1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) 40 41 // A clone of X86 since we can't depend on something that is generated. 42 namespace X86Local { 43 enum { 44 Pseudo = 0, 45 RawFrm = 1, 46 AddRegFrm = 2, 47 MRMDestReg = 3, 48 MRMDestMem = 4, 49 MRMSrcReg = 5, 50 MRMSrcMem = 6, 51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 55 MRMInitReg = 32, 56 #define MAP(from, to) MRM_##from = to, 57 MRM_MAPPING 58 #undef MAP 59 RawFrmImm8 = 43, 60 RawFrmImm16 = 44, 61 lastMRM 62 }; 63 64 enum { 65 TB = 1, 66 REP = 2, 67 D8 = 3, D9 = 4, DA = 5, DB = 6, 68 DC = 7, DD = 8, DE = 9, DF = 10, 69 XD = 11, XS = 12, 70 T8 = 13, P_TA = 14, 71 A6 = 15, A7 = 16, TF = 17 72 }; 73 } 74 75 // If rows are added to the opcode extension tables, then corresponding entries 76 // must be added here. 77 // 78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 79 // that byte to ONE_BYTE_EXTENSION_TABLES. 80 // 81 // If the row corresponds to two bytes where the first is 0f, add an entry for 82 // the second byte to TWO_BYTE_EXTENSION_TABLES. 83 // 84 // If the row corresponds to some other set of bytes, you will need to modify 85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 86 // to the X86 TD files, except in two cases: if the first two bytes of such a 87 // new combination are 0f 38 or 0f 3a, you just have to add maps called 88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 90 // in RecognizableInstr::emitDecodePath(). 91 92 #define ONE_BYTE_EXTENSION_TABLES \ 93 EXTENSION_TABLE(80) \ 94 EXTENSION_TABLE(81) \ 95 EXTENSION_TABLE(82) \ 96 EXTENSION_TABLE(83) \ 97 EXTENSION_TABLE(8f) \ 98 EXTENSION_TABLE(c0) \ 99 EXTENSION_TABLE(c1) \ 100 EXTENSION_TABLE(c6) \ 101 EXTENSION_TABLE(c7) \ 102 EXTENSION_TABLE(d0) \ 103 EXTENSION_TABLE(d1) \ 104 EXTENSION_TABLE(d2) \ 105 EXTENSION_TABLE(d3) \ 106 EXTENSION_TABLE(f6) \ 107 EXTENSION_TABLE(f7) \ 108 EXTENSION_TABLE(fe) \ 109 EXTENSION_TABLE(ff) 110 111 #define TWO_BYTE_EXTENSION_TABLES \ 112 EXTENSION_TABLE(00) \ 113 EXTENSION_TABLE(01) \ 114 EXTENSION_TABLE(18) \ 115 EXTENSION_TABLE(71) \ 116 EXTENSION_TABLE(72) \ 117 EXTENSION_TABLE(73) \ 118 EXTENSION_TABLE(ae) \ 119 EXTENSION_TABLE(ba) \ 120 EXTENSION_TABLE(c7) 121 122 using namespace X86Disassembler; 123 124 /// needsModRMForDecode - Indicates whether a particular instruction requires a 125 /// ModR/M byte for the instruction to be properly decoded. For example, a 126 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 127 /// 0b11. 128 /// 129 /// @param form - The form of the instruction. 130 /// @return - true if the form implies that a ModR/M byte is required, false 131 /// otherwise. 132 static bool needsModRMForDecode(uint8_t form) { 133 if (form == X86Local::MRMDestReg || 134 form == X86Local::MRMDestMem || 135 form == X86Local::MRMSrcReg || 136 form == X86Local::MRMSrcMem || 137 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 138 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 139 return true; 140 else 141 return false; 142 } 143 144 /// isRegFormat - Indicates whether a particular form requires the Mod field of 145 /// the ModR/M byte to be 0b11. 146 /// 147 /// @param form - The form of the instruction. 148 /// @return - true if the form implies that Mod must be 0b11, false 149 /// otherwise. 150 static bool isRegFormat(uint8_t form) { 151 if (form == X86Local::MRMDestReg || 152 form == X86Local::MRMSrcReg || 153 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 154 return true; 155 else 156 return false; 157 } 158 159 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 160 /// Useful for switch statements and the like. 161 /// 162 /// @param init - A reference to the BitsInit to be decoded. 163 /// @return - The field, with the first bit in the BitsInit as the lowest 164 /// order bit. 165 static uint8_t byteFromBitsInit(BitsInit &init) { 166 int width = init.getNumBits(); 167 168 assert(width <= 8 && "Field is too large for uint8_t!"); 169 170 int index; 171 uint8_t mask = 0x01; 172 173 uint8_t ret = 0; 174 175 for (index = 0; index < width; index++) { 176 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 177 ret |= mask; 178 179 mask <<= 1; 180 } 181 182 return ret; 183 } 184 185 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 186 /// name of the field. 187 /// 188 /// @param rec - The record from which to extract the value. 189 /// @param name - The name of the field in the record. 190 /// @return - The field, as translated by byteFromBitsInit(). 191 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 192 BitsInit* bits = rec->getValueAsBitsInit(name); 193 return byteFromBitsInit(*bits); 194 } 195 196 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 197 const CodeGenInstruction &insn, 198 InstrUID uid) { 199 UID = uid; 200 201 Rec = insn.TheDef; 202 Name = Rec->getName(); 203 Spec = &tables.specForUID(UID); 204 205 if (!Rec->isSubClassOf("X86Inst")) { 206 ShouldBeEmitted = false; 207 return; 208 } 209 210 Prefix = byteFromRec(Rec, "Prefix"); 211 Opcode = byteFromRec(Rec, "Opcode"); 212 Form = byteFromRec(Rec, "FormBits"); 213 SegOvr = byteFromRec(Rec, "SegOvrBits"); 214 215 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 216 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 217 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 218 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 219 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 220 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 221 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 222 223 Name = Rec->getName(); 224 AsmString = Rec->getValueAsString("AsmString"); 225 226 Operands = &insn.Operands.OperandList; 227 228 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 229 (Name.find("CRC32") != Name.npos); 230 HasFROperands = hasFROperands(); 231 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 232 233 // Check for 64-bit inst which does not require REX 234 Is64Bit = false; 235 // FIXME: Is there some better way to check for In64BitMode? 236 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 237 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 238 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 239 Is64Bit = true; 240 break; 241 } 242 } 243 // FIXME: These instructions aren't marked as 64-bit in any way 244 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 245 Rec->getName() == "MASKMOVDQU64" || 246 Rec->getName() == "POPFS64" || 247 Rec->getName() == "POPGS64" || 248 Rec->getName() == "PUSHFS64" || 249 Rec->getName() == "PUSHGS64" || 250 Rec->getName() == "REX64_PREFIX" || 251 Rec->getName().find("VMREAD64") != Name.npos || 252 Rec->getName().find("VMWRITE64") != Name.npos || 253 Rec->getName().find("MOV64") != Name.npos || 254 Rec->getName().find("PUSH64") != Name.npos || 255 Rec->getName().find("POP64") != Name.npos; 256 257 ShouldBeEmitted = true; 258 } 259 260 void RecognizableInstr::processInstr(DisassemblerTables &tables, 261 const CodeGenInstruction &insn, 262 InstrUID uid) 263 { 264 // Ignore "asm parser only" instructions. 265 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 266 return; 267 268 RecognizableInstr recogInstr(tables, insn, uid); 269 270 recogInstr.emitInstructionSpecifier(tables); 271 272 if (recogInstr.shouldBeEmitted()) 273 recogInstr.emitDecodePath(tables); 274 } 275 276 InstructionContext RecognizableInstr::insnContext() const { 277 InstructionContext insnContext; 278 279 if (HasVEX_4VPrefix || HasVEXPrefix) { 280 if (HasOpSizePrefix && HasVEX_LPrefix) 281 insnContext = IC_VEX_L_OPSIZE; 282 else if (HasOpSizePrefix && HasVEX_WPrefix) 283 insnContext = IC_VEX_W_OPSIZE; 284 else if (HasOpSizePrefix) 285 insnContext = IC_VEX_OPSIZE; 286 else if (HasVEX_LPrefix && Prefix == X86Local::XS) 287 insnContext = IC_VEX_L_XS; 288 else if (HasVEX_LPrefix && Prefix == X86Local::XD) 289 insnContext = IC_VEX_L_XD; 290 else if (HasVEX_WPrefix && Prefix == X86Local::XS) 291 insnContext = IC_VEX_W_XS; 292 else if (HasVEX_WPrefix && Prefix == X86Local::XD) 293 insnContext = IC_VEX_W_XD; 294 else if (HasVEX_WPrefix) 295 insnContext = IC_VEX_W; 296 else if (HasVEX_LPrefix) 297 insnContext = IC_VEX_L; 298 else if (Prefix == X86Local::XD) 299 insnContext = IC_VEX_XD; 300 else if (Prefix == X86Local::XS) 301 insnContext = IC_VEX_XS; 302 else 303 insnContext = IC_VEX; 304 } else if (Is64Bit || HasREX_WPrefix) { 305 if (HasREX_WPrefix && HasOpSizePrefix) 306 insnContext = IC_64BIT_REXW_OPSIZE; 307 else if (HasOpSizePrefix) 308 insnContext = IC_64BIT_OPSIZE; 309 else if (HasREX_WPrefix && Prefix == X86Local::XS) 310 insnContext = IC_64BIT_REXW_XS; 311 else if (HasREX_WPrefix && Prefix == X86Local::XD) 312 insnContext = IC_64BIT_REXW_XD; 313 else if (Prefix == X86Local::XD) 314 insnContext = IC_64BIT_XD; 315 else if (Prefix == X86Local::XS) 316 insnContext = IC_64BIT_XS; 317 else if (HasREX_WPrefix) 318 insnContext = IC_64BIT_REXW; 319 else 320 insnContext = IC_64BIT; 321 } else { 322 if (HasOpSizePrefix && Prefix == X86Local::TF) 323 insnContext = IC_XD; 324 else if (HasOpSizePrefix) 325 insnContext = IC_OPSIZE; 326 else if (Prefix == X86Local::XD) 327 insnContext = IC_XD; 328 else if (Prefix == X86Local::XS || Prefix == X86Local::REP) 329 insnContext = IC_XS; 330 else 331 insnContext = IC; 332 } 333 334 return insnContext; 335 } 336 337 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 338 /////////////////// 339 // FILTER_STRONG 340 // 341 342 // Filter out intrinsics 343 344 if (!Rec->isSubClassOf("X86Inst")) 345 return FILTER_STRONG; 346 347 if (Form == X86Local::Pseudo || 348 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 349 return FILTER_STRONG; 350 351 if (Form == X86Local::MRMInitReg) 352 return FILTER_STRONG; 353 354 355 // TEMPORARY pending bug fixes 356 357 if (Name.find("VROUND") != Name.npos) 358 return FILTER_STRONG; 359 360 // Filter out artificial instructions 361 362 if (Name.find("TAILJMP") != Name.npos || 363 Name.find("_Int") != Name.npos || 364 Name.find("_int") != Name.npos || 365 Name.find("Int_") != Name.npos || 366 Name.find("_NOREX") != Name.npos || 367 Name.find("_TC") != Name.npos || 368 Name.find("EH_RETURN") != Name.npos || 369 Name.find("V_SET") != Name.npos || 370 Name.find("LOCK_") != Name.npos || 371 Name.find("WIN") != Name.npos || 372 Name.find("_AVX") != Name.npos || 373 Name.find("2SDL") != Name.npos) 374 return FILTER_STRONG; 375 376 // Filter out instructions with segment override prefixes. 377 // They're too messy to handle now and we'll special case them if needed. 378 379 if (SegOvr) 380 return FILTER_STRONG; 381 382 // Filter out instructions that can't be printed. 383 384 if (AsmString.size() == 0) 385 return FILTER_STRONG; 386 387 // Filter out instructions with subreg operands. 388 389 if (AsmString.find("subreg") != AsmString.npos) 390 return FILTER_STRONG; 391 392 ///////////////// 393 // FILTER_WEAK 394 // 395 396 397 // Filter out instructions with a LOCK prefix; 398 // prefer forms that do not have the prefix 399 if (HasLockPrefix) 400 return FILTER_WEAK; 401 402 // Filter out alternate forms of AVX instructions 403 if (Name.find("_alt") != Name.npos || 404 Name.find("XrYr") != Name.npos || 405 Name.find("r64r") != Name.npos || 406 Name.find("_64mr") != Name.npos || 407 Name.find("Xrr") != Name.npos || 408 Name.find("rr64") != Name.npos) 409 return FILTER_WEAK; 410 411 if (Name == "VMASKMOVDQU64" || 412 Name == "VEXTRACTPSrr64" || 413 Name == "VMOVQd64rr" || 414 Name == "VMOVQs64rr") 415 return FILTER_WEAK; 416 417 // Special cases. 418 419 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 420 return FILTER_WEAK; 421 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 422 return FILTER_WEAK; 423 424 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 425 return FILTER_WEAK; 426 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 427 return FILTER_WEAK; 428 if (Name.find("Fs") != Name.npos) 429 return FILTER_WEAK; 430 if (Name == "MOVLPDrr" || 431 Name == "MOVLPSrr" || 432 Name == "PUSHFQ" || 433 Name == "BSF16rr" || 434 Name == "BSF16rm" || 435 Name == "BSR16rr" || 436 Name == "BSR16rm" || 437 Name == "MOVSX16rm8" || 438 Name == "MOVSX16rr8" || 439 Name == "MOVZX16rm8" || 440 Name == "MOVZX16rr8" || 441 Name == "PUSH32i16" || 442 Name == "PUSH64i16" || 443 Name == "MOVPQI2QImr" || 444 Name == "VMOVPQI2QImr" || 445 Name == "MOVSDmr" || 446 Name == "MOVSDrm" || 447 Name == "MOVSSmr" || 448 Name == "MOVSSrm" || 449 Name == "MMX_MOVD64rrv164" || 450 Name == "CRC32m16" || 451 Name == "MOV64ri64i32" || 452 Name == "CRC32r16") 453 return FILTER_WEAK; 454 455 if (HasFROperands && Name.find("MOV") != Name.npos && 456 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 457 (Name.find("to") != Name.npos))) 458 return FILTER_WEAK; 459 460 return FILTER_NORMAL; 461 } 462 463 bool RecognizableInstr::hasFROperands() const { 464 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 465 unsigned numOperands = OperandList.size(); 466 467 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 468 const std::string &recName = OperandList[operandIndex].Rec->getName(); 469 470 if (recName.find("FR") != recName.npos) 471 return true; 472 } 473 return false; 474 } 475 476 bool RecognizableInstr::has256BitOperands() const { 477 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 478 unsigned numOperands = OperandList.size(); 479 480 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 481 const std::string &recName = OperandList[operandIndex].Rec->getName(); 482 483 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 484 return true; 485 } 486 } 487 return false; 488 } 489 490 void RecognizableInstr::handleOperand( 491 bool optional, 492 unsigned &operandIndex, 493 unsigned &physicalOperandIndex, 494 unsigned &numPhysicalOperands, 495 unsigned *operandMapping, 496 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 497 if (optional) { 498 if (physicalOperandIndex >= numPhysicalOperands) 499 return; 500 } else { 501 assert(physicalOperandIndex < numPhysicalOperands); 502 } 503 504 while (operandMapping[operandIndex] != operandIndex) { 505 Spec->operands[operandIndex].encoding = ENCODING_DUP; 506 Spec->operands[operandIndex].type = 507 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 508 ++operandIndex; 509 } 510 511 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 512 513 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 514 HasOpSizePrefix); 515 Spec->operands[operandIndex].type = typeFromString(typeName, 516 IsSSE, 517 HasREX_WPrefix, 518 HasOpSizePrefix); 519 520 ++operandIndex; 521 ++physicalOperandIndex; 522 } 523 524 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 525 Spec->name = Name; 526 527 if (!Rec->isSubClassOf("X86Inst")) 528 return; 529 530 switch (filter()) { 531 case FILTER_WEAK: 532 Spec->filtered = true; 533 break; 534 case FILTER_STRONG: 535 ShouldBeEmitted = false; 536 return; 537 case FILTER_NORMAL: 538 break; 539 } 540 541 Spec->insnContext = insnContext(); 542 543 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 544 545 unsigned operandIndex; 546 unsigned numOperands = OperandList.size(); 547 unsigned numPhysicalOperands = 0; 548 549 // operandMapping maps from operands in OperandList to their originals. 550 // If operandMapping[i] != i, then the entry is a duplicate. 551 unsigned operandMapping[X86_MAX_OPERANDS]; 552 553 bool hasFROperands = false; 554 555 assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 556 557 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 558 if (OperandList[operandIndex].Constraints.size()) { 559 const CGIOperandList::ConstraintInfo &Constraint = 560 OperandList[operandIndex].Constraints[0]; 561 if (Constraint.isTied()) { 562 operandMapping[operandIndex] = Constraint.getTiedOperand(); 563 } else { 564 ++numPhysicalOperands; 565 operandMapping[operandIndex] = operandIndex; 566 } 567 } else { 568 ++numPhysicalOperands; 569 operandMapping[operandIndex] = operandIndex; 570 } 571 572 const std::string &recName = OperandList[operandIndex].Rec->getName(); 573 574 if (recName.find("FR") != recName.npos) 575 hasFROperands = true; 576 } 577 578 if (hasFROperands && Name.find("MOV") != Name.npos && 579 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 580 (Name.find("to") != Name.npos))) 581 ShouldBeEmitted = false; 582 583 if (!ShouldBeEmitted) 584 return; 585 586 #define HANDLE_OPERAND(class) \ 587 handleOperand(false, \ 588 operandIndex, \ 589 physicalOperandIndex, \ 590 numPhysicalOperands, \ 591 operandMapping, \ 592 class##EncodingFromString); 593 594 #define HANDLE_OPTIONAL(class) \ 595 handleOperand(true, \ 596 operandIndex, \ 597 physicalOperandIndex, \ 598 numPhysicalOperands, \ 599 operandMapping, \ 600 class##EncodingFromString); 601 602 // operandIndex should always be < numOperands 603 operandIndex = 0; 604 // physicalOperandIndex should always be < numPhysicalOperands 605 unsigned physicalOperandIndex = 0; 606 607 switch (Form) { 608 case X86Local::RawFrm: 609 // Operand 1 (optional) is an address or immediate. 610 // Operand 2 (optional) is an immediate. 611 assert(numPhysicalOperands <= 2 && 612 "Unexpected number of operands for RawFrm"); 613 HANDLE_OPTIONAL(relocation) 614 HANDLE_OPTIONAL(immediate) 615 break; 616 case X86Local::AddRegFrm: 617 // Operand 1 is added to the opcode. 618 // Operand 2 (optional) is an address. 619 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 620 "Unexpected number of operands for AddRegFrm"); 621 HANDLE_OPERAND(opcodeModifier) 622 HANDLE_OPTIONAL(relocation) 623 break; 624 case X86Local::MRMDestReg: 625 // Operand 1 is a register operand in the R/M field. 626 // Operand 2 is a register operand in the Reg/Opcode field. 627 // - In AVX, there is a register operand in the VEX.vvvv field here - 628 // Operand 3 (optional) is an immediate. 629 if (HasVEX_4VPrefix) 630 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 631 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 632 else 633 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 634 "Unexpected number of operands for MRMDestRegFrm"); 635 636 HANDLE_OPERAND(rmRegister) 637 638 if (HasVEX_4VPrefix) 639 // FIXME: In AVX, the register below becomes the one encoded 640 // in ModRMVEX and the one above the one in the VEX.VVVV field 641 HANDLE_OPERAND(vvvvRegister) 642 643 HANDLE_OPERAND(roRegister) 644 HANDLE_OPTIONAL(immediate) 645 break; 646 case X86Local::MRMDestMem: 647 // Operand 1 is a memory operand (possibly SIB-extended) 648 // Operand 2 is a register operand in the Reg/Opcode field. 649 // - In AVX, there is a register operand in the VEX.vvvv field here - 650 // Operand 3 (optional) is an immediate. 651 if (HasVEX_4VPrefix) 652 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 653 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 654 else 655 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 656 "Unexpected number of operands for MRMDestMemFrm"); 657 HANDLE_OPERAND(memory) 658 659 if (HasVEX_4VPrefix) 660 // FIXME: In AVX, the register below becomes the one encoded 661 // in ModRMVEX and the one above the one in the VEX.VVVV field 662 HANDLE_OPERAND(vvvvRegister) 663 664 HANDLE_OPERAND(roRegister) 665 HANDLE_OPTIONAL(immediate) 666 break; 667 case X86Local::MRMSrcReg: 668 // Operand 1 is a register operand in the Reg/Opcode field. 669 // Operand 2 is a register operand in the R/M field. 670 // - In AVX, there is a register operand in the VEX.vvvv field here - 671 // Operand 3 (optional) is an immediate. 672 673 if (HasVEX_4VPrefix) 674 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 675 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 676 else 677 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 678 "Unexpected number of operands for MRMSrcRegFrm"); 679 680 HANDLE_OPERAND(roRegister) 681 682 if (HasVEX_4VPrefix) 683 // FIXME: In AVX, the register below becomes the one encoded 684 // in ModRMVEX and the one above the one in the VEX.VVVV field 685 HANDLE_OPERAND(vvvvRegister) 686 687 HANDLE_OPERAND(rmRegister) 688 HANDLE_OPTIONAL(immediate) 689 break; 690 case X86Local::MRMSrcMem: 691 // Operand 1 is a register operand in the Reg/Opcode field. 692 // Operand 2 is a memory operand (possibly SIB-extended) 693 // - In AVX, there is a register operand in the VEX.vvvv field here - 694 // Operand 3 (optional) is an immediate. 695 696 if (HasVEX_4VPrefix) 697 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 698 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 699 else 700 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 701 "Unexpected number of operands for MRMSrcMemFrm"); 702 703 HANDLE_OPERAND(roRegister) 704 705 if (HasVEX_4VPrefix) 706 // FIXME: In AVX, the register below becomes the one encoded 707 // in ModRMVEX and the one above the one in the VEX.VVVV field 708 HANDLE_OPERAND(vvvvRegister) 709 710 HANDLE_OPERAND(memory) 711 HANDLE_OPTIONAL(immediate) 712 break; 713 case X86Local::MRM0r: 714 case X86Local::MRM1r: 715 case X86Local::MRM2r: 716 case X86Local::MRM3r: 717 case X86Local::MRM4r: 718 case X86Local::MRM5r: 719 case X86Local::MRM6r: 720 case X86Local::MRM7r: 721 // Operand 1 is a register operand in the R/M field. 722 // Operand 2 (optional) is an immediate or relocation. 723 if (HasVEX_4VPrefix) 724 assert(numPhysicalOperands <= 3 && 725 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 726 else 727 assert(numPhysicalOperands <= 2 && 728 "Unexpected number of operands for MRMnRFrm"); 729 if (HasVEX_4VPrefix) 730 HANDLE_OPERAND(vvvvRegister); 731 HANDLE_OPTIONAL(rmRegister) 732 HANDLE_OPTIONAL(relocation) 733 break; 734 case X86Local::MRM0m: 735 case X86Local::MRM1m: 736 case X86Local::MRM2m: 737 case X86Local::MRM3m: 738 case X86Local::MRM4m: 739 case X86Local::MRM5m: 740 case X86Local::MRM6m: 741 case X86Local::MRM7m: 742 // Operand 1 is a memory operand (possibly SIB-extended) 743 // Operand 2 (optional) is an immediate or relocation. 744 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 745 "Unexpected number of operands for MRMnMFrm"); 746 HANDLE_OPERAND(memory) 747 HANDLE_OPTIONAL(relocation) 748 break; 749 case X86Local::RawFrmImm8: 750 // operand 1 is a 16-bit immediate 751 // operand 2 is an 8-bit immediate 752 assert(numPhysicalOperands == 2 && 753 "Unexpected number of operands for X86Local::RawFrmImm8"); 754 HANDLE_OPERAND(immediate) 755 HANDLE_OPERAND(immediate) 756 break; 757 case X86Local::RawFrmImm16: 758 // operand 1 is a 16-bit immediate 759 // operand 2 is a 16-bit immediate 760 HANDLE_OPERAND(immediate) 761 HANDLE_OPERAND(immediate) 762 break; 763 case X86Local::MRMInitReg: 764 // Ignored. 765 break; 766 } 767 768 #undef HANDLE_OPERAND 769 #undef HANDLE_OPTIONAL 770 } 771 772 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 773 // Special cases where the LLVM tables are not complete 774 775 #define MAP(from, to) \ 776 case X86Local::MRM_##from: \ 777 filter = new ExactFilter(0x##from); \ 778 break; 779 780 OpcodeType opcodeType = (OpcodeType)-1; 781 782 ModRMFilter* filter = NULL; 783 uint8_t opcodeToSet = 0; 784 785 switch (Prefix) { 786 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 787 case X86Local::XD: 788 case X86Local::XS: 789 case X86Local::TB: 790 opcodeType = TWOBYTE; 791 792 switch (Opcode) { 793 default: 794 if (needsModRMForDecode(Form)) 795 filter = new ModFilter(isRegFormat(Form)); 796 else 797 filter = new DumbFilter(); 798 break; 799 #define EXTENSION_TABLE(n) case 0x##n: 800 TWO_BYTE_EXTENSION_TABLES 801 #undef EXTENSION_TABLE 802 switch (Form) { 803 default: 804 llvm_unreachable("Unhandled two-byte extended opcode"); 805 case X86Local::MRM0r: 806 case X86Local::MRM1r: 807 case X86Local::MRM2r: 808 case X86Local::MRM3r: 809 case X86Local::MRM4r: 810 case X86Local::MRM5r: 811 case X86Local::MRM6r: 812 case X86Local::MRM7r: 813 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 814 break; 815 case X86Local::MRM0m: 816 case X86Local::MRM1m: 817 case X86Local::MRM2m: 818 case X86Local::MRM3m: 819 case X86Local::MRM4m: 820 case X86Local::MRM5m: 821 case X86Local::MRM6m: 822 case X86Local::MRM7m: 823 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 824 break; 825 MRM_MAPPING 826 } // switch (Form) 827 break; 828 } // switch (Opcode) 829 opcodeToSet = Opcode; 830 break; 831 case X86Local::T8: 832 case X86Local::TF: 833 opcodeType = THREEBYTE_38; 834 if (needsModRMForDecode(Form)) 835 filter = new ModFilter(isRegFormat(Form)); 836 else 837 filter = new DumbFilter(); 838 opcodeToSet = Opcode; 839 break; 840 case X86Local::P_TA: 841 opcodeType = THREEBYTE_3A; 842 if (needsModRMForDecode(Form)) 843 filter = new ModFilter(isRegFormat(Form)); 844 else 845 filter = new DumbFilter(); 846 opcodeToSet = Opcode; 847 break; 848 case X86Local::A6: 849 opcodeType = THREEBYTE_A6; 850 if (needsModRMForDecode(Form)) 851 filter = new ModFilter(isRegFormat(Form)); 852 else 853 filter = new DumbFilter(); 854 opcodeToSet = Opcode; 855 break; 856 case X86Local::A7: 857 opcodeType = THREEBYTE_A7; 858 if (needsModRMForDecode(Form)) 859 filter = new ModFilter(isRegFormat(Form)); 860 else 861 filter = new DumbFilter(); 862 opcodeToSet = Opcode; 863 break; 864 case X86Local::D8: 865 case X86Local::D9: 866 case X86Local::DA: 867 case X86Local::DB: 868 case X86Local::DC: 869 case X86Local::DD: 870 case X86Local::DE: 871 case X86Local::DF: 872 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 873 opcodeType = ONEBYTE; 874 if (Form == X86Local::AddRegFrm) { 875 Spec->modifierType = MODIFIER_MODRM; 876 Spec->modifierBase = Opcode; 877 filter = new AddRegEscapeFilter(Opcode); 878 } else { 879 filter = new EscapeFilter(true, Opcode); 880 } 881 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 882 break; 883 case X86Local::REP: 884 default: 885 opcodeType = ONEBYTE; 886 switch (Opcode) { 887 #define EXTENSION_TABLE(n) case 0x##n: 888 ONE_BYTE_EXTENSION_TABLES 889 #undef EXTENSION_TABLE 890 switch (Form) { 891 default: 892 llvm_unreachable("Fell through the cracks of a single-byte " 893 "extended opcode"); 894 case X86Local::MRM0r: 895 case X86Local::MRM1r: 896 case X86Local::MRM2r: 897 case X86Local::MRM3r: 898 case X86Local::MRM4r: 899 case X86Local::MRM5r: 900 case X86Local::MRM6r: 901 case X86Local::MRM7r: 902 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 903 break; 904 case X86Local::MRM0m: 905 case X86Local::MRM1m: 906 case X86Local::MRM2m: 907 case X86Local::MRM3m: 908 case X86Local::MRM4m: 909 case X86Local::MRM5m: 910 case X86Local::MRM6m: 911 case X86Local::MRM7m: 912 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 913 break; 914 MRM_MAPPING 915 } // switch (Form) 916 break; 917 case 0xd8: 918 case 0xd9: 919 case 0xda: 920 case 0xdb: 921 case 0xdc: 922 case 0xdd: 923 case 0xde: 924 case 0xdf: 925 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 926 break; 927 default: 928 if (needsModRMForDecode(Form)) 929 filter = new ModFilter(isRegFormat(Form)); 930 else 931 filter = new DumbFilter(); 932 break; 933 } // switch (Opcode) 934 opcodeToSet = Opcode; 935 } // switch (Prefix) 936 937 assert(opcodeType != (OpcodeType)-1 && 938 "Opcode type not set"); 939 assert(filter && "Filter not set"); 940 941 if (Form == X86Local::AddRegFrm) { 942 if(Spec->modifierType != MODIFIER_MODRM) { 943 assert(opcodeToSet < 0xf9 && 944 "Not enough room for all ADDREG_FRM operands"); 945 946 uint8_t currentOpcode; 947 948 for (currentOpcode = opcodeToSet; 949 currentOpcode < opcodeToSet + 8; 950 ++currentOpcode) 951 tables.setTableFields(opcodeType, 952 insnContext(), 953 currentOpcode, 954 *filter, 955 UID); 956 957 Spec->modifierType = MODIFIER_OPCODE; 958 Spec->modifierBase = opcodeToSet; 959 } else { 960 // modifierBase was set where MODIFIER_MODRM was set 961 tables.setTableFields(opcodeType, 962 insnContext(), 963 opcodeToSet, 964 *filter, 965 UID); 966 } 967 } else { 968 tables.setTableFields(opcodeType, 969 insnContext(), 970 opcodeToSet, 971 *filter, 972 UID); 973 974 Spec->modifierType = MODIFIER_NONE; 975 Spec->modifierBase = opcodeToSet; 976 } 977 978 delete filter; 979 980 #undef MAP 981 } 982 983 #define TYPE(str, type) if (s == str) return type; 984 OperandType RecognizableInstr::typeFromString(const std::string &s, 985 bool isSSE, 986 bool hasREX_WPrefix, 987 bool hasOpSizePrefix) { 988 if (isSSE) { 989 // For SSE instructions, we ignore the OpSize prefix and force operand 990 // sizes. 991 TYPE("GR16", TYPE_R16) 992 TYPE("GR32", TYPE_R32) 993 TYPE("GR64", TYPE_R64) 994 } 995 if(hasREX_WPrefix) { 996 // For instructions with a REX_W prefix, a declared 32-bit register encoding 997 // is special. 998 TYPE("GR32", TYPE_R32) 999 } 1000 if(!hasOpSizePrefix) { 1001 // For instructions without an OpSize prefix, a declared 16-bit register or 1002 // immediate encoding is special. 1003 TYPE("GR16", TYPE_R16) 1004 TYPE("i16imm", TYPE_IMM16) 1005 } 1006 TYPE("i16mem", TYPE_Mv) 1007 TYPE("i16imm", TYPE_IMMv) 1008 TYPE("i16i8imm", TYPE_IMMv) 1009 TYPE("GR16", TYPE_Rv) 1010 TYPE("i32mem", TYPE_Mv) 1011 TYPE("i32imm", TYPE_IMMv) 1012 TYPE("i32i8imm", TYPE_IMM32) 1013 TYPE("u32u8imm", TYPE_IMM32) 1014 TYPE("GR32", TYPE_Rv) 1015 TYPE("i64mem", TYPE_Mv) 1016 TYPE("i64i32imm", TYPE_IMM64) 1017 TYPE("i64i8imm", TYPE_IMM64) 1018 TYPE("GR64", TYPE_R64) 1019 TYPE("i8mem", TYPE_M8) 1020 TYPE("i8imm", TYPE_IMM8) 1021 TYPE("GR8", TYPE_R8) 1022 TYPE("VR128", TYPE_XMM128) 1023 TYPE("f128mem", TYPE_M128) 1024 TYPE("f256mem", TYPE_M256) 1025 TYPE("FR64", TYPE_XMM64) 1026 TYPE("f64mem", TYPE_M64FP) 1027 TYPE("sdmem", TYPE_M64FP) 1028 TYPE("FR32", TYPE_XMM32) 1029 TYPE("f32mem", TYPE_M32FP) 1030 TYPE("ssmem", TYPE_M32FP) 1031 TYPE("RST", TYPE_ST) 1032 TYPE("i128mem", TYPE_M128) 1033 TYPE("i256mem", TYPE_M256) 1034 TYPE("i64i32imm_pcrel", TYPE_REL64) 1035 TYPE("i16imm_pcrel", TYPE_REL16) 1036 TYPE("i32imm_pcrel", TYPE_REL32) 1037 TYPE("SSECC", TYPE_IMM3) 1038 TYPE("brtarget", TYPE_RELv) 1039 TYPE("uncondbrtarget", TYPE_RELv) 1040 TYPE("brtarget8", TYPE_REL8) 1041 TYPE("f80mem", TYPE_M80FP) 1042 TYPE("lea32mem", TYPE_LEA) 1043 TYPE("lea64_32mem", TYPE_LEA) 1044 TYPE("lea64mem", TYPE_LEA) 1045 TYPE("VR64", TYPE_MM64) 1046 TYPE("i64imm", TYPE_IMMv) 1047 TYPE("opaque32mem", TYPE_M1616) 1048 TYPE("opaque48mem", TYPE_M1632) 1049 TYPE("opaque80mem", TYPE_M1664) 1050 TYPE("opaque512mem", TYPE_M512) 1051 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1052 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1053 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1054 TYPE("offset8", TYPE_MOFFS8) 1055 TYPE("offset16", TYPE_MOFFS16) 1056 TYPE("offset32", TYPE_MOFFS32) 1057 TYPE("offset64", TYPE_MOFFS64) 1058 TYPE("VR256", TYPE_XMM256) 1059 errs() << "Unhandled type string " << s << "\n"; 1060 llvm_unreachable("Unhandled type string"); 1061 } 1062 #undef TYPE 1063 1064 #define ENCODING(str, encoding) if (s == str) return encoding; 1065 OperandEncoding RecognizableInstr::immediateEncodingFromString 1066 (const std::string &s, 1067 bool hasOpSizePrefix) { 1068 if(!hasOpSizePrefix) { 1069 // For instructions without an OpSize prefix, a declared 16-bit register or 1070 // immediate encoding is special. 1071 ENCODING("i16imm", ENCODING_IW) 1072 } 1073 ENCODING("i32i8imm", ENCODING_IB) 1074 ENCODING("u32u8imm", ENCODING_IB) 1075 ENCODING("SSECC", ENCODING_IB) 1076 ENCODING("i16imm", ENCODING_Iv) 1077 ENCODING("i16i8imm", ENCODING_IB) 1078 ENCODING("i32imm", ENCODING_Iv) 1079 ENCODING("i64i32imm", ENCODING_ID) 1080 ENCODING("i64i8imm", ENCODING_IB) 1081 ENCODING("i8imm", ENCODING_IB) 1082 // This is not a typo. Instructions like BLENDVPD put 1083 // register IDs in 8-bit immediates nowadays. 1084 ENCODING("VR256", ENCODING_IB) 1085 ENCODING("VR128", ENCODING_IB) 1086 errs() << "Unhandled immediate encoding " << s << "\n"; 1087 llvm_unreachable("Unhandled immediate encoding"); 1088 } 1089 1090 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1091 (const std::string &s, 1092 bool hasOpSizePrefix) { 1093 ENCODING("GR16", ENCODING_RM) 1094 ENCODING("GR32", ENCODING_RM) 1095 ENCODING("GR64", ENCODING_RM) 1096 ENCODING("GR8", ENCODING_RM) 1097 ENCODING("VR128", ENCODING_RM) 1098 ENCODING("FR64", ENCODING_RM) 1099 ENCODING("FR32", ENCODING_RM) 1100 ENCODING("VR64", ENCODING_RM) 1101 ENCODING("VR256", ENCODING_RM) 1102 errs() << "Unhandled R/M register encoding " << s << "\n"; 1103 llvm_unreachable("Unhandled R/M register encoding"); 1104 } 1105 1106 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1107 (const std::string &s, 1108 bool hasOpSizePrefix) { 1109 ENCODING("GR16", ENCODING_REG) 1110 ENCODING("GR32", ENCODING_REG) 1111 ENCODING("GR64", ENCODING_REG) 1112 ENCODING("GR8", ENCODING_REG) 1113 ENCODING("VR128", ENCODING_REG) 1114 ENCODING("FR64", ENCODING_REG) 1115 ENCODING("FR32", ENCODING_REG) 1116 ENCODING("VR64", ENCODING_REG) 1117 ENCODING("SEGMENT_REG", ENCODING_REG) 1118 ENCODING("DEBUG_REG", ENCODING_REG) 1119 ENCODING("CONTROL_REG", ENCODING_REG) 1120 ENCODING("VR256", ENCODING_REG) 1121 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1122 llvm_unreachable("Unhandled reg/opcode register encoding"); 1123 } 1124 1125 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1126 (const std::string &s, 1127 bool hasOpSizePrefix) { 1128 ENCODING("FR32", ENCODING_VVVV) 1129 ENCODING("FR64", ENCODING_VVVV) 1130 ENCODING("VR128", ENCODING_VVVV) 1131 ENCODING("VR256", ENCODING_VVVV) 1132 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1133 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1134 } 1135 1136 OperandEncoding RecognizableInstr::memoryEncodingFromString 1137 (const std::string &s, 1138 bool hasOpSizePrefix) { 1139 ENCODING("i16mem", ENCODING_RM) 1140 ENCODING("i32mem", ENCODING_RM) 1141 ENCODING("i64mem", ENCODING_RM) 1142 ENCODING("i8mem", ENCODING_RM) 1143 ENCODING("ssmem", ENCODING_RM) 1144 ENCODING("sdmem", ENCODING_RM) 1145 ENCODING("f128mem", ENCODING_RM) 1146 ENCODING("f256mem", ENCODING_RM) 1147 ENCODING("f64mem", ENCODING_RM) 1148 ENCODING("f32mem", ENCODING_RM) 1149 ENCODING("i128mem", ENCODING_RM) 1150 ENCODING("i256mem", ENCODING_RM) 1151 ENCODING("f80mem", ENCODING_RM) 1152 ENCODING("lea32mem", ENCODING_RM) 1153 ENCODING("lea64_32mem", ENCODING_RM) 1154 ENCODING("lea64mem", ENCODING_RM) 1155 ENCODING("opaque32mem", ENCODING_RM) 1156 ENCODING("opaque48mem", ENCODING_RM) 1157 ENCODING("opaque80mem", ENCODING_RM) 1158 ENCODING("opaque512mem", ENCODING_RM) 1159 errs() << "Unhandled memory encoding " << s << "\n"; 1160 llvm_unreachable("Unhandled memory encoding"); 1161 } 1162 1163 OperandEncoding RecognizableInstr::relocationEncodingFromString 1164 (const std::string &s, 1165 bool hasOpSizePrefix) { 1166 if(!hasOpSizePrefix) { 1167 // For instructions without an OpSize prefix, a declared 16-bit register or 1168 // immediate encoding is special. 1169 ENCODING("i16imm", ENCODING_IW) 1170 } 1171 ENCODING("i16imm", ENCODING_Iv) 1172 ENCODING("i16i8imm", ENCODING_IB) 1173 ENCODING("i32imm", ENCODING_Iv) 1174 ENCODING("i32i8imm", ENCODING_IB) 1175 ENCODING("i64i32imm", ENCODING_ID) 1176 ENCODING("i64i8imm", ENCODING_IB) 1177 ENCODING("i8imm", ENCODING_IB) 1178 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1179 ENCODING("i16imm_pcrel", ENCODING_IW) 1180 ENCODING("i32imm_pcrel", ENCODING_ID) 1181 ENCODING("brtarget", ENCODING_Iv) 1182 ENCODING("brtarget8", ENCODING_IB) 1183 ENCODING("i64imm", ENCODING_IO) 1184 ENCODING("offset8", ENCODING_Ia) 1185 ENCODING("offset16", ENCODING_Ia) 1186 ENCODING("offset32", ENCODING_Ia) 1187 ENCODING("offset64", ENCODING_Ia) 1188 errs() << "Unhandled relocation encoding " << s << "\n"; 1189 llvm_unreachable("Unhandled relocation encoding"); 1190 } 1191 1192 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1193 (const std::string &s, 1194 bool hasOpSizePrefix) { 1195 ENCODING("RST", ENCODING_I) 1196 ENCODING("GR32", ENCODING_Rv) 1197 ENCODING("GR64", ENCODING_RO) 1198 ENCODING("GR16", ENCODING_Rv) 1199 ENCODING("GR8", ENCODING_RB) 1200 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1201 llvm_unreachable("Unhandled opcode modifier encoding"); 1202 } 1203 #undef ENCODING 1204