1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler Emitter. 10 // It contains the implementation of a single recognizable instruction. 11 // Documentation for the disassembler emitter in general can be found in 12 // X86DisassemblerEmitter.h. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "X86RecognizableInstr.h" 17 #include "X86DisassemblerShared.h" 18 #include "X86ModRMFilters.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include <string> 21 22 using namespace llvm; 23 using namespace X86Disassembler; 24 25 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 26 /// Useful for switch statements and the like. 27 /// 28 /// @param init - A reference to the BitsInit to be decoded. 29 /// @return - The field, with the first bit in the BitsInit as the lowest 30 /// order bit. 31 static uint8_t byteFromBitsInit(BitsInit &init) { 32 int width = init.getNumBits(); 33 34 assert(width <= 8 && "Field is too large for uint8_t!"); 35 36 int index; 37 uint8_t mask = 0x01; 38 39 uint8_t ret = 0; 40 41 for (index = 0; index < width; index++) { 42 if (cast<BitInit>(init.getBit(index))->getValue()) 43 ret |= mask; 44 45 mask <<= 1; 46 } 47 48 return ret; 49 } 50 51 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 52 /// name of the field. 53 /// 54 /// @param rec - The record from which to extract the value. 55 /// @param name - The name of the field in the record. 56 /// @return - The field, as translated by byteFromBitsInit(). 57 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 58 BitsInit* bits = rec->getValueAsBitsInit(name); 59 return byteFromBitsInit(*bits); 60 } 61 62 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 63 const CodeGenInstruction &insn, 64 InstrUID uid) { 65 UID = uid; 66 67 Rec = insn.TheDef; 68 Name = std::string(Rec->getName()); 69 Spec = &tables.specForUID(UID); 70 71 if (!Rec->isSubClassOf("X86Inst")) { 72 ShouldBeEmitted = false; 73 return; 74 } 75 76 OpPrefix = byteFromRec(Rec, "OpPrefixBits"); 77 OpMap = byteFromRec(Rec, "OpMapBits"); 78 Opcode = byteFromRec(Rec, "Opcode"); 79 Form = byteFromRec(Rec, "FormBits"); 80 Encoding = byteFromRec(Rec, "OpEncBits"); 81 82 OpSize = byteFromRec(Rec, "OpSizeBits"); 83 AdSize = byteFromRec(Rec, "AdSizeBits"); 84 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 85 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V"); 86 HasVEX_W = Rec->getValueAsBit("HasVEX_W"); 87 IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W"); 88 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 89 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); 90 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); 91 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); 92 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); 93 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 94 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); 95 CD8_Scale = byteFromRec(Rec, "CD8_Scale"); 96 97 Name = std::string(Rec->getName()); 98 99 Operands = &insn.Operands.OperandList; 100 101 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); 102 103 EncodeRC = HasEVEX_B && 104 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg); 105 106 // Check for 64-bit inst which does not require REX 107 Is32Bit = false; 108 Is64Bit = false; 109 // FIXME: Is there some better way to check for In64BitMode? 110 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 111 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 112 if (Predicates[i]->getName().find("Not64Bit") != Name.npos || 113 Predicates[i]->getName().find("In32Bit") != Name.npos) { 114 Is32Bit = true; 115 break; 116 } 117 if (Predicates[i]->getName().find("In64Bit") != Name.npos) { 118 Is64Bit = true; 119 break; 120 } 121 } 122 123 if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) { 124 ShouldBeEmitted = false; 125 return; 126 } 127 128 // Special case since there is no attribute class for 64-bit and VEX 129 if (Name == "VMASKMOVDQU64") { 130 ShouldBeEmitted = false; 131 return; 132 } 133 134 ShouldBeEmitted = true; 135 } 136 137 void RecognizableInstr::processInstr(DisassemblerTables &tables, 138 const CodeGenInstruction &insn, 139 InstrUID uid) 140 { 141 // Ignore "asm parser only" instructions. 142 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 143 return; 144 145 RecognizableInstr recogInstr(tables, insn, uid); 146 147 if (recogInstr.shouldBeEmitted()) { 148 recogInstr.emitInstructionSpecifier(); 149 recogInstr.emitDecodePath(tables); 150 } 151 } 152 153 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ 154 (HasEVEX_K && HasEVEX_B ? n##_K_B : \ 155 (HasEVEX_KZ ? n##_KZ : \ 156 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) 157 158 InstructionContext RecognizableInstr::insnContext() const { 159 InstructionContext insnContext; 160 161 if (Encoding == X86Local::EVEX) { 162 if (HasVEX_LPrefix && HasEVEX_L2Prefix) { 163 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; 164 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); 165 } 166 // VEX_L & VEX_W 167 if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) { 168 if (OpPrefix == X86Local::PD) 169 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); 170 else if (OpPrefix == X86Local::XS) 171 insnContext = EVEX_KB(IC_EVEX_L_W_XS); 172 else if (OpPrefix == X86Local::XD) 173 insnContext = EVEX_KB(IC_EVEX_L_W_XD); 174 else if (OpPrefix == X86Local::PS) 175 insnContext = EVEX_KB(IC_EVEX_L_W); 176 else { 177 errs() << "Instruction does not use a prefix: " << Name << "\n"; 178 llvm_unreachable("Invalid prefix"); 179 } 180 } else if (!EncodeRC && HasVEX_LPrefix) { 181 // VEX_L 182 if (OpPrefix == X86Local::PD) 183 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); 184 else if (OpPrefix == X86Local::XS) 185 insnContext = EVEX_KB(IC_EVEX_L_XS); 186 else if (OpPrefix == X86Local::XD) 187 insnContext = EVEX_KB(IC_EVEX_L_XD); 188 else if (OpPrefix == X86Local::PS) 189 insnContext = EVEX_KB(IC_EVEX_L); 190 else { 191 errs() << "Instruction does not use a prefix: " << Name << "\n"; 192 llvm_unreachable("Invalid prefix"); 193 } 194 } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) { 195 // EVEX_L2 & VEX_W 196 if (OpPrefix == X86Local::PD) 197 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); 198 else if (OpPrefix == X86Local::XS) 199 insnContext = EVEX_KB(IC_EVEX_L2_W_XS); 200 else if (OpPrefix == X86Local::XD) 201 insnContext = EVEX_KB(IC_EVEX_L2_W_XD); 202 else if (OpPrefix == X86Local::PS) 203 insnContext = EVEX_KB(IC_EVEX_L2_W); 204 else { 205 errs() << "Instruction does not use a prefix: " << Name << "\n"; 206 llvm_unreachable("Invalid prefix"); 207 } 208 } else if (!EncodeRC && HasEVEX_L2Prefix) { 209 // EVEX_L2 210 if (OpPrefix == X86Local::PD) 211 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); 212 else if (OpPrefix == X86Local::XD) 213 insnContext = EVEX_KB(IC_EVEX_L2_XD); 214 else if (OpPrefix == X86Local::XS) 215 insnContext = EVEX_KB(IC_EVEX_L2_XS); 216 else if (OpPrefix == X86Local::PS) 217 insnContext = EVEX_KB(IC_EVEX_L2); 218 else { 219 errs() << "Instruction does not use a prefix: " << Name << "\n"; 220 llvm_unreachable("Invalid prefix"); 221 } 222 } 223 else if (HasVEX_W) { 224 // VEX_W 225 if (OpPrefix == X86Local::PD) 226 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); 227 else if (OpPrefix == X86Local::XS) 228 insnContext = EVEX_KB(IC_EVEX_W_XS); 229 else if (OpPrefix == X86Local::XD) 230 insnContext = EVEX_KB(IC_EVEX_W_XD); 231 else if (OpPrefix == X86Local::PS) 232 insnContext = EVEX_KB(IC_EVEX_W); 233 else { 234 errs() << "Instruction does not use a prefix: " << Name << "\n"; 235 llvm_unreachable("Invalid prefix"); 236 } 237 } 238 // No L, no W 239 else if (OpPrefix == X86Local::PD) 240 insnContext = EVEX_KB(IC_EVEX_OPSIZE); 241 else if (OpPrefix == X86Local::XD) 242 insnContext = EVEX_KB(IC_EVEX_XD); 243 else if (OpPrefix == X86Local::XS) 244 insnContext = EVEX_KB(IC_EVEX_XS); 245 else if (OpPrefix == X86Local::PS) 246 insnContext = EVEX_KB(IC_EVEX); 247 else { 248 errs() << "Instruction does not use a prefix: " << Name << "\n"; 249 llvm_unreachable("Invalid prefix"); 250 } 251 /// eof EVEX 252 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) { 253 if (HasVEX_LPrefix && HasVEX_W) { 254 if (OpPrefix == X86Local::PD) 255 insnContext = IC_VEX_L_W_OPSIZE; 256 else if (OpPrefix == X86Local::XS) 257 insnContext = IC_VEX_L_W_XS; 258 else if (OpPrefix == X86Local::XD) 259 insnContext = IC_VEX_L_W_XD; 260 else if (OpPrefix == X86Local::PS) 261 insnContext = IC_VEX_L_W; 262 else { 263 errs() << "Instruction does not use a prefix: " << Name << "\n"; 264 llvm_unreachable("Invalid prefix"); 265 } 266 } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix) 267 insnContext = IC_VEX_L_OPSIZE; 268 else if (OpPrefix == X86Local::PD && HasVEX_W) 269 insnContext = IC_VEX_W_OPSIZE; 270 else if (OpPrefix == X86Local::PD) 271 insnContext = IC_VEX_OPSIZE; 272 else if (HasVEX_LPrefix && OpPrefix == X86Local::XS) 273 insnContext = IC_VEX_L_XS; 274 else if (HasVEX_LPrefix && OpPrefix == X86Local::XD) 275 insnContext = IC_VEX_L_XD; 276 else if (HasVEX_W && OpPrefix == X86Local::XS) 277 insnContext = IC_VEX_W_XS; 278 else if (HasVEX_W && OpPrefix == X86Local::XD) 279 insnContext = IC_VEX_W_XD; 280 else if (HasVEX_W && OpPrefix == X86Local::PS) 281 insnContext = IC_VEX_W; 282 else if (HasVEX_LPrefix && OpPrefix == X86Local::PS) 283 insnContext = IC_VEX_L; 284 else if (OpPrefix == X86Local::XD) 285 insnContext = IC_VEX_XD; 286 else if (OpPrefix == X86Local::XS) 287 insnContext = IC_VEX_XS; 288 else if (OpPrefix == X86Local::PS) 289 insnContext = IC_VEX; 290 else { 291 errs() << "Instruction does not use a prefix: " << Name << "\n"; 292 llvm_unreachable("Invalid prefix"); 293 } 294 } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) { 295 if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)) 296 insnContext = IC_64BIT_REXW_OPSIZE; 297 else if (HasREX_WPrefix && AdSize == X86Local::AdSize32) 298 insnContext = IC_64BIT_REXW_ADSIZE; 299 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) 300 insnContext = IC_64BIT_XD_OPSIZE; 301 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) 302 insnContext = IC_64BIT_XS_OPSIZE; 303 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD) 304 insnContext = IC_64BIT_OPSIZE_ADSIZE; 305 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32) 306 insnContext = IC_64BIT_OPSIZE_ADSIZE; 307 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) 308 insnContext = IC_64BIT_OPSIZE; 309 else if (AdSize == X86Local::AdSize32) 310 insnContext = IC_64BIT_ADSIZE; 311 else if (HasREX_WPrefix && OpPrefix == X86Local::XS) 312 insnContext = IC_64BIT_REXW_XS; 313 else if (HasREX_WPrefix && OpPrefix == X86Local::XD) 314 insnContext = IC_64BIT_REXW_XD; 315 else if (OpPrefix == X86Local::XD) 316 insnContext = IC_64BIT_XD; 317 else if (OpPrefix == X86Local::XS) 318 insnContext = IC_64BIT_XS; 319 else if (HasREX_WPrefix) 320 insnContext = IC_64BIT_REXW; 321 else 322 insnContext = IC_64BIT; 323 } else { 324 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) 325 insnContext = IC_XD_OPSIZE; 326 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) 327 insnContext = IC_XS_OPSIZE; 328 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD) 329 insnContext = IC_XD_ADSIZE; 330 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS) 331 insnContext = IC_XS_ADSIZE; 332 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD) 333 insnContext = IC_OPSIZE_ADSIZE; 334 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16) 335 insnContext = IC_OPSIZE_ADSIZE; 336 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) 337 insnContext = IC_OPSIZE; 338 else if (AdSize == X86Local::AdSize16) 339 insnContext = IC_ADSIZE; 340 else if (OpPrefix == X86Local::XD) 341 insnContext = IC_XD; 342 else if (OpPrefix == X86Local::XS) 343 insnContext = IC_XS; 344 else 345 insnContext = IC; 346 } 347 348 return insnContext; 349 } 350 351 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) { 352 // The scaling factor for AVX512 compressed displacement encoding is an 353 // instruction attribute. Adjust the ModRM encoding type to include the 354 // scale for compressed displacement. 355 if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB) ||CD8_Scale == 0) 356 return; 357 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale)); 358 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) || 359 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) && 360 "Invalid CDisp scaling"); 361 } 362 363 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, 364 unsigned &physicalOperandIndex, 365 unsigned numPhysicalOperands, 366 const unsigned *operandMapping, 367 OperandEncoding (*encodingFromString) 368 (const std::string&, 369 uint8_t OpSize)) { 370 if (optional) { 371 if (physicalOperandIndex >= numPhysicalOperands) 372 return; 373 } else { 374 assert(physicalOperandIndex < numPhysicalOperands); 375 } 376 377 while (operandMapping[operandIndex] != operandIndex) { 378 Spec->operands[operandIndex].encoding = ENCODING_DUP; 379 Spec->operands[operandIndex].type = 380 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 381 ++operandIndex; 382 } 383 384 StringRef typeName = (*Operands)[operandIndex].Rec->getName(); 385 386 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize); 387 // Adjust the encoding type for an operand based on the instruction. 388 adjustOperandEncoding(encoding); 389 Spec->operands[operandIndex].encoding = encoding; 390 Spec->operands[operandIndex].type = 391 typeFromString(std::string(typeName), HasREX_WPrefix, OpSize); 392 393 ++operandIndex; 394 ++physicalOperandIndex; 395 } 396 397 void RecognizableInstr::emitInstructionSpecifier() { 398 Spec->name = Name; 399 400 Spec->insnContext = insnContext(); 401 402 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 403 404 unsigned numOperands = OperandList.size(); 405 unsigned numPhysicalOperands = 0; 406 407 // operandMapping maps from operands in OperandList to their originals. 408 // If operandMapping[i] != i, then the entry is a duplicate. 409 unsigned operandMapping[X86_MAX_OPERANDS]; 410 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 411 412 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 413 if (!OperandList[operandIndex].Constraints.empty()) { 414 const CGIOperandList::ConstraintInfo &Constraint = 415 OperandList[operandIndex].Constraints[0]; 416 if (Constraint.isTied()) { 417 operandMapping[operandIndex] = operandIndex; 418 operandMapping[Constraint.getTiedOperand()] = operandIndex; 419 } else { 420 ++numPhysicalOperands; 421 operandMapping[operandIndex] = operandIndex; 422 } 423 } else { 424 ++numPhysicalOperands; 425 operandMapping[operandIndex] = operandIndex; 426 } 427 } 428 429 #define HANDLE_OPERAND(class) \ 430 handleOperand(false, \ 431 operandIndex, \ 432 physicalOperandIndex, \ 433 numPhysicalOperands, \ 434 operandMapping, \ 435 class##EncodingFromString); 436 437 #define HANDLE_OPTIONAL(class) \ 438 handleOperand(true, \ 439 operandIndex, \ 440 physicalOperandIndex, \ 441 numPhysicalOperands, \ 442 operandMapping, \ 443 class##EncodingFromString); 444 445 // operandIndex should always be < numOperands 446 unsigned operandIndex = 0; 447 // physicalOperandIndex should always be < numPhysicalOperands 448 unsigned physicalOperandIndex = 0; 449 450 #ifndef NDEBUG 451 // Given the set of prefix bits, how many additional operands does the 452 // instruction have? 453 unsigned additionalOperands = 0; 454 if (HasVEX_4V) 455 ++additionalOperands; 456 if (HasEVEX_K) 457 ++additionalOperands; 458 #endif 459 460 switch (Form) { 461 default: llvm_unreachable("Unhandled form"); 462 case X86Local::PrefixByte: 463 return; 464 case X86Local::RawFrmSrc: 465 HANDLE_OPERAND(relocation); 466 return; 467 case X86Local::RawFrmDst: 468 HANDLE_OPERAND(relocation); 469 return; 470 case X86Local::RawFrmDstSrc: 471 HANDLE_OPERAND(relocation); 472 HANDLE_OPERAND(relocation); 473 return; 474 case X86Local::RawFrm: 475 // Operand 1 (optional) is an address or immediate. 476 assert(numPhysicalOperands <= 1 && 477 "Unexpected number of operands for RawFrm"); 478 HANDLE_OPTIONAL(relocation) 479 break; 480 case X86Local::RawFrmMemOffs: 481 // Operand 1 is an address. 482 HANDLE_OPERAND(relocation); 483 break; 484 case X86Local::AddRegFrm: 485 // Operand 1 is added to the opcode. 486 // Operand 2 (optional) is an address. 487 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 488 "Unexpected number of operands for AddRegFrm"); 489 HANDLE_OPERAND(opcodeModifier) 490 HANDLE_OPTIONAL(relocation) 491 break; 492 case X86Local::AddCCFrm: 493 // Operand 1 (optional) is an address or immediate. 494 assert(numPhysicalOperands == 2 && 495 "Unexpected number of operands for AddCCFrm"); 496 HANDLE_OPERAND(relocation) 497 HANDLE_OPERAND(opcodeModifier) 498 break; 499 case X86Local::MRMDestReg: 500 // Operand 1 is a register operand in the R/M field. 501 // - In AVX512 there may be a mask operand here - 502 // Operand 2 is a register operand in the Reg/Opcode field. 503 // - In AVX, there is a register operand in the VEX.vvvv field here - 504 // Operand 3 (optional) is an immediate. 505 assert(numPhysicalOperands >= 2 + additionalOperands && 506 numPhysicalOperands <= 3 + additionalOperands && 507 "Unexpected number of operands for MRMDestRegFrm"); 508 509 HANDLE_OPERAND(rmRegister) 510 if (HasEVEX_K) 511 HANDLE_OPERAND(writemaskRegister) 512 513 if (HasVEX_4V) 514 // FIXME: In AVX, the register below becomes the one encoded 515 // in ModRMVEX and the one above the one in the VEX.VVVV field 516 HANDLE_OPERAND(vvvvRegister) 517 518 HANDLE_OPERAND(roRegister) 519 HANDLE_OPTIONAL(immediate) 520 break; 521 case X86Local::MRMDestMem: 522 // Operand 1 is a memory operand (possibly SIB-extended) 523 // Operand 2 is a register operand in the Reg/Opcode field. 524 // - In AVX, there is a register operand in the VEX.vvvv field here - 525 // Operand 3 (optional) is an immediate. 526 assert(numPhysicalOperands >= 2 + additionalOperands && 527 numPhysicalOperands <= 3 + additionalOperands && 528 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 529 530 HANDLE_OPERAND(memory) 531 532 if (HasEVEX_K) 533 HANDLE_OPERAND(writemaskRegister) 534 535 if (HasVEX_4V) 536 // FIXME: In AVX, the register below becomes the one encoded 537 // in ModRMVEX and the one above the one in the VEX.VVVV field 538 HANDLE_OPERAND(vvvvRegister) 539 540 HANDLE_OPERAND(roRegister) 541 HANDLE_OPTIONAL(immediate) 542 break; 543 case X86Local::MRMSrcReg: 544 // Operand 1 is a register operand in the Reg/Opcode field. 545 // Operand 2 is a register operand in the R/M field. 546 // - In AVX, there is a register operand in the VEX.vvvv field here - 547 // Operand 3 (optional) is an immediate. 548 // Operand 4 (optional) is an immediate. 549 550 assert(numPhysicalOperands >= 2 + additionalOperands && 551 numPhysicalOperands <= 4 + additionalOperands && 552 "Unexpected number of operands for MRMSrcRegFrm"); 553 554 HANDLE_OPERAND(roRegister) 555 556 if (HasEVEX_K) 557 HANDLE_OPERAND(writemaskRegister) 558 559 if (HasVEX_4V) 560 // FIXME: In AVX, the register below becomes the one encoded 561 // in ModRMVEX and the one above the one in the VEX.VVVV field 562 HANDLE_OPERAND(vvvvRegister) 563 564 HANDLE_OPERAND(rmRegister) 565 HANDLE_OPTIONAL(immediate) 566 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 567 break; 568 case X86Local::MRMSrcReg4VOp3: 569 assert(numPhysicalOperands == 3 && 570 "Unexpected number of operands for MRMSrcReg4VOp3Frm"); 571 HANDLE_OPERAND(roRegister) 572 HANDLE_OPERAND(rmRegister) 573 HANDLE_OPERAND(vvvvRegister) 574 break; 575 case X86Local::MRMSrcRegOp4: 576 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && 577 "Unexpected number of operands for MRMSrcRegOp4Frm"); 578 HANDLE_OPERAND(roRegister) 579 HANDLE_OPERAND(vvvvRegister) 580 HANDLE_OPERAND(immediate) // Register in imm[7:4] 581 HANDLE_OPERAND(rmRegister) 582 HANDLE_OPTIONAL(immediate) 583 break; 584 case X86Local::MRMSrcRegCC: 585 assert(numPhysicalOperands == 3 && 586 "Unexpected number of operands for MRMSrcRegCC"); 587 HANDLE_OPERAND(roRegister) 588 HANDLE_OPERAND(rmRegister) 589 HANDLE_OPERAND(opcodeModifier) 590 break; 591 case X86Local::MRMSrcMem: 592 // Operand 1 is a register operand in the Reg/Opcode field. 593 // Operand 2 is a memory operand (possibly SIB-extended) 594 // - In AVX, there is a register operand in the VEX.vvvv field here - 595 // Operand 3 (optional) is an immediate. 596 597 assert(numPhysicalOperands >= 2 + additionalOperands && 598 numPhysicalOperands <= 4 + additionalOperands && 599 "Unexpected number of operands for MRMSrcMemFrm"); 600 601 HANDLE_OPERAND(roRegister) 602 603 if (HasEVEX_K) 604 HANDLE_OPERAND(writemaskRegister) 605 606 if (HasVEX_4V) 607 // FIXME: In AVX, the register below becomes the one encoded 608 // in ModRMVEX and the one above the one in the VEX.VVVV field 609 HANDLE_OPERAND(vvvvRegister) 610 611 HANDLE_OPERAND(memory) 612 HANDLE_OPTIONAL(immediate) 613 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 614 break; 615 case X86Local::MRMSrcMem4VOp3: 616 assert(numPhysicalOperands == 3 && 617 "Unexpected number of operands for MRMSrcMem4VOp3Frm"); 618 HANDLE_OPERAND(roRegister) 619 HANDLE_OPERAND(memory) 620 HANDLE_OPERAND(vvvvRegister) 621 break; 622 case X86Local::MRMSrcMemOp4: 623 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && 624 "Unexpected number of operands for MRMSrcMemOp4Frm"); 625 HANDLE_OPERAND(roRegister) 626 HANDLE_OPERAND(vvvvRegister) 627 HANDLE_OPERAND(immediate) // Register in imm[7:4] 628 HANDLE_OPERAND(memory) 629 HANDLE_OPTIONAL(immediate) 630 break; 631 case X86Local::MRMSrcMemCC: 632 assert(numPhysicalOperands == 3 && 633 "Unexpected number of operands for MRMSrcMemCC"); 634 HANDLE_OPERAND(roRegister) 635 HANDLE_OPERAND(memory) 636 HANDLE_OPERAND(opcodeModifier) 637 break; 638 case X86Local::MRMXrCC: 639 assert(numPhysicalOperands == 2 && 640 "Unexpected number of operands for MRMXrCC"); 641 HANDLE_OPERAND(rmRegister) 642 HANDLE_OPERAND(opcodeModifier) 643 break; 644 case X86Local::MRMXr: 645 case X86Local::MRM0r: 646 case X86Local::MRM1r: 647 case X86Local::MRM2r: 648 case X86Local::MRM3r: 649 case X86Local::MRM4r: 650 case X86Local::MRM5r: 651 case X86Local::MRM6r: 652 case X86Local::MRM7r: 653 // Operand 1 is a register operand in the R/M field. 654 // Operand 2 (optional) is an immediate or relocation. 655 // Operand 3 (optional) is an immediate. 656 assert(numPhysicalOperands >= 0 + additionalOperands && 657 numPhysicalOperands <= 3 + additionalOperands && 658 "Unexpected number of operands for MRMnr"); 659 660 if (HasVEX_4V) 661 HANDLE_OPERAND(vvvvRegister) 662 663 if (HasEVEX_K) 664 HANDLE_OPERAND(writemaskRegister) 665 HANDLE_OPTIONAL(rmRegister) 666 HANDLE_OPTIONAL(relocation) 667 HANDLE_OPTIONAL(immediate) 668 break; 669 case X86Local::MRMXmCC: 670 assert(numPhysicalOperands == 2 && 671 "Unexpected number of operands for MRMXm"); 672 HANDLE_OPERAND(memory) 673 HANDLE_OPERAND(opcodeModifier) 674 break; 675 case X86Local::MRMXm: 676 case X86Local::MRM0m: 677 case X86Local::MRM1m: 678 case X86Local::MRM2m: 679 case X86Local::MRM3m: 680 case X86Local::MRM4m: 681 case X86Local::MRM5m: 682 case X86Local::MRM6m: 683 case X86Local::MRM7m: 684 // Operand 1 is a memory operand (possibly SIB-extended) 685 // Operand 2 (optional) is an immediate or relocation. 686 assert(numPhysicalOperands >= 1 + additionalOperands && 687 numPhysicalOperands <= 2 + additionalOperands && 688 "Unexpected number of operands for MRMnm"); 689 690 if (HasVEX_4V) 691 HANDLE_OPERAND(vvvvRegister) 692 if (HasEVEX_K) 693 HANDLE_OPERAND(writemaskRegister) 694 HANDLE_OPERAND(memory) 695 HANDLE_OPTIONAL(relocation) 696 break; 697 case X86Local::RawFrmImm8: 698 // operand 1 is a 16-bit immediate 699 // operand 2 is an 8-bit immediate 700 assert(numPhysicalOperands == 2 && 701 "Unexpected number of operands for X86Local::RawFrmImm8"); 702 HANDLE_OPERAND(immediate) 703 HANDLE_OPERAND(immediate) 704 break; 705 case X86Local::RawFrmImm16: 706 // operand 1 is a 16-bit immediate 707 // operand 2 is a 16-bit immediate 708 HANDLE_OPERAND(immediate) 709 HANDLE_OPERAND(immediate) 710 break; 711 case X86Local::MRM0X: 712 case X86Local::MRM1X: 713 case X86Local::MRM2X: 714 case X86Local::MRM3X: 715 case X86Local::MRM4X: 716 case X86Local::MRM5X: 717 case X86Local::MRM6X: 718 case X86Local::MRM7X: 719 #define MAP(from, to) case X86Local::MRM_##from: 720 X86_INSTR_MRM_MAPPING 721 #undef MAP 722 HANDLE_OPTIONAL(relocation) 723 break; 724 } 725 726 #undef HANDLE_OPERAND 727 #undef HANDLE_OPTIONAL 728 } 729 730 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 731 // Special cases where the LLVM tables are not complete 732 733 #define MAP(from, to) \ 734 case X86Local::MRM_##from: 735 736 llvm::Optional<OpcodeType> opcodeType; 737 switch (OpMap) { 738 default: llvm_unreachable("Invalid map!"); 739 case X86Local::OB: opcodeType = ONEBYTE; break; 740 case X86Local::TB: opcodeType = TWOBYTE; break; 741 case X86Local::T8: opcodeType = THREEBYTE_38; break; 742 case X86Local::TA: opcodeType = THREEBYTE_3A; break; 743 case X86Local::XOP8: opcodeType = XOP8_MAP; break; 744 case X86Local::XOP9: opcodeType = XOP9_MAP; break; 745 case X86Local::XOPA: opcodeType = XOPA_MAP; break; 746 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break; 747 } 748 749 std::unique_ptr<ModRMFilter> filter; 750 switch (Form) { 751 default: llvm_unreachable("Invalid form!"); 752 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!"); 753 case X86Local::RawFrm: 754 case X86Local::AddRegFrm: 755 case X86Local::RawFrmMemOffs: 756 case X86Local::RawFrmSrc: 757 case X86Local::RawFrmDst: 758 case X86Local::RawFrmDstSrc: 759 case X86Local::RawFrmImm8: 760 case X86Local::RawFrmImm16: 761 case X86Local::AddCCFrm: 762 case X86Local::PrefixByte: 763 filter = std::make_unique<DumbFilter>(); 764 break; 765 case X86Local::MRMDestReg: 766 case X86Local::MRMSrcReg: 767 case X86Local::MRMSrcReg4VOp3: 768 case X86Local::MRMSrcRegOp4: 769 case X86Local::MRMSrcRegCC: 770 case X86Local::MRMXrCC: 771 case X86Local::MRMXr: 772 filter = std::make_unique<ModFilter>(true); 773 break; 774 case X86Local::MRMDestMem: 775 case X86Local::MRMSrcMem: 776 case X86Local::MRMSrcMem4VOp3: 777 case X86Local::MRMSrcMemOp4: 778 case X86Local::MRMSrcMemCC: 779 case X86Local::MRMXmCC: 780 case X86Local::MRMXm: 781 filter = std::make_unique<ModFilter>(false); 782 break; 783 case X86Local::MRM0r: case X86Local::MRM1r: 784 case X86Local::MRM2r: case X86Local::MRM3r: 785 case X86Local::MRM4r: case X86Local::MRM5r: 786 case X86Local::MRM6r: case X86Local::MRM7r: 787 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r); 788 break; 789 case X86Local::MRM0X: case X86Local::MRM1X: 790 case X86Local::MRM2X: case X86Local::MRM3X: 791 case X86Local::MRM4X: case X86Local::MRM5X: 792 case X86Local::MRM6X: case X86Local::MRM7X: 793 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X); 794 break; 795 case X86Local::MRM0m: case X86Local::MRM1m: 796 case X86Local::MRM2m: case X86Local::MRM3m: 797 case X86Local::MRM4m: case X86Local::MRM5m: 798 case X86Local::MRM6m: case X86Local::MRM7m: 799 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m); 800 break; 801 X86_INSTR_MRM_MAPPING 802 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0); 803 break; 804 } // switch (Form) 805 806 uint8_t opcodeToSet = Opcode; 807 808 unsigned AddressSize = 0; 809 switch (AdSize) { 810 case X86Local::AdSize16: AddressSize = 16; break; 811 case X86Local::AdSize32: AddressSize = 32; break; 812 case X86Local::AdSize64: AddressSize = 64; break; 813 } 814 815 assert(opcodeType && "Opcode type not set"); 816 assert(filter && "Filter not set"); 817 818 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC || 819 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC || 820 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) { 821 unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16; 822 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned"); 823 824 uint8_t currentOpcode; 825 826 for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count; 827 ++currentOpcode) 828 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter, 829 UID, Is32Bit, OpPrefix == 0, 830 IgnoresVEX_L || EncodeRC, 831 IgnoresVEX_W, AddressSize); 832 } else { 833 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID, 834 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC, 835 IgnoresVEX_W, AddressSize); 836 } 837 838 #undef MAP 839 } 840 841 #define TYPE(str, type) if (s == str) return type; 842 OperandType RecognizableInstr::typeFromString(const std::string &s, 843 bool hasREX_WPrefix, 844 uint8_t OpSize) { 845 if(hasREX_WPrefix) { 846 // For instructions with a REX_W prefix, a declared 32-bit register encoding 847 // is special. 848 TYPE("GR32", TYPE_R32) 849 } 850 if(OpSize == X86Local::OpSize16) { 851 // For OpSize16 instructions, a declared 16-bit register or 852 // immediate encoding is special. 853 TYPE("GR16", TYPE_Rv) 854 } else if(OpSize == X86Local::OpSize32) { 855 // For OpSize32 instructions, a declared 32-bit register or 856 // immediate encoding is special. 857 TYPE("GR32", TYPE_Rv) 858 } 859 TYPE("i16mem", TYPE_M) 860 TYPE("i16imm", TYPE_IMM) 861 TYPE("i16i8imm", TYPE_IMM) 862 TYPE("GR16", TYPE_R16) 863 TYPE("i32mem", TYPE_M) 864 TYPE("i32imm", TYPE_IMM) 865 TYPE("i32i8imm", TYPE_IMM) 866 TYPE("GR32", TYPE_R32) 867 TYPE("GR32orGR64", TYPE_R32) 868 TYPE("i64mem", TYPE_M) 869 TYPE("i64i32imm", TYPE_IMM) 870 TYPE("i64i8imm", TYPE_IMM) 871 TYPE("GR64", TYPE_R64) 872 TYPE("i8mem", TYPE_M) 873 TYPE("i8imm", TYPE_IMM) 874 TYPE("u4imm", TYPE_UIMM8) 875 TYPE("u8imm", TYPE_UIMM8) 876 TYPE("i16u8imm", TYPE_UIMM8) 877 TYPE("i32u8imm", TYPE_UIMM8) 878 TYPE("i64u8imm", TYPE_UIMM8) 879 TYPE("GR8", TYPE_R8) 880 TYPE("VR128", TYPE_XMM) 881 TYPE("VR128X", TYPE_XMM) 882 TYPE("f128mem", TYPE_M) 883 TYPE("f256mem", TYPE_M) 884 TYPE("f512mem", TYPE_M) 885 TYPE("FR128", TYPE_XMM) 886 TYPE("FR64", TYPE_XMM) 887 TYPE("FR64X", TYPE_XMM) 888 TYPE("f64mem", TYPE_M) 889 TYPE("sdmem", TYPE_M) 890 TYPE("FR32", TYPE_XMM) 891 TYPE("FR32X", TYPE_XMM) 892 TYPE("f32mem", TYPE_M) 893 TYPE("ssmem", TYPE_M) 894 TYPE("RST", TYPE_ST) 895 TYPE("RSTi", TYPE_ST) 896 TYPE("i128mem", TYPE_M) 897 TYPE("i256mem", TYPE_M) 898 TYPE("i512mem", TYPE_M) 899 TYPE("i64i32imm_brtarget", TYPE_REL) 900 TYPE("i16imm_brtarget", TYPE_REL) 901 TYPE("i32imm_brtarget", TYPE_REL) 902 TYPE("ccode", TYPE_IMM) 903 TYPE("AVX512RC", TYPE_IMM) 904 TYPE("brtarget32", TYPE_REL) 905 TYPE("brtarget16", TYPE_REL) 906 TYPE("brtarget8", TYPE_REL) 907 TYPE("f80mem", TYPE_M) 908 TYPE("lea64_32mem", TYPE_M) 909 TYPE("lea64mem", TYPE_M) 910 TYPE("VR64", TYPE_MM64) 911 TYPE("i64imm", TYPE_IMM) 912 TYPE("anymem", TYPE_M) 913 TYPE("opaquemem", TYPE_M) 914 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 915 TYPE("DEBUG_REG", TYPE_DEBUGREG) 916 TYPE("CONTROL_REG", TYPE_CONTROLREG) 917 TYPE("srcidx8", TYPE_SRCIDX) 918 TYPE("srcidx16", TYPE_SRCIDX) 919 TYPE("srcidx32", TYPE_SRCIDX) 920 TYPE("srcidx64", TYPE_SRCIDX) 921 TYPE("dstidx8", TYPE_DSTIDX) 922 TYPE("dstidx16", TYPE_DSTIDX) 923 TYPE("dstidx32", TYPE_DSTIDX) 924 TYPE("dstidx64", TYPE_DSTIDX) 925 TYPE("offset16_8", TYPE_MOFFS) 926 TYPE("offset16_16", TYPE_MOFFS) 927 TYPE("offset16_32", TYPE_MOFFS) 928 TYPE("offset32_8", TYPE_MOFFS) 929 TYPE("offset32_16", TYPE_MOFFS) 930 TYPE("offset32_32", TYPE_MOFFS) 931 TYPE("offset32_64", TYPE_MOFFS) 932 TYPE("offset64_8", TYPE_MOFFS) 933 TYPE("offset64_16", TYPE_MOFFS) 934 TYPE("offset64_32", TYPE_MOFFS) 935 TYPE("offset64_64", TYPE_MOFFS) 936 TYPE("VR256", TYPE_YMM) 937 TYPE("VR256X", TYPE_YMM) 938 TYPE("VR512", TYPE_ZMM) 939 TYPE("VK1", TYPE_VK) 940 TYPE("VK1WM", TYPE_VK) 941 TYPE("VK2", TYPE_VK) 942 TYPE("VK2WM", TYPE_VK) 943 TYPE("VK4", TYPE_VK) 944 TYPE("VK4WM", TYPE_VK) 945 TYPE("VK8", TYPE_VK) 946 TYPE("VK8WM", TYPE_VK) 947 TYPE("VK16", TYPE_VK) 948 TYPE("VK16WM", TYPE_VK) 949 TYPE("VK32", TYPE_VK) 950 TYPE("VK32WM", TYPE_VK) 951 TYPE("VK64", TYPE_VK) 952 TYPE("VK64WM", TYPE_VK) 953 TYPE("VK1Pair", TYPE_VK_PAIR) 954 TYPE("VK2Pair", TYPE_VK_PAIR) 955 TYPE("VK4Pair", TYPE_VK_PAIR) 956 TYPE("VK8Pair", TYPE_VK_PAIR) 957 TYPE("VK16Pair", TYPE_VK_PAIR) 958 TYPE("vx64mem", TYPE_MVSIBX) 959 TYPE("vx128mem", TYPE_MVSIBX) 960 TYPE("vx256mem", TYPE_MVSIBX) 961 TYPE("vy128mem", TYPE_MVSIBY) 962 TYPE("vy256mem", TYPE_MVSIBY) 963 TYPE("vx64xmem", TYPE_MVSIBX) 964 TYPE("vx128xmem", TYPE_MVSIBX) 965 TYPE("vx256xmem", TYPE_MVSIBX) 966 TYPE("vy128xmem", TYPE_MVSIBY) 967 TYPE("vy256xmem", TYPE_MVSIBY) 968 TYPE("vy512xmem", TYPE_MVSIBY) 969 TYPE("vz256mem", TYPE_MVSIBZ) 970 TYPE("vz512mem", TYPE_MVSIBZ) 971 TYPE("BNDR", TYPE_BNDR) 972 errs() << "Unhandled type string " << s << "\n"; 973 llvm_unreachable("Unhandled type string"); 974 } 975 #undef TYPE 976 977 #define ENCODING(str, encoding) if (s == str) return encoding; 978 OperandEncoding 979 RecognizableInstr::immediateEncodingFromString(const std::string &s, 980 uint8_t OpSize) { 981 if(OpSize != X86Local::OpSize16) { 982 // For instructions without an OpSize prefix, a declared 16-bit register or 983 // immediate encoding is special. 984 ENCODING("i16imm", ENCODING_IW) 985 } 986 ENCODING("i32i8imm", ENCODING_IB) 987 ENCODING("AVX512RC", ENCODING_IRC) 988 ENCODING("i16imm", ENCODING_Iv) 989 ENCODING("i16i8imm", ENCODING_IB) 990 ENCODING("i32imm", ENCODING_Iv) 991 ENCODING("i64i32imm", ENCODING_ID) 992 ENCODING("i64i8imm", ENCODING_IB) 993 ENCODING("i8imm", ENCODING_IB) 994 ENCODING("u4imm", ENCODING_IB) 995 ENCODING("u8imm", ENCODING_IB) 996 ENCODING("i16u8imm", ENCODING_IB) 997 ENCODING("i32u8imm", ENCODING_IB) 998 ENCODING("i64u8imm", ENCODING_IB) 999 // This is not a typo. Instructions like BLENDVPD put 1000 // register IDs in 8-bit immediates nowadays. 1001 ENCODING("FR32", ENCODING_IB) 1002 ENCODING("FR64", ENCODING_IB) 1003 ENCODING("FR128", ENCODING_IB) 1004 ENCODING("VR128", ENCODING_IB) 1005 ENCODING("VR256", ENCODING_IB) 1006 ENCODING("FR32X", ENCODING_IB) 1007 ENCODING("FR64X", ENCODING_IB) 1008 ENCODING("VR128X", ENCODING_IB) 1009 ENCODING("VR256X", ENCODING_IB) 1010 ENCODING("VR512", ENCODING_IB) 1011 errs() << "Unhandled immediate encoding " << s << "\n"; 1012 llvm_unreachable("Unhandled immediate encoding"); 1013 } 1014 1015 OperandEncoding 1016 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s, 1017 uint8_t OpSize) { 1018 ENCODING("RST", ENCODING_FP) 1019 ENCODING("RSTi", ENCODING_FP) 1020 ENCODING("GR16", ENCODING_RM) 1021 ENCODING("GR32", ENCODING_RM) 1022 ENCODING("GR32orGR64", ENCODING_RM) 1023 ENCODING("GR64", ENCODING_RM) 1024 ENCODING("GR8", ENCODING_RM) 1025 ENCODING("VR128", ENCODING_RM) 1026 ENCODING("VR128X", ENCODING_RM) 1027 ENCODING("FR128", ENCODING_RM) 1028 ENCODING("FR64", ENCODING_RM) 1029 ENCODING("FR32", ENCODING_RM) 1030 ENCODING("FR64X", ENCODING_RM) 1031 ENCODING("FR32X", ENCODING_RM) 1032 ENCODING("VR64", ENCODING_RM) 1033 ENCODING("VR256", ENCODING_RM) 1034 ENCODING("VR256X", ENCODING_RM) 1035 ENCODING("VR512", ENCODING_RM) 1036 ENCODING("VK1", ENCODING_RM) 1037 ENCODING("VK2", ENCODING_RM) 1038 ENCODING("VK4", ENCODING_RM) 1039 ENCODING("VK8", ENCODING_RM) 1040 ENCODING("VK16", ENCODING_RM) 1041 ENCODING("VK32", ENCODING_RM) 1042 ENCODING("VK64", ENCODING_RM) 1043 ENCODING("VK1PAIR", ENCODING_RM) 1044 ENCODING("VK2PAIR", ENCODING_RM) 1045 ENCODING("VK4PAIR", ENCODING_RM) 1046 ENCODING("VK8PAIR", ENCODING_RM) 1047 ENCODING("VK16PAIR", ENCODING_RM) 1048 ENCODING("BNDR", ENCODING_RM) 1049 errs() << "Unhandled R/M register encoding " << s << "\n"; 1050 llvm_unreachable("Unhandled R/M register encoding"); 1051 } 1052 1053 OperandEncoding 1054 RecognizableInstr::roRegisterEncodingFromString(const std::string &s, 1055 uint8_t OpSize) { 1056 ENCODING("GR16", ENCODING_REG) 1057 ENCODING("GR32", ENCODING_REG) 1058 ENCODING("GR32orGR64", ENCODING_REG) 1059 ENCODING("GR64", ENCODING_REG) 1060 ENCODING("GR8", ENCODING_REG) 1061 ENCODING("VR128", ENCODING_REG) 1062 ENCODING("FR128", ENCODING_REG) 1063 ENCODING("FR64", ENCODING_REG) 1064 ENCODING("FR32", ENCODING_REG) 1065 ENCODING("VR64", ENCODING_REG) 1066 ENCODING("SEGMENT_REG", ENCODING_REG) 1067 ENCODING("DEBUG_REG", ENCODING_REG) 1068 ENCODING("CONTROL_REG", ENCODING_REG) 1069 ENCODING("VR256", ENCODING_REG) 1070 ENCODING("VR256X", ENCODING_REG) 1071 ENCODING("VR128X", ENCODING_REG) 1072 ENCODING("FR64X", ENCODING_REG) 1073 ENCODING("FR32X", ENCODING_REG) 1074 ENCODING("VR512", ENCODING_REG) 1075 ENCODING("VK1", ENCODING_REG) 1076 ENCODING("VK2", ENCODING_REG) 1077 ENCODING("VK4", ENCODING_REG) 1078 ENCODING("VK8", ENCODING_REG) 1079 ENCODING("VK16", ENCODING_REG) 1080 ENCODING("VK32", ENCODING_REG) 1081 ENCODING("VK64", ENCODING_REG) 1082 ENCODING("VK1Pair", ENCODING_REG) 1083 ENCODING("VK2Pair", ENCODING_REG) 1084 ENCODING("VK4Pair", ENCODING_REG) 1085 ENCODING("VK8Pair", ENCODING_REG) 1086 ENCODING("VK16Pair", ENCODING_REG) 1087 ENCODING("VK1WM", ENCODING_REG) 1088 ENCODING("VK2WM", ENCODING_REG) 1089 ENCODING("VK4WM", ENCODING_REG) 1090 ENCODING("VK8WM", ENCODING_REG) 1091 ENCODING("VK16WM", ENCODING_REG) 1092 ENCODING("VK32WM", ENCODING_REG) 1093 ENCODING("VK64WM", ENCODING_REG) 1094 ENCODING("BNDR", ENCODING_REG) 1095 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1096 llvm_unreachable("Unhandled reg/opcode register encoding"); 1097 } 1098 1099 OperandEncoding 1100 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s, 1101 uint8_t OpSize) { 1102 ENCODING("GR32", ENCODING_VVVV) 1103 ENCODING("GR64", ENCODING_VVVV) 1104 ENCODING("FR32", ENCODING_VVVV) 1105 ENCODING("FR128", ENCODING_VVVV) 1106 ENCODING("FR64", ENCODING_VVVV) 1107 ENCODING("VR128", ENCODING_VVVV) 1108 ENCODING("VR256", ENCODING_VVVV) 1109 ENCODING("FR32X", ENCODING_VVVV) 1110 ENCODING("FR64X", ENCODING_VVVV) 1111 ENCODING("VR128X", ENCODING_VVVV) 1112 ENCODING("VR256X", ENCODING_VVVV) 1113 ENCODING("VR512", ENCODING_VVVV) 1114 ENCODING("VK1", ENCODING_VVVV) 1115 ENCODING("VK2", ENCODING_VVVV) 1116 ENCODING("VK4", ENCODING_VVVV) 1117 ENCODING("VK8", ENCODING_VVVV) 1118 ENCODING("VK16", ENCODING_VVVV) 1119 ENCODING("VK32", ENCODING_VVVV) 1120 ENCODING("VK64", ENCODING_VVVV) 1121 ENCODING("VK1PAIR", ENCODING_VVVV) 1122 ENCODING("VK2PAIR", ENCODING_VVVV) 1123 ENCODING("VK4PAIR", ENCODING_VVVV) 1124 ENCODING("VK8PAIR", ENCODING_VVVV) 1125 ENCODING("VK16PAIR", ENCODING_VVVV) 1126 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1127 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1128 } 1129 1130 OperandEncoding 1131 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s, 1132 uint8_t OpSize) { 1133 ENCODING("VK1WM", ENCODING_WRITEMASK) 1134 ENCODING("VK2WM", ENCODING_WRITEMASK) 1135 ENCODING("VK4WM", ENCODING_WRITEMASK) 1136 ENCODING("VK8WM", ENCODING_WRITEMASK) 1137 ENCODING("VK16WM", ENCODING_WRITEMASK) 1138 ENCODING("VK32WM", ENCODING_WRITEMASK) 1139 ENCODING("VK64WM", ENCODING_WRITEMASK) 1140 errs() << "Unhandled mask register encoding " << s << "\n"; 1141 llvm_unreachable("Unhandled mask register encoding"); 1142 } 1143 1144 OperandEncoding 1145 RecognizableInstr::memoryEncodingFromString(const std::string &s, 1146 uint8_t OpSize) { 1147 ENCODING("i16mem", ENCODING_RM) 1148 ENCODING("i32mem", ENCODING_RM) 1149 ENCODING("i64mem", ENCODING_RM) 1150 ENCODING("i8mem", ENCODING_RM) 1151 ENCODING("ssmem", ENCODING_RM) 1152 ENCODING("sdmem", ENCODING_RM) 1153 ENCODING("f128mem", ENCODING_RM) 1154 ENCODING("f256mem", ENCODING_RM) 1155 ENCODING("f512mem", ENCODING_RM) 1156 ENCODING("f64mem", ENCODING_RM) 1157 ENCODING("f32mem", ENCODING_RM) 1158 ENCODING("i128mem", ENCODING_RM) 1159 ENCODING("i256mem", ENCODING_RM) 1160 ENCODING("i512mem", ENCODING_RM) 1161 ENCODING("f80mem", ENCODING_RM) 1162 ENCODING("lea64_32mem", ENCODING_RM) 1163 ENCODING("lea64mem", ENCODING_RM) 1164 ENCODING("anymem", ENCODING_RM) 1165 ENCODING("opaquemem", ENCODING_RM) 1166 ENCODING("vx64mem", ENCODING_VSIB) 1167 ENCODING("vx128mem", ENCODING_VSIB) 1168 ENCODING("vx256mem", ENCODING_VSIB) 1169 ENCODING("vy128mem", ENCODING_VSIB) 1170 ENCODING("vy256mem", ENCODING_VSIB) 1171 ENCODING("vx64xmem", ENCODING_VSIB) 1172 ENCODING("vx128xmem", ENCODING_VSIB) 1173 ENCODING("vx256xmem", ENCODING_VSIB) 1174 ENCODING("vy128xmem", ENCODING_VSIB) 1175 ENCODING("vy256xmem", ENCODING_VSIB) 1176 ENCODING("vy512xmem", ENCODING_VSIB) 1177 ENCODING("vz256mem", ENCODING_VSIB) 1178 ENCODING("vz512mem", ENCODING_VSIB) 1179 errs() << "Unhandled memory encoding " << s << "\n"; 1180 llvm_unreachable("Unhandled memory encoding"); 1181 } 1182 1183 OperandEncoding 1184 RecognizableInstr::relocationEncodingFromString(const std::string &s, 1185 uint8_t OpSize) { 1186 if(OpSize != X86Local::OpSize16) { 1187 // For instructions without an OpSize prefix, a declared 16-bit register or 1188 // immediate encoding is special. 1189 ENCODING("i16imm", ENCODING_IW) 1190 } 1191 ENCODING("i16imm", ENCODING_Iv) 1192 ENCODING("i16i8imm", ENCODING_IB) 1193 ENCODING("i32imm", ENCODING_Iv) 1194 ENCODING("i32i8imm", ENCODING_IB) 1195 ENCODING("i64i32imm", ENCODING_ID) 1196 ENCODING("i64i8imm", ENCODING_IB) 1197 ENCODING("i8imm", ENCODING_IB) 1198 ENCODING("u8imm", ENCODING_IB) 1199 ENCODING("i16u8imm", ENCODING_IB) 1200 ENCODING("i32u8imm", ENCODING_IB) 1201 ENCODING("i64u8imm", ENCODING_IB) 1202 ENCODING("i64i32imm_brtarget", ENCODING_ID) 1203 ENCODING("i16imm_brtarget", ENCODING_IW) 1204 ENCODING("i32imm_brtarget", ENCODING_ID) 1205 ENCODING("brtarget32", ENCODING_ID) 1206 ENCODING("brtarget16", ENCODING_IW) 1207 ENCODING("brtarget8", ENCODING_IB) 1208 ENCODING("i64imm", ENCODING_IO) 1209 ENCODING("offset16_8", ENCODING_Ia) 1210 ENCODING("offset16_16", ENCODING_Ia) 1211 ENCODING("offset16_32", ENCODING_Ia) 1212 ENCODING("offset32_8", ENCODING_Ia) 1213 ENCODING("offset32_16", ENCODING_Ia) 1214 ENCODING("offset32_32", ENCODING_Ia) 1215 ENCODING("offset32_64", ENCODING_Ia) 1216 ENCODING("offset64_8", ENCODING_Ia) 1217 ENCODING("offset64_16", ENCODING_Ia) 1218 ENCODING("offset64_32", ENCODING_Ia) 1219 ENCODING("offset64_64", ENCODING_Ia) 1220 ENCODING("srcidx8", ENCODING_SI) 1221 ENCODING("srcidx16", ENCODING_SI) 1222 ENCODING("srcidx32", ENCODING_SI) 1223 ENCODING("srcidx64", ENCODING_SI) 1224 ENCODING("dstidx8", ENCODING_DI) 1225 ENCODING("dstidx16", ENCODING_DI) 1226 ENCODING("dstidx32", ENCODING_DI) 1227 ENCODING("dstidx64", ENCODING_DI) 1228 errs() << "Unhandled relocation encoding " << s << "\n"; 1229 llvm_unreachable("Unhandled relocation encoding"); 1230 } 1231 1232 OperandEncoding 1233 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s, 1234 uint8_t OpSize) { 1235 ENCODING("GR32", ENCODING_Rv) 1236 ENCODING("GR64", ENCODING_RO) 1237 ENCODING("GR16", ENCODING_Rv) 1238 ENCODING("GR8", ENCODING_RB) 1239 ENCODING("ccode", ENCODING_CC) 1240 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1241 llvm_unreachable("Unhandled opcode modifier encoding"); 1242 } 1243 #undef ENCODING 1244