1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) 40 41 // A clone of X86 since we can't depend on something that is generated. 42 namespace X86Local { 43 enum { 44 Pseudo = 0, 45 RawFrm = 1, 46 AddRegFrm = 2, 47 MRMDestReg = 3, 48 MRMDestMem = 4, 49 MRMSrcReg = 5, 50 MRMSrcMem = 6, 51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 55 MRMInitReg = 32, 56 #define MAP(from, to) MRM_##from = to, 57 MRM_MAPPING 58 #undef MAP 59 RawFrmImm8 = 43, 60 RawFrmImm16 = 44, 61 lastMRM 62 }; 63 64 enum { 65 TB = 1, 66 REP = 2, 67 D8 = 3, D9 = 4, DA = 5, DB = 6, 68 DC = 7, DD = 8, DE = 9, DF = 10, 69 XD = 11, XS = 12, 70 T8 = 13, P_TA = 14, 71 A6 = 15, A7 = 16, TF = 17 72 }; 73 } 74 75 // If rows are added to the opcode extension tables, then corresponding entries 76 // must be added here. 77 // 78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 79 // that byte to ONE_BYTE_EXTENSION_TABLES. 80 // 81 // If the row corresponds to two bytes where the first is 0f, add an entry for 82 // the second byte to TWO_BYTE_EXTENSION_TABLES. 83 // 84 // If the row corresponds to some other set of bytes, you will need to modify 85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 86 // to the X86 TD files, except in two cases: if the first two bytes of such a 87 // new combination are 0f 38 or 0f 3a, you just have to add maps called 88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 90 // in RecognizableInstr::emitDecodePath(). 91 92 #define ONE_BYTE_EXTENSION_TABLES \ 93 EXTENSION_TABLE(80) \ 94 EXTENSION_TABLE(81) \ 95 EXTENSION_TABLE(82) \ 96 EXTENSION_TABLE(83) \ 97 EXTENSION_TABLE(8f) \ 98 EXTENSION_TABLE(c0) \ 99 EXTENSION_TABLE(c1) \ 100 EXTENSION_TABLE(c6) \ 101 EXTENSION_TABLE(c7) \ 102 EXTENSION_TABLE(d0) \ 103 EXTENSION_TABLE(d1) \ 104 EXTENSION_TABLE(d2) \ 105 EXTENSION_TABLE(d3) \ 106 EXTENSION_TABLE(f6) \ 107 EXTENSION_TABLE(f7) \ 108 EXTENSION_TABLE(fe) \ 109 EXTENSION_TABLE(ff) 110 111 #define TWO_BYTE_EXTENSION_TABLES \ 112 EXTENSION_TABLE(00) \ 113 EXTENSION_TABLE(01) \ 114 EXTENSION_TABLE(18) \ 115 EXTENSION_TABLE(71) \ 116 EXTENSION_TABLE(72) \ 117 EXTENSION_TABLE(73) \ 118 EXTENSION_TABLE(ae) \ 119 EXTENSION_TABLE(ba) \ 120 EXTENSION_TABLE(c7) 121 122 using namespace X86Disassembler; 123 124 /// needsModRMForDecode - Indicates whether a particular instruction requires a 125 /// ModR/M byte for the instruction to be properly decoded. For example, a 126 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 127 /// 0b11. 128 /// 129 /// @param form - The form of the instruction. 130 /// @return - true if the form implies that a ModR/M byte is required, false 131 /// otherwise. 132 static bool needsModRMForDecode(uint8_t form) { 133 if (form == X86Local::MRMDestReg || 134 form == X86Local::MRMDestMem || 135 form == X86Local::MRMSrcReg || 136 form == X86Local::MRMSrcMem || 137 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 138 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 139 return true; 140 else 141 return false; 142 } 143 144 /// isRegFormat - Indicates whether a particular form requires the Mod field of 145 /// the ModR/M byte to be 0b11. 146 /// 147 /// @param form - The form of the instruction. 148 /// @return - true if the form implies that Mod must be 0b11, false 149 /// otherwise. 150 static bool isRegFormat(uint8_t form) { 151 if (form == X86Local::MRMDestReg || 152 form == X86Local::MRMSrcReg || 153 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 154 return true; 155 else 156 return false; 157 } 158 159 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 160 /// Useful for switch statements and the like. 161 /// 162 /// @param init - A reference to the BitsInit to be decoded. 163 /// @return - The field, with the first bit in the BitsInit as the lowest 164 /// order bit. 165 static uint8_t byteFromBitsInit(BitsInit &init) { 166 int width = init.getNumBits(); 167 168 assert(width <= 8 && "Field is too large for uint8_t!"); 169 170 int index; 171 uint8_t mask = 0x01; 172 173 uint8_t ret = 0; 174 175 for (index = 0; index < width; index++) { 176 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 177 ret |= mask; 178 179 mask <<= 1; 180 } 181 182 return ret; 183 } 184 185 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 186 /// name of the field. 187 /// 188 /// @param rec - The record from which to extract the value. 189 /// @param name - The name of the field in the record. 190 /// @return - The field, as translated by byteFromBitsInit(). 191 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 192 BitsInit* bits = rec->getValueAsBitsInit(name); 193 return byteFromBitsInit(*bits); 194 } 195 196 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 197 const CodeGenInstruction &insn, 198 InstrUID uid) { 199 UID = uid; 200 201 Rec = insn.TheDef; 202 Name = Rec->getName(); 203 Spec = &tables.specForUID(UID); 204 205 if (!Rec->isSubClassOf("X86Inst")) { 206 ShouldBeEmitted = false; 207 return; 208 } 209 210 Prefix = byteFromRec(Rec, "Prefix"); 211 Opcode = byteFromRec(Rec, "Opcode"); 212 Form = byteFromRec(Rec, "FormBits"); 213 SegOvr = byteFromRec(Rec, "SegOvrBits"); 214 215 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 216 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 217 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 218 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 219 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 220 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 221 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 222 223 Name = Rec->getName(); 224 AsmString = Rec->getValueAsString("AsmString"); 225 226 Operands = &insn.Operands.OperandList; 227 228 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 229 (Name.find("CRC32") != Name.npos); 230 HasFROperands = hasFROperands(); 231 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 232 233 // Check for 64-bit inst which does not require REX 234 Is64Bit = false; 235 // FIXME: Is there some better way to check for In64BitMode? 236 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 237 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 238 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 239 Is64Bit = true; 240 break; 241 } 242 } 243 // FIXME: These instructions aren't marked as 64-bit in any way 244 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 245 Rec->getName() == "MASKMOVDQU64" || 246 Rec->getName() == "POPFS64" || 247 Rec->getName() == "POPGS64" || 248 Rec->getName() == "PUSHFS64" || 249 Rec->getName() == "PUSHGS64" || 250 Rec->getName() == "REX64_PREFIX" || 251 Rec->getName().find("VMREAD64") != Name.npos || 252 Rec->getName().find("VMWRITE64") != Name.npos || 253 Rec->getName().find("MOV64") != Name.npos || 254 Rec->getName().find("PUSH64") != Name.npos || 255 Rec->getName().find("POP64") != Name.npos; 256 257 ShouldBeEmitted = true; 258 } 259 260 void RecognizableInstr::processInstr(DisassemblerTables &tables, 261 const CodeGenInstruction &insn, 262 InstrUID uid) 263 { 264 // Ignore "asm parser only" instructions. 265 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 266 return; 267 268 RecognizableInstr recogInstr(tables, insn, uid); 269 270 recogInstr.emitInstructionSpecifier(tables); 271 272 if (recogInstr.shouldBeEmitted()) 273 recogInstr.emitDecodePath(tables); 274 } 275 276 InstructionContext RecognizableInstr::insnContext() const { 277 InstructionContext insnContext; 278 279 if (HasVEX_4VPrefix || HasVEXPrefix) { 280 if (HasOpSizePrefix && HasVEX_LPrefix) 281 insnContext = IC_VEX_L_OPSIZE; 282 else if (HasOpSizePrefix && HasVEX_WPrefix) 283 insnContext = IC_VEX_W_OPSIZE; 284 else if (HasOpSizePrefix) 285 insnContext = IC_VEX_OPSIZE; 286 else if (HasVEX_LPrefix && Prefix == X86Local::XS) 287 insnContext = IC_VEX_L_XS; 288 else if (HasVEX_LPrefix && Prefix == X86Local::XD) 289 insnContext = IC_VEX_L_XD; 290 else if (HasVEX_WPrefix && Prefix == X86Local::XS) 291 insnContext = IC_VEX_W_XS; 292 else if (HasVEX_WPrefix && Prefix == X86Local::XD) 293 insnContext = IC_VEX_W_XD; 294 else if (HasVEX_WPrefix) 295 insnContext = IC_VEX_W; 296 else if (HasVEX_LPrefix) 297 insnContext = IC_VEX_L; 298 else if (Prefix == X86Local::XD) 299 insnContext = IC_VEX_XD; 300 else if (Prefix == X86Local::XS) 301 insnContext = IC_VEX_XS; 302 else 303 insnContext = IC_VEX; 304 } else if (Is64Bit || HasREX_WPrefix) { 305 if (HasREX_WPrefix && HasOpSizePrefix) 306 insnContext = IC_64BIT_REXW_OPSIZE; 307 else if (HasOpSizePrefix) 308 insnContext = IC_64BIT_OPSIZE; 309 else if (HasREX_WPrefix && Prefix == X86Local::XS) 310 insnContext = IC_64BIT_REXW_XS; 311 else if (HasREX_WPrefix && Prefix == X86Local::XD) 312 insnContext = IC_64BIT_REXW_XD; 313 else if (Prefix == X86Local::XD) 314 insnContext = IC_64BIT_XD; 315 else if (Prefix == X86Local::XS) 316 insnContext = IC_64BIT_XS; 317 else if (HasREX_WPrefix) 318 insnContext = IC_64BIT_REXW; 319 else 320 insnContext = IC_64BIT; 321 } else { 322 if (HasOpSizePrefix && Prefix == X86Local::TF) 323 insnContext = IC_XD; 324 else if (HasOpSizePrefix) 325 insnContext = IC_OPSIZE; 326 else if (Prefix == X86Local::XD) 327 insnContext = IC_XD; 328 else if (Prefix == X86Local::XS || Prefix == X86Local::REP) 329 insnContext = IC_XS; 330 else 331 insnContext = IC; 332 } 333 334 return insnContext; 335 } 336 337 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 338 /////////////////// 339 // FILTER_STRONG 340 // 341 342 // Filter out intrinsics 343 344 if (!Rec->isSubClassOf("X86Inst")) 345 return FILTER_STRONG; 346 347 if (Form == X86Local::Pseudo || 348 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 349 return FILTER_STRONG; 350 351 if (Form == X86Local::MRMInitReg) 352 return FILTER_STRONG; 353 354 355 // Filter out artificial instructions 356 357 if (Name.find("TAILJMP") != Name.npos || 358 Name.find("_Int") != Name.npos || 359 Name.find("_int") != Name.npos || 360 Name.find("Int_") != Name.npos || 361 Name.find("_NOREX") != Name.npos || 362 Name.find("_TC") != Name.npos || 363 Name.find("EH_RETURN") != Name.npos || 364 Name.find("V_SET") != Name.npos || 365 Name.find("LOCK_") != Name.npos || 366 Name.find("WIN") != Name.npos || 367 Name.find("_AVX") != Name.npos || 368 Name.find("2SDL") != Name.npos) 369 return FILTER_STRONG; 370 371 // Filter out instructions with segment override prefixes. 372 // They're too messy to handle now and we'll special case them if needed. 373 374 if (SegOvr) 375 return FILTER_STRONG; 376 377 // Filter out instructions that can't be printed. 378 379 if (AsmString.size() == 0) 380 return FILTER_STRONG; 381 382 // Filter out instructions with subreg operands. 383 384 if (AsmString.find("subreg") != AsmString.npos) 385 return FILTER_STRONG; 386 387 ///////////////// 388 // FILTER_WEAK 389 // 390 391 392 // Filter out instructions with a LOCK prefix; 393 // prefer forms that do not have the prefix 394 if (HasLockPrefix) 395 return FILTER_WEAK; 396 397 // Filter out alternate forms of AVX instructions 398 if (Name.find("_alt") != Name.npos || 399 Name.find("XrYr") != Name.npos || 400 Name.find("r64r") != Name.npos || 401 Name.find("_64mr") != Name.npos || 402 Name.find("Xrr") != Name.npos || 403 Name.find("rr64") != Name.npos) 404 return FILTER_WEAK; 405 406 if (Name == "VMASKMOVDQU64" || 407 Name == "VEXTRACTPSrr64" || 408 Name == "VMOVQd64rr" || 409 Name == "VMOVQs64rr") 410 return FILTER_WEAK; 411 412 // Special cases. 413 414 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 415 return FILTER_WEAK; 416 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 417 return FILTER_WEAK; 418 419 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 420 return FILTER_WEAK; 421 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 422 return FILTER_WEAK; 423 if (Name.find("Fs") != Name.npos) 424 return FILTER_WEAK; 425 if (Name == "MOVLPDrr" || 426 Name == "MOVLPSrr" || 427 Name == "PUSHFQ" || 428 Name == "BSF16rr" || 429 Name == "BSF16rm" || 430 Name == "BSR16rr" || 431 Name == "BSR16rm" || 432 Name == "MOVSX16rm8" || 433 Name == "MOVSX16rr8" || 434 Name == "MOVZX16rm8" || 435 Name == "MOVZX16rr8" || 436 Name == "PUSH32i16" || 437 Name == "PUSH64i16" || 438 Name == "MOVPQI2QImr" || 439 Name == "VMOVPQI2QImr" || 440 Name == "MOVSDmr" || 441 Name == "MOVSDrm" || 442 Name == "MOVSSmr" || 443 Name == "MOVSSrm" || 444 Name == "MMX_MOVD64rrv164" || 445 Name == "CRC32m16" || 446 Name == "MOV64ri64i32" || 447 Name == "CRC32r16") 448 return FILTER_WEAK; 449 450 if (HasFROperands && Name.find("MOV") != Name.npos && 451 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 452 (Name.find("to") != Name.npos))) 453 return FILTER_WEAK; 454 455 return FILTER_NORMAL; 456 } 457 458 bool RecognizableInstr::hasFROperands() const { 459 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 460 unsigned numOperands = OperandList.size(); 461 462 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 463 const std::string &recName = OperandList[operandIndex].Rec->getName(); 464 465 if (recName.find("FR") != recName.npos) 466 return true; 467 } 468 return false; 469 } 470 471 bool RecognizableInstr::has256BitOperands() const { 472 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 473 unsigned numOperands = OperandList.size(); 474 475 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 476 const std::string &recName = OperandList[operandIndex].Rec->getName(); 477 478 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 479 return true; 480 } 481 } 482 return false; 483 } 484 485 void RecognizableInstr::handleOperand( 486 bool optional, 487 unsigned &operandIndex, 488 unsigned &physicalOperandIndex, 489 unsigned &numPhysicalOperands, 490 unsigned *operandMapping, 491 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 492 if (optional) { 493 if (physicalOperandIndex >= numPhysicalOperands) 494 return; 495 } else { 496 assert(physicalOperandIndex < numPhysicalOperands); 497 } 498 499 while (operandMapping[operandIndex] != operandIndex) { 500 Spec->operands[operandIndex].encoding = ENCODING_DUP; 501 Spec->operands[operandIndex].type = 502 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 503 ++operandIndex; 504 } 505 506 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 507 508 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 509 HasOpSizePrefix); 510 Spec->operands[operandIndex].type = typeFromString(typeName, 511 IsSSE, 512 HasREX_WPrefix, 513 HasOpSizePrefix); 514 515 ++operandIndex; 516 ++physicalOperandIndex; 517 } 518 519 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 520 Spec->name = Name; 521 522 if (!Rec->isSubClassOf("X86Inst")) 523 return; 524 525 switch (filter()) { 526 case FILTER_WEAK: 527 Spec->filtered = true; 528 break; 529 case FILTER_STRONG: 530 ShouldBeEmitted = false; 531 return; 532 case FILTER_NORMAL: 533 break; 534 } 535 536 Spec->insnContext = insnContext(); 537 538 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 539 540 unsigned operandIndex; 541 unsigned numOperands = OperandList.size(); 542 unsigned numPhysicalOperands = 0; 543 544 // operandMapping maps from operands in OperandList to their originals. 545 // If operandMapping[i] != i, then the entry is a duplicate. 546 unsigned operandMapping[X86_MAX_OPERANDS]; 547 548 bool hasFROperands = false; 549 550 assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 551 552 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 553 if (OperandList[operandIndex].Constraints.size()) { 554 const CGIOperandList::ConstraintInfo &Constraint = 555 OperandList[operandIndex].Constraints[0]; 556 if (Constraint.isTied()) { 557 operandMapping[operandIndex] = Constraint.getTiedOperand(); 558 } else { 559 ++numPhysicalOperands; 560 operandMapping[operandIndex] = operandIndex; 561 } 562 } else { 563 ++numPhysicalOperands; 564 operandMapping[operandIndex] = operandIndex; 565 } 566 567 const std::string &recName = OperandList[operandIndex].Rec->getName(); 568 569 if (recName.find("FR") != recName.npos) 570 hasFROperands = true; 571 } 572 573 if (hasFROperands && Name.find("MOV") != Name.npos && 574 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 575 (Name.find("to") != Name.npos))) 576 ShouldBeEmitted = false; 577 578 if (!ShouldBeEmitted) 579 return; 580 581 #define HANDLE_OPERAND(class) \ 582 handleOperand(false, \ 583 operandIndex, \ 584 physicalOperandIndex, \ 585 numPhysicalOperands, \ 586 operandMapping, \ 587 class##EncodingFromString); 588 589 #define HANDLE_OPTIONAL(class) \ 590 handleOperand(true, \ 591 operandIndex, \ 592 physicalOperandIndex, \ 593 numPhysicalOperands, \ 594 operandMapping, \ 595 class##EncodingFromString); 596 597 // operandIndex should always be < numOperands 598 operandIndex = 0; 599 // physicalOperandIndex should always be < numPhysicalOperands 600 unsigned physicalOperandIndex = 0; 601 602 switch (Form) { 603 case X86Local::RawFrm: 604 // Operand 1 (optional) is an address or immediate. 605 // Operand 2 (optional) is an immediate. 606 assert(numPhysicalOperands <= 2 && 607 "Unexpected number of operands for RawFrm"); 608 HANDLE_OPTIONAL(relocation) 609 HANDLE_OPTIONAL(immediate) 610 break; 611 case X86Local::AddRegFrm: 612 // Operand 1 is added to the opcode. 613 // Operand 2 (optional) is an address. 614 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 615 "Unexpected number of operands for AddRegFrm"); 616 HANDLE_OPERAND(opcodeModifier) 617 HANDLE_OPTIONAL(relocation) 618 break; 619 case X86Local::MRMDestReg: 620 // Operand 1 is a register operand in the R/M field. 621 // Operand 2 is a register operand in the Reg/Opcode field. 622 // - In AVX, there is a register operand in the VEX.vvvv field here - 623 // Operand 3 (optional) is an immediate. 624 if (HasVEX_4VPrefix) 625 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 626 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 627 else 628 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 629 "Unexpected number of operands for MRMDestRegFrm"); 630 631 HANDLE_OPERAND(rmRegister) 632 633 if (HasVEX_4VPrefix) 634 // FIXME: In AVX, the register below becomes the one encoded 635 // in ModRMVEX and the one above the one in the VEX.VVVV field 636 HANDLE_OPERAND(vvvvRegister) 637 638 HANDLE_OPERAND(roRegister) 639 HANDLE_OPTIONAL(immediate) 640 break; 641 case X86Local::MRMDestMem: 642 // Operand 1 is a memory operand (possibly SIB-extended) 643 // Operand 2 is a register operand in the Reg/Opcode field. 644 // - In AVX, there is a register operand in the VEX.vvvv field here - 645 // Operand 3 (optional) is an immediate. 646 if (HasVEX_4VPrefix) 647 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 648 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 649 else 650 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 651 "Unexpected number of operands for MRMDestMemFrm"); 652 HANDLE_OPERAND(memory) 653 654 if (HasVEX_4VPrefix) 655 // FIXME: In AVX, the register below becomes the one encoded 656 // in ModRMVEX and the one above the one in the VEX.VVVV field 657 HANDLE_OPERAND(vvvvRegister) 658 659 HANDLE_OPERAND(roRegister) 660 HANDLE_OPTIONAL(immediate) 661 break; 662 case X86Local::MRMSrcReg: 663 // Operand 1 is a register operand in the Reg/Opcode field. 664 // Operand 2 is a register operand in the R/M field. 665 // - In AVX, there is a register operand in the VEX.vvvv field here - 666 // Operand 3 (optional) is an immediate. 667 668 if (HasVEX_4VPrefix) 669 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 670 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 671 else 672 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 673 "Unexpected number of operands for MRMSrcRegFrm"); 674 675 HANDLE_OPERAND(roRegister) 676 677 if (HasVEX_4VPrefix) 678 // FIXME: In AVX, the register below becomes the one encoded 679 // in ModRMVEX and the one above the one in the VEX.VVVV field 680 HANDLE_OPERAND(vvvvRegister) 681 682 HANDLE_OPERAND(rmRegister) 683 HANDLE_OPTIONAL(immediate) 684 break; 685 case X86Local::MRMSrcMem: 686 // Operand 1 is a register operand in the Reg/Opcode field. 687 // Operand 2 is a memory operand (possibly SIB-extended) 688 // - In AVX, there is a register operand in the VEX.vvvv field here - 689 // Operand 3 (optional) is an immediate. 690 691 if (HasVEX_4VPrefix) 692 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 693 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 694 else 695 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 696 "Unexpected number of operands for MRMSrcMemFrm"); 697 698 HANDLE_OPERAND(roRegister) 699 700 if (HasVEX_4VPrefix) 701 // FIXME: In AVX, the register below becomes the one encoded 702 // in ModRMVEX and the one above the one in the VEX.VVVV field 703 HANDLE_OPERAND(vvvvRegister) 704 705 HANDLE_OPERAND(memory) 706 HANDLE_OPTIONAL(immediate) 707 break; 708 case X86Local::MRM0r: 709 case X86Local::MRM1r: 710 case X86Local::MRM2r: 711 case X86Local::MRM3r: 712 case X86Local::MRM4r: 713 case X86Local::MRM5r: 714 case X86Local::MRM6r: 715 case X86Local::MRM7r: 716 // Operand 1 is a register operand in the R/M field. 717 // Operand 2 (optional) is an immediate or relocation. 718 if (HasVEX_4VPrefix) 719 assert(numPhysicalOperands <= 3 && 720 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 721 else 722 assert(numPhysicalOperands <= 2 && 723 "Unexpected number of operands for MRMnRFrm"); 724 if (HasVEX_4VPrefix) 725 HANDLE_OPERAND(vvvvRegister); 726 HANDLE_OPTIONAL(rmRegister) 727 HANDLE_OPTIONAL(relocation) 728 break; 729 case X86Local::MRM0m: 730 case X86Local::MRM1m: 731 case X86Local::MRM2m: 732 case X86Local::MRM3m: 733 case X86Local::MRM4m: 734 case X86Local::MRM5m: 735 case X86Local::MRM6m: 736 case X86Local::MRM7m: 737 // Operand 1 is a memory operand (possibly SIB-extended) 738 // Operand 2 (optional) is an immediate or relocation. 739 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 740 "Unexpected number of operands for MRMnMFrm"); 741 HANDLE_OPERAND(memory) 742 HANDLE_OPTIONAL(relocation) 743 break; 744 case X86Local::RawFrmImm8: 745 // operand 1 is a 16-bit immediate 746 // operand 2 is an 8-bit immediate 747 assert(numPhysicalOperands == 2 && 748 "Unexpected number of operands for X86Local::RawFrmImm8"); 749 HANDLE_OPERAND(immediate) 750 HANDLE_OPERAND(immediate) 751 break; 752 case X86Local::RawFrmImm16: 753 // operand 1 is a 16-bit immediate 754 // operand 2 is a 16-bit immediate 755 HANDLE_OPERAND(immediate) 756 HANDLE_OPERAND(immediate) 757 break; 758 case X86Local::MRMInitReg: 759 // Ignored. 760 break; 761 } 762 763 #undef HANDLE_OPERAND 764 #undef HANDLE_OPTIONAL 765 } 766 767 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 768 // Special cases where the LLVM tables are not complete 769 770 #define MAP(from, to) \ 771 case X86Local::MRM_##from: \ 772 filter = new ExactFilter(0x##from); \ 773 break; 774 775 OpcodeType opcodeType = (OpcodeType)-1; 776 777 ModRMFilter* filter = NULL; 778 uint8_t opcodeToSet = 0; 779 780 switch (Prefix) { 781 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 782 case X86Local::XD: 783 case X86Local::XS: 784 case X86Local::TB: 785 opcodeType = TWOBYTE; 786 787 switch (Opcode) { 788 default: 789 if (needsModRMForDecode(Form)) 790 filter = new ModFilter(isRegFormat(Form)); 791 else 792 filter = new DumbFilter(); 793 break; 794 #define EXTENSION_TABLE(n) case 0x##n: 795 TWO_BYTE_EXTENSION_TABLES 796 #undef EXTENSION_TABLE 797 switch (Form) { 798 default: 799 llvm_unreachable("Unhandled two-byte extended opcode"); 800 case X86Local::MRM0r: 801 case X86Local::MRM1r: 802 case X86Local::MRM2r: 803 case X86Local::MRM3r: 804 case X86Local::MRM4r: 805 case X86Local::MRM5r: 806 case X86Local::MRM6r: 807 case X86Local::MRM7r: 808 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 809 break; 810 case X86Local::MRM0m: 811 case X86Local::MRM1m: 812 case X86Local::MRM2m: 813 case X86Local::MRM3m: 814 case X86Local::MRM4m: 815 case X86Local::MRM5m: 816 case X86Local::MRM6m: 817 case X86Local::MRM7m: 818 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 819 break; 820 MRM_MAPPING 821 } // switch (Form) 822 break; 823 } // switch (Opcode) 824 opcodeToSet = Opcode; 825 break; 826 case X86Local::T8: 827 case X86Local::TF: 828 opcodeType = THREEBYTE_38; 829 if (needsModRMForDecode(Form)) 830 filter = new ModFilter(isRegFormat(Form)); 831 else 832 filter = new DumbFilter(); 833 opcodeToSet = Opcode; 834 break; 835 case X86Local::P_TA: 836 opcodeType = THREEBYTE_3A; 837 if (needsModRMForDecode(Form)) 838 filter = new ModFilter(isRegFormat(Form)); 839 else 840 filter = new DumbFilter(); 841 opcodeToSet = Opcode; 842 break; 843 case X86Local::A6: 844 opcodeType = THREEBYTE_A6; 845 if (needsModRMForDecode(Form)) 846 filter = new ModFilter(isRegFormat(Form)); 847 else 848 filter = new DumbFilter(); 849 opcodeToSet = Opcode; 850 break; 851 case X86Local::A7: 852 opcodeType = THREEBYTE_A7; 853 if (needsModRMForDecode(Form)) 854 filter = new ModFilter(isRegFormat(Form)); 855 else 856 filter = new DumbFilter(); 857 opcodeToSet = Opcode; 858 break; 859 case X86Local::D8: 860 case X86Local::D9: 861 case X86Local::DA: 862 case X86Local::DB: 863 case X86Local::DC: 864 case X86Local::DD: 865 case X86Local::DE: 866 case X86Local::DF: 867 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 868 opcodeType = ONEBYTE; 869 if (Form == X86Local::AddRegFrm) { 870 Spec->modifierType = MODIFIER_MODRM; 871 Spec->modifierBase = Opcode; 872 filter = new AddRegEscapeFilter(Opcode); 873 } else { 874 filter = new EscapeFilter(true, Opcode); 875 } 876 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 877 break; 878 case X86Local::REP: 879 default: 880 opcodeType = ONEBYTE; 881 switch (Opcode) { 882 #define EXTENSION_TABLE(n) case 0x##n: 883 ONE_BYTE_EXTENSION_TABLES 884 #undef EXTENSION_TABLE 885 switch (Form) { 886 default: 887 llvm_unreachable("Fell through the cracks of a single-byte " 888 "extended opcode"); 889 case X86Local::MRM0r: 890 case X86Local::MRM1r: 891 case X86Local::MRM2r: 892 case X86Local::MRM3r: 893 case X86Local::MRM4r: 894 case X86Local::MRM5r: 895 case X86Local::MRM6r: 896 case X86Local::MRM7r: 897 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 898 break; 899 case X86Local::MRM0m: 900 case X86Local::MRM1m: 901 case X86Local::MRM2m: 902 case X86Local::MRM3m: 903 case X86Local::MRM4m: 904 case X86Local::MRM5m: 905 case X86Local::MRM6m: 906 case X86Local::MRM7m: 907 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 908 break; 909 MRM_MAPPING 910 } // switch (Form) 911 break; 912 case 0xd8: 913 case 0xd9: 914 case 0xda: 915 case 0xdb: 916 case 0xdc: 917 case 0xdd: 918 case 0xde: 919 case 0xdf: 920 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 921 break; 922 default: 923 if (needsModRMForDecode(Form)) 924 filter = new ModFilter(isRegFormat(Form)); 925 else 926 filter = new DumbFilter(); 927 break; 928 } // switch (Opcode) 929 opcodeToSet = Opcode; 930 } // switch (Prefix) 931 932 assert(opcodeType != (OpcodeType)-1 && 933 "Opcode type not set"); 934 assert(filter && "Filter not set"); 935 936 if (Form == X86Local::AddRegFrm) { 937 if(Spec->modifierType != MODIFIER_MODRM) { 938 assert(opcodeToSet < 0xf9 && 939 "Not enough room for all ADDREG_FRM operands"); 940 941 uint8_t currentOpcode; 942 943 for (currentOpcode = opcodeToSet; 944 currentOpcode < opcodeToSet + 8; 945 ++currentOpcode) 946 tables.setTableFields(opcodeType, 947 insnContext(), 948 currentOpcode, 949 *filter, 950 UID); 951 952 Spec->modifierType = MODIFIER_OPCODE; 953 Spec->modifierBase = opcodeToSet; 954 } else { 955 // modifierBase was set where MODIFIER_MODRM was set 956 tables.setTableFields(opcodeType, 957 insnContext(), 958 opcodeToSet, 959 *filter, 960 UID); 961 } 962 } else { 963 tables.setTableFields(opcodeType, 964 insnContext(), 965 opcodeToSet, 966 *filter, 967 UID); 968 969 Spec->modifierType = MODIFIER_NONE; 970 Spec->modifierBase = opcodeToSet; 971 } 972 973 delete filter; 974 975 #undef MAP 976 } 977 978 #define TYPE(str, type) if (s == str) return type; 979 OperandType RecognizableInstr::typeFromString(const std::string &s, 980 bool isSSE, 981 bool hasREX_WPrefix, 982 bool hasOpSizePrefix) { 983 if (isSSE) { 984 // For SSE instructions, we ignore the OpSize prefix and force operand 985 // sizes. 986 TYPE("GR16", TYPE_R16) 987 TYPE("GR32", TYPE_R32) 988 TYPE("GR64", TYPE_R64) 989 } 990 if(hasREX_WPrefix) { 991 // For instructions with a REX_W prefix, a declared 32-bit register encoding 992 // is special. 993 TYPE("GR32", TYPE_R32) 994 } 995 if(!hasOpSizePrefix) { 996 // For instructions without an OpSize prefix, a declared 16-bit register or 997 // immediate encoding is special. 998 TYPE("GR16", TYPE_R16) 999 TYPE("i16imm", TYPE_IMM16) 1000 } 1001 TYPE("i16mem", TYPE_Mv) 1002 TYPE("i16imm", TYPE_IMMv) 1003 TYPE("i16i8imm", TYPE_IMMv) 1004 TYPE("GR16", TYPE_Rv) 1005 TYPE("i32mem", TYPE_Mv) 1006 TYPE("i32imm", TYPE_IMMv) 1007 TYPE("i32i8imm", TYPE_IMM32) 1008 TYPE("u32u8imm", TYPE_IMM32) 1009 TYPE("GR32", TYPE_Rv) 1010 TYPE("i64mem", TYPE_Mv) 1011 TYPE("i64i32imm", TYPE_IMM64) 1012 TYPE("i64i8imm", TYPE_IMM64) 1013 TYPE("GR64", TYPE_R64) 1014 TYPE("i8mem", TYPE_M8) 1015 TYPE("i8imm", TYPE_IMM8) 1016 TYPE("GR8", TYPE_R8) 1017 TYPE("VR128", TYPE_XMM128) 1018 TYPE("f128mem", TYPE_M128) 1019 TYPE("f256mem", TYPE_M256) 1020 TYPE("FR64", TYPE_XMM64) 1021 TYPE("f64mem", TYPE_M64FP) 1022 TYPE("sdmem", TYPE_M64FP) 1023 TYPE("FR32", TYPE_XMM32) 1024 TYPE("f32mem", TYPE_M32FP) 1025 TYPE("ssmem", TYPE_M32FP) 1026 TYPE("RST", TYPE_ST) 1027 TYPE("i128mem", TYPE_M128) 1028 TYPE("i256mem", TYPE_M256) 1029 TYPE("i64i32imm_pcrel", TYPE_REL64) 1030 TYPE("i16imm_pcrel", TYPE_REL16) 1031 TYPE("i32imm_pcrel", TYPE_REL32) 1032 TYPE("SSECC", TYPE_IMM3) 1033 TYPE("brtarget", TYPE_RELv) 1034 TYPE("uncondbrtarget", TYPE_RELv) 1035 TYPE("brtarget8", TYPE_REL8) 1036 TYPE("f80mem", TYPE_M80FP) 1037 TYPE("lea32mem", TYPE_LEA) 1038 TYPE("lea64_32mem", TYPE_LEA) 1039 TYPE("lea64mem", TYPE_LEA) 1040 TYPE("VR64", TYPE_MM64) 1041 TYPE("i64imm", TYPE_IMMv) 1042 TYPE("opaque32mem", TYPE_M1616) 1043 TYPE("opaque48mem", TYPE_M1632) 1044 TYPE("opaque80mem", TYPE_M1664) 1045 TYPE("opaque512mem", TYPE_M512) 1046 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1047 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1048 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1049 TYPE("offset8", TYPE_MOFFS8) 1050 TYPE("offset16", TYPE_MOFFS16) 1051 TYPE("offset32", TYPE_MOFFS32) 1052 TYPE("offset64", TYPE_MOFFS64) 1053 TYPE("VR256", TYPE_XMM256) 1054 errs() << "Unhandled type string " << s << "\n"; 1055 llvm_unreachable("Unhandled type string"); 1056 } 1057 #undef TYPE 1058 1059 #define ENCODING(str, encoding) if (s == str) return encoding; 1060 OperandEncoding RecognizableInstr::immediateEncodingFromString 1061 (const std::string &s, 1062 bool hasOpSizePrefix) { 1063 if(!hasOpSizePrefix) { 1064 // For instructions without an OpSize prefix, a declared 16-bit register or 1065 // immediate encoding is special. 1066 ENCODING("i16imm", ENCODING_IW) 1067 } 1068 ENCODING("i32i8imm", ENCODING_IB) 1069 ENCODING("u32u8imm", ENCODING_IB) 1070 ENCODING("SSECC", ENCODING_IB) 1071 ENCODING("i16imm", ENCODING_Iv) 1072 ENCODING("i16i8imm", ENCODING_IB) 1073 ENCODING("i32imm", ENCODING_Iv) 1074 ENCODING("i64i32imm", ENCODING_ID) 1075 ENCODING("i64i8imm", ENCODING_IB) 1076 ENCODING("i8imm", ENCODING_IB) 1077 // This is not a typo. Instructions like BLENDVPD put 1078 // register IDs in 8-bit immediates nowadays. 1079 ENCODING("VR256", ENCODING_IB) 1080 ENCODING("VR128", ENCODING_IB) 1081 errs() << "Unhandled immediate encoding " << s << "\n"; 1082 llvm_unreachable("Unhandled immediate encoding"); 1083 } 1084 1085 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1086 (const std::string &s, 1087 bool hasOpSizePrefix) { 1088 ENCODING("GR16", ENCODING_RM) 1089 ENCODING("GR32", ENCODING_RM) 1090 ENCODING("GR64", ENCODING_RM) 1091 ENCODING("GR8", ENCODING_RM) 1092 ENCODING("VR128", ENCODING_RM) 1093 ENCODING("FR64", ENCODING_RM) 1094 ENCODING("FR32", ENCODING_RM) 1095 ENCODING("VR64", ENCODING_RM) 1096 ENCODING("VR256", ENCODING_RM) 1097 errs() << "Unhandled R/M register encoding " << s << "\n"; 1098 llvm_unreachable("Unhandled R/M register encoding"); 1099 } 1100 1101 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1102 (const std::string &s, 1103 bool hasOpSizePrefix) { 1104 ENCODING("GR16", ENCODING_REG) 1105 ENCODING("GR32", ENCODING_REG) 1106 ENCODING("GR64", ENCODING_REG) 1107 ENCODING("GR8", ENCODING_REG) 1108 ENCODING("VR128", ENCODING_REG) 1109 ENCODING("FR64", ENCODING_REG) 1110 ENCODING("FR32", ENCODING_REG) 1111 ENCODING("VR64", ENCODING_REG) 1112 ENCODING("SEGMENT_REG", ENCODING_REG) 1113 ENCODING("DEBUG_REG", ENCODING_REG) 1114 ENCODING("CONTROL_REG", ENCODING_REG) 1115 ENCODING("VR256", ENCODING_REG) 1116 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1117 llvm_unreachable("Unhandled reg/opcode register encoding"); 1118 } 1119 1120 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1121 (const std::string &s, 1122 bool hasOpSizePrefix) { 1123 ENCODING("FR32", ENCODING_VVVV) 1124 ENCODING("FR64", ENCODING_VVVV) 1125 ENCODING("VR128", ENCODING_VVVV) 1126 ENCODING("VR256", ENCODING_VVVV) 1127 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1128 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1129 } 1130 1131 OperandEncoding RecognizableInstr::memoryEncodingFromString 1132 (const std::string &s, 1133 bool hasOpSizePrefix) { 1134 ENCODING("i16mem", ENCODING_RM) 1135 ENCODING("i32mem", ENCODING_RM) 1136 ENCODING("i64mem", ENCODING_RM) 1137 ENCODING("i8mem", ENCODING_RM) 1138 ENCODING("ssmem", ENCODING_RM) 1139 ENCODING("sdmem", ENCODING_RM) 1140 ENCODING("f128mem", ENCODING_RM) 1141 ENCODING("f256mem", ENCODING_RM) 1142 ENCODING("f64mem", ENCODING_RM) 1143 ENCODING("f32mem", ENCODING_RM) 1144 ENCODING("i128mem", ENCODING_RM) 1145 ENCODING("i256mem", ENCODING_RM) 1146 ENCODING("f80mem", ENCODING_RM) 1147 ENCODING("lea32mem", ENCODING_RM) 1148 ENCODING("lea64_32mem", ENCODING_RM) 1149 ENCODING("lea64mem", ENCODING_RM) 1150 ENCODING("opaque32mem", ENCODING_RM) 1151 ENCODING("opaque48mem", ENCODING_RM) 1152 ENCODING("opaque80mem", ENCODING_RM) 1153 ENCODING("opaque512mem", ENCODING_RM) 1154 errs() << "Unhandled memory encoding " << s << "\n"; 1155 llvm_unreachable("Unhandled memory encoding"); 1156 } 1157 1158 OperandEncoding RecognizableInstr::relocationEncodingFromString 1159 (const std::string &s, 1160 bool hasOpSizePrefix) { 1161 if(!hasOpSizePrefix) { 1162 // For instructions without an OpSize prefix, a declared 16-bit register or 1163 // immediate encoding is special. 1164 ENCODING("i16imm", ENCODING_IW) 1165 } 1166 ENCODING("i16imm", ENCODING_Iv) 1167 ENCODING("i16i8imm", ENCODING_IB) 1168 ENCODING("i32imm", ENCODING_Iv) 1169 ENCODING("i32i8imm", ENCODING_IB) 1170 ENCODING("i64i32imm", ENCODING_ID) 1171 ENCODING("i64i8imm", ENCODING_IB) 1172 ENCODING("i8imm", ENCODING_IB) 1173 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1174 ENCODING("i16imm_pcrel", ENCODING_IW) 1175 ENCODING("i32imm_pcrel", ENCODING_ID) 1176 ENCODING("brtarget", ENCODING_Iv) 1177 ENCODING("brtarget8", ENCODING_IB) 1178 ENCODING("i64imm", ENCODING_IO) 1179 ENCODING("offset8", ENCODING_Ia) 1180 ENCODING("offset16", ENCODING_Ia) 1181 ENCODING("offset32", ENCODING_Ia) 1182 ENCODING("offset64", ENCODING_Ia) 1183 errs() << "Unhandled relocation encoding " << s << "\n"; 1184 llvm_unreachable("Unhandled relocation encoding"); 1185 } 1186 1187 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1188 (const std::string &s, 1189 bool hasOpSizePrefix) { 1190 ENCODING("RST", ENCODING_I) 1191 ENCODING("GR32", ENCODING_Rv) 1192 ENCODING("GR64", ENCODING_RO) 1193 ENCODING("GR16", ENCODING_Rv) 1194 ENCODING("GR8", ENCODING_RB) 1195 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1196 llvm_unreachable("Unhandled opcode modifier encoding"); 1197 } 1198 #undef ENCODING 1199