1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86RecognizableInstr.h" 18 #include "X86DisassemblerShared.h" 19 #include "X86ModRMFilters.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <string> 22 23 using namespace llvm; 24 25 #define MRM_MAPPING \ 26 MAP(C1, 33) \ 27 MAP(C2, 34) \ 28 MAP(C3, 35) \ 29 MAP(C4, 36) \ 30 MAP(C8, 37) \ 31 MAP(C9, 38) \ 32 MAP(CA, 39) \ 33 MAP(CB, 40) \ 34 MAP(E8, 41) \ 35 MAP(F0, 42) \ 36 MAP(F8, 45) \ 37 MAP(F9, 46) \ 38 MAP(D0, 47) \ 39 MAP(D1, 48) \ 40 MAP(D4, 49) \ 41 MAP(D5, 50) \ 42 MAP(D6, 51) \ 43 MAP(D8, 52) \ 44 MAP(D9, 53) \ 45 MAP(DA, 54) \ 46 MAP(DB, 55) \ 47 MAP(DC, 56) \ 48 MAP(DD, 57) \ 49 MAP(DE, 58) \ 50 MAP(DF, 59) 51 52 // A clone of X86 since we can't depend on something that is generated. 53 namespace X86Local { 54 enum { 55 Pseudo = 0, 56 RawFrm = 1, 57 AddRegFrm = 2, 58 MRMDestReg = 3, 59 MRMDestMem = 4, 60 MRMSrcReg = 5, 61 MRMSrcMem = 6, 62 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 63 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 64 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 65 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 66 MRMInitReg = 32, 67 RawFrmImm8 = 43, 68 RawFrmImm16 = 44, 69 #define MAP(from, to) MRM_##from = to, 70 MRM_MAPPING 71 #undef MAP 72 lastMRM 73 }; 74 75 enum { 76 TB = 1, 77 REP = 2, 78 D8 = 3, D9 = 4, DA = 5, DB = 6, 79 DC = 7, DD = 8, DE = 9, DF = 10, 80 XD = 11, XS = 12, 81 T8 = 13, P_TA = 14, 82 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19, 83 XOP8 = 20, XOP9 = 21, XOPA = 22 84 }; 85 } 86 87 // If rows are added to the opcode extension tables, then corresponding entries 88 // must be added here. 89 // 90 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 91 // that byte to ONE_BYTE_EXTENSION_TABLES. 92 // 93 // If the row corresponds to two bytes where the first is 0f, add an entry for 94 // the second byte to TWO_BYTE_EXTENSION_TABLES. 95 // 96 // If the row corresponds to some other set of bytes, you will need to modify 97 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 98 // to the X86 TD files, except in two cases: if the first two bytes of such a 99 // new combination are 0f 38 or 0f 3a, you just have to add maps called 100 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 101 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 102 // in RecognizableInstr::emitDecodePath(). 103 104 #define ONE_BYTE_EXTENSION_TABLES \ 105 EXTENSION_TABLE(80) \ 106 EXTENSION_TABLE(81) \ 107 EXTENSION_TABLE(82) \ 108 EXTENSION_TABLE(83) \ 109 EXTENSION_TABLE(8f) \ 110 EXTENSION_TABLE(c0) \ 111 EXTENSION_TABLE(c1) \ 112 EXTENSION_TABLE(c6) \ 113 EXTENSION_TABLE(c7) \ 114 EXTENSION_TABLE(d0) \ 115 EXTENSION_TABLE(d1) \ 116 EXTENSION_TABLE(d2) \ 117 EXTENSION_TABLE(d3) \ 118 EXTENSION_TABLE(f6) \ 119 EXTENSION_TABLE(f7) \ 120 EXTENSION_TABLE(fe) \ 121 EXTENSION_TABLE(ff) 122 123 #define TWO_BYTE_EXTENSION_TABLES \ 124 EXTENSION_TABLE(00) \ 125 EXTENSION_TABLE(01) \ 126 EXTENSION_TABLE(0d) \ 127 EXTENSION_TABLE(18) \ 128 EXTENSION_TABLE(71) \ 129 EXTENSION_TABLE(72) \ 130 EXTENSION_TABLE(73) \ 131 EXTENSION_TABLE(ae) \ 132 EXTENSION_TABLE(ba) \ 133 EXTENSION_TABLE(c7) 134 135 #define THREE_BYTE_38_EXTENSION_TABLES \ 136 EXTENSION_TABLE(F3) 137 138 #define XOP9_MAP_EXTENSION_TABLES \ 139 EXTENSION_TABLE(01) \ 140 EXTENSION_TABLE(02) 141 142 using namespace X86Disassembler; 143 144 /// needsModRMForDecode - Indicates whether a particular instruction requires a 145 /// ModR/M byte for the instruction to be properly decoded. For example, a 146 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 147 /// 0b11. 148 /// 149 /// @param form - The form of the instruction. 150 /// @return - true if the form implies that a ModR/M byte is required, false 151 /// otherwise. 152 static bool needsModRMForDecode(uint8_t form) { 153 if (form == X86Local::MRMDestReg || 154 form == X86Local::MRMDestMem || 155 form == X86Local::MRMSrcReg || 156 form == X86Local::MRMSrcMem || 157 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 158 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 159 return true; 160 else 161 return false; 162 } 163 164 /// isRegFormat - Indicates whether a particular form requires the Mod field of 165 /// the ModR/M byte to be 0b11. 166 /// 167 /// @param form - The form of the instruction. 168 /// @return - true if the form implies that Mod must be 0b11, false 169 /// otherwise. 170 static bool isRegFormat(uint8_t form) { 171 if (form == X86Local::MRMDestReg || 172 form == X86Local::MRMSrcReg || 173 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 174 return true; 175 else 176 return false; 177 } 178 179 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 180 /// Useful for switch statements and the like. 181 /// 182 /// @param init - A reference to the BitsInit to be decoded. 183 /// @return - The field, with the first bit in the BitsInit as the lowest 184 /// order bit. 185 static uint8_t byteFromBitsInit(BitsInit &init) { 186 int width = init.getNumBits(); 187 188 assert(width <= 8 && "Field is too large for uint8_t!"); 189 190 int index; 191 uint8_t mask = 0x01; 192 193 uint8_t ret = 0; 194 195 for (index = 0; index < width; index++) { 196 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 197 ret |= mask; 198 199 mask <<= 1; 200 } 201 202 return ret; 203 } 204 205 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 206 /// name of the field. 207 /// 208 /// @param rec - The record from which to extract the value. 209 /// @param name - The name of the field in the record. 210 /// @return - The field, as translated by byteFromBitsInit(). 211 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 212 BitsInit* bits = rec->getValueAsBitsInit(name); 213 return byteFromBitsInit(*bits); 214 } 215 216 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 217 const CodeGenInstruction &insn, 218 InstrUID uid) { 219 UID = uid; 220 221 Rec = insn.TheDef; 222 Name = Rec->getName(); 223 Spec = &tables.specForUID(UID); 224 225 if (!Rec->isSubClassOf("X86Inst")) { 226 ShouldBeEmitted = false; 227 return; 228 } 229 230 Prefix = byteFromRec(Rec, "Prefix"); 231 Opcode = byteFromRec(Rec, "Opcode"); 232 Form = byteFromRec(Rec, "FormBits"); 233 SegOvr = byteFromRec(Rec, "SegOvrBits"); 234 235 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 236 HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix"); 237 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 238 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 239 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 240 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 241 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 242 HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); 243 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 244 HasEVEXPrefix = Rec->getValueAsBit("hasEVEXPrefix"); 245 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); 246 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); 247 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); 248 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); 249 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 250 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 251 252 Name = Rec->getName(); 253 AsmString = Rec->getValueAsString("AsmString"); 254 255 Operands = &insn.Operands.OperandList; 256 257 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 258 (Name.find("CRC32") != Name.npos); 259 HasFROperands = hasFROperands(); 260 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); 261 262 // Check for 64-bit inst which does not require REX 263 Is32Bit = false; 264 Is64Bit = false; 265 // FIXME: Is there some better way to check for In64BitMode? 266 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 267 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 268 if (Predicates[i]->getName().find("Not64Bit") != Name.npos || 269 Predicates[i]->getName().find("In32Bit") != Name.npos) { 270 Is32Bit = true; 271 break; 272 } 273 if (Predicates[i]->getName().find("In64Bit") != Name.npos) { 274 Is64Bit = true; 275 break; 276 } 277 } 278 // FIXME: These instructions aren't marked as 64-bit in any way 279 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 280 Rec->getName() == "MASKMOVDQU64" || 281 Rec->getName() == "POPFS64" || 282 Rec->getName() == "POPGS64" || 283 Rec->getName() == "PUSHFS64" || 284 Rec->getName() == "PUSHGS64" || 285 Rec->getName() == "REX64_PREFIX" || 286 Rec->getName().find("MOV64") != Name.npos || 287 Rec->getName().find("PUSH64") != Name.npos || 288 Rec->getName().find("POP64") != Name.npos; 289 290 ShouldBeEmitted = true; 291 } 292 293 void RecognizableInstr::processInstr(DisassemblerTables &tables, 294 const CodeGenInstruction &insn, 295 InstrUID uid) 296 { 297 // Ignore "asm parser only" instructions. 298 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 299 return; 300 301 RecognizableInstr recogInstr(tables, insn, uid); 302 303 recogInstr.emitInstructionSpecifier(tables); 304 305 if (recogInstr.shouldBeEmitted()) 306 recogInstr.emitDecodePath(tables); 307 } 308 309 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ 310 (HasEVEX_K && HasEVEX_B ? n##_K_B : \ 311 (HasEVEX_KZ ? n##_KZ : \ 312 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) 313 314 InstructionContext RecognizableInstr::insnContext() const { 315 InstructionContext insnContext; 316 317 if (HasEVEXPrefix) { 318 if (HasVEX_LPrefix && HasEVEX_L2Prefix) { 319 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; 320 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); 321 } 322 // VEX_L & VEX_W 323 if (HasVEX_LPrefix && HasVEX_WPrefix) { 324 if (HasOpSizePrefix) 325 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); 326 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 327 insnContext = EVEX_KB(IC_EVEX_L_W_XS); 328 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 329 Prefix == X86Local::TAXD) 330 insnContext = EVEX_KB(IC_EVEX_L_W_XD); 331 else 332 insnContext = EVEX_KB(IC_EVEX_L_W); 333 } else if (HasVEX_LPrefix) { 334 // VEX_L 335 if (HasOpSizePrefix) 336 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); 337 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 338 insnContext = EVEX_KB(IC_EVEX_L_XS); 339 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 340 Prefix == X86Local::TAXD) 341 insnContext = EVEX_KB(IC_EVEX_L_XD); 342 else 343 insnContext = EVEX_KB(IC_EVEX_L); 344 } 345 else if (HasEVEX_L2Prefix && HasVEX_WPrefix) { 346 // EVEX_L2 & VEX_W 347 if (HasOpSizePrefix) 348 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); 349 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 350 insnContext = EVEX_KB(IC_EVEX_L2_W_XS); 351 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 352 Prefix == X86Local::TAXD) 353 insnContext = EVEX_KB(IC_EVEX_L2_W_XD); 354 else 355 insnContext = EVEX_KB(IC_EVEX_L2_W); 356 } else if (HasEVEX_L2Prefix) { 357 // EVEX_L2 358 if (HasOpSizePrefix) 359 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); 360 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 361 Prefix == X86Local::TAXD) 362 insnContext = EVEX_KB(IC_EVEX_L2_XD); 363 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 364 insnContext = EVEX_KB(IC_EVEX_L2_XS); 365 else 366 insnContext = EVEX_KB(IC_EVEX_L2); 367 } 368 else if (HasVEX_WPrefix) { 369 // VEX_W 370 if (HasOpSizePrefix) 371 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); 372 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 373 insnContext = EVEX_KB(IC_EVEX_W_XS); 374 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 375 Prefix == X86Local::TAXD) 376 insnContext = EVEX_KB(IC_EVEX_W_XD); 377 else 378 insnContext = EVEX_KB(IC_EVEX_W); 379 } 380 // No L, no W 381 else if (HasOpSizePrefix) 382 insnContext = EVEX_KB(IC_EVEX_OPSIZE); 383 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 384 Prefix == X86Local::TAXD) 385 insnContext = EVEX_KB(IC_EVEX_XD); 386 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 387 insnContext = EVEX_KB(IC_EVEX_XS); 388 else 389 insnContext = EVEX_KB(IC_EVEX); 390 /// eof EVEX 391 } else if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 392 if (HasVEX_LPrefix && HasVEX_WPrefix) { 393 if (HasOpSizePrefix) 394 insnContext = IC_VEX_L_W_OPSIZE; 395 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 396 insnContext = IC_VEX_L_W_XS; 397 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 398 Prefix == X86Local::TAXD) 399 insnContext = IC_VEX_L_W_XD; 400 else 401 insnContext = IC_VEX_L_W; 402 } else if (HasOpSizePrefix && HasVEX_LPrefix) 403 insnContext = IC_VEX_L_OPSIZE; 404 else if (HasOpSizePrefix && HasVEX_WPrefix) 405 insnContext = IC_VEX_W_OPSIZE; 406 else if (HasOpSizePrefix) 407 insnContext = IC_VEX_OPSIZE; 408 else if (HasVEX_LPrefix && 409 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 410 insnContext = IC_VEX_L_XS; 411 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 412 Prefix == X86Local::T8XD || 413 Prefix == X86Local::TAXD)) 414 insnContext = IC_VEX_L_XD; 415 else if (HasVEX_WPrefix && 416 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 417 insnContext = IC_VEX_W_XS; 418 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 419 Prefix == X86Local::T8XD || 420 Prefix == X86Local::TAXD)) 421 insnContext = IC_VEX_W_XD; 422 else if (HasVEX_WPrefix) 423 insnContext = IC_VEX_W; 424 else if (HasVEX_LPrefix) 425 insnContext = IC_VEX_L; 426 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 427 Prefix == X86Local::TAXD) 428 insnContext = IC_VEX_XD; 429 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 430 insnContext = IC_VEX_XS; 431 else 432 insnContext = IC_VEX; 433 } else if (Is64Bit || HasREX_WPrefix) { 434 if (HasREX_WPrefix && HasOpSizePrefix) 435 insnContext = IC_64BIT_REXW_OPSIZE; 436 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 437 Prefix == X86Local::T8XD || 438 Prefix == X86Local::TAXD)) 439 insnContext = IC_64BIT_XD_OPSIZE; 440 else if (HasOpSizePrefix && 441 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 442 insnContext = IC_64BIT_XS_OPSIZE; 443 else if (HasOpSizePrefix) 444 insnContext = IC_64BIT_OPSIZE; 445 else if (HasAdSizePrefix) 446 insnContext = IC_64BIT_ADSIZE; 447 else if (HasREX_WPrefix && 448 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 449 insnContext = IC_64BIT_REXW_XS; 450 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 451 Prefix == X86Local::T8XD || 452 Prefix == X86Local::TAXD)) 453 insnContext = IC_64BIT_REXW_XD; 454 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 455 Prefix == X86Local::TAXD) 456 insnContext = IC_64BIT_XD; 457 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 458 insnContext = IC_64BIT_XS; 459 else if (HasREX_WPrefix) 460 insnContext = IC_64BIT_REXW; 461 else 462 insnContext = IC_64BIT; 463 } else { 464 if (HasOpSizePrefix && (Prefix == X86Local::XD || 465 Prefix == X86Local::T8XD || 466 Prefix == X86Local::TAXD)) 467 insnContext = IC_XD_OPSIZE; 468 else if (HasOpSizePrefix && 469 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 470 insnContext = IC_XS_OPSIZE; 471 else if (HasOpSizePrefix) 472 insnContext = IC_OPSIZE; 473 else if (HasAdSizePrefix) 474 insnContext = IC_ADSIZE; 475 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 476 Prefix == X86Local::TAXD) 477 insnContext = IC_XD; 478 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 479 Prefix == X86Local::REP) 480 insnContext = IC_XS; 481 else 482 insnContext = IC; 483 } 484 485 return insnContext; 486 } 487 488 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 489 /////////////////// 490 // FILTER_STRONG 491 // 492 493 // Filter out intrinsics 494 495 assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions"); 496 497 if (Form == X86Local::Pseudo || 498 (IsCodeGenOnly && Name.find("_REV") == Name.npos && 499 Name.find("INC32") == Name.npos && Name.find("DEC32") == Name.npos)) 500 return FILTER_STRONG; 501 502 503 // Filter out artificial instructions but leave in the LOCK_PREFIX so it is 504 // printed as a separate "instruction". 505 506 if (Name.find("_Int") != Name.npos || 507 Name.find("Int_") != Name.npos) 508 return FILTER_STRONG; 509 510 // Filter out instructions with segment override prefixes. 511 // They're too messy to handle now and we'll special case them if needed. 512 513 if (SegOvr) 514 return FILTER_STRONG; 515 516 517 ///////////////// 518 // FILTER_WEAK 519 // 520 521 522 // Filter out instructions with a LOCK prefix; 523 // prefer forms that do not have the prefix 524 if (HasLockPrefix) 525 return FILTER_WEAK; 526 527 // Filter out alternate forms of AVX instructions 528 if (Name.find("_alt") != Name.npos || 529 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos && Name.find("r64r8") == Name.npos) || 530 Name.find("_64mr") != Name.npos || 531 Name.find("rr64") != Name.npos) 532 return FILTER_WEAK; 533 534 // Special cases. 535 536 if (Name == "PUSH64i16" || 537 Name == "MOVPQI2QImr" || 538 Name == "VMOVPQI2QImr" || 539 Name == "VMASKMOVDQU64") 540 return FILTER_WEAK; 541 542 // XACQUIRE and XRELEASE reuse REPNE and REP respectively. 543 // For now, just prefer the REP versions. 544 if (Name == "XACQUIRE_PREFIX" || 545 Name == "XRELEASE_PREFIX") 546 return FILTER_WEAK; 547 548 return FILTER_NORMAL; 549 } 550 551 bool RecognizableInstr::hasFROperands() const { 552 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 553 unsigned numOperands = OperandList.size(); 554 555 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 556 const std::string &recName = OperandList[operandIndex].Rec->getName(); 557 558 if (recName.find("FR") != recName.npos) 559 return true; 560 } 561 return false; 562 } 563 564 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, 565 unsigned &physicalOperandIndex, 566 unsigned &numPhysicalOperands, 567 const unsigned *operandMapping, 568 OperandEncoding (*encodingFromString) 569 (const std::string&, 570 bool hasOpSizePrefix)) { 571 if (optional) { 572 if (physicalOperandIndex >= numPhysicalOperands) 573 return; 574 } else { 575 assert(physicalOperandIndex < numPhysicalOperands); 576 } 577 578 while (operandMapping[operandIndex] != operandIndex) { 579 Spec->operands[operandIndex].encoding = ENCODING_DUP; 580 Spec->operands[operandIndex].type = 581 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 582 ++operandIndex; 583 } 584 585 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 586 587 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 588 HasOpSizePrefix); 589 Spec->operands[operandIndex].type = typeFromString(typeName, 590 IsSSE, 591 HasREX_WPrefix, 592 HasOpSizePrefix); 593 594 ++operandIndex; 595 ++physicalOperandIndex; 596 } 597 598 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 599 Spec->name = Name; 600 601 if (!ShouldBeEmitted) 602 return; 603 604 switch (filter()) { 605 case FILTER_WEAK: 606 Spec->filtered = true; 607 break; 608 case FILTER_STRONG: 609 ShouldBeEmitted = false; 610 return; 611 case FILTER_NORMAL: 612 break; 613 } 614 615 Spec->insnContext = insnContext(); 616 617 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 618 619 unsigned numOperands = OperandList.size(); 620 unsigned numPhysicalOperands = 0; 621 622 // operandMapping maps from operands in OperandList to their originals. 623 // If operandMapping[i] != i, then the entry is a duplicate. 624 unsigned operandMapping[X86_MAX_OPERANDS]; 625 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 626 627 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 628 if (OperandList[operandIndex].Constraints.size()) { 629 const CGIOperandList::ConstraintInfo &Constraint = 630 OperandList[operandIndex].Constraints[0]; 631 if (Constraint.isTied()) { 632 operandMapping[operandIndex] = operandIndex; 633 operandMapping[Constraint.getTiedOperand()] = operandIndex; 634 } else { 635 ++numPhysicalOperands; 636 operandMapping[operandIndex] = operandIndex; 637 } 638 } else { 639 ++numPhysicalOperands; 640 operandMapping[operandIndex] = operandIndex; 641 } 642 } 643 644 #define HANDLE_OPERAND(class) \ 645 handleOperand(false, \ 646 operandIndex, \ 647 physicalOperandIndex, \ 648 numPhysicalOperands, \ 649 operandMapping, \ 650 class##EncodingFromString); 651 652 #define HANDLE_OPTIONAL(class) \ 653 handleOperand(true, \ 654 operandIndex, \ 655 physicalOperandIndex, \ 656 numPhysicalOperands, \ 657 operandMapping, \ 658 class##EncodingFromString); 659 660 // operandIndex should always be < numOperands 661 unsigned operandIndex = 0; 662 // physicalOperandIndex should always be < numPhysicalOperands 663 unsigned physicalOperandIndex = 0; 664 665 switch (Form) { 666 case X86Local::RawFrm: 667 // Operand 1 (optional) is an address or immediate. 668 // Operand 2 (optional) is an immediate. 669 assert(numPhysicalOperands <= 2 && 670 "Unexpected number of operands for RawFrm"); 671 HANDLE_OPTIONAL(relocation) 672 HANDLE_OPTIONAL(immediate) 673 break; 674 case X86Local::AddRegFrm: 675 // Operand 1 is added to the opcode. 676 // Operand 2 (optional) is an address. 677 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 678 "Unexpected number of operands for AddRegFrm"); 679 HANDLE_OPERAND(opcodeModifier) 680 HANDLE_OPTIONAL(relocation) 681 break; 682 case X86Local::MRMDestReg: 683 // Operand 1 is a register operand in the R/M field. 684 // Operand 2 is a register operand in the Reg/Opcode field. 685 // - In AVX, there is a register operand in the VEX.vvvv field here - 686 // Operand 3 (optional) is an immediate. 687 if (HasVEX_4VPrefix) 688 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 689 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 690 else 691 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 692 "Unexpected number of operands for MRMDestRegFrm"); 693 694 HANDLE_OPERAND(rmRegister) 695 696 if (HasVEX_4VPrefix) 697 // FIXME: In AVX, the register below becomes the one encoded 698 // in ModRMVEX and the one above the one in the VEX.VVVV field 699 HANDLE_OPERAND(vvvvRegister) 700 701 HANDLE_OPERAND(roRegister) 702 HANDLE_OPTIONAL(immediate) 703 break; 704 case X86Local::MRMDestMem: 705 // Operand 1 is a memory operand (possibly SIB-extended) 706 // Operand 2 is a register operand in the Reg/Opcode field. 707 // - In AVX, there is a register operand in the VEX.vvvv field here - 708 // Operand 3 (optional) is an immediate. 709 if (HasVEX_4VPrefix) 710 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 711 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 712 else 713 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 714 "Unexpected number of operands for MRMDestMemFrm"); 715 HANDLE_OPERAND(memory) 716 717 if (HasEVEX_K) 718 HANDLE_OPERAND(writemaskRegister) 719 720 if (HasVEX_4VPrefix) 721 // FIXME: In AVX, the register below becomes the one encoded 722 // in ModRMVEX and the one above the one in the VEX.VVVV field 723 HANDLE_OPERAND(vvvvRegister) 724 725 HANDLE_OPERAND(roRegister) 726 HANDLE_OPTIONAL(immediate) 727 break; 728 case X86Local::MRMSrcReg: 729 // Operand 1 is a register operand in the Reg/Opcode field. 730 // Operand 2 is a register operand in the R/M field. 731 // - In AVX, there is a register operand in the VEX.vvvv field here - 732 // Operand 3 (optional) is an immediate. 733 // Operand 4 (optional) is an immediate. 734 735 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 736 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 737 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 738 else 739 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 && 740 "Unexpected number of operands for MRMSrcRegFrm"); 741 742 HANDLE_OPERAND(roRegister) 743 744 if (HasEVEX_K) 745 HANDLE_OPERAND(writemaskRegister) 746 747 if (HasVEX_4VPrefix) 748 // FIXME: In AVX, the register below becomes the one encoded 749 // in ModRMVEX and the one above the one in the VEX.VVVV field 750 HANDLE_OPERAND(vvvvRegister) 751 752 if (HasMemOp4Prefix) 753 HANDLE_OPERAND(immediate) 754 755 HANDLE_OPERAND(rmRegister) 756 757 if (HasVEX_4VOp3Prefix) 758 HANDLE_OPERAND(vvvvRegister) 759 760 if (!HasMemOp4Prefix) 761 HANDLE_OPTIONAL(immediate) 762 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 763 HANDLE_OPTIONAL(immediate) 764 break; 765 case X86Local::MRMSrcMem: 766 // Operand 1 is a register operand in the Reg/Opcode field. 767 // Operand 2 is a memory operand (possibly SIB-extended) 768 // - In AVX, there is a register operand in the VEX.vvvv field here - 769 // Operand 3 (optional) is an immediate. 770 771 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 772 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 773 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 774 else 775 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 776 "Unexpected number of operands for MRMSrcMemFrm"); 777 778 HANDLE_OPERAND(roRegister) 779 780 if (HasEVEX_K) 781 HANDLE_OPERAND(writemaskRegister) 782 783 if (HasVEX_4VPrefix) 784 // FIXME: In AVX, the register below becomes the one encoded 785 // in ModRMVEX and the one above the one in the VEX.VVVV field 786 HANDLE_OPERAND(vvvvRegister) 787 788 if (HasMemOp4Prefix) 789 HANDLE_OPERAND(immediate) 790 791 HANDLE_OPERAND(memory) 792 793 if (HasVEX_4VOp3Prefix) 794 HANDLE_OPERAND(vvvvRegister) 795 796 if (!HasMemOp4Prefix) 797 HANDLE_OPTIONAL(immediate) 798 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 799 break; 800 case X86Local::MRM0r: 801 case X86Local::MRM1r: 802 case X86Local::MRM2r: 803 case X86Local::MRM3r: 804 case X86Local::MRM4r: 805 case X86Local::MRM5r: 806 case X86Local::MRM6r: 807 case X86Local::MRM7r: 808 { 809 // Operand 1 is a register operand in the R/M field. 810 // Operand 2 (optional) is an immediate or relocation. 811 // Operand 3 (optional) is an immediate. 812 unsigned kOp = (HasEVEX_K) ? 1:0; 813 unsigned Op4v = (HasVEX_4VPrefix) ? 1:0; 814 if (numPhysicalOperands > 3 + kOp + Op4v) 815 llvm_unreachable("Unexpected number of operands for MRMnr"); 816 } 817 if (HasVEX_4VPrefix) 818 HANDLE_OPERAND(vvvvRegister) 819 820 if (HasEVEX_K) 821 HANDLE_OPERAND(writemaskRegister) 822 HANDLE_OPTIONAL(rmRegister) 823 HANDLE_OPTIONAL(relocation) 824 HANDLE_OPTIONAL(immediate) 825 break; 826 case X86Local::MRM0m: 827 case X86Local::MRM1m: 828 case X86Local::MRM2m: 829 case X86Local::MRM3m: 830 case X86Local::MRM4m: 831 case X86Local::MRM5m: 832 case X86Local::MRM6m: 833 case X86Local::MRM7m: 834 { 835 // Operand 1 is a memory operand (possibly SIB-extended) 836 // Operand 2 (optional) is an immediate or relocation. 837 unsigned kOp = (HasEVEX_K) ? 1:0; 838 unsigned Op4v = (HasVEX_4VPrefix) ? 1:0; 839 if (numPhysicalOperands < 1 + kOp + Op4v || 840 numPhysicalOperands > 2 + kOp + Op4v) 841 llvm_unreachable("Unexpected number of operands for MRMnm"); 842 } 843 if (HasVEX_4VPrefix) 844 HANDLE_OPERAND(vvvvRegister) 845 if (HasEVEX_K) 846 HANDLE_OPERAND(writemaskRegister) 847 HANDLE_OPERAND(memory) 848 HANDLE_OPTIONAL(relocation) 849 break; 850 case X86Local::RawFrmImm8: 851 // operand 1 is a 16-bit immediate 852 // operand 2 is an 8-bit immediate 853 assert(numPhysicalOperands == 2 && 854 "Unexpected number of operands for X86Local::RawFrmImm8"); 855 HANDLE_OPERAND(immediate) 856 HANDLE_OPERAND(immediate) 857 break; 858 case X86Local::RawFrmImm16: 859 // operand 1 is a 16-bit immediate 860 // operand 2 is a 16-bit immediate 861 HANDLE_OPERAND(immediate) 862 HANDLE_OPERAND(immediate) 863 break; 864 case X86Local::MRM_F8: 865 if (Opcode == 0xc6) { 866 assert(numPhysicalOperands == 1 && 867 "Unexpected number of operands for X86Local::MRM_F8"); 868 HANDLE_OPERAND(immediate) 869 } else if (Opcode == 0xc7) { 870 assert(numPhysicalOperands == 1 && 871 "Unexpected number of operands for X86Local::MRM_F8"); 872 HANDLE_OPERAND(relocation) 873 } 874 break; 875 case X86Local::MRMInitReg: 876 // Ignored. 877 break; 878 } 879 880 #undef HANDLE_OPERAND 881 #undef HANDLE_OPTIONAL 882 } 883 884 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 885 // Special cases where the LLVM tables are not complete 886 887 #define MAP(from, to) \ 888 case X86Local::MRM_##from: \ 889 filter = new ExactFilter(0x##from); \ 890 break; 891 892 OpcodeType opcodeType = (OpcodeType)-1; 893 894 ModRMFilter* filter = NULL; 895 uint8_t opcodeToSet = 0; 896 897 switch (Prefix) { 898 default: llvm_unreachable("Invalid prefix!"); 899 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 900 case X86Local::XD: 901 case X86Local::XS: 902 case X86Local::TB: 903 opcodeType = TWOBYTE; 904 905 switch (Opcode) { 906 default: 907 if (needsModRMForDecode(Form)) 908 filter = new ModFilter(isRegFormat(Form)); 909 else 910 filter = new DumbFilter(); 911 break; 912 #define EXTENSION_TABLE(n) case 0x##n: 913 TWO_BYTE_EXTENSION_TABLES 914 #undef EXTENSION_TABLE 915 switch (Form) { 916 default: 917 llvm_unreachable("Unhandled two-byte extended opcode"); 918 case X86Local::MRM0r: 919 case X86Local::MRM1r: 920 case X86Local::MRM2r: 921 case X86Local::MRM3r: 922 case X86Local::MRM4r: 923 case X86Local::MRM5r: 924 case X86Local::MRM6r: 925 case X86Local::MRM7r: 926 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 927 break; 928 case X86Local::MRM0m: 929 case X86Local::MRM1m: 930 case X86Local::MRM2m: 931 case X86Local::MRM3m: 932 case X86Local::MRM4m: 933 case X86Local::MRM5m: 934 case X86Local::MRM6m: 935 case X86Local::MRM7m: 936 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 937 break; 938 MRM_MAPPING 939 } // switch (Form) 940 break; 941 } // switch (Opcode) 942 opcodeToSet = Opcode; 943 break; 944 case X86Local::T8: 945 case X86Local::T8XD: 946 case X86Local::T8XS: 947 opcodeType = THREEBYTE_38; 948 switch (Opcode) { 949 default: 950 if (needsModRMForDecode(Form)) 951 filter = new ModFilter(isRegFormat(Form)); 952 else 953 filter = new DumbFilter(); 954 break; 955 #define EXTENSION_TABLE(n) case 0x##n: 956 THREE_BYTE_38_EXTENSION_TABLES 957 #undef EXTENSION_TABLE 958 switch (Form) { 959 default: 960 llvm_unreachable("Unhandled two-byte extended opcode"); 961 case X86Local::MRM0r: 962 case X86Local::MRM1r: 963 case X86Local::MRM2r: 964 case X86Local::MRM3r: 965 case X86Local::MRM4r: 966 case X86Local::MRM5r: 967 case X86Local::MRM6r: 968 case X86Local::MRM7r: 969 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 970 break; 971 case X86Local::MRM0m: 972 case X86Local::MRM1m: 973 case X86Local::MRM2m: 974 case X86Local::MRM3m: 975 case X86Local::MRM4m: 976 case X86Local::MRM5m: 977 case X86Local::MRM6m: 978 case X86Local::MRM7m: 979 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 980 break; 981 MRM_MAPPING 982 } // switch (Form) 983 break; 984 } // switch (Opcode) 985 opcodeToSet = Opcode; 986 break; 987 case X86Local::P_TA: 988 case X86Local::TAXD: 989 opcodeType = THREEBYTE_3A; 990 if (needsModRMForDecode(Form)) 991 filter = new ModFilter(isRegFormat(Form)); 992 else 993 filter = new DumbFilter(); 994 opcodeToSet = Opcode; 995 break; 996 case X86Local::A6: 997 opcodeType = THREEBYTE_A6; 998 if (needsModRMForDecode(Form)) 999 filter = new ModFilter(isRegFormat(Form)); 1000 else 1001 filter = new DumbFilter(); 1002 opcodeToSet = Opcode; 1003 break; 1004 case X86Local::A7: 1005 opcodeType = THREEBYTE_A7; 1006 if (needsModRMForDecode(Form)) 1007 filter = new ModFilter(isRegFormat(Form)); 1008 else 1009 filter = new DumbFilter(); 1010 opcodeToSet = Opcode; 1011 break; 1012 case X86Local::XOP8: 1013 opcodeType = XOP8_MAP; 1014 if (needsModRMForDecode(Form)) 1015 filter = new ModFilter(isRegFormat(Form)); 1016 else 1017 filter = new DumbFilter(); 1018 opcodeToSet = Opcode; 1019 break; 1020 case X86Local::XOP9: 1021 opcodeType = XOP9_MAP; 1022 switch (Opcode) { 1023 default: 1024 if (needsModRMForDecode(Form)) 1025 filter = new ModFilter(isRegFormat(Form)); 1026 else 1027 filter = new DumbFilter(); 1028 break; 1029 #define EXTENSION_TABLE(n) case 0x##n: 1030 XOP9_MAP_EXTENSION_TABLES 1031 #undef EXTENSION_TABLE 1032 switch (Form) { 1033 default: 1034 llvm_unreachable("Unhandled XOP9 extended opcode"); 1035 case X86Local::MRM0r: 1036 case X86Local::MRM1r: 1037 case X86Local::MRM2r: 1038 case X86Local::MRM3r: 1039 case X86Local::MRM4r: 1040 case X86Local::MRM5r: 1041 case X86Local::MRM6r: 1042 case X86Local::MRM7r: 1043 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1044 break; 1045 case X86Local::MRM0m: 1046 case X86Local::MRM1m: 1047 case X86Local::MRM2m: 1048 case X86Local::MRM3m: 1049 case X86Local::MRM4m: 1050 case X86Local::MRM5m: 1051 case X86Local::MRM6m: 1052 case X86Local::MRM7m: 1053 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1054 break; 1055 MRM_MAPPING 1056 } // switch (Form) 1057 break; 1058 } // switch (Opcode) 1059 opcodeToSet = Opcode; 1060 break; 1061 case X86Local::XOPA: 1062 opcodeType = XOPA_MAP; 1063 if (needsModRMForDecode(Form)) 1064 filter = new ModFilter(isRegFormat(Form)); 1065 else 1066 filter = new DumbFilter(); 1067 opcodeToSet = Opcode; 1068 break; 1069 case X86Local::D8: 1070 case X86Local::D9: 1071 case X86Local::DA: 1072 case X86Local::DB: 1073 case X86Local::DC: 1074 case X86Local::DD: 1075 case X86Local::DE: 1076 case X86Local::DF: 1077 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 1078 opcodeType = ONEBYTE; 1079 if (Form == X86Local::AddRegFrm) { 1080 Spec->modifierType = MODIFIER_MODRM; 1081 Spec->modifierBase = Opcode; 1082 filter = new AddRegEscapeFilter(Opcode); 1083 } else { 1084 filter = new EscapeFilter(true, Opcode); 1085 } 1086 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 1087 break; 1088 case X86Local::REP: 1089 case 0: 1090 opcodeType = ONEBYTE; 1091 switch (Opcode) { 1092 #define EXTENSION_TABLE(n) case 0x##n: 1093 ONE_BYTE_EXTENSION_TABLES 1094 #undef EXTENSION_TABLE 1095 switch (Form) { 1096 default: 1097 llvm_unreachable("Fell through the cracks of a single-byte " 1098 "extended opcode"); 1099 case X86Local::MRM0r: 1100 case X86Local::MRM1r: 1101 case X86Local::MRM2r: 1102 case X86Local::MRM3r: 1103 case X86Local::MRM4r: 1104 case X86Local::MRM5r: 1105 case X86Local::MRM6r: 1106 case X86Local::MRM7r: 1107 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1108 break; 1109 case X86Local::MRM0m: 1110 case X86Local::MRM1m: 1111 case X86Local::MRM2m: 1112 case X86Local::MRM3m: 1113 case X86Local::MRM4m: 1114 case X86Local::MRM5m: 1115 case X86Local::MRM6m: 1116 case X86Local::MRM7m: 1117 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1118 break; 1119 MRM_MAPPING 1120 } // switch (Form) 1121 break; 1122 case 0xd8: 1123 case 0xd9: 1124 case 0xda: 1125 case 0xdb: 1126 case 0xdc: 1127 case 0xdd: 1128 case 0xde: 1129 case 0xdf: 1130 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 1131 break; 1132 default: 1133 if (needsModRMForDecode(Form)) 1134 filter = new ModFilter(isRegFormat(Form)); 1135 else 1136 filter = new DumbFilter(); 1137 break; 1138 } // switch (Opcode) 1139 opcodeToSet = Opcode; 1140 } // switch (Prefix) 1141 1142 assert(opcodeType != (OpcodeType)-1 && 1143 "Opcode type not set"); 1144 assert(filter && "Filter not set"); 1145 1146 if (Form == X86Local::AddRegFrm) { 1147 if(Spec->modifierType != MODIFIER_MODRM) { 1148 assert(opcodeToSet < 0xf9 && 1149 "Not enough room for all ADDREG_FRM operands"); 1150 1151 uint8_t currentOpcode; 1152 1153 for (currentOpcode = opcodeToSet; 1154 currentOpcode < opcodeToSet + 8; 1155 ++currentOpcode) 1156 tables.setTableFields(opcodeType, 1157 insnContext(), 1158 currentOpcode, 1159 *filter, 1160 UID, Is32Bit, IgnoresVEX_L); 1161 1162 Spec->modifierType = MODIFIER_OPCODE; 1163 Spec->modifierBase = opcodeToSet; 1164 } else { 1165 // modifierBase was set where MODIFIER_MODRM was set 1166 tables.setTableFields(opcodeType, 1167 insnContext(), 1168 opcodeToSet, 1169 *filter, 1170 UID, Is32Bit, IgnoresVEX_L); 1171 } 1172 } else { 1173 tables.setTableFields(opcodeType, 1174 insnContext(), 1175 opcodeToSet, 1176 *filter, 1177 UID, Is32Bit, IgnoresVEX_L); 1178 1179 Spec->modifierType = MODIFIER_NONE; 1180 Spec->modifierBase = opcodeToSet; 1181 } 1182 1183 delete filter; 1184 1185 #undef MAP 1186 } 1187 1188 #define TYPE(str, type) if (s == str) return type; 1189 OperandType RecognizableInstr::typeFromString(const std::string &s, 1190 bool isSSE, 1191 bool hasREX_WPrefix, 1192 bool hasOpSizePrefix) { 1193 if (isSSE) { 1194 // For SSE instructions, we ignore the OpSize prefix and force operand 1195 // sizes. 1196 TYPE("GR16", TYPE_R16) 1197 TYPE("GR32", TYPE_R32) 1198 TYPE("GR64", TYPE_R64) 1199 } 1200 if(hasREX_WPrefix) { 1201 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1202 // is special. 1203 TYPE("GR32", TYPE_R32) 1204 } 1205 if(!hasOpSizePrefix) { 1206 // For instructions without an OpSize prefix, a declared 16-bit register or 1207 // immediate encoding is special. 1208 TYPE("GR16", TYPE_R16) 1209 TYPE("i16imm", TYPE_IMM16) 1210 } 1211 TYPE("i16mem", TYPE_Mv) 1212 TYPE("i16imm", TYPE_IMMv) 1213 TYPE("i16i8imm", TYPE_IMMv) 1214 TYPE("GR16", TYPE_Rv) 1215 TYPE("i32mem", TYPE_Mv) 1216 TYPE("i32imm", TYPE_IMMv) 1217 TYPE("i32i8imm", TYPE_IMM32) 1218 TYPE("u32u8imm", TYPE_IMM32) 1219 TYPE("GR32", TYPE_Rv) 1220 TYPE("GR32orGR64", TYPE_R32) 1221 TYPE("i64mem", TYPE_Mv) 1222 TYPE("i64i32imm", TYPE_IMM64) 1223 TYPE("i64i8imm", TYPE_IMM64) 1224 TYPE("GR64", TYPE_R64) 1225 TYPE("i8mem", TYPE_M8) 1226 TYPE("i8imm", TYPE_IMM8) 1227 TYPE("GR8", TYPE_R8) 1228 TYPE("VR128", TYPE_XMM128) 1229 TYPE("VR128X", TYPE_XMM128) 1230 TYPE("f128mem", TYPE_M128) 1231 TYPE("f256mem", TYPE_M256) 1232 TYPE("f512mem", TYPE_M512) 1233 TYPE("FR64", TYPE_XMM64) 1234 TYPE("FR64X", TYPE_XMM64) 1235 TYPE("f64mem", TYPE_M64FP) 1236 TYPE("sdmem", TYPE_M64FP) 1237 TYPE("FR32", TYPE_XMM32) 1238 TYPE("FR32X", TYPE_XMM32) 1239 TYPE("f32mem", TYPE_M32FP) 1240 TYPE("ssmem", TYPE_M32FP) 1241 TYPE("RST", TYPE_ST) 1242 TYPE("i128mem", TYPE_M128) 1243 TYPE("i256mem", TYPE_M256) 1244 TYPE("i512mem", TYPE_M512) 1245 TYPE("i64i32imm_pcrel", TYPE_REL64) 1246 TYPE("i16imm_pcrel", TYPE_REL16) 1247 TYPE("i32imm_pcrel", TYPE_REL32) 1248 TYPE("SSECC", TYPE_IMM3) 1249 TYPE("AVXCC", TYPE_IMM5) 1250 TYPE("brtarget", TYPE_RELv) 1251 TYPE("uncondbrtarget", TYPE_RELv) 1252 TYPE("brtarget8", TYPE_REL8) 1253 TYPE("f80mem", TYPE_M80FP) 1254 TYPE("lea32mem", TYPE_LEA) 1255 TYPE("lea64_32mem", TYPE_LEA) 1256 TYPE("lea64mem", TYPE_LEA) 1257 TYPE("VR64", TYPE_MM64) 1258 TYPE("i64imm", TYPE_IMMv) 1259 TYPE("opaque32mem", TYPE_M1616) 1260 TYPE("opaque48mem", TYPE_M1632) 1261 TYPE("opaque80mem", TYPE_M1664) 1262 TYPE("opaque512mem", TYPE_M512) 1263 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1264 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1265 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1266 TYPE("offset8", TYPE_MOFFS8) 1267 TYPE("offset16", TYPE_MOFFS16) 1268 TYPE("offset32", TYPE_MOFFS32) 1269 TYPE("offset64", TYPE_MOFFS64) 1270 TYPE("VR256", TYPE_XMM256) 1271 TYPE("VR256X", TYPE_XMM256) 1272 TYPE("VR512", TYPE_XMM512) 1273 TYPE("VK1", TYPE_VK1) 1274 TYPE("VK1WM", TYPE_VK1) 1275 TYPE("VK8", TYPE_VK8) 1276 TYPE("VK8WM", TYPE_VK8) 1277 TYPE("VK16", TYPE_VK16) 1278 TYPE("VK16WM", TYPE_VK16) 1279 TYPE("GR16_NOAX", TYPE_Rv) 1280 TYPE("GR32_NOAX", TYPE_Rv) 1281 TYPE("GR64_NOAX", TYPE_R64) 1282 TYPE("vx32mem", TYPE_M32) 1283 TYPE("vy32mem", TYPE_M32) 1284 TYPE("vz32mem", TYPE_M32) 1285 TYPE("vx64mem", TYPE_M64) 1286 TYPE("vy64mem", TYPE_M64) 1287 TYPE("vy64xmem", TYPE_M64) 1288 TYPE("vz64mem", TYPE_M64) 1289 errs() << "Unhandled type string " << s << "\n"; 1290 llvm_unreachable("Unhandled type string"); 1291 } 1292 #undef TYPE 1293 1294 #define ENCODING(str, encoding) if (s == str) return encoding; 1295 OperandEncoding RecognizableInstr::immediateEncodingFromString 1296 (const std::string &s, 1297 bool hasOpSizePrefix) { 1298 if(!hasOpSizePrefix) { 1299 // For instructions without an OpSize prefix, a declared 16-bit register or 1300 // immediate encoding is special. 1301 ENCODING("i16imm", ENCODING_IW) 1302 } 1303 ENCODING("i32i8imm", ENCODING_IB) 1304 ENCODING("u32u8imm", ENCODING_IB) 1305 ENCODING("SSECC", ENCODING_IB) 1306 ENCODING("AVXCC", ENCODING_IB) 1307 ENCODING("i16imm", ENCODING_Iv) 1308 ENCODING("i16i8imm", ENCODING_IB) 1309 ENCODING("i32imm", ENCODING_Iv) 1310 ENCODING("i64i32imm", ENCODING_ID) 1311 ENCODING("i64i8imm", ENCODING_IB) 1312 ENCODING("i8imm", ENCODING_IB) 1313 // This is not a typo. Instructions like BLENDVPD put 1314 // register IDs in 8-bit immediates nowadays. 1315 ENCODING("FR32", ENCODING_IB) 1316 ENCODING("FR64", ENCODING_IB) 1317 ENCODING("VR128", ENCODING_IB) 1318 ENCODING("VR256", ENCODING_IB) 1319 ENCODING("FR32X", ENCODING_IB) 1320 ENCODING("FR64X", ENCODING_IB) 1321 ENCODING("VR128X", ENCODING_IB) 1322 ENCODING("VR256X", ENCODING_IB) 1323 ENCODING("VR512", ENCODING_IB) 1324 errs() << "Unhandled immediate encoding " << s << "\n"; 1325 llvm_unreachable("Unhandled immediate encoding"); 1326 } 1327 1328 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1329 (const std::string &s, 1330 bool hasOpSizePrefix) { 1331 ENCODING("GR16", ENCODING_RM) 1332 ENCODING("GR32", ENCODING_RM) 1333 ENCODING("GR32orGR64", ENCODING_RM) 1334 ENCODING("GR64", ENCODING_RM) 1335 ENCODING("GR8", ENCODING_RM) 1336 ENCODING("VR128", ENCODING_RM) 1337 ENCODING("VR128X", ENCODING_RM) 1338 ENCODING("FR64", ENCODING_RM) 1339 ENCODING("FR32", ENCODING_RM) 1340 ENCODING("FR64X", ENCODING_RM) 1341 ENCODING("FR32X", ENCODING_RM) 1342 ENCODING("VR64", ENCODING_RM) 1343 ENCODING("VR256", ENCODING_RM) 1344 ENCODING("VR256X", ENCODING_RM) 1345 ENCODING("VR512", ENCODING_RM) 1346 ENCODING("VK1", ENCODING_RM) 1347 ENCODING("VK8", ENCODING_RM) 1348 ENCODING("VK16", ENCODING_RM) 1349 errs() << "Unhandled R/M register encoding " << s << "\n"; 1350 llvm_unreachable("Unhandled R/M register encoding"); 1351 } 1352 1353 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1354 (const std::string &s, 1355 bool hasOpSizePrefix) { 1356 ENCODING("GR16", ENCODING_REG) 1357 ENCODING("GR32", ENCODING_REG) 1358 ENCODING("GR32orGR64", ENCODING_REG) 1359 ENCODING("GR64", ENCODING_REG) 1360 ENCODING("GR8", ENCODING_REG) 1361 ENCODING("VR128", ENCODING_REG) 1362 ENCODING("FR64", ENCODING_REG) 1363 ENCODING("FR32", ENCODING_REG) 1364 ENCODING("VR64", ENCODING_REG) 1365 ENCODING("SEGMENT_REG", ENCODING_REG) 1366 ENCODING("DEBUG_REG", ENCODING_REG) 1367 ENCODING("CONTROL_REG", ENCODING_REG) 1368 ENCODING("VR256", ENCODING_REG) 1369 ENCODING("VR256X", ENCODING_REG) 1370 ENCODING("VR128X", ENCODING_REG) 1371 ENCODING("FR64X", ENCODING_REG) 1372 ENCODING("FR32X", ENCODING_REG) 1373 ENCODING("VR512", ENCODING_REG) 1374 ENCODING("VK1", ENCODING_REG) 1375 ENCODING("VK8", ENCODING_REG) 1376 ENCODING("VK16", ENCODING_REG) 1377 ENCODING("VK1WM", ENCODING_REG) 1378 ENCODING("VK8WM", ENCODING_REG) 1379 ENCODING("VK16WM", ENCODING_REG) 1380 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1381 llvm_unreachable("Unhandled reg/opcode register encoding"); 1382 } 1383 1384 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1385 (const std::string &s, 1386 bool hasOpSizePrefix) { 1387 ENCODING("GR32", ENCODING_VVVV) 1388 ENCODING("GR64", ENCODING_VVVV) 1389 ENCODING("FR32", ENCODING_VVVV) 1390 ENCODING("FR64", ENCODING_VVVV) 1391 ENCODING("VR128", ENCODING_VVVV) 1392 ENCODING("VR256", ENCODING_VVVV) 1393 ENCODING("FR32X", ENCODING_VVVV) 1394 ENCODING("FR64X", ENCODING_VVVV) 1395 ENCODING("VR128X", ENCODING_VVVV) 1396 ENCODING("VR256X", ENCODING_VVVV) 1397 ENCODING("VR512", ENCODING_VVVV) 1398 ENCODING("VK1", ENCODING_VVVV) 1399 ENCODING("VK8", ENCODING_VVVV) 1400 ENCODING("VK16", ENCODING_VVVV) 1401 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1402 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1403 } 1404 1405 OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString 1406 (const std::string &s, 1407 bool hasOpSizePrefix) { 1408 ENCODING("VK1WM", ENCODING_WRITEMASK) 1409 ENCODING("VK8WM", ENCODING_WRITEMASK) 1410 ENCODING("VK16WM", ENCODING_WRITEMASK) 1411 errs() << "Unhandled mask register encoding " << s << "\n"; 1412 llvm_unreachable("Unhandled mask register encoding"); 1413 } 1414 1415 OperandEncoding RecognizableInstr::memoryEncodingFromString 1416 (const std::string &s, 1417 bool hasOpSizePrefix) { 1418 ENCODING("i16mem", ENCODING_RM) 1419 ENCODING("i32mem", ENCODING_RM) 1420 ENCODING("i64mem", ENCODING_RM) 1421 ENCODING("i8mem", ENCODING_RM) 1422 ENCODING("ssmem", ENCODING_RM) 1423 ENCODING("sdmem", ENCODING_RM) 1424 ENCODING("f128mem", ENCODING_RM) 1425 ENCODING("f256mem", ENCODING_RM) 1426 ENCODING("f512mem", ENCODING_RM) 1427 ENCODING("f64mem", ENCODING_RM) 1428 ENCODING("f32mem", ENCODING_RM) 1429 ENCODING("i128mem", ENCODING_RM) 1430 ENCODING("i256mem", ENCODING_RM) 1431 ENCODING("i512mem", ENCODING_RM) 1432 ENCODING("f80mem", ENCODING_RM) 1433 ENCODING("lea32mem", ENCODING_RM) 1434 ENCODING("lea64_32mem", ENCODING_RM) 1435 ENCODING("lea64mem", ENCODING_RM) 1436 ENCODING("opaque32mem", ENCODING_RM) 1437 ENCODING("opaque48mem", ENCODING_RM) 1438 ENCODING("opaque80mem", ENCODING_RM) 1439 ENCODING("opaque512mem", ENCODING_RM) 1440 ENCODING("vx32mem", ENCODING_RM) 1441 ENCODING("vy32mem", ENCODING_RM) 1442 ENCODING("vz32mem", ENCODING_RM) 1443 ENCODING("vx64mem", ENCODING_RM) 1444 ENCODING("vy64mem", ENCODING_RM) 1445 ENCODING("vy64xmem", ENCODING_RM) 1446 ENCODING("vz64mem", ENCODING_RM) 1447 errs() << "Unhandled memory encoding " << s << "\n"; 1448 llvm_unreachable("Unhandled memory encoding"); 1449 } 1450 1451 OperandEncoding RecognizableInstr::relocationEncodingFromString 1452 (const std::string &s, 1453 bool hasOpSizePrefix) { 1454 if(!hasOpSizePrefix) { 1455 // For instructions without an OpSize prefix, a declared 16-bit register or 1456 // immediate encoding is special. 1457 ENCODING("i16imm", ENCODING_IW) 1458 } 1459 ENCODING("i16imm", ENCODING_Iv) 1460 ENCODING("i16i8imm", ENCODING_IB) 1461 ENCODING("i32imm", ENCODING_Iv) 1462 ENCODING("i32i8imm", ENCODING_IB) 1463 ENCODING("i64i32imm", ENCODING_ID) 1464 ENCODING("i64i8imm", ENCODING_IB) 1465 ENCODING("i8imm", ENCODING_IB) 1466 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1467 ENCODING("i16imm_pcrel", ENCODING_IW) 1468 ENCODING("i32imm_pcrel", ENCODING_ID) 1469 ENCODING("brtarget", ENCODING_Iv) 1470 ENCODING("brtarget8", ENCODING_IB) 1471 ENCODING("i64imm", ENCODING_IO) 1472 ENCODING("offset8", ENCODING_Ia) 1473 ENCODING("offset16", ENCODING_Ia) 1474 ENCODING("offset32", ENCODING_Ia) 1475 ENCODING("offset64", ENCODING_Ia) 1476 errs() << "Unhandled relocation encoding " << s << "\n"; 1477 llvm_unreachable("Unhandled relocation encoding"); 1478 } 1479 1480 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1481 (const std::string &s, 1482 bool hasOpSizePrefix) { 1483 ENCODING("RST", ENCODING_I) 1484 ENCODING("GR32", ENCODING_Rv) 1485 ENCODING("GR64", ENCODING_RO) 1486 ENCODING("GR16", ENCODING_Rv) 1487 ENCODING("GR8", ENCODING_RB) 1488 ENCODING("GR16_NOAX", ENCODING_Rv) 1489 ENCODING("GR32_NOAX", ENCODING_Rv) 1490 ENCODING("GR64_NOAX", ENCODING_RO) 1491 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1492 llvm_unreachable("Unhandled opcode modifier encoding"); 1493 } 1494 #undef ENCODING 1495