1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) 40 41 // A clone of X86 since we can't depend on something that is generated. 42 namespace X86Local { 43 enum { 44 Pseudo = 0, 45 RawFrm = 1, 46 AddRegFrm = 2, 47 MRMDestReg = 3, 48 MRMDestMem = 4, 49 MRMSrcReg = 5, 50 MRMSrcMem = 6, 51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 55 MRMInitReg = 32, 56 #define MAP(from, to) MRM_##from = to, 57 MRM_MAPPING 58 #undef MAP 59 RawFrmImm8 = 43, 60 RawFrmImm16 = 44, 61 lastMRM 62 }; 63 64 enum { 65 TB = 1, 66 REP = 2, 67 D8 = 3, D9 = 4, DA = 5, DB = 6, 68 DC = 7, DD = 8, DE = 9, DF = 10, 69 XD = 11, XS = 12, 70 T8 = 13, P_TA = 14, 71 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19 72 }; 73 } 74 75 // If rows are added to the opcode extension tables, then corresponding entries 76 // must be added here. 77 // 78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 79 // that byte to ONE_BYTE_EXTENSION_TABLES. 80 // 81 // If the row corresponds to two bytes where the first is 0f, add an entry for 82 // the second byte to TWO_BYTE_EXTENSION_TABLES. 83 // 84 // If the row corresponds to some other set of bytes, you will need to modify 85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 86 // to the X86 TD files, except in two cases: if the first two bytes of such a 87 // new combination are 0f 38 or 0f 3a, you just have to add maps called 88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 90 // in RecognizableInstr::emitDecodePath(). 91 92 #define ONE_BYTE_EXTENSION_TABLES \ 93 EXTENSION_TABLE(80) \ 94 EXTENSION_TABLE(81) \ 95 EXTENSION_TABLE(82) \ 96 EXTENSION_TABLE(83) \ 97 EXTENSION_TABLE(8f) \ 98 EXTENSION_TABLE(c0) \ 99 EXTENSION_TABLE(c1) \ 100 EXTENSION_TABLE(c6) \ 101 EXTENSION_TABLE(c7) \ 102 EXTENSION_TABLE(d0) \ 103 EXTENSION_TABLE(d1) \ 104 EXTENSION_TABLE(d2) \ 105 EXTENSION_TABLE(d3) \ 106 EXTENSION_TABLE(f6) \ 107 EXTENSION_TABLE(f7) \ 108 EXTENSION_TABLE(fe) \ 109 EXTENSION_TABLE(ff) 110 111 #define TWO_BYTE_EXTENSION_TABLES \ 112 EXTENSION_TABLE(00) \ 113 EXTENSION_TABLE(01) \ 114 EXTENSION_TABLE(18) \ 115 EXTENSION_TABLE(71) \ 116 EXTENSION_TABLE(72) \ 117 EXTENSION_TABLE(73) \ 118 EXTENSION_TABLE(ae) \ 119 EXTENSION_TABLE(ba) \ 120 EXTENSION_TABLE(c7) 121 122 #define THREE_BYTE_38_EXTENSION_TABLES \ 123 EXTENSION_TABLE(F3) 124 125 using namespace X86Disassembler; 126 127 /// needsModRMForDecode - Indicates whether a particular instruction requires a 128 /// ModR/M byte for the instruction to be properly decoded. For example, a 129 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 130 /// 0b11. 131 /// 132 /// @param form - The form of the instruction. 133 /// @return - true if the form implies that a ModR/M byte is required, false 134 /// otherwise. 135 static bool needsModRMForDecode(uint8_t form) { 136 if (form == X86Local::MRMDestReg || 137 form == X86Local::MRMDestMem || 138 form == X86Local::MRMSrcReg || 139 form == X86Local::MRMSrcMem || 140 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 141 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 142 return true; 143 else 144 return false; 145 } 146 147 /// isRegFormat - Indicates whether a particular form requires the Mod field of 148 /// the ModR/M byte to be 0b11. 149 /// 150 /// @param form - The form of the instruction. 151 /// @return - true if the form implies that Mod must be 0b11, false 152 /// otherwise. 153 static bool isRegFormat(uint8_t form) { 154 if (form == X86Local::MRMDestReg || 155 form == X86Local::MRMSrcReg || 156 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 157 return true; 158 else 159 return false; 160 } 161 162 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 163 /// Useful for switch statements and the like. 164 /// 165 /// @param init - A reference to the BitsInit to be decoded. 166 /// @return - The field, with the first bit in the BitsInit as the lowest 167 /// order bit. 168 static uint8_t byteFromBitsInit(BitsInit &init) { 169 int width = init.getNumBits(); 170 171 assert(width <= 8 && "Field is too large for uint8_t!"); 172 173 int index; 174 uint8_t mask = 0x01; 175 176 uint8_t ret = 0; 177 178 for (index = 0; index < width; index++) { 179 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 180 ret |= mask; 181 182 mask <<= 1; 183 } 184 185 return ret; 186 } 187 188 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 189 /// name of the field. 190 /// 191 /// @param rec - The record from which to extract the value. 192 /// @param name - The name of the field in the record. 193 /// @return - The field, as translated by byteFromBitsInit(). 194 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 195 BitsInit* bits = rec->getValueAsBitsInit(name); 196 return byteFromBitsInit(*bits); 197 } 198 199 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 200 const CodeGenInstruction &insn, 201 InstrUID uid) { 202 UID = uid; 203 204 Rec = insn.TheDef; 205 Name = Rec->getName(); 206 Spec = &tables.specForUID(UID); 207 208 if (!Rec->isSubClassOf("X86Inst")) { 209 ShouldBeEmitted = false; 210 return; 211 } 212 213 Prefix = byteFromRec(Rec, "Prefix"); 214 Opcode = byteFromRec(Rec, "Opcode"); 215 Form = byteFromRec(Rec, "FormBits"); 216 SegOvr = byteFromRec(Rec, "SegOvrBits"); 217 218 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 219 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 220 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 221 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 222 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 223 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 224 HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); 225 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 226 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 227 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 228 229 Name = Rec->getName(); 230 AsmString = Rec->getValueAsString("AsmString"); 231 232 Operands = &insn.Operands.OperandList; 233 234 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 235 (Name.find("CRC32") != Name.npos); 236 HasFROperands = hasFROperands(); 237 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 238 239 // Check for 64-bit inst which does not require REX 240 Is32Bit = false; 241 Is64Bit = false; 242 // FIXME: Is there some better way to check for In64BitMode? 243 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 244 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 245 if (Predicates[i]->getName().find("32Bit") != Name.npos) { 246 Is32Bit = true; 247 break; 248 } 249 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 250 Is64Bit = true; 251 break; 252 } 253 } 254 // FIXME: These instructions aren't marked as 64-bit in any way 255 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 256 Rec->getName() == "MASKMOVDQU64" || 257 Rec->getName() == "POPFS64" || 258 Rec->getName() == "POPGS64" || 259 Rec->getName() == "PUSHFS64" || 260 Rec->getName() == "PUSHGS64" || 261 Rec->getName() == "REX64_PREFIX" || 262 Rec->getName().find("MOV64") != Name.npos || 263 Rec->getName().find("PUSH64") != Name.npos || 264 Rec->getName().find("POP64") != Name.npos; 265 266 ShouldBeEmitted = true; 267 } 268 269 void RecognizableInstr::processInstr(DisassemblerTables &tables, 270 const CodeGenInstruction &insn, 271 InstrUID uid) 272 { 273 // Ignore "asm parser only" instructions. 274 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 275 return; 276 277 RecognizableInstr recogInstr(tables, insn, uid); 278 279 recogInstr.emitInstructionSpecifier(tables); 280 281 if (recogInstr.shouldBeEmitted()) 282 recogInstr.emitDecodePath(tables); 283 } 284 285 InstructionContext RecognizableInstr::insnContext() const { 286 InstructionContext insnContext; 287 288 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 289 if (HasVEX_LPrefix && HasVEX_WPrefix) { 290 if (HasOpSizePrefix) 291 insnContext = IC_VEX_L_W_OPSIZE; 292 else 293 llvm_unreachable("Don't support VEX.L and VEX.W together"); 294 } else if (HasOpSizePrefix && HasVEX_LPrefix) 295 insnContext = IC_VEX_L_OPSIZE; 296 else if (HasOpSizePrefix && HasVEX_WPrefix) 297 insnContext = IC_VEX_W_OPSIZE; 298 else if (HasOpSizePrefix) 299 insnContext = IC_VEX_OPSIZE; 300 else if (HasVEX_LPrefix && 301 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 302 insnContext = IC_VEX_L_XS; 303 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 304 Prefix == X86Local::T8XD || 305 Prefix == X86Local::TAXD)) 306 insnContext = IC_VEX_L_XD; 307 else if (HasVEX_WPrefix && 308 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 309 insnContext = IC_VEX_W_XS; 310 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 311 Prefix == X86Local::T8XD || 312 Prefix == X86Local::TAXD)) 313 insnContext = IC_VEX_W_XD; 314 else if (HasVEX_WPrefix) 315 insnContext = IC_VEX_W; 316 else if (HasVEX_LPrefix) 317 insnContext = IC_VEX_L; 318 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 319 Prefix == X86Local::TAXD) 320 insnContext = IC_VEX_XD; 321 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 322 insnContext = IC_VEX_XS; 323 else 324 insnContext = IC_VEX; 325 } else if (Is64Bit || HasREX_WPrefix) { 326 if (HasREX_WPrefix && HasOpSizePrefix) 327 insnContext = IC_64BIT_REXW_OPSIZE; 328 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 329 Prefix == X86Local::T8XD || 330 Prefix == X86Local::TAXD)) 331 insnContext = IC_64BIT_XD_OPSIZE; 332 else if (HasOpSizePrefix && 333 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 334 insnContext = IC_64BIT_XS_OPSIZE; 335 else if (HasOpSizePrefix) 336 insnContext = IC_64BIT_OPSIZE; 337 else if (HasREX_WPrefix && 338 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 339 insnContext = IC_64BIT_REXW_XS; 340 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 341 Prefix == X86Local::T8XD || 342 Prefix == X86Local::TAXD)) 343 insnContext = IC_64BIT_REXW_XD; 344 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 345 Prefix == X86Local::TAXD) 346 insnContext = IC_64BIT_XD; 347 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 348 insnContext = IC_64BIT_XS; 349 else if (HasREX_WPrefix) 350 insnContext = IC_64BIT_REXW; 351 else 352 insnContext = IC_64BIT; 353 } else { 354 if (HasOpSizePrefix && (Prefix == X86Local::XD || 355 Prefix == X86Local::T8XD || 356 Prefix == X86Local::TAXD)) 357 insnContext = IC_XD_OPSIZE; 358 else if (HasOpSizePrefix && 359 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 360 insnContext = IC_XS_OPSIZE; 361 else if (HasOpSizePrefix) 362 insnContext = IC_OPSIZE; 363 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 364 Prefix == X86Local::TAXD) 365 insnContext = IC_XD; 366 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 367 Prefix == X86Local::REP) 368 insnContext = IC_XS; 369 else 370 insnContext = IC; 371 } 372 373 return insnContext; 374 } 375 376 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 377 /////////////////// 378 // FILTER_STRONG 379 // 380 381 // Filter out intrinsics 382 383 if (!Rec->isSubClassOf("X86Inst")) 384 return FILTER_STRONG; 385 386 if (Form == X86Local::Pseudo || 387 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 388 return FILTER_STRONG; 389 390 if (Form == X86Local::MRMInitReg) 391 return FILTER_STRONG; 392 393 394 // Filter out artificial instructions 395 396 if (Name.find("_Int") != Name.npos || 397 Name.find("Int_") != Name.npos || 398 Name.find("_NOREX") != Name.npos || 399 Name.find("2SDL") != Name.npos || 400 Name == "LOCK_PREFIX") 401 return FILTER_STRONG; 402 403 // Filter out instructions with segment override prefixes. 404 // They're too messy to handle now and we'll special case them if needed. 405 406 if (SegOvr) 407 return FILTER_STRONG; 408 409 // Filter out instructions that can't be printed. 410 411 if (AsmString.size() == 0) 412 return FILTER_STRONG; 413 414 // Filter out instructions with subreg operands. 415 416 if (AsmString.find("subreg") != AsmString.npos) 417 return FILTER_STRONG; 418 419 ///////////////// 420 // FILTER_WEAK 421 // 422 423 424 // Filter out instructions with a LOCK prefix; 425 // prefer forms that do not have the prefix 426 if (HasLockPrefix) 427 return FILTER_WEAK; 428 429 // Filter out alternate forms of AVX instructions 430 if (Name.find("_alt") != Name.npos || 431 Name.find("XrYr") != Name.npos || 432 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) || 433 Name.find("_64mr") != Name.npos || 434 Name.find("Xrr") != Name.npos || 435 Name.find("rr64") != Name.npos) 436 return FILTER_WEAK; 437 438 // Special cases. 439 440 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 441 return FILTER_WEAK; 442 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 443 return FILTER_WEAK; 444 445 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 446 return FILTER_WEAK; 447 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 448 return FILTER_WEAK; 449 if (Name.find("Fs") != Name.npos) 450 return FILTER_WEAK; 451 if (Name == "PUSH64i16" || 452 Name == "MOVPQI2QImr" || 453 Name == "VMOVPQI2QImr" || 454 Name == "MMX_MOVD64rrv164" || 455 Name == "MOV64ri64i32" || 456 Name == "VMASKMOVDQU64" || 457 Name == "VEXTRACTPSrr64" || 458 Name == "VMOVQd64rr" || 459 Name == "VMOVQs64rr") 460 return FILTER_WEAK; 461 462 if (HasFROperands && Name.find("MOV") != Name.npos && 463 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 464 (Name.find("to") != Name.npos))) 465 return FILTER_WEAK; 466 467 return FILTER_NORMAL; 468 } 469 470 bool RecognizableInstr::hasFROperands() const { 471 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 472 unsigned numOperands = OperandList.size(); 473 474 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 475 const std::string &recName = OperandList[operandIndex].Rec->getName(); 476 477 if (recName.find("FR") != recName.npos) 478 return true; 479 } 480 return false; 481 } 482 483 bool RecognizableInstr::has256BitOperands() const { 484 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 485 unsigned numOperands = OperandList.size(); 486 487 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 488 const std::string &recName = OperandList[operandIndex].Rec->getName(); 489 490 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 491 return true; 492 } 493 } 494 return false; 495 } 496 497 void RecognizableInstr::handleOperand( 498 bool optional, 499 unsigned &operandIndex, 500 unsigned &physicalOperandIndex, 501 unsigned &numPhysicalOperands, 502 unsigned *operandMapping, 503 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 504 if (optional) { 505 if (physicalOperandIndex >= numPhysicalOperands) 506 return; 507 } else { 508 assert(physicalOperandIndex < numPhysicalOperands); 509 } 510 511 while (operandMapping[operandIndex] != operandIndex) { 512 Spec->operands[operandIndex].encoding = ENCODING_DUP; 513 Spec->operands[operandIndex].type = 514 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 515 ++operandIndex; 516 } 517 518 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 519 520 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 521 HasOpSizePrefix); 522 Spec->operands[operandIndex].type = typeFromString(typeName, 523 IsSSE, 524 HasREX_WPrefix, 525 HasOpSizePrefix); 526 527 ++operandIndex; 528 ++physicalOperandIndex; 529 } 530 531 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 532 Spec->name = Name; 533 534 if (!Rec->isSubClassOf("X86Inst")) 535 return; 536 537 switch (filter()) { 538 case FILTER_WEAK: 539 Spec->filtered = true; 540 break; 541 case FILTER_STRONG: 542 ShouldBeEmitted = false; 543 return; 544 case FILTER_NORMAL: 545 break; 546 } 547 548 Spec->insnContext = insnContext(); 549 550 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 551 552 unsigned operandIndex; 553 unsigned numOperands = OperandList.size(); 554 unsigned numPhysicalOperands = 0; 555 556 // operandMapping maps from operands in OperandList to their originals. 557 // If operandMapping[i] != i, then the entry is a duplicate. 558 unsigned operandMapping[X86_MAX_OPERANDS]; 559 560 bool hasFROperands = false; 561 562 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 563 564 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 565 if (OperandList[operandIndex].Constraints.size()) { 566 const CGIOperandList::ConstraintInfo &Constraint = 567 OperandList[operandIndex].Constraints[0]; 568 if (Constraint.isTied()) { 569 operandMapping[operandIndex] = Constraint.getTiedOperand(); 570 } else { 571 ++numPhysicalOperands; 572 operandMapping[operandIndex] = operandIndex; 573 } 574 } else { 575 ++numPhysicalOperands; 576 operandMapping[operandIndex] = operandIndex; 577 } 578 579 const std::string &recName = OperandList[operandIndex].Rec->getName(); 580 581 if (recName.find("FR") != recName.npos) 582 hasFROperands = true; 583 } 584 585 if (hasFROperands && Name.find("MOV") != Name.npos && 586 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 587 (Name.find("to") != Name.npos))) 588 ShouldBeEmitted = false; 589 590 if (!ShouldBeEmitted) 591 return; 592 593 #define HANDLE_OPERAND(class) \ 594 handleOperand(false, \ 595 operandIndex, \ 596 physicalOperandIndex, \ 597 numPhysicalOperands, \ 598 operandMapping, \ 599 class##EncodingFromString); 600 601 #define HANDLE_OPTIONAL(class) \ 602 handleOperand(true, \ 603 operandIndex, \ 604 physicalOperandIndex, \ 605 numPhysicalOperands, \ 606 operandMapping, \ 607 class##EncodingFromString); 608 609 // operandIndex should always be < numOperands 610 operandIndex = 0; 611 // physicalOperandIndex should always be < numPhysicalOperands 612 unsigned physicalOperandIndex = 0; 613 614 switch (Form) { 615 case X86Local::RawFrm: 616 // Operand 1 (optional) is an address or immediate. 617 // Operand 2 (optional) is an immediate. 618 assert(numPhysicalOperands <= 2 && 619 "Unexpected number of operands for RawFrm"); 620 HANDLE_OPTIONAL(relocation) 621 HANDLE_OPTIONAL(immediate) 622 break; 623 case X86Local::AddRegFrm: 624 // Operand 1 is added to the opcode. 625 // Operand 2 (optional) is an address. 626 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 627 "Unexpected number of operands for AddRegFrm"); 628 HANDLE_OPERAND(opcodeModifier) 629 HANDLE_OPTIONAL(relocation) 630 break; 631 case X86Local::MRMDestReg: 632 // Operand 1 is a register operand in the R/M field. 633 // Operand 2 is a register operand in the Reg/Opcode field. 634 // - In AVX, there is a register operand in the VEX.vvvv field here - 635 // Operand 3 (optional) is an immediate. 636 if (HasVEX_4VPrefix) 637 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 638 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 639 else 640 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 641 "Unexpected number of operands for MRMDestRegFrm"); 642 643 HANDLE_OPERAND(rmRegister) 644 645 if (HasVEX_4VPrefix) 646 // FIXME: In AVX, the register below becomes the one encoded 647 // in ModRMVEX and the one above the one in the VEX.VVVV field 648 HANDLE_OPERAND(vvvvRegister) 649 650 HANDLE_OPERAND(roRegister) 651 HANDLE_OPTIONAL(immediate) 652 break; 653 case X86Local::MRMDestMem: 654 // Operand 1 is a memory operand (possibly SIB-extended) 655 // Operand 2 is a register operand in the Reg/Opcode field. 656 // - In AVX, there is a register operand in the VEX.vvvv field here - 657 // Operand 3 (optional) is an immediate. 658 if (HasVEX_4VPrefix) 659 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 660 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 661 else 662 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 663 "Unexpected number of operands for MRMDestMemFrm"); 664 HANDLE_OPERAND(memory) 665 666 if (HasVEX_4VPrefix) 667 // FIXME: In AVX, the register below becomes the one encoded 668 // in ModRMVEX and the one above the one in the VEX.VVVV field 669 HANDLE_OPERAND(vvvvRegister) 670 671 HANDLE_OPERAND(roRegister) 672 HANDLE_OPTIONAL(immediate) 673 break; 674 case X86Local::MRMSrcReg: 675 // Operand 1 is a register operand in the Reg/Opcode field. 676 // Operand 2 is a register operand in the R/M field. 677 // - In AVX, there is a register operand in the VEX.vvvv field here - 678 // Operand 3 (optional) is an immediate. 679 680 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 681 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 682 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 683 else 684 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 685 "Unexpected number of operands for MRMSrcRegFrm"); 686 687 HANDLE_OPERAND(roRegister) 688 689 if (HasVEX_4VPrefix) 690 // FIXME: In AVX, the register below becomes the one encoded 691 // in ModRMVEX and the one above the one in the VEX.VVVV field 692 HANDLE_OPERAND(vvvvRegister) 693 694 if (HasMemOp4Prefix) 695 HANDLE_OPERAND(immediate) 696 697 HANDLE_OPERAND(rmRegister) 698 699 if (HasVEX_4VOp3Prefix) 700 HANDLE_OPERAND(vvvvRegister) 701 702 if (!HasMemOp4Prefix) 703 HANDLE_OPTIONAL(immediate) 704 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 705 break; 706 case X86Local::MRMSrcMem: 707 // Operand 1 is a register operand in the Reg/Opcode field. 708 // Operand 2 is a memory operand (possibly SIB-extended) 709 // - In AVX, there is a register operand in the VEX.vvvv field here - 710 // Operand 3 (optional) is an immediate. 711 712 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 713 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 714 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 715 else 716 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 717 "Unexpected number of operands for MRMSrcMemFrm"); 718 719 HANDLE_OPERAND(roRegister) 720 721 if (HasVEX_4VPrefix) 722 // FIXME: In AVX, the register below becomes the one encoded 723 // in ModRMVEX and the one above the one in the VEX.VVVV field 724 HANDLE_OPERAND(vvvvRegister) 725 726 if (HasMemOp4Prefix) 727 HANDLE_OPERAND(immediate) 728 729 HANDLE_OPERAND(memory) 730 731 if (HasVEX_4VOp3Prefix) 732 HANDLE_OPERAND(vvvvRegister) 733 734 if (!HasMemOp4Prefix) 735 HANDLE_OPTIONAL(immediate) 736 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 737 break; 738 case X86Local::MRM0r: 739 case X86Local::MRM1r: 740 case X86Local::MRM2r: 741 case X86Local::MRM3r: 742 case X86Local::MRM4r: 743 case X86Local::MRM5r: 744 case X86Local::MRM6r: 745 case X86Local::MRM7r: 746 // Operand 1 is a register operand in the R/M field. 747 // Operand 2 (optional) is an immediate or relocation. 748 if (HasVEX_4VPrefix) 749 assert(numPhysicalOperands <= 3 && 750 "Unexpected number of operands for MRMnRFrm with VEX_4V"); 751 else 752 assert(numPhysicalOperands <= 2 && 753 "Unexpected number of operands for MRMnRFrm"); 754 if (HasVEX_4VPrefix) 755 HANDLE_OPERAND(vvvvRegister) 756 HANDLE_OPTIONAL(rmRegister) 757 HANDLE_OPTIONAL(relocation) 758 break; 759 case X86Local::MRM0m: 760 case X86Local::MRM1m: 761 case X86Local::MRM2m: 762 case X86Local::MRM3m: 763 case X86Local::MRM4m: 764 case X86Local::MRM5m: 765 case X86Local::MRM6m: 766 case X86Local::MRM7m: 767 // Operand 1 is a memory operand (possibly SIB-extended) 768 // Operand 2 (optional) is an immediate or relocation. 769 if (HasVEX_4VPrefix) 770 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 771 "Unexpected number of operands for MRMnMFrm"); 772 else 773 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 774 "Unexpected number of operands for MRMnMFrm"); 775 if (HasVEX_4VPrefix) 776 HANDLE_OPERAND(vvvvRegister) 777 HANDLE_OPERAND(memory) 778 HANDLE_OPTIONAL(relocation) 779 break; 780 case X86Local::RawFrmImm8: 781 // operand 1 is a 16-bit immediate 782 // operand 2 is an 8-bit immediate 783 assert(numPhysicalOperands == 2 && 784 "Unexpected number of operands for X86Local::RawFrmImm8"); 785 HANDLE_OPERAND(immediate) 786 HANDLE_OPERAND(immediate) 787 break; 788 case X86Local::RawFrmImm16: 789 // operand 1 is a 16-bit immediate 790 // operand 2 is a 16-bit immediate 791 HANDLE_OPERAND(immediate) 792 HANDLE_OPERAND(immediate) 793 break; 794 case X86Local::MRMInitReg: 795 // Ignored. 796 break; 797 } 798 799 #undef HANDLE_OPERAND 800 #undef HANDLE_OPTIONAL 801 } 802 803 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 804 // Special cases where the LLVM tables are not complete 805 806 #define MAP(from, to) \ 807 case X86Local::MRM_##from: \ 808 filter = new ExactFilter(0x##from); \ 809 break; 810 811 OpcodeType opcodeType = (OpcodeType)-1; 812 813 ModRMFilter* filter = NULL; 814 uint8_t opcodeToSet = 0; 815 816 switch (Prefix) { 817 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 818 case X86Local::XD: 819 case X86Local::XS: 820 case X86Local::TB: 821 opcodeType = TWOBYTE; 822 823 switch (Opcode) { 824 default: 825 if (needsModRMForDecode(Form)) 826 filter = new ModFilter(isRegFormat(Form)); 827 else 828 filter = new DumbFilter(); 829 break; 830 #define EXTENSION_TABLE(n) case 0x##n: 831 TWO_BYTE_EXTENSION_TABLES 832 #undef EXTENSION_TABLE 833 switch (Form) { 834 default: 835 llvm_unreachable("Unhandled two-byte extended opcode"); 836 case X86Local::MRM0r: 837 case X86Local::MRM1r: 838 case X86Local::MRM2r: 839 case X86Local::MRM3r: 840 case X86Local::MRM4r: 841 case X86Local::MRM5r: 842 case X86Local::MRM6r: 843 case X86Local::MRM7r: 844 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 845 break; 846 case X86Local::MRM0m: 847 case X86Local::MRM1m: 848 case X86Local::MRM2m: 849 case X86Local::MRM3m: 850 case X86Local::MRM4m: 851 case X86Local::MRM5m: 852 case X86Local::MRM6m: 853 case X86Local::MRM7m: 854 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 855 break; 856 MRM_MAPPING 857 } // switch (Form) 858 break; 859 } // switch (Opcode) 860 opcodeToSet = Opcode; 861 break; 862 case X86Local::T8: 863 case X86Local::T8XD: 864 case X86Local::T8XS: 865 opcodeType = THREEBYTE_38; 866 switch (Opcode) { 867 default: 868 if (needsModRMForDecode(Form)) 869 filter = new ModFilter(isRegFormat(Form)); 870 else 871 filter = new DumbFilter(); 872 break; 873 #define EXTENSION_TABLE(n) case 0x##n: 874 THREE_BYTE_38_EXTENSION_TABLES 875 #undef EXTENSION_TABLE 876 switch (Form) { 877 default: 878 llvm_unreachable("Unhandled two-byte extended opcode"); 879 case X86Local::MRM0r: 880 case X86Local::MRM1r: 881 case X86Local::MRM2r: 882 case X86Local::MRM3r: 883 case X86Local::MRM4r: 884 case X86Local::MRM5r: 885 case X86Local::MRM6r: 886 case X86Local::MRM7r: 887 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 888 break; 889 case X86Local::MRM0m: 890 case X86Local::MRM1m: 891 case X86Local::MRM2m: 892 case X86Local::MRM3m: 893 case X86Local::MRM4m: 894 case X86Local::MRM5m: 895 case X86Local::MRM6m: 896 case X86Local::MRM7m: 897 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 898 break; 899 MRM_MAPPING 900 } // switch (Form) 901 break; 902 } // switch (Opcode) 903 opcodeToSet = Opcode; 904 break; 905 case X86Local::P_TA: 906 case X86Local::TAXD: 907 opcodeType = THREEBYTE_3A; 908 if (needsModRMForDecode(Form)) 909 filter = new ModFilter(isRegFormat(Form)); 910 else 911 filter = new DumbFilter(); 912 opcodeToSet = Opcode; 913 break; 914 case X86Local::A6: 915 opcodeType = THREEBYTE_A6; 916 if (needsModRMForDecode(Form)) 917 filter = new ModFilter(isRegFormat(Form)); 918 else 919 filter = new DumbFilter(); 920 opcodeToSet = Opcode; 921 break; 922 case X86Local::A7: 923 opcodeType = THREEBYTE_A7; 924 if (needsModRMForDecode(Form)) 925 filter = new ModFilter(isRegFormat(Form)); 926 else 927 filter = new DumbFilter(); 928 opcodeToSet = Opcode; 929 break; 930 case X86Local::D8: 931 case X86Local::D9: 932 case X86Local::DA: 933 case X86Local::DB: 934 case X86Local::DC: 935 case X86Local::DD: 936 case X86Local::DE: 937 case X86Local::DF: 938 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 939 opcodeType = ONEBYTE; 940 if (Form == X86Local::AddRegFrm) { 941 Spec->modifierType = MODIFIER_MODRM; 942 Spec->modifierBase = Opcode; 943 filter = new AddRegEscapeFilter(Opcode); 944 } else { 945 filter = new EscapeFilter(true, Opcode); 946 } 947 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 948 break; 949 case X86Local::REP: 950 default: 951 opcodeType = ONEBYTE; 952 switch (Opcode) { 953 #define EXTENSION_TABLE(n) case 0x##n: 954 ONE_BYTE_EXTENSION_TABLES 955 #undef EXTENSION_TABLE 956 switch (Form) { 957 default: 958 llvm_unreachable("Fell through the cracks of a single-byte " 959 "extended opcode"); 960 case X86Local::MRM0r: 961 case X86Local::MRM1r: 962 case X86Local::MRM2r: 963 case X86Local::MRM3r: 964 case X86Local::MRM4r: 965 case X86Local::MRM5r: 966 case X86Local::MRM6r: 967 case X86Local::MRM7r: 968 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 969 break; 970 case X86Local::MRM0m: 971 case X86Local::MRM1m: 972 case X86Local::MRM2m: 973 case X86Local::MRM3m: 974 case X86Local::MRM4m: 975 case X86Local::MRM5m: 976 case X86Local::MRM6m: 977 case X86Local::MRM7m: 978 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 979 break; 980 MRM_MAPPING 981 } // switch (Form) 982 break; 983 case 0xd8: 984 case 0xd9: 985 case 0xda: 986 case 0xdb: 987 case 0xdc: 988 case 0xdd: 989 case 0xde: 990 case 0xdf: 991 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 992 break; 993 default: 994 if (needsModRMForDecode(Form)) 995 filter = new ModFilter(isRegFormat(Form)); 996 else 997 filter = new DumbFilter(); 998 break; 999 } // switch (Opcode) 1000 opcodeToSet = Opcode; 1001 } // switch (Prefix) 1002 1003 assert(opcodeType != (OpcodeType)-1 && 1004 "Opcode type not set"); 1005 assert(filter && "Filter not set"); 1006 1007 if (Form == X86Local::AddRegFrm) { 1008 if(Spec->modifierType != MODIFIER_MODRM) { 1009 assert(opcodeToSet < 0xf9 && 1010 "Not enough room for all ADDREG_FRM operands"); 1011 1012 uint8_t currentOpcode; 1013 1014 for (currentOpcode = opcodeToSet; 1015 currentOpcode < opcodeToSet + 8; 1016 ++currentOpcode) 1017 tables.setTableFields(opcodeType, 1018 insnContext(), 1019 currentOpcode, 1020 *filter, 1021 UID, Is32Bit, IgnoresVEX_L); 1022 1023 Spec->modifierType = MODIFIER_OPCODE; 1024 Spec->modifierBase = opcodeToSet; 1025 } else { 1026 // modifierBase was set where MODIFIER_MODRM was set 1027 tables.setTableFields(opcodeType, 1028 insnContext(), 1029 opcodeToSet, 1030 *filter, 1031 UID, Is32Bit, IgnoresVEX_L); 1032 } 1033 } else { 1034 tables.setTableFields(opcodeType, 1035 insnContext(), 1036 opcodeToSet, 1037 *filter, 1038 UID, Is32Bit, IgnoresVEX_L); 1039 1040 Spec->modifierType = MODIFIER_NONE; 1041 Spec->modifierBase = opcodeToSet; 1042 } 1043 1044 delete filter; 1045 1046 #undef MAP 1047 } 1048 1049 #define TYPE(str, type) if (s == str) return type; 1050 OperandType RecognizableInstr::typeFromString(const std::string &s, 1051 bool isSSE, 1052 bool hasREX_WPrefix, 1053 bool hasOpSizePrefix) { 1054 if (isSSE) { 1055 // For SSE instructions, we ignore the OpSize prefix and force operand 1056 // sizes. 1057 TYPE("GR16", TYPE_R16) 1058 TYPE("GR32", TYPE_R32) 1059 TYPE("GR64", TYPE_R64) 1060 } 1061 if(hasREX_WPrefix) { 1062 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1063 // is special. 1064 TYPE("GR32", TYPE_R32) 1065 } 1066 if(!hasOpSizePrefix) { 1067 // For instructions without an OpSize prefix, a declared 16-bit register or 1068 // immediate encoding is special. 1069 TYPE("GR16", TYPE_R16) 1070 TYPE("i16imm", TYPE_IMM16) 1071 } 1072 TYPE("i16mem", TYPE_Mv) 1073 TYPE("i16imm", TYPE_IMMv) 1074 TYPE("i16i8imm", TYPE_IMMv) 1075 TYPE("GR16", TYPE_Rv) 1076 TYPE("i32mem", TYPE_Mv) 1077 TYPE("i32imm", TYPE_IMMv) 1078 TYPE("i32i8imm", TYPE_IMM32) 1079 TYPE("u32u8imm", TYPE_IMM32) 1080 TYPE("GR32", TYPE_Rv) 1081 TYPE("i64mem", TYPE_Mv) 1082 TYPE("i64i32imm", TYPE_IMM64) 1083 TYPE("i64i8imm", TYPE_IMM64) 1084 TYPE("GR64", TYPE_R64) 1085 TYPE("i8mem", TYPE_M8) 1086 TYPE("i8imm", TYPE_IMM8) 1087 TYPE("GR8", TYPE_R8) 1088 TYPE("VR128", TYPE_XMM128) 1089 TYPE("f128mem", TYPE_M128) 1090 TYPE("f256mem", TYPE_M256) 1091 TYPE("FR64", TYPE_XMM64) 1092 TYPE("f64mem", TYPE_M64FP) 1093 TYPE("sdmem", TYPE_M64FP) 1094 TYPE("FR32", TYPE_XMM32) 1095 TYPE("f32mem", TYPE_M32FP) 1096 TYPE("ssmem", TYPE_M32FP) 1097 TYPE("RST", TYPE_ST) 1098 TYPE("i128mem", TYPE_M128) 1099 TYPE("i256mem", TYPE_M256) 1100 TYPE("i64i32imm_pcrel", TYPE_REL64) 1101 TYPE("i16imm_pcrel", TYPE_REL16) 1102 TYPE("i32imm_pcrel", TYPE_REL32) 1103 TYPE("SSECC", TYPE_IMM3) 1104 TYPE("brtarget", TYPE_RELv) 1105 TYPE("uncondbrtarget", TYPE_RELv) 1106 TYPE("brtarget8", TYPE_REL8) 1107 TYPE("f80mem", TYPE_M80FP) 1108 TYPE("lea32mem", TYPE_LEA) 1109 TYPE("lea64_32mem", TYPE_LEA) 1110 TYPE("lea64mem", TYPE_LEA) 1111 TYPE("VR64", TYPE_MM64) 1112 TYPE("i64imm", TYPE_IMMv) 1113 TYPE("opaque32mem", TYPE_M1616) 1114 TYPE("opaque48mem", TYPE_M1632) 1115 TYPE("opaque80mem", TYPE_M1664) 1116 TYPE("opaque512mem", TYPE_M512) 1117 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1118 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1119 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1120 TYPE("offset8", TYPE_MOFFS8) 1121 TYPE("offset16", TYPE_MOFFS16) 1122 TYPE("offset32", TYPE_MOFFS32) 1123 TYPE("offset64", TYPE_MOFFS64) 1124 TYPE("VR256", TYPE_XMM256) 1125 TYPE("GR16_NOAX", TYPE_Rv) 1126 TYPE("GR32_NOAX", TYPE_Rv) 1127 TYPE("GR64_NOAX", TYPE_R64) 1128 errs() << "Unhandled type string " << s << "\n"; 1129 llvm_unreachable("Unhandled type string"); 1130 } 1131 #undef TYPE 1132 1133 #define ENCODING(str, encoding) if (s == str) return encoding; 1134 OperandEncoding RecognizableInstr::immediateEncodingFromString 1135 (const std::string &s, 1136 bool hasOpSizePrefix) { 1137 if(!hasOpSizePrefix) { 1138 // For instructions without an OpSize prefix, a declared 16-bit register or 1139 // immediate encoding is special. 1140 ENCODING("i16imm", ENCODING_IW) 1141 } 1142 ENCODING("i32i8imm", ENCODING_IB) 1143 ENCODING("u32u8imm", ENCODING_IB) 1144 ENCODING("SSECC", ENCODING_IB) 1145 ENCODING("i16imm", ENCODING_Iv) 1146 ENCODING("i16i8imm", ENCODING_IB) 1147 ENCODING("i32imm", ENCODING_Iv) 1148 ENCODING("i64i32imm", ENCODING_ID) 1149 ENCODING("i64i8imm", ENCODING_IB) 1150 ENCODING("i8imm", ENCODING_IB) 1151 // This is not a typo. Instructions like BLENDVPD put 1152 // register IDs in 8-bit immediates nowadays. 1153 ENCODING("VR256", ENCODING_IB) 1154 ENCODING("VR128", ENCODING_IB) 1155 errs() << "Unhandled immediate encoding " << s << "\n"; 1156 llvm_unreachable("Unhandled immediate encoding"); 1157 } 1158 1159 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1160 (const std::string &s, 1161 bool hasOpSizePrefix) { 1162 ENCODING("GR16", ENCODING_RM) 1163 ENCODING("GR32", ENCODING_RM) 1164 ENCODING("GR64", ENCODING_RM) 1165 ENCODING("GR8", ENCODING_RM) 1166 ENCODING("VR128", ENCODING_RM) 1167 ENCODING("FR64", ENCODING_RM) 1168 ENCODING("FR32", ENCODING_RM) 1169 ENCODING("VR64", ENCODING_RM) 1170 ENCODING("VR256", ENCODING_RM) 1171 errs() << "Unhandled R/M register encoding " << s << "\n"; 1172 llvm_unreachable("Unhandled R/M register encoding"); 1173 } 1174 1175 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1176 (const std::string &s, 1177 bool hasOpSizePrefix) { 1178 ENCODING("GR16", ENCODING_REG) 1179 ENCODING("GR32", ENCODING_REG) 1180 ENCODING("GR64", ENCODING_REG) 1181 ENCODING("GR8", ENCODING_REG) 1182 ENCODING("VR128", ENCODING_REG) 1183 ENCODING("FR64", ENCODING_REG) 1184 ENCODING("FR32", ENCODING_REG) 1185 ENCODING("VR64", ENCODING_REG) 1186 ENCODING("SEGMENT_REG", ENCODING_REG) 1187 ENCODING("DEBUG_REG", ENCODING_REG) 1188 ENCODING("CONTROL_REG", ENCODING_REG) 1189 ENCODING("VR256", ENCODING_REG) 1190 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1191 llvm_unreachable("Unhandled reg/opcode register encoding"); 1192 } 1193 1194 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1195 (const std::string &s, 1196 bool hasOpSizePrefix) { 1197 ENCODING("GR32", ENCODING_VVVV) 1198 ENCODING("GR64", ENCODING_VVVV) 1199 ENCODING("FR32", ENCODING_VVVV) 1200 ENCODING("FR64", ENCODING_VVVV) 1201 ENCODING("VR128", ENCODING_VVVV) 1202 ENCODING("VR256", ENCODING_VVVV) 1203 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1204 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1205 } 1206 1207 OperandEncoding RecognizableInstr::memoryEncodingFromString 1208 (const std::string &s, 1209 bool hasOpSizePrefix) { 1210 ENCODING("i16mem", ENCODING_RM) 1211 ENCODING("i32mem", ENCODING_RM) 1212 ENCODING("i64mem", ENCODING_RM) 1213 ENCODING("i8mem", ENCODING_RM) 1214 ENCODING("ssmem", ENCODING_RM) 1215 ENCODING("sdmem", ENCODING_RM) 1216 ENCODING("f128mem", ENCODING_RM) 1217 ENCODING("f256mem", ENCODING_RM) 1218 ENCODING("f64mem", ENCODING_RM) 1219 ENCODING("f32mem", ENCODING_RM) 1220 ENCODING("i128mem", ENCODING_RM) 1221 ENCODING("i256mem", ENCODING_RM) 1222 ENCODING("f80mem", ENCODING_RM) 1223 ENCODING("lea32mem", ENCODING_RM) 1224 ENCODING("lea64_32mem", ENCODING_RM) 1225 ENCODING("lea64mem", ENCODING_RM) 1226 ENCODING("opaque32mem", ENCODING_RM) 1227 ENCODING("opaque48mem", ENCODING_RM) 1228 ENCODING("opaque80mem", ENCODING_RM) 1229 ENCODING("opaque512mem", ENCODING_RM) 1230 errs() << "Unhandled memory encoding " << s << "\n"; 1231 llvm_unreachable("Unhandled memory encoding"); 1232 } 1233 1234 OperandEncoding RecognizableInstr::relocationEncodingFromString 1235 (const std::string &s, 1236 bool hasOpSizePrefix) { 1237 if(!hasOpSizePrefix) { 1238 // For instructions without an OpSize prefix, a declared 16-bit register or 1239 // immediate encoding is special. 1240 ENCODING("i16imm", ENCODING_IW) 1241 } 1242 ENCODING("i16imm", ENCODING_Iv) 1243 ENCODING("i16i8imm", ENCODING_IB) 1244 ENCODING("i32imm", ENCODING_Iv) 1245 ENCODING("i32i8imm", ENCODING_IB) 1246 ENCODING("i64i32imm", ENCODING_ID) 1247 ENCODING("i64i8imm", ENCODING_IB) 1248 ENCODING("i8imm", ENCODING_IB) 1249 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1250 ENCODING("i16imm_pcrel", ENCODING_IW) 1251 ENCODING("i32imm_pcrel", ENCODING_ID) 1252 ENCODING("brtarget", ENCODING_Iv) 1253 ENCODING("brtarget8", ENCODING_IB) 1254 ENCODING("i64imm", ENCODING_IO) 1255 ENCODING("offset8", ENCODING_Ia) 1256 ENCODING("offset16", ENCODING_Ia) 1257 ENCODING("offset32", ENCODING_Ia) 1258 ENCODING("offset64", ENCODING_Ia) 1259 errs() << "Unhandled relocation encoding " << s << "\n"; 1260 llvm_unreachable("Unhandled relocation encoding"); 1261 } 1262 1263 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1264 (const std::string &s, 1265 bool hasOpSizePrefix) { 1266 ENCODING("RST", ENCODING_I) 1267 ENCODING("GR32", ENCODING_Rv) 1268 ENCODING("GR64", ENCODING_RO) 1269 ENCODING("GR16", ENCODING_Rv) 1270 ENCODING("GR8", ENCODING_RB) 1271 ENCODING("GR16_NOAX", ENCODING_Rv) 1272 ENCODING("GR32_NOAX", ENCODING_Rv) 1273 ENCODING("GR64_NOAX", ENCODING_RO) 1274 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1275 llvm_unreachable("Unhandled opcode modifier encoding"); 1276 } 1277 #undef ENCODING 1278