1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisassemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86RecognizableInstr.h"
18 #include "X86DisassemblerShared.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include <string>
22 
23 using namespace llvm;
24 using namespace X86Disassembler;
25 
26 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
27 ///   Useful for switch statements and the like.
28 ///
29 /// @param init - A reference to the BitsInit to be decoded.
30 /// @return     - The field, with the first bit in the BitsInit as the lowest
31 ///               order bit.
32 static uint8_t byteFromBitsInit(BitsInit &init) {
33   int width = init.getNumBits();
34 
35   assert(width <= 8 && "Field is too large for uint8_t!");
36 
37   int     index;
38   uint8_t mask = 0x01;
39 
40   uint8_t ret = 0;
41 
42   for (index = 0; index < width; index++) {
43     if (cast<BitInit>(init.getBit(index))->getValue())
44       ret |= mask;
45 
46     mask <<= 1;
47   }
48 
49   return ret;
50 }
51 
52 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
53 ///   name of the field.
54 ///
55 /// @param rec  - The record from which to extract the value.
56 /// @param name - The name of the field in the record.
57 /// @return     - The field, as translated by byteFromBitsInit().
58 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
59   BitsInit* bits = rec->getValueAsBitsInit(name);
60   return byteFromBitsInit(*bits);
61 }
62 
63 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
64                                      const CodeGenInstruction &insn,
65                                      InstrUID uid) {
66   UID = uid;
67 
68   Rec = insn.TheDef;
69   Name = Rec->getName();
70   Spec = &tables.specForUID(UID);
71 
72   if (!Rec->isSubClassOf("X86Inst")) {
73     ShouldBeEmitted = false;
74     return;
75   }
76 
77   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
78   OpMap    = byteFromRec(Rec, "OpMapBits");
79   Opcode   = byteFromRec(Rec, "Opcode");
80   Form     = byteFromRec(Rec, "FormBits");
81   Encoding = byteFromRec(Rec, "OpEncBits");
82 
83   OpSize             = byteFromRec(Rec, "OpSizeBits");
84   AdSize             = byteFromRec(Rec, "AdSizeBits");
85   HasREX_WPrefix     = Rec->getValueAsBit("hasREX_WPrefix");
86   HasVEX_4V          = Rec->getValueAsBit("hasVEX_4V");
87   VEX_WPrefix        = byteFromRec(Rec,"VEX_WPrefix");
88   IgnoresVEX_L       = Rec->getValueAsBit("ignoresVEX_L");
89   HasEVEX_L2Prefix   = Rec->getValueAsBit("hasEVEX_L2");
90   HasEVEX_K          = Rec->getValueAsBit("hasEVEX_K");
91   HasEVEX_KZ         = Rec->getValueAsBit("hasEVEX_Z");
92   HasEVEX_B          = Rec->getValueAsBit("hasEVEX_B");
93   IsCodeGenOnly      = Rec->getValueAsBit("isCodeGenOnly");
94   ForceDisassemble   = Rec->getValueAsBit("ForceDisassemble");
95   CD8_Scale          = byteFromRec(Rec, "CD8_Scale");
96 
97   Name      = Rec->getName();
98 
99   Operands = &insn.Operands.OperandList;
100 
101   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
102 
103   EncodeRC = HasEVEX_B &&
104              (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
105 
106   // Check for 64-bit inst which does not require REX
107   Is32Bit = false;
108   Is64Bit = false;
109   // FIXME: Is there some better way to check for In64BitMode?
110   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
111   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
112     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
113 	Predicates[i]->getName().find("In32Bit") != Name.npos) {
114       Is32Bit = true;
115       break;
116     }
117     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
118       Is64Bit = true;
119       break;
120     }
121   }
122 
123   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
124     ShouldBeEmitted = false;
125     return;
126   }
127 
128   // Special case since there is no attribute class for 64-bit and VEX
129   if (Name == "VMASKMOVDQU64") {
130     ShouldBeEmitted = false;
131     return;
132   }
133 
134   ShouldBeEmitted  = true;
135 }
136 
137 void RecognizableInstr::processInstr(DisassemblerTables &tables,
138                                      const CodeGenInstruction &insn,
139                                      InstrUID uid)
140 {
141   // Ignore "asm parser only" instructions.
142   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
143     return;
144 
145   RecognizableInstr recogInstr(tables, insn, uid);
146 
147   if (recogInstr.shouldBeEmitted()) {
148     recogInstr.emitInstructionSpecifier();
149     recogInstr.emitDecodePath(tables);
150   }
151 }
152 
153 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
154                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
155                     (HasEVEX_KZ ? n##_KZ : \
156                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
157 
158 InstructionContext RecognizableInstr::insnContext() const {
159   InstructionContext insnContext;
160 
161   if (Encoding == X86Local::EVEX) {
162     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
163       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
164       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
165     }
166     // VEX_L & VEX_W
167     if (!EncodeRC && HasVEX_LPrefix && VEX_WPrefix == X86Local::VEX_W1) {
168       if (OpPrefix == X86Local::PD)
169         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
170       else if (OpPrefix == X86Local::XS)
171         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
172       else if (OpPrefix == X86Local::XD)
173         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
174       else if (OpPrefix == X86Local::PS)
175         insnContext = EVEX_KB(IC_EVEX_L_W);
176       else {
177         errs() << "Instruction does not use a prefix: " << Name << "\n";
178         llvm_unreachable("Invalid prefix");
179       }
180     } else if (!EncodeRC && HasVEX_LPrefix) {
181       // VEX_L
182       if (OpPrefix == X86Local::PD)
183         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
184       else if (OpPrefix == X86Local::XS)
185         insnContext = EVEX_KB(IC_EVEX_L_XS);
186       else if (OpPrefix == X86Local::XD)
187         insnContext = EVEX_KB(IC_EVEX_L_XD);
188       else if (OpPrefix == X86Local::PS)
189         insnContext = EVEX_KB(IC_EVEX_L);
190       else {
191         errs() << "Instruction does not use a prefix: " << Name << "\n";
192         llvm_unreachable("Invalid prefix");
193       }
194     } else if (!EncodeRC && HasEVEX_L2Prefix &&
195                VEX_WPrefix == X86Local::VEX_W1) {
196       // EVEX_L2 & VEX_W
197       if (OpPrefix == X86Local::PD)
198         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
199       else if (OpPrefix == X86Local::XS)
200         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
201       else if (OpPrefix == X86Local::XD)
202         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
203       else if (OpPrefix == X86Local::PS)
204         insnContext = EVEX_KB(IC_EVEX_L2_W);
205       else {
206         errs() << "Instruction does not use a prefix: " << Name << "\n";
207         llvm_unreachable("Invalid prefix");
208       }
209     } else if (!EncodeRC && HasEVEX_L2Prefix) {
210       // EVEX_L2
211       if (OpPrefix == X86Local::PD)
212         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
213       else if (OpPrefix == X86Local::XD)
214         insnContext = EVEX_KB(IC_EVEX_L2_XD);
215       else if (OpPrefix == X86Local::XS)
216         insnContext = EVEX_KB(IC_EVEX_L2_XS);
217       else if (OpPrefix == X86Local::PS)
218         insnContext = EVEX_KB(IC_EVEX_L2);
219       else {
220         errs() << "Instruction does not use a prefix: " << Name << "\n";
221         llvm_unreachable("Invalid prefix");
222       }
223     }
224     else if (VEX_WPrefix == X86Local::VEX_W1) {
225       // VEX_W
226       if (OpPrefix == X86Local::PD)
227         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
228       else if (OpPrefix == X86Local::XS)
229         insnContext = EVEX_KB(IC_EVEX_W_XS);
230       else if (OpPrefix == X86Local::XD)
231         insnContext = EVEX_KB(IC_EVEX_W_XD);
232       else if (OpPrefix == X86Local::PS)
233         insnContext = EVEX_KB(IC_EVEX_W);
234       else {
235         errs() << "Instruction does not use a prefix: " << Name << "\n";
236         llvm_unreachable("Invalid prefix");
237       }
238     }
239     // No L, no W
240     else if (OpPrefix == X86Local::PD)
241       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
242     else if (OpPrefix == X86Local::XD)
243       insnContext = EVEX_KB(IC_EVEX_XD);
244     else if (OpPrefix == X86Local::XS)
245       insnContext = EVEX_KB(IC_EVEX_XS);
246     else if (OpPrefix == X86Local::PS)
247       insnContext = EVEX_KB(IC_EVEX);
248     else {
249       errs() << "Instruction does not use a prefix: " << Name << "\n";
250       llvm_unreachable("Invalid prefix");
251     }
252     /// eof EVEX
253   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
254     if (HasVEX_LPrefix && VEX_WPrefix == X86Local::VEX_W1) {
255       if (OpPrefix == X86Local::PD)
256         insnContext = IC_VEX_L_W_OPSIZE;
257       else if (OpPrefix == X86Local::XS)
258         insnContext = IC_VEX_L_W_XS;
259       else if (OpPrefix == X86Local::XD)
260         insnContext = IC_VEX_L_W_XD;
261       else if (OpPrefix == X86Local::PS)
262         insnContext = IC_VEX_L_W;
263       else {
264         errs() << "Instruction does not use a prefix: " << Name << "\n";
265         llvm_unreachable("Invalid prefix");
266       }
267     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
268       insnContext = IC_VEX_L_OPSIZE;
269     else if (OpPrefix == X86Local::PD && VEX_WPrefix == X86Local::VEX_W1)
270       insnContext = IC_VEX_W_OPSIZE;
271     else if (OpPrefix == X86Local::PD)
272       insnContext = IC_VEX_OPSIZE;
273     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
274       insnContext = IC_VEX_L_XS;
275     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
276       insnContext = IC_VEX_L_XD;
277     else if (VEX_WPrefix == X86Local::VEX_W1 && OpPrefix == X86Local::XS)
278       insnContext = IC_VEX_W_XS;
279     else if (VEX_WPrefix == X86Local::VEX_W1 && OpPrefix == X86Local::XD)
280       insnContext = IC_VEX_W_XD;
281     else if (VEX_WPrefix == X86Local::VEX_W1 && OpPrefix == X86Local::PS)
282       insnContext = IC_VEX_W;
283     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
284       insnContext = IC_VEX_L;
285     else if (OpPrefix == X86Local::XD)
286       insnContext = IC_VEX_XD;
287     else if (OpPrefix == X86Local::XS)
288       insnContext = IC_VEX_XS;
289     else if (OpPrefix == X86Local::PS)
290       insnContext = IC_VEX;
291     else {
292       errs() << "Instruction does not use a prefix: " << Name << "\n";
293       llvm_unreachable("Invalid prefix");
294     }
295   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
296     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
297       insnContext = IC_64BIT_REXW_OPSIZE;
298     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
299       insnContext = IC_64BIT_REXW_ADSIZE;
300     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
301       insnContext = IC_64BIT_XD_OPSIZE;
302     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
303       insnContext = IC_64BIT_XS_OPSIZE;
304     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
305       insnContext = IC_64BIT_OPSIZE_ADSIZE;
306     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
307       insnContext = IC_64BIT_OPSIZE;
308     else if (AdSize == X86Local::AdSize32)
309       insnContext = IC_64BIT_ADSIZE;
310     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
311       insnContext = IC_64BIT_REXW_XS;
312     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
313       insnContext = IC_64BIT_REXW_XD;
314     else if (OpPrefix == X86Local::XD)
315       insnContext = IC_64BIT_XD;
316     else if (OpPrefix == X86Local::XS)
317       insnContext = IC_64BIT_XS;
318     else if (HasREX_WPrefix)
319       insnContext = IC_64BIT_REXW;
320     else
321       insnContext = IC_64BIT;
322   } else {
323     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
324       insnContext = IC_XD_OPSIZE;
325     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
326       insnContext = IC_XS_OPSIZE;
327     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
328       insnContext = IC_XD_ADSIZE;
329     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
330       insnContext = IC_XS_ADSIZE;
331     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
332       insnContext = IC_OPSIZE_ADSIZE;
333     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
334       insnContext = IC_OPSIZE;
335     else if (AdSize == X86Local::AdSize16)
336       insnContext = IC_ADSIZE;
337     else if (OpPrefix == X86Local::XD)
338       insnContext = IC_XD;
339     else if (OpPrefix == X86Local::XS)
340       insnContext = IC_XS;
341     else
342       insnContext = IC;
343   }
344 
345   return insnContext;
346 }
347 
348 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
349   // The scaling factor for AVX512 compressed displacement encoding is an
350   // instruction attribute.  Adjust the ModRM encoding type to include the
351   // scale for compressed displacement.
352   if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB) ||CD8_Scale == 0)
353     return;
354   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
355   assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
356           (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
357          "Invalid CDisp scaling");
358 }
359 
360 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
361                                       unsigned &physicalOperandIndex,
362                                       unsigned numPhysicalOperands,
363                                       const unsigned *operandMapping,
364                                       OperandEncoding (*encodingFromString)
365                                         (const std::string&,
366                                          uint8_t OpSize)) {
367   if (optional) {
368     if (physicalOperandIndex >= numPhysicalOperands)
369       return;
370   } else {
371     assert(physicalOperandIndex < numPhysicalOperands);
372   }
373 
374   while (operandMapping[operandIndex] != operandIndex) {
375     Spec->operands[operandIndex].encoding = ENCODING_DUP;
376     Spec->operands[operandIndex].type =
377       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
378     ++operandIndex;
379   }
380 
381   StringRef typeName = (*Operands)[operandIndex].Rec->getName();
382 
383   OperandEncoding encoding = encodingFromString(typeName, OpSize);
384   // Adjust the encoding type for an operand based on the instruction.
385   adjustOperandEncoding(encoding);
386   Spec->operands[operandIndex].encoding = encoding;
387   Spec->operands[operandIndex].type = typeFromString(typeName,
388                                                      HasREX_WPrefix, OpSize);
389 
390   ++operandIndex;
391   ++physicalOperandIndex;
392 }
393 
394 void RecognizableInstr::emitInstructionSpecifier() {
395   Spec->name       = Name;
396 
397   Spec->insnContext = insnContext();
398 
399   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
400 
401   unsigned numOperands = OperandList.size();
402   unsigned numPhysicalOperands = 0;
403 
404   // operandMapping maps from operands in OperandList to their originals.
405   // If operandMapping[i] != i, then the entry is a duplicate.
406   unsigned operandMapping[X86_MAX_OPERANDS];
407   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
408 
409   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
410     if (!OperandList[operandIndex].Constraints.empty()) {
411       const CGIOperandList::ConstraintInfo &Constraint =
412         OperandList[operandIndex].Constraints[0];
413       if (Constraint.isTied()) {
414         operandMapping[operandIndex] = operandIndex;
415         operandMapping[Constraint.getTiedOperand()] = operandIndex;
416       } else {
417         ++numPhysicalOperands;
418         operandMapping[operandIndex] = operandIndex;
419       }
420     } else {
421       ++numPhysicalOperands;
422       operandMapping[operandIndex] = operandIndex;
423     }
424   }
425 
426 #define HANDLE_OPERAND(class)               \
427   handleOperand(false,                      \
428                 operandIndex,               \
429                 physicalOperandIndex,       \
430                 numPhysicalOperands,        \
431                 operandMapping,             \
432                 class##EncodingFromString);
433 
434 #define HANDLE_OPTIONAL(class)              \
435   handleOperand(true,                       \
436                 operandIndex,               \
437                 physicalOperandIndex,       \
438                 numPhysicalOperands,        \
439                 operandMapping,             \
440                 class##EncodingFromString);
441 
442   // operandIndex should always be < numOperands
443   unsigned operandIndex = 0;
444   // physicalOperandIndex should always be < numPhysicalOperands
445   unsigned physicalOperandIndex = 0;
446 
447 #ifndef NDEBUG
448   // Given the set of prefix bits, how many additional operands does the
449   // instruction have?
450   unsigned additionalOperands = 0;
451   if (HasVEX_4V)
452     ++additionalOperands;
453   if (HasEVEX_K)
454     ++additionalOperands;
455 #endif
456 
457   switch (Form) {
458   default: llvm_unreachable("Unhandled form");
459   case X86Local::RawFrmSrc:
460     HANDLE_OPERAND(relocation);
461     return;
462   case X86Local::RawFrmDst:
463     HANDLE_OPERAND(relocation);
464     return;
465   case X86Local::RawFrmDstSrc:
466     HANDLE_OPERAND(relocation);
467     HANDLE_OPERAND(relocation);
468     return;
469   case X86Local::RawFrm:
470     // Operand 1 (optional) is an address or immediate.
471     assert(numPhysicalOperands <= 1 &&
472            "Unexpected number of operands for RawFrm");
473     HANDLE_OPTIONAL(relocation)
474     break;
475   case X86Local::RawFrmMemOffs:
476     // Operand 1 is an address.
477     HANDLE_OPERAND(relocation);
478     break;
479   case X86Local::AddRegFrm:
480     // Operand 1 is added to the opcode.
481     // Operand 2 (optional) is an address.
482     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
483            "Unexpected number of operands for AddRegFrm");
484     HANDLE_OPERAND(opcodeModifier)
485     HANDLE_OPTIONAL(relocation)
486     break;
487   case X86Local::MRMDestReg:
488     // Operand 1 is a register operand in the R/M field.
489     // - In AVX512 there may be a mask operand here -
490     // Operand 2 is a register operand in the Reg/Opcode field.
491     // - In AVX, there is a register operand in the VEX.vvvv field here -
492     // Operand 3 (optional) is an immediate.
493     assert(numPhysicalOperands >= 2 + additionalOperands &&
494            numPhysicalOperands <= 3 + additionalOperands &&
495            "Unexpected number of operands for MRMDestRegFrm");
496 
497     HANDLE_OPERAND(rmRegister)
498     if (HasEVEX_K)
499       HANDLE_OPERAND(writemaskRegister)
500 
501     if (HasVEX_4V)
502       // FIXME: In AVX, the register below becomes the one encoded
503       // in ModRMVEX and the one above the one in the VEX.VVVV field
504       HANDLE_OPERAND(vvvvRegister)
505 
506     HANDLE_OPERAND(roRegister)
507     HANDLE_OPTIONAL(immediate)
508     break;
509   case X86Local::MRMDestMem:
510     // Operand 1 is a memory operand (possibly SIB-extended)
511     // Operand 2 is a register operand in the Reg/Opcode field.
512     // - In AVX, there is a register operand in the VEX.vvvv field here -
513     // Operand 3 (optional) is an immediate.
514     assert(numPhysicalOperands >= 2 + additionalOperands &&
515            numPhysicalOperands <= 3 + additionalOperands &&
516            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
517 
518     HANDLE_OPERAND(memory)
519 
520     if (HasEVEX_K)
521       HANDLE_OPERAND(writemaskRegister)
522 
523     if (HasVEX_4V)
524       // FIXME: In AVX, the register below becomes the one encoded
525       // in ModRMVEX and the one above the one in the VEX.VVVV field
526       HANDLE_OPERAND(vvvvRegister)
527 
528     HANDLE_OPERAND(roRegister)
529     HANDLE_OPTIONAL(immediate)
530     break;
531   case X86Local::MRMSrcReg:
532     // Operand 1 is a register operand in the Reg/Opcode field.
533     // Operand 2 is a register operand in the R/M field.
534     // - In AVX, there is a register operand in the VEX.vvvv field here -
535     // Operand 3 (optional) is an immediate.
536     // Operand 4 (optional) is an immediate.
537 
538     assert(numPhysicalOperands >= 2 + additionalOperands &&
539            numPhysicalOperands <= 4 + additionalOperands &&
540            "Unexpected number of operands for MRMSrcRegFrm");
541 
542     HANDLE_OPERAND(roRegister)
543 
544     if (HasEVEX_K)
545       HANDLE_OPERAND(writemaskRegister)
546 
547     if (HasVEX_4V)
548       // FIXME: In AVX, the register below becomes the one encoded
549       // in ModRMVEX and the one above the one in the VEX.VVVV field
550       HANDLE_OPERAND(vvvvRegister)
551 
552     HANDLE_OPERAND(rmRegister)
553     HANDLE_OPTIONAL(immediate)
554     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
555     HANDLE_OPTIONAL(immediate)
556     break;
557   case X86Local::MRMSrcReg4VOp3:
558     assert(numPhysicalOperands == 3 &&
559            "Unexpected number of operands for MRMSrcReg4VOp3Frm");
560     HANDLE_OPERAND(roRegister)
561     HANDLE_OPERAND(rmRegister)
562     HANDLE_OPERAND(vvvvRegister)
563     break;
564   case X86Local::MRMSrcRegOp4:
565     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
566            "Unexpected number of operands for MRMSrcRegOp4Frm");
567     HANDLE_OPERAND(roRegister)
568     HANDLE_OPERAND(vvvvRegister)
569     HANDLE_OPERAND(immediate) // Register in imm[7:4]
570     HANDLE_OPERAND(rmRegister)
571     HANDLE_OPTIONAL(immediate)
572     break;
573   case X86Local::MRMSrcMem:
574     // Operand 1 is a register operand in the Reg/Opcode field.
575     // Operand 2 is a memory operand (possibly SIB-extended)
576     // - In AVX, there is a register operand in the VEX.vvvv field here -
577     // Operand 3 (optional) is an immediate.
578 
579     assert(numPhysicalOperands >= 2 + additionalOperands &&
580            numPhysicalOperands <= 4 + additionalOperands &&
581            "Unexpected number of operands for MRMSrcMemFrm");
582 
583     HANDLE_OPERAND(roRegister)
584 
585     if (HasEVEX_K)
586       HANDLE_OPERAND(writemaskRegister)
587 
588     if (HasVEX_4V)
589       // FIXME: In AVX, the register below becomes the one encoded
590       // in ModRMVEX and the one above the one in the VEX.VVVV field
591       HANDLE_OPERAND(vvvvRegister)
592 
593     HANDLE_OPERAND(memory)
594     HANDLE_OPTIONAL(immediate)
595     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
596     break;
597   case X86Local::MRMSrcMem4VOp3:
598     assert(numPhysicalOperands == 3 &&
599            "Unexpected number of operands for MRMSrcMem4VOp3Frm");
600     HANDLE_OPERAND(roRegister)
601     HANDLE_OPERAND(memory)
602     HANDLE_OPERAND(vvvvRegister)
603     break;
604   case X86Local::MRMSrcMemOp4:
605     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
606            "Unexpected number of operands for MRMSrcMemOp4Frm");
607     HANDLE_OPERAND(roRegister)
608     HANDLE_OPERAND(vvvvRegister)
609     HANDLE_OPERAND(immediate) // Register in imm[7:4]
610     HANDLE_OPERAND(memory)
611     HANDLE_OPTIONAL(immediate)
612     break;
613   case X86Local::MRMXr:
614   case X86Local::MRM0r:
615   case X86Local::MRM1r:
616   case X86Local::MRM2r:
617   case X86Local::MRM3r:
618   case X86Local::MRM4r:
619   case X86Local::MRM5r:
620   case X86Local::MRM6r:
621   case X86Local::MRM7r:
622     // Operand 1 is a register operand in the R/M field.
623     // Operand 2 (optional) is an immediate or relocation.
624     // Operand 3 (optional) is an immediate.
625     assert(numPhysicalOperands >= 0 + additionalOperands &&
626            numPhysicalOperands <= 3 + additionalOperands &&
627            "Unexpected number of operands for MRMnr");
628 
629     if (HasVEX_4V)
630       HANDLE_OPERAND(vvvvRegister)
631 
632     if (HasEVEX_K)
633       HANDLE_OPERAND(writemaskRegister)
634     HANDLE_OPTIONAL(rmRegister)
635     HANDLE_OPTIONAL(relocation)
636     HANDLE_OPTIONAL(immediate)
637     break;
638   case X86Local::MRMXm:
639   case X86Local::MRM0m:
640   case X86Local::MRM1m:
641   case X86Local::MRM2m:
642   case X86Local::MRM3m:
643   case X86Local::MRM4m:
644   case X86Local::MRM5m:
645   case X86Local::MRM6m:
646   case X86Local::MRM7m:
647     // Operand 1 is a memory operand (possibly SIB-extended)
648     // Operand 2 (optional) is an immediate or relocation.
649     assert(numPhysicalOperands >= 1 + additionalOperands &&
650            numPhysicalOperands <= 2 + additionalOperands &&
651            "Unexpected number of operands for MRMnm");
652 
653     if (HasVEX_4V)
654       HANDLE_OPERAND(vvvvRegister)
655     if (HasEVEX_K)
656       HANDLE_OPERAND(writemaskRegister)
657     HANDLE_OPERAND(memory)
658     HANDLE_OPTIONAL(relocation)
659     break;
660   case X86Local::RawFrmImm8:
661     // operand 1 is a 16-bit immediate
662     // operand 2 is an 8-bit immediate
663     assert(numPhysicalOperands == 2 &&
664            "Unexpected number of operands for X86Local::RawFrmImm8");
665     HANDLE_OPERAND(immediate)
666     HANDLE_OPERAND(immediate)
667     break;
668   case X86Local::RawFrmImm16:
669     // operand 1 is a 16-bit immediate
670     // operand 2 is a 16-bit immediate
671     HANDLE_OPERAND(immediate)
672     HANDLE_OPERAND(immediate)
673     break;
674 #define MAP(from, to) case X86Local::MRM_##from:
675   X86_INSTR_MRM_MAPPING
676 #undef MAP
677     HANDLE_OPTIONAL(relocation)
678     break;
679   }
680 
681 #undef HANDLE_OPERAND
682 #undef HANDLE_OPTIONAL
683 }
684 
685 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
686   // Special cases where the LLVM tables are not complete
687 
688 #define MAP(from, to)                     \
689   case X86Local::MRM_##from:
690 
691   llvm::Optional<OpcodeType> opcodeType;
692   switch (OpMap) {
693   default: llvm_unreachable("Invalid map!");
694   case X86Local::OB:        opcodeType = ONEBYTE;       break;
695   case X86Local::TB:        opcodeType = TWOBYTE;       break;
696   case X86Local::T8:        opcodeType = THREEBYTE_38;  break;
697   case X86Local::TA:        opcodeType = THREEBYTE_3A;  break;
698   case X86Local::XOP8:      opcodeType = XOP8_MAP;      break;
699   case X86Local::XOP9:      opcodeType = XOP9_MAP;      break;
700   case X86Local::XOPA:      opcodeType = XOPA_MAP;      break;
701   case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
702   }
703 
704   std::unique_ptr<ModRMFilter> filter;
705   switch (Form) {
706   default: llvm_unreachable("Invalid form!");
707   case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
708   case X86Local::RawFrm:
709   case X86Local::AddRegFrm:
710   case X86Local::RawFrmMemOffs:
711   case X86Local::RawFrmSrc:
712   case X86Local::RawFrmDst:
713   case X86Local::RawFrmDstSrc:
714   case X86Local::RawFrmImm8:
715   case X86Local::RawFrmImm16:
716     filter = llvm::make_unique<DumbFilter>();
717     break;
718   case X86Local::MRMDestReg:
719   case X86Local::MRMSrcReg:
720   case X86Local::MRMSrcReg4VOp3:
721   case X86Local::MRMSrcRegOp4:
722   case X86Local::MRMXr:
723     filter = llvm::make_unique<ModFilter>(true);
724     break;
725   case X86Local::MRMDestMem:
726   case X86Local::MRMSrcMem:
727   case X86Local::MRMSrcMem4VOp3:
728   case X86Local::MRMSrcMemOp4:
729   case X86Local::MRMXm:
730     filter = llvm::make_unique<ModFilter>(false);
731     break;
732   case X86Local::MRM0r: case X86Local::MRM1r:
733   case X86Local::MRM2r: case X86Local::MRM3r:
734   case X86Local::MRM4r: case X86Local::MRM5r:
735   case X86Local::MRM6r: case X86Local::MRM7r:
736     filter = llvm::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
737     break;
738   case X86Local::MRM0m: case X86Local::MRM1m:
739   case X86Local::MRM2m: case X86Local::MRM3m:
740   case X86Local::MRM4m: case X86Local::MRM5m:
741   case X86Local::MRM6m: case X86Local::MRM7m:
742     filter = llvm::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
743     break;
744   X86_INSTR_MRM_MAPPING
745     filter = llvm::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
746     break;
747   } // switch (Form)
748 
749   uint8_t opcodeToSet = Opcode;
750 
751   unsigned AddressSize = 0;
752   switch (AdSize) {
753   case X86Local::AdSize16: AddressSize = 16; break;
754   case X86Local::AdSize32: AddressSize = 32; break;
755   case X86Local::AdSize64: AddressSize = 64; break;
756   }
757 
758   assert(opcodeType && "Opcode type not set");
759   assert(filter && "Filter not set");
760 
761   if (Form == X86Local::AddRegFrm) {
762     assert(((opcodeToSet & 7) == 0) &&
763            "ADDREG_FRM opcode not aligned");
764 
765     uint8_t currentOpcode;
766 
767     for (currentOpcode = opcodeToSet;
768          currentOpcode < opcodeToSet + 8;
769          ++currentOpcode)
770       tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
771                             UID, Is32Bit, OpPrefix == 0,
772                             IgnoresVEX_L || EncodeRC,
773                             VEX_WPrefix == X86Local::VEX_WIG, AddressSize);
774   } else {
775     tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
776                           Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
777                           VEX_WPrefix == X86Local::VEX_WIG, AddressSize);
778   }
779 
780 #undef MAP
781 }
782 
783 #define TYPE(str, type) if (s == str) return type;
784 OperandType RecognizableInstr::typeFromString(const std::string &s,
785                                               bool hasREX_WPrefix,
786                                               uint8_t OpSize) {
787   if(hasREX_WPrefix) {
788     // For instructions with a REX_W prefix, a declared 32-bit register encoding
789     // is special.
790     TYPE("GR32",              TYPE_R32)
791   }
792   if(OpSize == X86Local::OpSize16) {
793     // For OpSize16 instructions, a declared 16-bit register or
794     // immediate encoding is special.
795     TYPE("GR16",              TYPE_Rv)
796   } else if(OpSize == X86Local::OpSize32) {
797     // For OpSize32 instructions, a declared 32-bit register or
798     // immediate encoding is special.
799     TYPE("GR32",              TYPE_Rv)
800   }
801   TYPE("i16mem",              TYPE_M)
802   TYPE("i16imm",              TYPE_IMM)
803   TYPE("i16i8imm",            TYPE_IMM)
804   TYPE("GR16",                TYPE_R16)
805   TYPE("i32mem",              TYPE_M)
806   TYPE("i32imm",              TYPE_IMM)
807   TYPE("i32i8imm",            TYPE_IMM)
808   TYPE("GR32",                TYPE_R32)
809   TYPE("GR32orGR64",          TYPE_R32)
810   TYPE("i64mem",              TYPE_M)
811   TYPE("i64i32imm",           TYPE_IMM)
812   TYPE("i64i8imm",            TYPE_IMM)
813   TYPE("GR64",                TYPE_R64)
814   TYPE("i8mem",               TYPE_M)
815   TYPE("i8imm",               TYPE_IMM)
816   TYPE("u8imm",               TYPE_UIMM8)
817   TYPE("i32u8imm",            TYPE_UIMM8)
818   TYPE("GR8",                 TYPE_R8)
819   TYPE("VR128",               TYPE_XMM)
820   TYPE("VR128X",              TYPE_XMM)
821   TYPE("f128mem",             TYPE_M)
822   TYPE("f256mem",             TYPE_M)
823   TYPE("f512mem",             TYPE_M)
824   TYPE("FR128",               TYPE_XMM)
825   TYPE("FR64",                TYPE_XMM)
826   TYPE("FR64X",               TYPE_XMM)
827   TYPE("f64mem",              TYPE_M)
828   TYPE("sdmem",               TYPE_M)
829   TYPE("FR32",                TYPE_XMM)
830   TYPE("FR32X",               TYPE_XMM)
831   TYPE("f32mem",              TYPE_M)
832   TYPE("ssmem",               TYPE_M)
833   TYPE("RST",                 TYPE_ST)
834   TYPE("i128mem",             TYPE_M)
835   TYPE("i256mem",             TYPE_M)
836   TYPE("i512mem",             TYPE_M)
837   TYPE("i64i32imm_pcrel",     TYPE_REL)
838   TYPE("i16imm_pcrel",        TYPE_REL)
839   TYPE("i32imm_pcrel",        TYPE_REL)
840   TYPE("SSECC",               TYPE_IMM3)
841   TYPE("XOPCC",               TYPE_IMM3)
842   TYPE("AVXCC",               TYPE_IMM5)
843   TYPE("AVX512ICC",           TYPE_AVX512ICC)
844   TYPE("AVX512RC",            TYPE_IMM)
845   TYPE("brtarget32",          TYPE_REL)
846   TYPE("brtarget16",          TYPE_REL)
847   TYPE("brtarget8",           TYPE_REL)
848   TYPE("f80mem",              TYPE_M)
849   TYPE("lea64_32mem",         TYPE_M)
850   TYPE("lea64mem",            TYPE_M)
851   TYPE("VR64",                TYPE_MM64)
852   TYPE("i64imm",              TYPE_IMM)
853   TYPE("anymem",              TYPE_M)
854   TYPE("opaque32mem",         TYPE_M)
855   TYPE("opaque48mem",         TYPE_M)
856   TYPE("opaque80mem",         TYPE_M)
857   TYPE("opaque512mem",        TYPE_M)
858   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
859   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
860   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
861   TYPE("srcidx8",             TYPE_SRCIDX)
862   TYPE("srcidx16",            TYPE_SRCIDX)
863   TYPE("srcidx32",            TYPE_SRCIDX)
864   TYPE("srcidx64",            TYPE_SRCIDX)
865   TYPE("dstidx8",             TYPE_DSTIDX)
866   TYPE("dstidx16",            TYPE_DSTIDX)
867   TYPE("dstidx32",            TYPE_DSTIDX)
868   TYPE("dstidx64",            TYPE_DSTIDX)
869   TYPE("offset16_8",          TYPE_MOFFS)
870   TYPE("offset16_16",         TYPE_MOFFS)
871   TYPE("offset16_32",         TYPE_MOFFS)
872   TYPE("offset32_8",          TYPE_MOFFS)
873   TYPE("offset32_16",         TYPE_MOFFS)
874   TYPE("offset32_32",         TYPE_MOFFS)
875   TYPE("offset32_64",         TYPE_MOFFS)
876   TYPE("offset64_8",          TYPE_MOFFS)
877   TYPE("offset64_16",         TYPE_MOFFS)
878   TYPE("offset64_32",         TYPE_MOFFS)
879   TYPE("offset64_64",         TYPE_MOFFS)
880   TYPE("VR256",               TYPE_YMM)
881   TYPE("VR256X",              TYPE_YMM)
882   TYPE("VR512",               TYPE_ZMM)
883   TYPE("VK1",                 TYPE_VK)
884   TYPE("VK1WM",               TYPE_VK)
885   TYPE("VK2",                 TYPE_VK)
886   TYPE("VK2WM",               TYPE_VK)
887   TYPE("VK4",                 TYPE_VK)
888   TYPE("VK4WM",               TYPE_VK)
889   TYPE("VK8",                 TYPE_VK)
890   TYPE("VK8WM",               TYPE_VK)
891   TYPE("VK16",                TYPE_VK)
892   TYPE("VK16WM",              TYPE_VK)
893   TYPE("VK32",                TYPE_VK)
894   TYPE("VK32WM",              TYPE_VK)
895   TYPE("VK64",                TYPE_VK)
896   TYPE("VK64WM",              TYPE_VK)
897   TYPE("vx64mem",             TYPE_MVSIBX)
898   TYPE("vx128mem",            TYPE_MVSIBX)
899   TYPE("vx256mem",            TYPE_MVSIBX)
900   TYPE("vy128mem",            TYPE_MVSIBY)
901   TYPE("vy256mem",            TYPE_MVSIBY)
902   TYPE("vx64xmem",            TYPE_MVSIBX)
903   TYPE("vx128xmem",           TYPE_MVSIBX)
904   TYPE("vx256xmem",           TYPE_MVSIBX)
905   TYPE("vy128xmem",           TYPE_MVSIBY)
906   TYPE("vy256xmem",           TYPE_MVSIBY)
907   TYPE("vy512mem",            TYPE_MVSIBY)
908   TYPE("vz256xmem",           TYPE_MVSIBZ)
909   TYPE("vz512mem",            TYPE_MVSIBZ)
910   TYPE("BNDR",                TYPE_BNDR)
911   errs() << "Unhandled type string " << s << "\n";
912   llvm_unreachable("Unhandled type string");
913 }
914 #undef TYPE
915 
916 #define ENCODING(str, encoding) if (s == str) return encoding;
917 OperandEncoding
918 RecognizableInstr::immediateEncodingFromString(const std::string &s,
919                                                uint8_t OpSize) {
920   if(OpSize != X86Local::OpSize16) {
921     // For instructions without an OpSize prefix, a declared 16-bit register or
922     // immediate encoding is special.
923     ENCODING("i16imm",        ENCODING_IW)
924   }
925   ENCODING("i32i8imm",        ENCODING_IB)
926   ENCODING("SSECC",           ENCODING_IB)
927   ENCODING("XOPCC",           ENCODING_IB)
928   ENCODING("AVXCC",           ENCODING_IB)
929   ENCODING("AVX512ICC",       ENCODING_IB)
930   ENCODING("AVX512RC",        ENCODING_IRC)
931   ENCODING("i16imm",          ENCODING_Iv)
932   ENCODING("i16i8imm",        ENCODING_IB)
933   ENCODING("i32imm",          ENCODING_Iv)
934   ENCODING("i64i32imm",       ENCODING_ID)
935   ENCODING("i64i8imm",        ENCODING_IB)
936   ENCODING("i8imm",           ENCODING_IB)
937   ENCODING("u8imm",           ENCODING_IB)
938   ENCODING("i32u8imm",        ENCODING_IB)
939   // This is not a typo.  Instructions like BLENDVPD put
940   // register IDs in 8-bit immediates nowadays.
941   ENCODING("FR32",            ENCODING_IB)
942   ENCODING("FR64",            ENCODING_IB)
943   ENCODING("FR128",           ENCODING_IB)
944   ENCODING("VR128",           ENCODING_IB)
945   ENCODING("VR256",           ENCODING_IB)
946   ENCODING("FR32X",           ENCODING_IB)
947   ENCODING("FR64X",           ENCODING_IB)
948   ENCODING("VR128X",          ENCODING_IB)
949   ENCODING("VR256X",          ENCODING_IB)
950   ENCODING("VR512",           ENCODING_IB)
951   errs() << "Unhandled immediate encoding " << s << "\n";
952   llvm_unreachable("Unhandled immediate encoding");
953 }
954 
955 OperandEncoding
956 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
957                                                 uint8_t OpSize) {
958   ENCODING("RST",             ENCODING_FP)
959   ENCODING("GR16",            ENCODING_RM)
960   ENCODING("GR32",            ENCODING_RM)
961   ENCODING("GR32orGR64",      ENCODING_RM)
962   ENCODING("GR64",            ENCODING_RM)
963   ENCODING("GR8",             ENCODING_RM)
964   ENCODING("VR128",           ENCODING_RM)
965   ENCODING("VR128X",          ENCODING_RM)
966   ENCODING("FR128",           ENCODING_RM)
967   ENCODING("FR64",            ENCODING_RM)
968   ENCODING("FR32",            ENCODING_RM)
969   ENCODING("FR64X",           ENCODING_RM)
970   ENCODING("FR32X",           ENCODING_RM)
971   ENCODING("VR64",            ENCODING_RM)
972   ENCODING("VR256",           ENCODING_RM)
973   ENCODING("VR256X",          ENCODING_RM)
974   ENCODING("VR512",           ENCODING_RM)
975   ENCODING("VK1",             ENCODING_RM)
976   ENCODING("VK2",             ENCODING_RM)
977   ENCODING("VK4",             ENCODING_RM)
978   ENCODING("VK8",             ENCODING_RM)
979   ENCODING("VK16",            ENCODING_RM)
980   ENCODING("VK32",            ENCODING_RM)
981   ENCODING("VK64",            ENCODING_RM)
982   ENCODING("BNDR",            ENCODING_RM)
983   errs() << "Unhandled R/M register encoding " << s << "\n";
984   llvm_unreachable("Unhandled R/M register encoding");
985 }
986 
987 OperandEncoding
988 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
989                                                 uint8_t OpSize) {
990   ENCODING("GR16",            ENCODING_REG)
991   ENCODING("GR32",            ENCODING_REG)
992   ENCODING("GR32orGR64",      ENCODING_REG)
993   ENCODING("GR64",            ENCODING_REG)
994   ENCODING("GR8",             ENCODING_REG)
995   ENCODING("VR128",           ENCODING_REG)
996   ENCODING("FR128",           ENCODING_REG)
997   ENCODING("FR64",            ENCODING_REG)
998   ENCODING("FR32",            ENCODING_REG)
999   ENCODING("VR64",            ENCODING_REG)
1000   ENCODING("SEGMENT_REG",     ENCODING_REG)
1001   ENCODING("DEBUG_REG",       ENCODING_REG)
1002   ENCODING("CONTROL_REG",     ENCODING_REG)
1003   ENCODING("VR256",           ENCODING_REG)
1004   ENCODING("VR256X",          ENCODING_REG)
1005   ENCODING("VR128X",          ENCODING_REG)
1006   ENCODING("FR64X",           ENCODING_REG)
1007   ENCODING("FR32X",           ENCODING_REG)
1008   ENCODING("VR512",           ENCODING_REG)
1009   ENCODING("VK1",             ENCODING_REG)
1010   ENCODING("VK2",             ENCODING_REG)
1011   ENCODING("VK4",             ENCODING_REG)
1012   ENCODING("VK8",             ENCODING_REG)
1013   ENCODING("VK16",            ENCODING_REG)
1014   ENCODING("VK32",            ENCODING_REG)
1015   ENCODING("VK64",            ENCODING_REG)
1016   ENCODING("VK1WM",           ENCODING_REG)
1017   ENCODING("VK2WM",           ENCODING_REG)
1018   ENCODING("VK4WM",           ENCODING_REG)
1019   ENCODING("VK8WM",           ENCODING_REG)
1020   ENCODING("VK16WM",          ENCODING_REG)
1021   ENCODING("VK32WM",          ENCODING_REG)
1022   ENCODING("VK64WM",          ENCODING_REG)
1023   ENCODING("BNDR",            ENCODING_REG)
1024   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1025   llvm_unreachable("Unhandled reg/opcode register encoding");
1026 }
1027 
1028 OperandEncoding
1029 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1030                                                   uint8_t OpSize) {
1031   ENCODING("GR32",            ENCODING_VVVV)
1032   ENCODING("GR64",            ENCODING_VVVV)
1033   ENCODING("FR32",            ENCODING_VVVV)
1034   ENCODING("FR128",           ENCODING_VVVV)
1035   ENCODING("FR64",            ENCODING_VVVV)
1036   ENCODING("VR128",           ENCODING_VVVV)
1037   ENCODING("VR256",           ENCODING_VVVV)
1038   ENCODING("FR32X",           ENCODING_VVVV)
1039   ENCODING("FR64X",           ENCODING_VVVV)
1040   ENCODING("VR128X",          ENCODING_VVVV)
1041   ENCODING("VR256X",          ENCODING_VVVV)
1042   ENCODING("VR512",           ENCODING_VVVV)
1043   ENCODING("VK1",             ENCODING_VVVV)
1044   ENCODING("VK2",             ENCODING_VVVV)
1045   ENCODING("VK4",             ENCODING_VVVV)
1046   ENCODING("VK8",             ENCODING_VVVV)
1047   ENCODING("VK16",            ENCODING_VVVV)
1048   ENCODING("VK32",            ENCODING_VVVV)
1049   ENCODING("VK64",            ENCODING_VVVV)
1050   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1051   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1052 }
1053 
1054 OperandEncoding
1055 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1056                                                        uint8_t OpSize) {
1057   ENCODING("VK1WM",           ENCODING_WRITEMASK)
1058   ENCODING("VK2WM",           ENCODING_WRITEMASK)
1059   ENCODING("VK4WM",           ENCODING_WRITEMASK)
1060   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1061   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1062   ENCODING("VK32WM",          ENCODING_WRITEMASK)
1063   ENCODING("VK64WM",          ENCODING_WRITEMASK)
1064   errs() << "Unhandled mask register encoding " << s << "\n";
1065   llvm_unreachable("Unhandled mask register encoding");
1066 }
1067 
1068 OperandEncoding
1069 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1070                                             uint8_t OpSize) {
1071   ENCODING("i16mem",          ENCODING_RM)
1072   ENCODING("i32mem",          ENCODING_RM)
1073   ENCODING("i64mem",          ENCODING_RM)
1074   ENCODING("i8mem",           ENCODING_RM)
1075   ENCODING("ssmem",           ENCODING_RM)
1076   ENCODING("sdmem",           ENCODING_RM)
1077   ENCODING("f128mem",         ENCODING_RM)
1078   ENCODING("f256mem",         ENCODING_RM)
1079   ENCODING("f512mem",         ENCODING_RM)
1080   ENCODING("f64mem",          ENCODING_RM)
1081   ENCODING("f32mem",          ENCODING_RM)
1082   ENCODING("i128mem",         ENCODING_RM)
1083   ENCODING("i256mem",         ENCODING_RM)
1084   ENCODING("i512mem",         ENCODING_RM)
1085   ENCODING("f80mem",          ENCODING_RM)
1086   ENCODING("lea64_32mem",     ENCODING_RM)
1087   ENCODING("lea64mem",        ENCODING_RM)
1088   ENCODING("anymem",          ENCODING_RM)
1089   ENCODING("opaque32mem",     ENCODING_RM)
1090   ENCODING("opaque48mem",     ENCODING_RM)
1091   ENCODING("opaque80mem",     ENCODING_RM)
1092   ENCODING("opaque512mem",    ENCODING_RM)
1093   ENCODING("vx64mem",         ENCODING_VSIB)
1094   ENCODING("vx128mem",        ENCODING_VSIB)
1095   ENCODING("vx256mem",        ENCODING_VSIB)
1096   ENCODING("vy128mem",        ENCODING_VSIB)
1097   ENCODING("vy256mem",        ENCODING_VSIB)
1098   ENCODING("vx64xmem",        ENCODING_VSIB)
1099   ENCODING("vx128xmem",       ENCODING_VSIB)
1100   ENCODING("vx256xmem",       ENCODING_VSIB)
1101   ENCODING("vy128xmem",       ENCODING_VSIB)
1102   ENCODING("vy256xmem",       ENCODING_VSIB)
1103   ENCODING("vy512mem",        ENCODING_VSIB)
1104   ENCODING("vz256xmem",       ENCODING_VSIB)
1105   ENCODING("vz512mem",        ENCODING_VSIB)
1106   errs() << "Unhandled memory encoding " << s << "\n";
1107   llvm_unreachable("Unhandled memory encoding");
1108 }
1109 
1110 OperandEncoding
1111 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1112                                                 uint8_t OpSize) {
1113   if(OpSize != X86Local::OpSize16) {
1114     // For instructions without an OpSize prefix, a declared 16-bit register or
1115     // immediate encoding is special.
1116     ENCODING("i16imm",        ENCODING_IW)
1117   }
1118   ENCODING("i16imm",          ENCODING_Iv)
1119   ENCODING("i16i8imm",        ENCODING_IB)
1120   ENCODING("i32imm",          ENCODING_Iv)
1121   ENCODING("i32i8imm",        ENCODING_IB)
1122   ENCODING("i64i32imm",       ENCODING_ID)
1123   ENCODING("i64i8imm",        ENCODING_IB)
1124   ENCODING("i8imm",           ENCODING_IB)
1125   ENCODING("u8imm",           ENCODING_IB)
1126   ENCODING("i32u8imm",        ENCODING_IB)
1127   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1128   ENCODING("i16imm_pcrel",    ENCODING_IW)
1129   ENCODING("i32imm_pcrel",    ENCODING_ID)
1130   ENCODING("brtarget32",      ENCODING_Iv)
1131   ENCODING("brtarget16",      ENCODING_Iv)
1132   ENCODING("brtarget8",       ENCODING_IB)
1133   ENCODING("i64imm",          ENCODING_IO)
1134   ENCODING("offset16_8",      ENCODING_Ia)
1135   ENCODING("offset16_16",     ENCODING_Ia)
1136   ENCODING("offset16_32",     ENCODING_Ia)
1137   ENCODING("offset32_8",      ENCODING_Ia)
1138   ENCODING("offset32_16",     ENCODING_Ia)
1139   ENCODING("offset32_32",     ENCODING_Ia)
1140   ENCODING("offset32_64",     ENCODING_Ia)
1141   ENCODING("offset64_8",      ENCODING_Ia)
1142   ENCODING("offset64_16",     ENCODING_Ia)
1143   ENCODING("offset64_32",     ENCODING_Ia)
1144   ENCODING("offset64_64",     ENCODING_Ia)
1145   ENCODING("srcidx8",         ENCODING_SI)
1146   ENCODING("srcidx16",        ENCODING_SI)
1147   ENCODING("srcidx32",        ENCODING_SI)
1148   ENCODING("srcidx64",        ENCODING_SI)
1149   ENCODING("dstidx8",         ENCODING_DI)
1150   ENCODING("dstidx16",        ENCODING_DI)
1151   ENCODING("dstidx32",        ENCODING_DI)
1152   ENCODING("dstidx64",        ENCODING_DI)
1153   errs() << "Unhandled relocation encoding " << s << "\n";
1154   llvm_unreachable("Unhandled relocation encoding");
1155 }
1156 
1157 OperandEncoding
1158 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1159                                                     uint8_t OpSize) {
1160   ENCODING("GR32",            ENCODING_Rv)
1161   ENCODING("GR64",            ENCODING_RO)
1162   ENCODING("GR16",            ENCODING_Rv)
1163   ENCODING("GR8",             ENCODING_RB)
1164   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1165   llvm_unreachable("Unhandled opcode modifier encoding");
1166 }
1167 #undef ENCODING
1168