1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86RecognizableInstr.h"
18 #include "X86DisassemblerShared.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include <string>
22 
23 using namespace llvm;
24 
25 #define MRM_MAPPING     \
26   MAP(C1, 33)           \
27   MAP(C2, 34)           \
28   MAP(C3, 35)           \
29   MAP(C4, 36)           \
30   MAP(C8, 37)           \
31   MAP(C9, 38)           \
32   MAP(CA, 39)           \
33   MAP(CB, 40)           \
34   MAP(E8, 41)           \
35   MAP(F0, 42)           \
36   MAP(F8, 45)           \
37   MAP(F9, 46)           \
38   MAP(D0, 47)           \
39   MAP(D1, 48)           \
40   MAP(D4, 49)           \
41   MAP(D5, 50)           \
42   MAP(D6, 51)           \
43   MAP(D8, 52)           \
44   MAP(D9, 53)           \
45   MAP(DA, 54)           \
46   MAP(DB, 55)           \
47   MAP(DC, 56)           \
48   MAP(DD, 57)           \
49   MAP(DE, 58)           \
50   MAP(DF, 59)
51 
52 // A clone of X86 since we can't depend on something that is generated.
53 namespace X86Local {
54   enum {
55     Pseudo      = 0,
56     RawFrm      = 1,
57     AddRegFrm   = 2,
58     MRMDestReg  = 3,
59     MRMDestMem  = 4,
60     MRMSrcReg   = 5,
61     MRMSrcMem   = 6,
62     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
63     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
64     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
65     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
66     MRMInitReg  = 32,
67     RawFrmImm8  = 43,
68     RawFrmImm16 = 44,
69 #define MAP(from, to) MRM_##from = to,
70     MRM_MAPPING
71 #undef MAP
72     lastMRM
73   };
74 
75   enum {
76     TB  = 1,
77     REP = 2,
78     D8 = 3, D9 = 4, DA = 5, DB = 6,
79     DC = 7, DD = 8, DE = 9, DF = 10,
80     XD = 11,  XS = 12,
81     T8 = 13,  P_TA = 14,
82     A6 = 15,  A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19
83   };
84 }
85 
86 // If rows are added to the opcode extension tables, then corresponding entries
87 // must be added here.
88 //
89 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
90 // that byte to ONE_BYTE_EXTENSION_TABLES.
91 //
92 // If the row corresponds to two bytes where the first is 0f, add an entry for
93 // the second byte to TWO_BYTE_EXTENSION_TABLES.
94 //
95 // If the row corresponds to some other set of bytes, you will need to modify
96 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
97 // to the X86 TD files, except in two cases: if the first two bytes of such a
98 // new combination are 0f 38 or 0f 3a, you just have to add maps called
99 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
100 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
101 // in RecognizableInstr::emitDecodePath().
102 
103 #define ONE_BYTE_EXTENSION_TABLES \
104   EXTENSION_TABLE(80)             \
105   EXTENSION_TABLE(81)             \
106   EXTENSION_TABLE(82)             \
107   EXTENSION_TABLE(83)             \
108   EXTENSION_TABLE(8f)             \
109   EXTENSION_TABLE(c0)             \
110   EXTENSION_TABLE(c1)             \
111   EXTENSION_TABLE(c6)             \
112   EXTENSION_TABLE(c7)             \
113   EXTENSION_TABLE(d0)             \
114   EXTENSION_TABLE(d1)             \
115   EXTENSION_TABLE(d2)             \
116   EXTENSION_TABLE(d3)             \
117   EXTENSION_TABLE(f6)             \
118   EXTENSION_TABLE(f7)             \
119   EXTENSION_TABLE(fe)             \
120   EXTENSION_TABLE(ff)
121 
122 #define TWO_BYTE_EXTENSION_TABLES \
123   EXTENSION_TABLE(00)             \
124   EXTENSION_TABLE(01)             \
125   EXTENSION_TABLE(0d)             \
126   EXTENSION_TABLE(18)             \
127   EXTENSION_TABLE(71)             \
128   EXTENSION_TABLE(72)             \
129   EXTENSION_TABLE(73)             \
130   EXTENSION_TABLE(ae)             \
131   EXTENSION_TABLE(ba)             \
132   EXTENSION_TABLE(c7)
133 
134 #define THREE_BYTE_38_EXTENSION_TABLES \
135   EXTENSION_TABLE(F3)
136 
137 using namespace X86Disassembler;
138 
139 /// needsModRMForDecode - Indicates whether a particular instruction requires a
140 ///   ModR/M byte for the instruction to be properly decoded.  For example, a
141 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
142 ///   0b11.
143 ///
144 /// @param form - The form of the instruction.
145 /// @return     - true if the form implies that a ModR/M byte is required, false
146 ///               otherwise.
147 static bool needsModRMForDecode(uint8_t form) {
148   if (form == X86Local::MRMDestReg    ||
149      form == X86Local::MRMDestMem    ||
150      form == X86Local::MRMSrcReg     ||
151      form == X86Local::MRMSrcMem     ||
152      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
153      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
154     return true;
155   else
156     return false;
157 }
158 
159 /// isRegFormat - Indicates whether a particular form requires the Mod field of
160 ///   the ModR/M byte to be 0b11.
161 ///
162 /// @param form - The form of the instruction.
163 /// @return     - true if the form implies that Mod must be 0b11, false
164 ///               otherwise.
165 static bool isRegFormat(uint8_t form) {
166   if (form == X86Local::MRMDestReg ||
167      form == X86Local::MRMSrcReg  ||
168      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
169     return true;
170   else
171     return false;
172 }
173 
174 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
175 ///   Useful for switch statements and the like.
176 ///
177 /// @param init - A reference to the BitsInit to be decoded.
178 /// @return     - The field, with the first bit in the BitsInit as the lowest
179 ///               order bit.
180 static uint8_t byteFromBitsInit(BitsInit &init) {
181   int width = init.getNumBits();
182 
183   assert(width <= 8 && "Field is too large for uint8_t!");
184 
185   int     index;
186   uint8_t mask = 0x01;
187 
188   uint8_t ret = 0;
189 
190   for (index = 0; index < width; index++) {
191     if (static_cast<BitInit*>(init.getBit(index))->getValue())
192       ret |= mask;
193 
194     mask <<= 1;
195   }
196 
197   return ret;
198 }
199 
200 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
201 ///   name of the field.
202 ///
203 /// @param rec  - The record from which to extract the value.
204 /// @param name - The name of the field in the record.
205 /// @return     - The field, as translated by byteFromBitsInit().
206 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
207   BitsInit* bits = rec->getValueAsBitsInit(name);
208   return byteFromBitsInit(*bits);
209 }
210 
211 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
212                                      const CodeGenInstruction &insn,
213                                      InstrUID uid) {
214   UID = uid;
215 
216   Rec = insn.TheDef;
217   Name = Rec->getName();
218   Spec = &tables.specForUID(UID);
219 
220   if (!Rec->isSubClassOf("X86Inst")) {
221     ShouldBeEmitted = false;
222     return;
223   }
224 
225   Prefix   = byteFromRec(Rec, "Prefix");
226   Opcode   = byteFromRec(Rec, "Opcode");
227   Form     = byteFromRec(Rec, "FormBits");
228   SegOvr   = byteFromRec(Rec, "SegOvrBits");
229 
230   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
231   HasAdSizePrefix  = Rec->getValueAsBit("hasAdSizePrefix");
232   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
233   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
234   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
235   HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix");
236   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
237   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
238   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
239   HasEVEXPrefix    = Rec->getValueAsBit("hasEVEXPrefix");
240   HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
241   HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
242   HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
243   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
244   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
245 
246   Name      = Rec->getName();
247   AsmString = Rec->getValueAsString("AsmString");
248 
249   Operands = &insn.Operands.OperandList;
250 
251   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
252                      (Name.find("CRC32") != Name.npos);
253   HasFROperands    = hasFROperands();
254   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
255 
256   // Check for 64-bit inst which does not require REX
257   Is32Bit = false;
258   Is64Bit = false;
259   // FIXME: Is there some better way to check for In64BitMode?
260   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
261   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
262     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
263       Is32Bit = true;
264       break;
265     }
266     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
267       Is64Bit = true;
268       break;
269     }
270   }
271   // FIXME: These instructions aren't marked as 64-bit in any way
272   Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
273              Rec->getName() == "MASKMOVDQU64" ||
274              Rec->getName() == "POPFS64" ||
275              Rec->getName() == "POPGS64" ||
276              Rec->getName() == "PUSHFS64" ||
277              Rec->getName() == "PUSHGS64" ||
278              Rec->getName() == "REX64_PREFIX" ||
279              Rec->getName().find("MOV64") != Name.npos ||
280              Rec->getName().find("PUSH64") != Name.npos ||
281              Rec->getName().find("POP64") != Name.npos;
282 
283   ShouldBeEmitted  = true;
284 }
285 
286 void RecognizableInstr::processInstr(DisassemblerTables &tables,
287                                      const CodeGenInstruction &insn,
288                                      InstrUID uid)
289 {
290   // Ignore "asm parser only" instructions.
291   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
292     return;
293 
294   RecognizableInstr recogInstr(tables, insn, uid);
295 
296   recogInstr.emitInstructionSpecifier(tables);
297 
298   if (recogInstr.shouldBeEmitted())
299     recogInstr.emitDecodePath(tables);
300 }
301 
302 #define EVEX_KB(n) (HasEVEX_K && HasEVEX_B? n##_K_B : \
303                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))
304 
305 InstructionContext RecognizableInstr::insnContext() const {
306   InstructionContext insnContext;
307 
308   if (HasEVEXPrefix) {
309     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
310       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
311       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
312     }
313     // VEX_L & VEX_W
314     if (HasVEX_LPrefix && HasVEX_WPrefix) {
315       if (HasOpSizePrefix)
316         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
317       else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
318         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
319       else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
320                Prefix == X86Local::TAXD)
321         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
322       else
323         insnContext = EVEX_KB(IC_EVEX_L_W);
324     } else if (HasVEX_LPrefix) {
325       // VEX_L
326       if (HasOpSizePrefix)
327         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
328       else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
329         insnContext = EVEX_KB(IC_EVEX_L_XS);
330       else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
331                Prefix == X86Local::TAXD)
332         insnContext = EVEX_KB(IC_EVEX_L_XD);
333       else
334         insnContext = EVEX_KB(IC_EVEX_L);
335     }
336     else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
337       // EVEX_L2 & VEX_W
338       if (HasOpSizePrefix)
339         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
340       else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
341         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
342       else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
343                Prefix == X86Local::TAXD)
344         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
345       else
346         insnContext = EVEX_KB(IC_EVEX_L2_W);
347     } else if (HasEVEX_L2Prefix) {
348       // EVEX_L2
349       if (HasOpSizePrefix)
350         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
351       else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
352           Prefix == X86Local::TAXD)
353         insnContext = EVEX_KB(IC_EVEX_L2_XD);
354       else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
355         insnContext = EVEX_KB(IC_EVEX_L2_XS);
356       else
357         insnContext = EVEX_KB(IC_EVEX_L2);
358     }
359     else if (HasVEX_WPrefix) {
360       // VEX_W
361       if (HasOpSizePrefix)
362         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
363       else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
364         insnContext = EVEX_KB(IC_EVEX_W_XS);
365       else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
366                Prefix == X86Local::TAXD)
367         insnContext = EVEX_KB(IC_EVEX_W_XD);
368       else
369         insnContext = EVEX_KB(IC_EVEX_W);
370     }
371     // No L, no W
372     else if (HasOpSizePrefix)
373       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
374     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
375              Prefix == X86Local::TAXD)
376       insnContext = EVEX_KB(IC_EVEX_XD);
377     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
378       insnContext = EVEX_KB(IC_EVEX_XS);
379     else
380       insnContext = EVEX_KB(IC_EVEX);
381     /// eof EVEX
382   } else if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) {
383     if (HasVEX_LPrefix && HasVEX_WPrefix) {
384       if (HasOpSizePrefix)
385         insnContext = IC_VEX_L_W_OPSIZE;
386       else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
387         insnContext = IC_VEX_L_W_XS;
388       else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
389                Prefix == X86Local::TAXD)
390         insnContext = IC_VEX_L_W_XD;
391       else
392         insnContext = IC_VEX_L_W;
393     } else if (HasOpSizePrefix && HasVEX_LPrefix)
394       insnContext = IC_VEX_L_OPSIZE;
395     else if (HasOpSizePrefix && HasVEX_WPrefix)
396       insnContext = IC_VEX_W_OPSIZE;
397     else if (HasOpSizePrefix)
398       insnContext = IC_VEX_OPSIZE;
399     else if (HasVEX_LPrefix &&
400              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
401       insnContext = IC_VEX_L_XS;
402     else if (HasVEX_LPrefix && (Prefix == X86Local::XD ||
403                                 Prefix == X86Local::T8XD ||
404                                 Prefix == X86Local::TAXD))
405       insnContext = IC_VEX_L_XD;
406     else if (HasVEX_WPrefix &&
407              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
408       insnContext = IC_VEX_W_XS;
409     else if (HasVEX_WPrefix && (Prefix == X86Local::XD ||
410                                 Prefix == X86Local::T8XD ||
411                                 Prefix == X86Local::TAXD))
412       insnContext = IC_VEX_W_XD;
413     else if (HasVEX_WPrefix)
414       insnContext = IC_VEX_W;
415     else if (HasVEX_LPrefix)
416       insnContext = IC_VEX_L;
417     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
418              Prefix == X86Local::TAXD)
419       insnContext = IC_VEX_XD;
420     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
421       insnContext = IC_VEX_XS;
422     else
423       insnContext = IC_VEX;
424   } else if (Is64Bit || HasREX_WPrefix) {
425     if (HasREX_WPrefix && HasOpSizePrefix)
426       insnContext = IC_64BIT_REXW_OPSIZE;
427     else if (HasOpSizePrefix && (Prefix == X86Local::XD ||
428                                  Prefix == X86Local::T8XD ||
429                                  Prefix == X86Local::TAXD))
430       insnContext = IC_64BIT_XD_OPSIZE;
431     else if (HasOpSizePrefix &&
432              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
433       insnContext = IC_64BIT_XS_OPSIZE;
434     else if (HasOpSizePrefix)
435       insnContext = IC_64BIT_OPSIZE;
436     else if (HasAdSizePrefix)
437       insnContext = IC_64BIT_ADSIZE;
438     else if (HasREX_WPrefix &&
439              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
440       insnContext = IC_64BIT_REXW_XS;
441     else if (HasREX_WPrefix && (Prefix == X86Local::XD ||
442                                 Prefix == X86Local::T8XD ||
443                                 Prefix == X86Local::TAXD))
444       insnContext = IC_64BIT_REXW_XD;
445     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
446              Prefix == X86Local::TAXD)
447       insnContext = IC_64BIT_XD;
448     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
449       insnContext = IC_64BIT_XS;
450     else if (HasREX_WPrefix)
451       insnContext = IC_64BIT_REXW;
452     else
453       insnContext = IC_64BIT;
454   } else {
455     if (HasOpSizePrefix && (Prefix == X86Local::XD ||
456                             Prefix == X86Local::T8XD ||
457                             Prefix == X86Local::TAXD))
458       insnContext = IC_XD_OPSIZE;
459     else if (HasOpSizePrefix &&
460              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
461       insnContext = IC_XS_OPSIZE;
462     else if (HasOpSizePrefix)
463       insnContext = IC_OPSIZE;
464     else if (HasAdSizePrefix)
465       insnContext = IC_ADSIZE;
466     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
467              Prefix == X86Local::TAXD)
468       insnContext = IC_XD;
469     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS ||
470              Prefix == X86Local::REP)
471       insnContext = IC_XS;
472     else
473       insnContext = IC;
474   }
475 
476   return insnContext;
477 }
478 
479 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
480   ///////////////////
481   // FILTER_STRONG
482   //
483 
484   // Filter out intrinsics
485 
486   assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions");
487 
488   if (Form == X86Local::Pseudo ||
489       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
490     return FILTER_STRONG;
491 
492 
493   // Filter out artificial instructions but leave in the LOCK_PREFIX so it is
494   // printed as a separate "instruction".
495 
496   if (Name.find("_Int") != Name.npos       ||
497       Name.find("Int_") != Name.npos)
498     return FILTER_STRONG;
499 
500   // Filter out instructions with segment override prefixes.
501   // They're too messy to handle now and we'll special case them if needed.
502 
503   if (SegOvr)
504     return FILTER_STRONG;
505 
506 
507   /////////////////
508   // FILTER_WEAK
509   //
510 
511 
512   // Filter out instructions with a LOCK prefix;
513   //   prefer forms that do not have the prefix
514   if (HasLockPrefix)
515     return FILTER_WEAK;
516 
517   // Filter out alternate forms of AVX instructions
518   if (Name.find("_alt") != Name.npos ||
519       Name.find("XrYr") != Name.npos ||
520       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
521       Name.find("_64mr") != Name.npos ||
522       Name.find("Xrr") != Name.npos ||
523       Name.find("rr64") != Name.npos)
524     return FILTER_WEAK;
525 
526   // Special cases.
527 
528   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
529     return FILTER_WEAK;
530   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
531     return FILTER_WEAK;
532 
533   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
534     return FILTER_WEAK;
535   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
536     return FILTER_WEAK;
537   if (Name.find("Fs") != Name.npos)
538     return FILTER_WEAK;
539   if (Name == "PUSH64i16"         ||
540       Name == "MOVPQI2QImr"       ||
541       Name == "VMOVPQI2QImr"      ||
542       Name == "MMX_MOVD64rrv164"  ||
543       Name == "MOV64ri64i32"      ||
544       Name == "VMASKMOVDQU64"     ||
545       Name == "VEXTRACTPSrr64"    ||
546       Name == "VMOVQd64rr"        ||
547       Name == "VMOVQs64rr")
548     return FILTER_WEAK;
549 
550   // XACQUIRE and XRELEASE reuse REPNE and REP respectively.
551   // For now, just prefer the REP versions.
552   if (Name == "XACQUIRE_PREFIX" ||
553       Name == "XRELEASE_PREFIX")
554     return FILTER_WEAK;
555 
556   if (HasFROperands && Name.find("MOV") != Name.npos &&
557      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
558       (Name.find("to") != Name.npos)))
559     return FILTER_STRONG;
560 
561   return FILTER_NORMAL;
562 }
563 
564 bool RecognizableInstr::hasFROperands() const {
565   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
566   unsigned numOperands = OperandList.size();
567 
568   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
569     const std::string &recName = OperandList[operandIndex].Rec->getName();
570 
571     if (recName.find("FR") != recName.npos)
572       return true;
573   }
574   return false;
575 }
576 
577 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
578                                       unsigned &physicalOperandIndex,
579                                       unsigned &numPhysicalOperands,
580                                       const unsigned *operandMapping,
581                                       OperandEncoding (*encodingFromString)
582                                         (const std::string&,
583                                          bool hasOpSizePrefix)) {
584   if (optional) {
585     if (physicalOperandIndex >= numPhysicalOperands)
586       return;
587   } else {
588     assert(physicalOperandIndex < numPhysicalOperands);
589   }
590 
591   while (operandMapping[operandIndex] != operandIndex) {
592     Spec->operands[operandIndex].encoding = ENCODING_DUP;
593     Spec->operands[operandIndex].type =
594       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
595     ++operandIndex;
596   }
597 
598   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
599 
600   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
601                                                               HasOpSizePrefix);
602   Spec->operands[operandIndex].type = typeFromString(typeName,
603                                                      IsSSE,
604                                                      HasREX_WPrefix,
605                                                      HasOpSizePrefix);
606 
607   ++operandIndex;
608   ++physicalOperandIndex;
609 }
610 
611 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
612   Spec->name       = Name;
613 
614   if (!ShouldBeEmitted)
615     return;
616 
617   switch (filter()) {
618   case FILTER_WEAK:
619     Spec->filtered = true;
620     break;
621   case FILTER_STRONG:
622     ShouldBeEmitted = false;
623     return;
624   case FILTER_NORMAL:
625     break;
626   }
627 
628   Spec->insnContext = insnContext();
629 
630   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
631 
632   unsigned numOperands = OperandList.size();
633   unsigned numPhysicalOperands = 0;
634 
635   // operandMapping maps from operands in OperandList to their originals.
636   // If operandMapping[i] != i, then the entry is a duplicate.
637   unsigned operandMapping[X86_MAX_OPERANDS];
638   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
639 
640   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
641     if (OperandList[operandIndex].Constraints.size()) {
642       const CGIOperandList::ConstraintInfo &Constraint =
643         OperandList[operandIndex].Constraints[0];
644       if (Constraint.isTied()) {
645         operandMapping[operandIndex] = operandIndex;
646         operandMapping[Constraint.getTiedOperand()] = operandIndex;
647       } else {
648         ++numPhysicalOperands;
649         operandMapping[operandIndex] = operandIndex;
650       }
651     } else {
652       ++numPhysicalOperands;
653       operandMapping[operandIndex] = operandIndex;
654     }
655   }
656 
657 #define HANDLE_OPERAND(class)               \
658   handleOperand(false,                      \
659                 operandIndex,               \
660                 physicalOperandIndex,       \
661                 numPhysicalOperands,        \
662                 operandMapping,             \
663                 class##EncodingFromString);
664 
665 #define HANDLE_OPTIONAL(class)              \
666   handleOperand(true,                       \
667                 operandIndex,               \
668                 physicalOperandIndex,       \
669                 numPhysicalOperands,        \
670                 operandMapping,             \
671                 class##EncodingFromString);
672 
673   // operandIndex should always be < numOperands
674   unsigned operandIndex = 0;
675   // physicalOperandIndex should always be < numPhysicalOperands
676   unsigned physicalOperandIndex = 0;
677 
678   switch (Form) {
679   case X86Local::RawFrm:
680     // Operand 1 (optional) is an address or immediate.
681     // Operand 2 (optional) is an immediate.
682     assert(numPhysicalOperands <= 2 &&
683            "Unexpected number of operands for RawFrm");
684     HANDLE_OPTIONAL(relocation)
685     HANDLE_OPTIONAL(immediate)
686     break;
687   case X86Local::AddRegFrm:
688     // Operand 1 is added to the opcode.
689     // Operand 2 (optional) is an address.
690     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
691            "Unexpected number of operands for AddRegFrm");
692     HANDLE_OPERAND(opcodeModifier)
693     HANDLE_OPTIONAL(relocation)
694     break;
695   case X86Local::MRMDestReg:
696     // Operand 1 is a register operand in the R/M field.
697     // Operand 2 is a register operand in the Reg/Opcode field.
698     // - In AVX, there is a register operand in the VEX.vvvv field here -
699     // Operand 3 (optional) is an immediate.
700     if (HasVEX_4VPrefix)
701       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
702              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
703     else
704       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
705              "Unexpected number of operands for MRMDestRegFrm");
706 
707     HANDLE_OPERAND(rmRegister)
708 
709     if (HasVEX_4VPrefix)
710       // FIXME: In AVX, the register below becomes the one encoded
711       // in ModRMVEX and the one above the one in the VEX.VVVV field
712       HANDLE_OPERAND(vvvvRegister)
713 
714     HANDLE_OPERAND(roRegister)
715     HANDLE_OPTIONAL(immediate)
716     break;
717   case X86Local::MRMDestMem:
718     // Operand 1 is a memory operand (possibly SIB-extended)
719     // Operand 2 is a register operand in the Reg/Opcode field.
720     // - In AVX, there is a register operand in the VEX.vvvv field here -
721     // Operand 3 (optional) is an immediate.
722     if (HasVEX_4VPrefix)
723       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
724              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
725     else
726       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
727              "Unexpected number of operands for MRMDestMemFrm");
728     HANDLE_OPERAND(memory)
729 
730     if (HasEVEX_K)
731       HANDLE_OPERAND(writemaskRegister)
732 
733     if (HasVEX_4VPrefix)
734       // FIXME: In AVX, the register below becomes the one encoded
735       // in ModRMVEX and the one above the one in the VEX.VVVV field
736       HANDLE_OPERAND(vvvvRegister)
737 
738     HANDLE_OPERAND(roRegister)
739     HANDLE_OPTIONAL(immediate)
740     break;
741   case X86Local::MRMSrcReg:
742     // Operand 1 is a register operand in the Reg/Opcode field.
743     // Operand 2 is a register operand in the R/M field.
744     // - In AVX, there is a register operand in the VEX.vvvv field here -
745     // Operand 3 (optional) is an immediate.
746     // Operand 4 (optional) is an immediate.
747 
748     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
749       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
750              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
751     else
752       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 &&
753              "Unexpected number of operands for MRMSrcRegFrm");
754 
755     HANDLE_OPERAND(roRegister)
756 
757     if (HasEVEX_K)
758       HANDLE_OPERAND(writemaskRegister)
759 
760     if (HasVEX_4VPrefix)
761       // FIXME: In AVX, the register below becomes the one encoded
762       // in ModRMVEX and the one above the one in the VEX.VVVV field
763       HANDLE_OPERAND(vvvvRegister)
764 
765     if (HasMemOp4Prefix)
766       HANDLE_OPERAND(immediate)
767 
768     HANDLE_OPERAND(rmRegister)
769 
770     if (HasVEX_4VOp3Prefix)
771       HANDLE_OPERAND(vvvvRegister)
772 
773     if (!HasMemOp4Prefix)
774       HANDLE_OPTIONAL(immediate)
775     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
776     HANDLE_OPTIONAL(immediate)
777     break;
778   case X86Local::MRMSrcMem:
779     // Operand 1 is a register operand in the Reg/Opcode field.
780     // Operand 2 is a memory operand (possibly SIB-extended)
781     // - In AVX, there is a register operand in the VEX.vvvv field here -
782     // Operand 3 (optional) is an immediate.
783 
784     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
785       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
786              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
787     else
788       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
789              "Unexpected number of operands for MRMSrcMemFrm");
790 
791     HANDLE_OPERAND(roRegister)
792 
793     if (HasEVEX_K)
794       HANDLE_OPERAND(writemaskRegister)
795 
796     if (HasVEX_4VPrefix)
797       // FIXME: In AVX, the register below becomes the one encoded
798       // in ModRMVEX and the one above the one in the VEX.VVVV field
799       HANDLE_OPERAND(vvvvRegister)
800 
801     if (HasMemOp4Prefix)
802       HANDLE_OPERAND(immediate)
803 
804     HANDLE_OPERAND(memory)
805 
806     if (HasVEX_4VOp3Prefix)
807       HANDLE_OPERAND(vvvvRegister)
808 
809     if (!HasMemOp4Prefix)
810       HANDLE_OPTIONAL(immediate)
811     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
812     break;
813   case X86Local::MRM0r:
814   case X86Local::MRM1r:
815   case X86Local::MRM2r:
816   case X86Local::MRM3r:
817   case X86Local::MRM4r:
818   case X86Local::MRM5r:
819   case X86Local::MRM6r:
820   case X86Local::MRM7r:
821     // Operand 1 is a register operand in the R/M field.
822     // Operand 2 (optional) is an immediate or relocation.
823     // Operand 3 (optional) is an immediate.
824     if (HasVEX_4VPrefix)
825       assert(numPhysicalOperands <= 3 &&
826              "Unexpected number of operands for MRMnRFrm with VEX_4V");
827     else
828       assert(numPhysicalOperands <= 3 &&
829              "Unexpected number of operands for MRMnRFrm");
830     if (HasVEX_4VPrefix)
831       HANDLE_OPERAND(vvvvRegister)
832     HANDLE_OPTIONAL(rmRegister)
833     HANDLE_OPTIONAL(relocation)
834     HANDLE_OPTIONAL(immediate)
835     break;
836   case X86Local::MRM0m:
837   case X86Local::MRM1m:
838   case X86Local::MRM2m:
839   case X86Local::MRM3m:
840   case X86Local::MRM4m:
841   case X86Local::MRM5m:
842   case X86Local::MRM6m:
843   case X86Local::MRM7m:
844     // Operand 1 is a memory operand (possibly SIB-extended)
845     // Operand 2 (optional) is an immediate or relocation.
846     if (HasVEX_4VPrefix)
847       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
848              "Unexpected number of operands for MRMnMFrm");
849     else
850       assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
851              "Unexpected number of operands for MRMnMFrm");
852     if (HasVEX_4VPrefix)
853       HANDLE_OPERAND(vvvvRegister)
854     HANDLE_OPERAND(memory)
855     HANDLE_OPTIONAL(relocation)
856     break;
857   case X86Local::RawFrmImm8:
858     // operand 1 is a 16-bit immediate
859     // operand 2 is an 8-bit immediate
860     assert(numPhysicalOperands == 2 &&
861            "Unexpected number of operands for X86Local::RawFrmImm8");
862     HANDLE_OPERAND(immediate)
863     HANDLE_OPERAND(immediate)
864     break;
865   case X86Local::RawFrmImm16:
866     // operand 1 is a 16-bit immediate
867     // operand 2 is a 16-bit immediate
868     HANDLE_OPERAND(immediate)
869     HANDLE_OPERAND(immediate)
870     break;
871   case X86Local::MRM_F8:
872     if (Opcode == 0xc6) {
873       assert(numPhysicalOperands == 1 &&
874              "Unexpected number of operands for X86Local::MRM_F8");
875       HANDLE_OPERAND(immediate)
876     } else if (Opcode == 0xc7) {
877       assert(numPhysicalOperands == 1 &&
878              "Unexpected number of operands for X86Local::MRM_F8");
879       HANDLE_OPERAND(relocation)
880     }
881     break;
882   case X86Local::MRMInitReg:
883     // Ignored.
884     break;
885   }
886 
887   #undef HANDLE_OPERAND
888   #undef HANDLE_OPTIONAL
889 }
890 
891 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
892   // Special cases where the LLVM tables are not complete
893 
894 #define MAP(from, to)                     \
895   case X86Local::MRM_##from:              \
896     filter = new ExactFilter(0x##from);   \
897     break;
898 
899   OpcodeType    opcodeType  = (OpcodeType)-1;
900 
901   ModRMFilter*  filter      = NULL;
902   uint8_t       opcodeToSet = 0;
903 
904   switch (Prefix) {
905   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
906   case X86Local::XD:
907   case X86Local::XS:
908   case X86Local::TB:
909     opcodeType = TWOBYTE;
910 
911     switch (Opcode) {
912     default:
913       if (needsModRMForDecode(Form))
914         filter = new ModFilter(isRegFormat(Form));
915       else
916         filter = new DumbFilter();
917       break;
918 #define EXTENSION_TABLE(n) case 0x##n:
919     TWO_BYTE_EXTENSION_TABLES
920 #undef EXTENSION_TABLE
921       switch (Form) {
922       default:
923         llvm_unreachable("Unhandled two-byte extended opcode");
924       case X86Local::MRM0r:
925       case X86Local::MRM1r:
926       case X86Local::MRM2r:
927       case X86Local::MRM3r:
928       case X86Local::MRM4r:
929       case X86Local::MRM5r:
930       case X86Local::MRM6r:
931       case X86Local::MRM7r:
932         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
933         break;
934       case X86Local::MRM0m:
935       case X86Local::MRM1m:
936       case X86Local::MRM2m:
937       case X86Local::MRM3m:
938       case X86Local::MRM4m:
939       case X86Local::MRM5m:
940       case X86Local::MRM6m:
941       case X86Local::MRM7m:
942         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
943         break;
944       MRM_MAPPING
945       } // switch (Form)
946       break;
947     } // switch (Opcode)
948     opcodeToSet = Opcode;
949     break;
950   case X86Local::T8:
951   case X86Local::T8XD:
952   case X86Local::T8XS:
953     opcodeType = THREEBYTE_38;
954     switch (Opcode) {
955     default:
956       if (needsModRMForDecode(Form))
957         filter = new ModFilter(isRegFormat(Form));
958       else
959         filter = new DumbFilter();
960       break;
961 #define EXTENSION_TABLE(n) case 0x##n:
962     THREE_BYTE_38_EXTENSION_TABLES
963 #undef EXTENSION_TABLE
964       switch (Form) {
965       default:
966         llvm_unreachable("Unhandled two-byte extended opcode");
967       case X86Local::MRM0r:
968       case X86Local::MRM1r:
969       case X86Local::MRM2r:
970       case X86Local::MRM3r:
971       case X86Local::MRM4r:
972       case X86Local::MRM5r:
973       case X86Local::MRM6r:
974       case X86Local::MRM7r:
975         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
976         break;
977       case X86Local::MRM0m:
978       case X86Local::MRM1m:
979       case X86Local::MRM2m:
980       case X86Local::MRM3m:
981       case X86Local::MRM4m:
982       case X86Local::MRM5m:
983       case X86Local::MRM6m:
984       case X86Local::MRM7m:
985         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
986         break;
987       MRM_MAPPING
988       } // switch (Form)
989       break;
990     } // switch (Opcode)
991     opcodeToSet = Opcode;
992     break;
993   case X86Local::P_TA:
994   case X86Local::TAXD:
995     opcodeType = THREEBYTE_3A;
996     if (needsModRMForDecode(Form))
997       filter = new ModFilter(isRegFormat(Form));
998     else
999       filter = new DumbFilter();
1000     opcodeToSet = Opcode;
1001     break;
1002   case X86Local::A6:
1003     opcodeType = THREEBYTE_A6;
1004     if (needsModRMForDecode(Form))
1005       filter = new ModFilter(isRegFormat(Form));
1006     else
1007       filter = new DumbFilter();
1008     opcodeToSet = Opcode;
1009     break;
1010   case X86Local::A7:
1011     opcodeType = THREEBYTE_A7;
1012     if (needsModRMForDecode(Form))
1013       filter = new ModFilter(isRegFormat(Form));
1014     else
1015       filter = new DumbFilter();
1016     opcodeToSet = Opcode;
1017     break;
1018   case X86Local::D8:
1019   case X86Local::D9:
1020   case X86Local::DA:
1021   case X86Local::DB:
1022   case X86Local::DC:
1023   case X86Local::DD:
1024   case X86Local::DE:
1025   case X86Local::DF:
1026     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
1027     opcodeType = ONEBYTE;
1028     if (Form == X86Local::AddRegFrm) {
1029       Spec->modifierType = MODIFIER_MODRM;
1030       Spec->modifierBase = Opcode;
1031       filter = new AddRegEscapeFilter(Opcode);
1032     } else {
1033       filter = new EscapeFilter(true, Opcode);
1034     }
1035     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
1036     break;
1037   case X86Local::REP:
1038   default:
1039     opcodeType = ONEBYTE;
1040     switch (Opcode) {
1041 #define EXTENSION_TABLE(n) case 0x##n:
1042     ONE_BYTE_EXTENSION_TABLES
1043 #undef EXTENSION_TABLE
1044       switch (Form) {
1045       default:
1046         llvm_unreachable("Fell through the cracks of a single-byte "
1047                          "extended opcode");
1048       case X86Local::MRM0r:
1049       case X86Local::MRM1r:
1050       case X86Local::MRM2r:
1051       case X86Local::MRM3r:
1052       case X86Local::MRM4r:
1053       case X86Local::MRM5r:
1054       case X86Local::MRM6r:
1055       case X86Local::MRM7r:
1056         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
1057         break;
1058       case X86Local::MRM0m:
1059       case X86Local::MRM1m:
1060       case X86Local::MRM2m:
1061       case X86Local::MRM3m:
1062       case X86Local::MRM4m:
1063       case X86Local::MRM5m:
1064       case X86Local::MRM6m:
1065       case X86Local::MRM7m:
1066         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
1067         break;
1068       MRM_MAPPING
1069       } // switch (Form)
1070       break;
1071     case 0xd8:
1072     case 0xd9:
1073     case 0xda:
1074     case 0xdb:
1075     case 0xdc:
1076     case 0xdd:
1077     case 0xde:
1078     case 0xdf:
1079       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
1080       break;
1081     default:
1082       if (needsModRMForDecode(Form))
1083         filter = new ModFilter(isRegFormat(Form));
1084       else
1085         filter = new DumbFilter();
1086       break;
1087     } // switch (Opcode)
1088     opcodeToSet = Opcode;
1089   } // switch (Prefix)
1090 
1091   assert(opcodeType != (OpcodeType)-1 &&
1092          "Opcode type not set");
1093   assert(filter && "Filter not set");
1094 
1095   if (Form == X86Local::AddRegFrm) {
1096     if(Spec->modifierType != MODIFIER_MODRM) {
1097       assert(opcodeToSet < 0xf9 &&
1098              "Not enough room for all ADDREG_FRM operands");
1099 
1100       uint8_t currentOpcode;
1101 
1102       for (currentOpcode = opcodeToSet;
1103            currentOpcode < opcodeToSet + 8;
1104            ++currentOpcode)
1105         tables.setTableFields(opcodeType,
1106                               insnContext(),
1107                               currentOpcode,
1108                               *filter,
1109                               UID, Is32Bit, IgnoresVEX_L);
1110 
1111       Spec->modifierType = MODIFIER_OPCODE;
1112       Spec->modifierBase = opcodeToSet;
1113     } else {
1114       // modifierBase was set where MODIFIER_MODRM was set
1115       tables.setTableFields(opcodeType,
1116                             insnContext(),
1117                             opcodeToSet,
1118                             *filter,
1119                             UID, Is32Bit, IgnoresVEX_L);
1120     }
1121   } else {
1122     tables.setTableFields(opcodeType,
1123                           insnContext(),
1124                           opcodeToSet,
1125                           *filter,
1126                           UID, Is32Bit, IgnoresVEX_L);
1127 
1128     Spec->modifierType = MODIFIER_NONE;
1129     Spec->modifierBase = opcodeToSet;
1130   }
1131 
1132   delete filter;
1133 
1134 #undef MAP
1135 }
1136 
1137 #define TYPE(str, type) if (s == str) return type;
1138 OperandType RecognizableInstr::typeFromString(const std::string &s,
1139                                               bool isSSE,
1140                                               bool hasREX_WPrefix,
1141                                               bool hasOpSizePrefix) {
1142   if (isSSE) {
1143     // For SSE instructions, we ignore the OpSize prefix and force operand
1144     // sizes.
1145     TYPE("GR16",              TYPE_R16)
1146     TYPE("GR32",              TYPE_R32)
1147     TYPE("GR64",              TYPE_R64)
1148   }
1149   if(hasREX_WPrefix) {
1150     // For instructions with a REX_W prefix, a declared 32-bit register encoding
1151     // is special.
1152     TYPE("GR32",              TYPE_R32)
1153   }
1154   if(!hasOpSizePrefix) {
1155     // For instructions without an OpSize prefix, a declared 16-bit register or
1156     // immediate encoding is special.
1157     TYPE("GR16",              TYPE_R16)
1158     TYPE("i16imm",            TYPE_IMM16)
1159   }
1160   TYPE("i16mem",              TYPE_Mv)
1161   TYPE("i16imm",              TYPE_IMMv)
1162   TYPE("i16i8imm",            TYPE_IMMv)
1163   TYPE("GR16",                TYPE_Rv)
1164   TYPE("i32mem",              TYPE_Mv)
1165   TYPE("i32imm",              TYPE_IMMv)
1166   TYPE("i32i8imm",            TYPE_IMM32)
1167   TYPE("u32u8imm",            TYPE_IMM32)
1168   TYPE("GR32",                TYPE_Rv)
1169   TYPE("i64mem",              TYPE_Mv)
1170   TYPE("i64i32imm",           TYPE_IMM64)
1171   TYPE("i64i8imm",            TYPE_IMM64)
1172   TYPE("GR64",                TYPE_R64)
1173   TYPE("i8mem",               TYPE_M8)
1174   TYPE("i8imm",               TYPE_IMM8)
1175   TYPE("GR8",                 TYPE_R8)
1176   TYPE("VR128",               TYPE_XMM128)
1177   TYPE("VR128X",              TYPE_XMM128)
1178   TYPE("f128mem",             TYPE_M128)
1179   TYPE("f256mem",             TYPE_M256)
1180   TYPE("f512mem",             TYPE_M512)
1181   TYPE("FR64",                TYPE_XMM64)
1182   TYPE("FR64X",               TYPE_XMM64)
1183   TYPE("f64mem",              TYPE_M64FP)
1184   TYPE("sdmem",               TYPE_M64FP)
1185   TYPE("FR32",                TYPE_XMM32)
1186   TYPE("FR32X",               TYPE_XMM32)
1187   TYPE("f32mem",              TYPE_M32FP)
1188   TYPE("ssmem",               TYPE_M32FP)
1189   TYPE("RST",                 TYPE_ST)
1190   TYPE("i128mem",             TYPE_M128)
1191   TYPE("i256mem",             TYPE_M256)
1192   TYPE("i512mem",             TYPE_M512)
1193   TYPE("i64i32imm_pcrel",     TYPE_REL64)
1194   TYPE("i16imm_pcrel",        TYPE_REL16)
1195   TYPE("i32imm_pcrel",        TYPE_REL32)
1196   TYPE("SSECC",               TYPE_IMM3)
1197   TYPE("AVXCC",               TYPE_IMM5)
1198   TYPE("brtarget",            TYPE_RELv)
1199   TYPE("uncondbrtarget",      TYPE_RELv)
1200   TYPE("brtarget8",           TYPE_REL8)
1201   TYPE("f80mem",              TYPE_M80FP)
1202   TYPE("lea32mem",            TYPE_LEA)
1203   TYPE("lea64_32mem",         TYPE_LEA)
1204   TYPE("lea64mem",            TYPE_LEA)
1205   TYPE("VR64",                TYPE_MM64)
1206   TYPE("i64imm",              TYPE_IMMv)
1207   TYPE("opaque32mem",         TYPE_M1616)
1208   TYPE("opaque48mem",         TYPE_M1632)
1209   TYPE("opaque80mem",         TYPE_M1664)
1210   TYPE("opaque512mem",        TYPE_M512)
1211   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
1212   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
1213   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
1214   TYPE("offset8",             TYPE_MOFFS8)
1215   TYPE("offset16",            TYPE_MOFFS16)
1216   TYPE("offset32",            TYPE_MOFFS32)
1217   TYPE("offset64",            TYPE_MOFFS64)
1218   TYPE("VR256",               TYPE_XMM256)
1219   TYPE("VR256X",              TYPE_XMM256)
1220   TYPE("VR512",               TYPE_XMM512)
1221   TYPE("VK8",                 TYPE_VK8)
1222   TYPE("VK8WM",               TYPE_VK8)
1223   TYPE("VK16",                TYPE_VK16)
1224   TYPE("VK16WM",              TYPE_VK16)
1225   TYPE("GR16_NOAX",           TYPE_Rv)
1226   TYPE("GR32_NOAX",           TYPE_Rv)
1227   TYPE("GR64_NOAX",           TYPE_R64)
1228   TYPE("vx32mem",             TYPE_M32)
1229   TYPE("vy32mem",             TYPE_M32)
1230   TYPE("vz32mem",             TYPE_M32)
1231   TYPE("vx64mem",             TYPE_M64)
1232   TYPE("vy64mem",             TYPE_M64)
1233   TYPE("vy64xmem",            TYPE_M64)
1234   TYPE("vz64mem",             TYPE_M64)
1235   errs() << "Unhandled type string " << s << "\n";
1236   llvm_unreachable("Unhandled type string");
1237 }
1238 #undef TYPE
1239 
1240 #define ENCODING(str, encoding) if (s == str) return encoding;
1241 OperandEncoding RecognizableInstr::immediateEncodingFromString
1242   (const std::string &s,
1243    bool hasOpSizePrefix) {
1244   if(!hasOpSizePrefix) {
1245     // For instructions without an OpSize prefix, a declared 16-bit register or
1246     // immediate encoding is special.
1247     ENCODING("i16imm",        ENCODING_IW)
1248   }
1249   ENCODING("i32i8imm",        ENCODING_IB)
1250   ENCODING("u32u8imm",        ENCODING_IB)
1251   ENCODING("SSECC",           ENCODING_IB)
1252   ENCODING("AVXCC",           ENCODING_IB)
1253   ENCODING("i16imm",          ENCODING_Iv)
1254   ENCODING("i16i8imm",        ENCODING_IB)
1255   ENCODING("i32imm",          ENCODING_Iv)
1256   ENCODING("i64i32imm",       ENCODING_ID)
1257   ENCODING("i64i8imm",        ENCODING_IB)
1258   ENCODING("i8imm",           ENCODING_IB)
1259   // This is not a typo.  Instructions like BLENDVPD put
1260   // register IDs in 8-bit immediates nowadays.
1261   ENCODING("FR32",            ENCODING_IB)
1262   ENCODING("FR64",            ENCODING_IB)
1263   ENCODING("VR128",           ENCODING_IB)
1264   ENCODING("VR256",           ENCODING_IB)
1265   ENCODING("FR32X",           ENCODING_IB)
1266   ENCODING("FR64X",           ENCODING_IB)
1267   ENCODING("VR128X",          ENCODING_IB)
1268   ENCODING("VR256X",          ENCODING_IB)
1269   ENCODING("VR512",           ENCODING_IB)
1270   errs() << "Unhandled immediate encoding " << s << "\n";
1271   llvm_unreachable("Unhandled immediate encoding");
1272 }
1273 
1274 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
1275   (const std::string &s,
1276    bool hasOpSizePrefix) {
1277   ENCODING("GR16",            ENCODING_RM)
1278   ENCODING("GR32",            ENCODING_RM)
1279   ENCODING("GR64",            ENCODING_RM)
1280   ENCODING("GR8",             ENCODING_RM)
1281   ENCODING("VR128",           ENCODING_RM)
1282   ENCODING("VR128X",          ENCODING_RM)
1283   ENCODING("FR64",            ENCODING_RM)
1284   ENCODING("FR32",            ENCODING_RM)
1285   ENCODING("FR64X",           ENCODING_RM)
1286   ENCODING("FR32X",           ENCODING_RM)
1287   ENCODING("VR64",            ENCODING_RM)
1288   ENCODING("VR256",           ENCODING_RM)
1289   ENCODING("VR256X",          ENCODING_RM)
1290   ENCODING("VR512",           ENCODING_RM)
1291   ENCODING("VK8",             ENCODING_RM)
1292   ENCODING("VK16",            ENCODING_RM)
1293   errs() << "Unhandled R/M register encoding " << s << "\n";
1294   llvm_unreachable("Unhandled R/M register encoding");
1295 }
1296 
1297 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
1298   (const std::string &s,
1299    bool hasOpSizePrefix) {
1300   ENCODING("GR16",            ENCODING_REG)
1301   ENCODING("GR32",            ENCODING_REG)
1302   ENCODING("GR64",            ENCODING_REG)
1303   ENCODING("GR8",             ENCODING_REG)
1304   ENCODING("VR128",           ENCODING_REG)
1305   ENCODING("FR64",            ENCODING_REG)
1306   ENCODING("FR32",            ENCODING_REG)
1307   ENCODING("VR64",            ENCODING_REG)
1308   ENCODING("SEGMENT_REG",     ENCODING_REG)
1309   ENCODING("DEBUG_REG",       ENCODING_REG)
1310   ENCODING("CONTROL_REG",     ENCODING_REG)
1311   ENCODING("VR256",           ENCODING_REG)
1312   ENCODING("VR256X",          ENCODING_REG)
1313   ENCODING("VR128X",          ENCODING_REG)
1314   ENCODING("FR64X",           ENCODING_REG)
1315   ENCODING("FR32X",           ENCODING_REG)
1316   ENCODING("VR512",           ENCODING_REG)
1317   ENCODING("VK8",             ENCODING_REG)
1318   ENCODING("VK16",            ENCODING_REG)
1319   ENCODING("VK8WM",           ENCODING_REG)
1320   ENCODING("VK16WM",          ENCODING_REG)
1321   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1322   llvm_unreachable("Unhandled reg/opcode register encoding");
1323 }
1324 
1325 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
1326   (const std::string &s,
1327    bool hasOpSizePrefix) {
1328   ENCODING("GR32",            ENCODING_VVVV)
1329   ENCODING("GR64",            ENCODING_VVVV)
1330   ENCODING("FR32",            ENCODING_VVVV)
1331   ENCODING("FR64",            ENCODING_VVVV)
1332   ENCODING("VR128",           ENCODING_VVVV)
1333   ENCODING("VR256",           ENCODING_VVVV)
1334   ENCODING("FR32X",           ENCODING_VVVV)
1335   ENCODING("FR64X",           ENCODING_VVVV)
1336   ENCODING("VR128X",          ENCODING_VVVV)
1337   ENCODING("VR256X",          ENCODING_VVVV)
1338   ENCODING("VR512",           ENCODING_VVVV)
1339   ENCODING("VK8",             ENCODING_VVVV)
1340   ENCODING("VK16",            ENCODING_VVVV)
1341   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1342   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1343 }
1344 
1345 OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString
1346   (const std::string &s,
1347    bool hasOpSizePrefix) {
1348   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1349   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1350   errs() << "Unhandled mask register encoding " << s << "\n";
1351   llvm_unreachable("Unhandled mask register encoding");
1352 }
1353 
1354 OperandEncoding RecognizableInstr::memoryEncodingFromString
1355   (const std::string &s,
1356    bool hasOpSizePrefix) {
1357   ENCODING("i16mem",          ENCODING_RM)
1358   ENCODING("i32mem",          ENCODING_RM)
1359   ENCODING("i64mem",          ENCODING_RM)
1360   ENCODING("i8mem",           ENCODING_RM)
1361   ENCODING("ssmem",           ENCODING_RM)
1362   ENCODING("sdmem",           ENCODING_RM)
1363   ENCODING("f128mem",         ENCODING_RM)
1364   ENCODING("f256mem",         ENCODING_RM)
1365   ENCODING("f512mem",         ENCODING_RM)
1366   ENCODING("f64mem",          ENCODING_RM)
1367   ENCODING("f32mem",          ENCODING_RM)
1368   ENCODING("i128mem",         ENCODING_RM)
1369   ENCODING("i256mem",         ENCODING_RM)
1370   ENCODING("i512mem",         ENCODING_RM)
1371   ENCODING("f80mem",          ENCODING_RM)
1372   ENCODING("lea32mem",        ENCODING_RM)
1373   ENCODING("lea64_32mem",     ENCODING_RM)
1374   ENCODING("lea64mem",        ENCODING_RM)
1375   ENCODING("opaque32mem",     ENCODING_RM)
1376   ENCODING("opaque48mem",     ENCODING_RM)
1377   ENCODING("opaque80mem",     ENCODING_RM)
1378   ENCODING("opaque512mem",    ENCODING_RM)
1379   ENCODING("vx32mem",         ENCODING_RM)
1380   ENCODING("vy32mem",         ENCODING_RM)
1381   ENCODING("vz32mem",         ENCODING_RM)
1382   ENCODING("vx64mem",         ENCODING_RM)
1383   ENCODING("vy64mem",         ENCODING_RM)
1384   ENCODING("vy64xmem",        ENCODING_RM)
1385   ENCODING("vz64mem",         ENCODING_RM)
1386   errs() << "Unhandled memory encoding " << s << "\n";
1387   llvm_unreachable("Unhandled memory encoding");
1388 }
1389 
1390 OperandEncoding RecognizableInstr::relocationEncodingFromString
1391   (const std::string &s,
1392    bool hasOpSizePrefix) {
1393   if(!hasOpSizePrefix) {
1394     // For instructions without an OpSize prefix, a declared 16-bit register or
1395     // immediate encoding is special.
1396     ENCODING("i16imm",        ENCODING_IW)
1397   }
1398   ENCODING("i16imm",          ENCODING_Iv)
1399   ENCODING("i16i8imm",        ENCODING_IB)
1400   ENCODING("i32imm",          ENCODING_Iv)
1401   ENCODING("i32i8imm",        ENCODING_IB)
1402   ENCODING("i64i32imm",       ENCODING_ID)
1403   ENCODING("i64i8imm",        ENCODING_IB)
1404   ENCODING("i8imm",           ENCODING_IB)
1405   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1406   ENCODING("i16imm_pcrel",    ENCODING_IW)
1407   ENCODING("i32imm_pcrel",    ENCODING_ID)
1408   ENCODING("brtarget",        ENCODING_Iv)
1409   ENCODING("brtarget8",       ENCODING_IB)
1410   ENCODING("i64imm",          ENCODING_IO)
1411   ENCODING("offset8",         ENCODING_Ia)
1412   ENCODING("offset16",        ENCODING_Ia)
1413   ENCODING("offset32",        ENCODING_Ia)
1414   ENCODING("offset64",        ENCODING_Ia)
1415   errs() << "Unhandled relocation encoding " << s << "\n";
1416   llvm_unreachable("Unhandled relocation encoding");
1417 }
1418 
1419 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
1420   (const std::string &s,
1421    bool hasOpSizePrefix) {
1422   ENCODING("RST",             ENCODING_I)
1423   ENCODING("GR32",            ENCODING_Rv)
1424   ENCODING("GR64",            ENCODING_RO)
1425   ENCODING("GR16",            ENCODING_Rv)
1426   ENCODING("GR8",             ENCODING_RB)
1427   ENCODING("GR16_NOAX",       ENCODING_Rv)
1428   ENCODING("GR32_NOAX",       ENCODING_Rv)
1429   ENCODING("GR64_NOAX",       ENCODING_RO)
1430   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1431   llvm_unreachable("Unhandled opcode modifier encoding");
1432 }
1433 #undef ENCODING
1434