode) 912 opcodeToSet = Opcode; 913 break; 914 case X86Local::P_TA: 915 case X86Local::TAXD: 916 opcodeType = THREEBYTE_3A; 917 if (needsModRMForDecode(Form)) 918 filter = new ModFilter(isRegFormat(Form)); 919 else 920 filter = new DumbFilter(); 921 opcodeToSet = Opcode; 922 break; 923 case X86Local::A6: 924 opcodeType = THREEBYTE_A6; 925 if (needsModRMForDecode(Form)) 926 filter = new ModFilter(isRegFormat(Form)); 927 else 928 filter = new DumbFilter(); 929 opcodeToSet = Opcode; 930 break; 931 case X86Local::A7: 932 opcodeType = THREEBYTE_A7; 933 if (needsModRMForDecode(Form)) 934 filter = new ModFilter(isRegFormat(Form)); 935 else 936 filter = new DumbFilter(); 937 opcodeToSet = Opcode; 938 break; 939 case X86Local::D8: 940 case X86Local::D9: 941 case X86Local::DA: 942 case X86Local::DB: 943 case X86Local::DC: 944 case X86Local::DD: 945 case X86Local::DE: 946 case X86Local::DF: 947 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 948 opcodeType = ONEBYTE; 949 if (Form == X86Local::AddRegFrm) { 950 Spec->modifierType = MODIFIER_MODRM; 951 Spec->modifierBase = Opcode; 952 filter = new AddRegEscapeFilter(Opcode); 953 } else { 954 filter = new EscapeFilter(true, Opcode); 955 } 956 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 957 break; 958 case X86Local::REP: 959 default: 960 opcodeType = ONEBYTE; 961 switch (Opcode) { 962 #define EXTENSION_TABLE(n) case 0x##n: 963 ONE_BYTE_EXTENSION_TABLES 964 #undef EXTENSION_TABLE 965 switch (Form) { 966 default: 967 llvm_unreachable("Fell through the cracks of a single-byte " 968 "extended opcode"); 969 case X86Local::MRM0r: 970 case X86Local::MRM1r: 971 case X86Local::MRM2r: 972 case X86Local::MRM3r: 973 case X86Local::MRM4r: 974 case X86Local::MRM5r: 975 case X86Local::MRM6r: 976 case X86Local::MRM7r: 977 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 978 break; 979 case X86Local::MRM0m: 980 case X86Local::MRM1m: 981 case X86Local::MRM2m: 982 case X86Local::MRM3m: 983 case X86Local::MRM4m: 984 case X86Local::MRM5m: 985 case X86Local::MRM6m: 986 case X86Local::MRM7m: 987 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 988 break; 989 MRM_MAPPING 990 } // switch (Form) 991 break; 992 case 0xd8: 993 case 0xd9: 994 case 0xda: 995 case 0xdb: 996 case 0xdc: 997 case 0xdd: 998 case 0xde: 999 case 0xdf: 1000 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 1001 break; 1002 default: 1003 if (needsModRMForDecode(Form)) 1004 filter = new ModFilter(isRegFormat(Form)); 1005 else 1006 filter = new DumbFilter(); 1007 break; 1008 } // switch (Opcode) 1009 opcodeToSet = Opcode; 1010 } // switch (Prefix) 1011 1012 assert(opcodeType != (OpcodeType)-1 && 1013 "Opcode type not set"); 1014 assert(filter && "Filter not set"); 1015 1016 if (Form == X86Local::AddRegFrm) { 1017 if(Spec->modifierType != MODIFIER_MODRM) { 1018 assert(opcodeToSet < 0xf9 && 1019 "Not enough room for all ADDREG_FRM operands"); 1020 1021 uint8_t currentOpcode; 1022 1023 for (currentOpcode = opcodeToSet; 1024 currentOpcode < opcodeToSet + 8; 1025 ++currentOpcode) 1026 tables.setTableFields(opcodeType, 1027 insnContext(), 1028 currentOpcode, 1029 *filter, 1030 UID, Is32Bit, IgnoresVEX_L); 1031 1032 Spec->modifierType = MODIFIER_OPCODE; 1033 Spec->modifierBase = opcodeToSet; 1034 } else { 1035 // modifierBase was set where MODIFIER_MODRM was set 1036 tables.setTableFields(opcodeType, 1037 insnContext(), 1038 opcodeToSet, 1039 *filter, 1040 UID, Is32Bit, IgnoresVEX_L); 1041 } 1042 } else { 1043 tables.setTableFields(opcodeType, 1044 insnContext(), 1045 opcodeToSet, 1046 *filter, 1047 UID, Is32Bit, IgnoresVEX_L); 1048 1049 Spec->modifierType = MODIFIER_NONE; 1050 Spec->modifierBase = opcodeToSet; 1051 } 1052 1053 delete filter; 1054 1055 #undef MAP 1056 } 1057 1058 #define TYPE(str, type) if (s == str) return type; 1059 OperandType RecognizableInstr::typeFromString(const std::string &s, 1060 bool isSSE, 1061 bool hasREX_WPrefix, 1062 bool hasOpSizePrefix) { 1063 if (isSSE) { 1064 // For SSE instructions, we ignore the OpSize prefix and force operand 1065 // sizes. 1066 TYPE("GR16", TYPE_R16) 1067 TYPE("GR32", TYPE_R32) 1068 TYPE("GR64", TYPE_R64) 1069 } 1070 if(hasREX_WPrefix) { 1071 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1072 // is special. 1073 TYPE("GR32", TYPE_R32) 1074 } 1075 if(!hasOpSizePrefix) { 1076 // For instructions without an OpSize prefix, a declared 16-bit register or 1077 // immediate encoding is special. 1078 TYPE("GR16", TYPE_R16) 1079 TYPE("i16imm", TYPE_IMM16) 1080 } 1081 TYPE("i16mem", TYPE_Mv) 1082 TYPE("i16imm", TYPE_IMMv) 1083 TYPE("i16i8imm", TYPE_IMMv) 1084 TYPE("GR16", TYPE_Rv) 1085 TYPE("i32mem", TYPE_Mv) 1086 TYPE("i32imm", TYPE_IMMv) 1087 TYPE("i32i8imm", TYPE_IMM32) 1088 TYPE("u32u8imm", TYPE_IMM32) 1089 TYPE("GR32", TYPE_Rv) 1090 TYPE("i64mem", TYPE_Mv) 1091 TYPE("i64i32imm", TYPE_IMM64) 1092 TYPE("i64i8imm", TYPE_IMM64) 1093 TYPE("GR64", TYPE_R64) 1094 TYPE("i8mem", TYPE_M8) 1095 TYPE("i8imm", TYPE_IMM8) 1096 TYPE("GR8", TYPE_R8) 1097 TYPE("VR128", TYPE_XMM128) 1098 TYPE("f128mem", TYPE_M128) 1099 TYPE("f256mem", TYPE_M256) 1100 TYPE("FR64", TYPE_XMM64) 1101 TYPE("f64mem", TYPE_M64FP) 1102 TYPE("sdmem", TYPE_M64FP) 1103 TYPE("FR32", TYPE_XMM32) 1104 TYPE("f32mem", TYPE_M32FP) 1105 TYPE("ssmem", TYPE_M32FP) 1106 TYPE("RST", TYPE_ST) 1107 TYPE("i128mem", TYPE_M128) 1108 TYPE("i256mem", TYPE_M256) 1109 TYPE("i64i32imm_pcrel", TYPE_REL64) 1110 TYPE("i16imm_pcrel", TYPE_REL16) 1111 TYPE("i32imm_pcrel", TYPE_REL32) 1112 TYPE("SSECC", TYPE_IMM3) 1113 TYPE("brtarget", TYPE_RELv) 1114 TYPE("uncondbrtarget", TYPE_RELv) 1115 TYPE("brtarget8", TYPE_REL8) 1116 TYPE("f80mem", TYPE_M80FP) 1117 TYPE("lea32mem", TYPE_LEA) 1118 TYPE("lea64_32mem", TYPE_LEA) 1119 TYPE("lea64mem", TYPE_LEA) 1120 TYPE("VR64", TYPE_MM64) 1121 TYPE("i64imm", TYPE_IMMv) 1122 TYPE("opaque32mem", TYPE_M1616) 1123 TYPE("opaque48mem", TYPE_M1632) 1124 TYPE("opaque80mem", TYPE_M1664) 1125 TYPE("opaque512mem", TYPE_M512) 1126 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1127 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1128 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1129 TYPE("offset8", TYPE_MOFFS8) 1130 TYPE("offset16", TYPE_MOFFS16) 1131 TYPE("offset32", TYPE_MOFFS32) 1132 TYPE("offset64", TYPE_MOFFS64) 1133 TYPE("VR256", TYPE_XMM256) 1134 TYPE("GR16_NOAX", TYPE_Rv) 1135 TYPE("GR32_NOAX", TYPE_Rv) 1136 TYPE("GR64_NOAX", TYPE_R64) 1137 errs() << "Unhandled type string " << s << "\n"; 1138 llvm_unreachable("Unhandled type string"); 1139 } 1140 #undef TYPE 1141 1142 #define ENCODING(str, encoding) if (s == str) return encoding; 1143 OperandEncoding RecognizableInstr::immediateEncodingFromString 1144 (const std::string &s, 1145 bool hasOpSizePrefix) { 1146 if(!hasOpSizePrefix) { 1147 // For instructions without an OpSize prefix, a declared 16-bit register or 1148 // immediate encoding is special. 1149 ENCODING("i16imm", ENCODING_IW) 1150 } 1151 ENCODING("i32i8imm", ENCODING_IB) 1152 ENCODING("u32u8imm", ENCODING_IB) 1153 ENCODING("SSECC", ENCODING_IB) 1154 ENCODING("i16imm", ENCODING_Iv) 1155 ENCODING("i16i8imm", ENCODING_IB) 1156 ENCODING("i32imm", ENCODING_Iv) 1157 ENCODING("i64i32imm", ENCODING_ID) 1158 ENCODING("i64i8imm", ENCODING_IB) 1159 ENCODING("i8imm", ENCODING_IB) 1160 // This is not a typo. Instructions like BLENDVPD put 1161 // register IDs in 8-bit immediates nowadays. 1162 ENCODING("VR256", ENCODING_IB) 1163 ENCODING("VR128", ENCODING_IB) 1164 errs() << "Unhandled immediate encoding " << s << "\n"; 1165 llvm_unreachable("Unhandled immediate encoding"); 1166 } 1167 1168 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1169 (const std::string &s, 1170 bool hasOpSizePrefix) { 1171 ENCODING("GR16", ENCODING_RM) 1172 ENCODING("GR32", ENCODING_RM) 1173 ENCODING("GR64", ENCODING_RM) 1174 ENCODING("GR8", ENCODING_RM) 1175 ENCODING("VR128", ENCODING_RM) 1176 ENCODING("FR64", ENCODING_RM) 1177 ENCODING("FR32", ENCODING_RM) 1178 ENCODING("VR64", ENCODING_RM) 1179 ENCODING("VR256", ENCODING_RM) 1180 errs() << "Unhandled R/M register encoding " << s << "\n"; 1181 llvm_unreachable("Unhandled R/M register encoding"); 1182 } 1183 1184 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1185 (const std::string &s, 1186 bool hasOpSizePrefix) { 1187 ENCODING("GR16", ENCODING_REG) 1188 ENCODING("GR32", ENCODING_REG) 1189 ENCODING("GR64", ENCODING_REG) 1190 ENCODING("GR8", ENCODING_REG) 1191 ENCODING("VR128", ENCODING_REG) 1192 ENCODING("FR64", ENCODING_REG) 1193 ENCODING("FR32", ENCODING_REG) 1194 ENCODING("VR64", ENCODING_REG) 1195 ENCODING("SEGMENT_REG", ENCODING_REG) 1196 ENCODING("DEBUG_REG", ENCODING_REG) 1197 ENCODING("CONTROL_REG", ENCODING_REG) 1198 ENCODING("VR256", ENCODING_REG) 1199 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1200 llvm_unreachable("Unhandled reg/opcode register encoding"); 1201 } 1202 1203 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1204 (const std::string &s, 1205 bool hasOpSizePrefix) { 1206 ENCODING("GR32", ENCODING_VVVV) 1207 ENCODING("GR64", ENCODING_VVVV) 1208 ENCODING("FR32", ENCODING_VVVV) 1209 ENCODING("FR64", ENCODING_VVVV) 1210 ENCODING("VR128", ENCODING_VVVV) 1211 ENCODING("VR256", ENCODING_VVVV) 1212 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1213 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1214 } 1215 1216 OperandEncoding RecognizableInstr::memoryEncodingFromString 1217 (const std::string &s, 1218 bool hasOpSizePrefix) { 1219 ENCODING("i16mem", ENCODING_RM) 1220 ENCODING("i32mem", ENCODING_RM) 1221 ENCODING("i64mem", ENCODING_RM) 1222 ENCODING("i8mem", ENCODING_RM) 1223 ENCODING("ssmem", ENCODING_RM) 1224 ENCODING("sdmem", ENCODING_RM) 1225 ENCODING("f128mem", ENCODING_RM) 1226 ENCODING("f256mem", ENCODING_RM) 1227 ENCODING("f64mem", ENCODING_RM) 1228 ENCODING("f32mem", ENCODING_RM) 1229 ENCODING("i128mem", ENCODING_RM) 1230 ENCODING("i256mem", ENCODING_RM) 1231 ENCODING("f80mem", ENCODING_RM) 1232 ENCODING("lea32mem", ENCODING_RM) 1233 ENCODING("lea64_32mem", ENCODING_RM) 1234 ENCODING("lea64mem", ENCODING_RM) 1235 ENCODING("opaque32mem", ENCODING_RM) 1236 ENCODING("opaque48mem", ENCODING_RM) 1237 ENCODING("opaque80mem", ENCODING_RM) 1238 ENCODING("opaque512mem", ENCODING_RM) 1239 errs() << "Unhandled memory encoding " << s << "\n"; 1240 llvm_unreachable("Unhandled memory encoding"); 1241 } 1242 1243 OperandEncoding RecognizableInstr::relocationEncodingFromString 1244 (const std::string &s, 1245 bool hasOpSizePrefix) { 1246 if(!hasOpSizePrefix) { 1247 // For instructions without an OpSize prefix, a declared 16-bit register or 1248 // immediate encoding is special. 1249 ENCODING("i16imm", ENCODING_IW) 1250 } 1251 ENCODING("i16imm", ENCODING_Iv) 1252 ENCODING("i16i8imm", ENCODING_IB) 1253 ENCODING("i32imm", ENCODING_Iv) 1254 ENCODING("i32i8imm", ENCODING_IB) 1255 ENCODING("i64i32imm", ENCODING_ID) 1256 ENCODING("i64i8imm", ENCODING_IB) 1257 ENCODING("i8imm", ENCODING_IB) 1258 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1259 ENCODING("i16imm_pcrel", ENCODING_IW) 1260 ENCODING("i32imm_pcrel", ENCODING_ID) 1261 ENCODING("brtarget", ENCODING_Iv) 1262 ENCODING("brtarget8", ENCODING_IB) 1263 ENCODING("i64imm", ENCODING_IO) 1264 ENCODING("offset8", ENCODING_Ia) 1265 ENCODING("offset16", ENCODING_Ia) 1266 ENCODING("offset32", ENCODING_Ia) 1267 ENCODING("offset64", ENCODING_Ia) 1268 errs() << "Unhandled relocation encoding " << s << "\n"; 1269 llvm_unreachable("Unhandled relocation encoding"); 1270 } 1271 1272 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1273 (const std::string &s, 1274 bool hasOpSizePrefix) { 1275 ENCODING("RST", ENCODING_I) 1276 ENCODING("GR32", ENCODING_Rv) 1277 ENCODING("GR64", ENCODING_RO) 1278 ENCODING("GR16", ENCODING_Rv) 1279 ENCODING("GR8", ENCODING_RB) 1280 ENCODING("GR16_NOAX", ENCODING_Rv) 1281 ENCODING("GR32_NOAX", ENCODING_Rv) 1282 ENCODING("GR64_NOAX", ENCODING_RO) 1283 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1284 llvm_unreachable("Unhandled opcode modifier encoding"); 1285 } 1286 #undef ENCODING 1287