1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) 40 41 // A clone of X86 since we can't depend on something that is generated. 42 namespace X86Local { 43 enum { 44 Pseudo = 0, 45 RawFrm = 1, 46 AddRegFrm = 2, 47 MRMDestReg = 3, 48 MRMDestMem = 4, 49 MRMSrcReg = 5, 50 MRMSrcMem = 6, 51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 55 MRMInitReg = 32, 56 #define MAP(from, to) MRM_##from = to, 57 MRM_MAPPING 58 #undef MAP 59 RawFrmImm8 = 43, 60 RawFrmImm16 = 44, 61 lastMRM 62 }; 63 64 enum { 65 TB = 1, 66 REP = 2, 67 D8 = 3, D9 = 4, DA = 5, DB = 6, 68 DC = 7, DD = 8, DE = 9, DF = 10, 69 XD = 11, XS = 12, 70 T8 = 13, P_TA = 14, 71 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19 72 }; 73 } 74 75 // If rows are added to the opcode extension tables, then corresponding entries 76 // must be added here. 77 // 78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 79 // that byte to ONE_BYTE_EXTENSION_TABLES. 80 // 81 // If the row corresponds to two bytes where the first is 0f, add an entry for 82 // the second byte to TWO_BYTE_EXTENSION_TABLES. 83 // 84 // If the row corresponds to some other set of bytes, you will need to modify 85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 86 // to the X86 TD files, except in two cases: if the first two bytes of such a 87 // new combination are 0f 38 or 0f 3a, you just have to add maps called 88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 90 // in RecognizableInstr::emitDecodePath(). 91 92 #define ONE_BYTE_EXTENSION_TABLES \ 93 EXTENSION_TABLE(80) \ 94 EXTENSION_TABLE(81) \ 95 EXTENSION_TABLE(82) \ 96 EXTENSION_TABLE(83) \ 97 EXTENSION_TABLE(8f) \ 98 EXTENSION_TABLE(c0) \ 99 EXTENSION_TABLE(c1) \ 100 EXTENSION_TABLE(c6) \ 101 EXTENSION_TABLE(c7) \ 102 EXTENSION_TABLE(d0) \ 103 EXTENSION_TABLE(d1) \ 104 EXTENSION_TABLE(d2) \ 105 EXTENSION_TABLE(d3) \ 106 EXTENSION_TABLE(f6) \ 107 EXTENSION_TABLE(f7) \ 108 EXTENSION_TABLE(fe) \ 109 EXTENSION_TABLE(ff) 110 111 #define TWO_BYTE_EXTENSION_TABLES \ 112 EXTENSION_TABLE(00) \ 113 EXTENSION_TABLE(01) \ 114 EXTENSION_TABLE(18) \ 115 EXTENSION_TABLE(71) \ 116 EXTENSION_TABLE(72) \ 117 EXTENSION_TABLE(73) \ 118 EXTENSION_TABLE(ae) \ 119 EXTENSION_TABLE(ba) \ 120 EXTENSION_TABLE(c7) 121 122 #define THREE_BYTE_38_EXTENSION_TABLES \ 123 EXTENSION_TABLE(F3) 124 125 using namespace X86Disassembler; 126 127 /// needsModRMForDecode - Indicates whether a particular instruction requires a 128 /// ModR/M byte for the instruction to be properly decoded. For example, a 129 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 130 /// 0b11. 131 /// 132 /// @param form - The form of the instruction. 133 /// @return - true if the form implies that a ModR/M byte is required, false 134 /// otherwise. 135 static bool needsModRMForDecode(uint8_t form) { 136 if (form == X86Local::MRMDestReg || 137 form == X86Local::MRMDestMem || 138 form == X86Local::MRMSrcReg || 139 form == X86Local::MRMSrcMem || 140 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 141 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 142 return true; 143 else 144 return false; 145 } 146 147 /// isRegFormat - Indicates whether a particular form requires the Mod field of 148 /// the ModR/M byte to be 0b11. 149 /// 150 /// @param form - The form of the instruction. 151 /// @return - true if the form implies that Mod must be 0b11, false 152 /// otherwise. 153 static bool isRegFormat(uint8_t form) { 154 if (form == X86Local::MRMDestReg || 155 form == X86Local::MRMSrcReg || 156 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 157 return true; 158 else 159 return false; 160 } 161 162 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 163 /// Useful for switch statements and the like. 164 /// 165 /// @param init - A reference to the BitsInit to be decoded. 166 /// @return - The field, with the first bit in the BitsInit as the lowest 167 /// order bit. 168 static uint8_t byteFromBitsInit(BitsInit &init) { 169 int width = init.getNumBits(); 170 171 assert(width <= 8 && "Field is too large for uint8_t!"); 172 173 int index; 174 uint8_t mask = 0x01; 175 176 uint8_t ret = 0; 177 178 for (index = 0; index < width; index++) { 179 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 180 ret |= mask; 181 182 mask <<= 1; 183 } 184 185 return ret; 186 } 187 188 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 189 /// name of the field. 190 /// 191 /// @param rec - The record from which to extract the value. 192 /// @param name - The name of the field in the record. 193 /// @return - The field, as translated by byteFromBitsInit(). 194 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 195 BitsInit* bits = rec->getValueAsBitsInit(name); 196 return byteFromBitsInit(*bits); 197 } 198 199 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 200 const CodeGenInstruction &insn, 201 InstrUID uid) { 202 UID = uid; 203 204 Rec = insn.TheDef; 205 Name = Rec->getName(); 206 Spec = &tables.specForUID(UID); 207 208 if (!Rec->isSubClassOf("X86Inst")) { 209 ShouldBeEmitted = false; 210 return; 211 } 212 213 Prefix = byteFromRec(Rec, "Prefix"); 214 Opcode = byteFromRec(Rec, "Opcode"); 215 Form = byteFromRec(Rec, "FormBits"); 216 SegOvr = byteFromRec(Rec, "SegOvrBits"); 217 218 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 219 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 220 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 221 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 222 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 223 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 224 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 225 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 226 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 227 228 Name = Rec->getName(); 229 AsmString = Rec->getValueAsString("AsmString"); 230 231 Operands = &insn.Operands.OperandList; 232 233 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 234 (Name.find("CRC32") != Name.npos); 235 HasFROperands = hasFROperands(); 236 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 237 238 // Check for 64-bit inst which does not require REX 239 Is32Bit = false; 240 Is64Bit = false; 241 // FIXME: Is there some better way to check for In64BitMode? 242 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 243 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 244 if (Predicates[i]->getName().find("32Bit") != Name.npos) { 245 Is32Bit = true; 246 break; 247 } 248 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 249 Is64Bit = true; 250 break; 251 } 252 } 253 // FIXME: These instructions aren't marked as 64-bit in any way 254 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 255 Rec->getName() == "MASKMOVDQU64" || 256 Rec->getName() == "POPFS64" || 257 Rec->getName() == "POPGS64" || 258 Rec->getName() == "PUSHFS64" || 259 Rec->getName() == "PUSHGS64" || 260 Rec->getName() == "REX64_PREFIX" || 261 Rec->getName().find("MOV64") != Name.npos || 262 Rec->getName().find("PUSH64") != Name.npos || 263 Rec->getName().find("POP64") != Name.npos; 264 265 ShouldBeEmitted = true; 266 } 267 268 void RecognizableInstr::processInstr(DisassemblerTables &tables, 269 const CodeGenInstruction &insn, 270 InstrUID uid) 271 { 272 // Ignore "asm parser only" instructions. 273 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 274 return; 275 276 RecognizableInstr recogInstr(tables, insn, uid); 277 278 recogInstr.emitInstructionSpecifier(tables); 279 280 if (recogInstr.shouldBeEmitted()) 281 recogInstr.emitDecodePath(tables); 282 } 283 284 InstructionContext RecognizableInstr::insnContext() const { 285 InstructionContext insnContext; 286 287 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 288 if (HasVEX_LPrefix && HasVEX_WPrefix) { 289 if (HasOpSizePrefix) 290 insnContext = IC_VEX_L_W_OPSIZE; 291 else 292 llvm_unreachable("Don't support VEX.L and VEX.W together"); 293 } else if (HasOpSizePrefix && HasVEX_LPrefix) 294 insnContext = IC_VEX_L_OPSIZE; 295 else if (HasOpSizePrefix && HasVEX_WPrefix) 296 insnContext = IC_VEX_W_OPSIZE; 297 else if (HasOpSizePrefix) 298 insnContext = IC_VEX_OPSIZE; 299 else if (HasVEX_LPrefix && 300 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 301 insnContext = IC_VEX_L_XS; 302 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 303 Prefix == X86Local::T8XD || 304 Prefix == X86Local::TAXD)) 305 insnContext = IC_VEX_L_XD; 306 else if (HasVEX_WPrefix && 307 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 308 insnContext = IC_VEX_W_XS; 309 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 310 Prefix == X86Local::T8XD || 311 Prefix == X86Local::TAXD)) 312 insnContext = IC_VEX_W_XD; 313 else if (HasVEX_WPrefix) 314 insnContext = IC_VEX_W; 315 else if (HasVEX_LPrefix) 316 insnContext = IC_VEX_L; 317 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 318 Prefix == X86Local::TAXD) 319 insnContext = IC_VEX_XD; 320 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 321 insnContext = IC_VEX_XS; 322 else 323 insnContext = IC_VEX; 324 } else if (Is64Bit || HasREX_WPrefix) { 325 if (HasREX_WPrefix && HasOpSizePrefix) 326 insnContext = IC_64BIT_REXW_OPSIZE; 327 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 328 Prefix == X86Local::T8XD || 329 Prefix == X86Local::TAXD)) 330 insnContext = IC_64BIT_XD_OPSIZE; 331 else if (HasOpSizePrefix && 332 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 333 insnContext = IC_64BIT_XS_OPSIZE; 334 else if (HasOpSizePrefix) 335 insnContext = IC_64BIT_OPSIZE; 336 else if (HasREX_WPrefix && 337 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 338 insnContext = IC_64BIT_REXW_XS; 339 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 340 Prefix == X86Local::T8XD || 341 Prefix == X86Local::TAXD)) 342 insnContext = IC_64BIT_REXW_XD; 343 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 344 Prefix == X86Local::TAXD) 345 insnContext = IC_64BIT_XD; 346 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 347 insnContext = IC_64BIT_XS; 348 else if (HasREX_WPrefix) 349 insnContext = IC_64BIT_REXW; 350 else 351 insnContext = IC_64BIT; 352 } else { 353 if (HasOpSizePrefix && (Prefix == X86Local::XD || 354 Prefix == X86Local::T8XD || 355 Prefix == X86Local::TAXD)) 356 insnContext = IC_XD_OPSIZE; 357 else if (HasOpSizePrefix && 358 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 359 insnContext = IC_XS_OPSIZE; 360 else if (HasOpSizePrefix) 361 insnContext = IC_OPSIZE; 362 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 363 Prefix == X86Local::TAXD) 364 insnContext = IC_XD; 365 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 366 Prefix == X86Local::REP) 367 insnContext = IC_XS; 368 else 369 insnContext = IC; 370 } 371 372 return insnContext; 373 } 374 375 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 376 /////////////////// 377 // FILTER_STRONG 378 // 379 380 // Filter out intrinsics 381 382 if (!Rec->isSubClassOf("X86Inst")) 383 return FILTER_STRONG; 384 385 if (Form == X86Local::Pseudo || 386 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 387 return FILTER_STRONG; 388 389 if (Form == X86Local::MRMInitReg) 390 return FILTER_STRONG; 391 392 393 // Filter out artificial instructions 394 395 if (Name.find("TAILJMP") != Name.npos || 396 Name.find("_Int") != Name.npos || 397 Name.find("_int") != Name.npos || 398 Name.find("Int_") != Name.npos || 399 Name.find("_NOREX") != Name.npos || 400 Name.find("_TC") != Name.npos || 401 Name.find("EH_RETURN") != Name.npos || 402 Name.find("V_SET") != Name.npos || 403 Name.find("LOCK_") != Name.npos || 404 Name.find("WIN") != Name.npos || 405 Name.find("_AVX") != Name.npos || 406 Name.find("2SDL") != Name.npos) 407 return FILTER_STRONG; 408 409 // Filter out instructions with segment override prefixes. 410 // They're too messy to handle now and we'll special case them if needed. 411 412 if (SegOvr) 413 return FILTER_STRONG; 414 415 // Filter out instructions that can't be printed. 416 417 if (AsmString.size() == 0) 418 return FILTER_STRONG; 419 420 // Filter out instructions with subreg operands. 421 422 if (AsmString.find("subreg") != AsmString.npos) 423 return FILTER_STRONG; 424 425 ///////////////// 426 // FILTER_WEAK 427 // 428 429 430 // Filter out instructions with a LOCK prefix; 431 // prefer forms that do not have the prefix 432 if (HasLockPrefix) 433 return FILTER_WEAK; 434 435 // Filter out alternate forms of AVX instructions 436 if (Name.find("_alt") != Name.npos || 437 Name.find("XrYr") != Name.npos || 438 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) || 439 Name.find("_64mr") != Name.npos || 440 Name.find("Xrr") != Name.npos || 441 Name.find("rr64") != Name.npos) 442 return FILTER_WEAK; 443 444 if (Name == "VMASKMOVDQU64" || 445 Name == "VEXTRACTPSrr64" || 446 Name == "VMOVQd64rr" || 447 Name == "VMOVQs64rr") 448 return FILTER_WEAK; 449 450 // Special cases. 451 452 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 453 return FILTER_WEAK; 454 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 455 return FILTER_WEAK; 456 457 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 458 return FILTER_WEAK; 459 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 460 return FILTER_WEAK; 461 if (Name.find("Fs") != Name.npos) 462 return FILTER_WEAK; 463 if (Name == "MOVLPDrr" || 464 Name == "MOVLPSrr" || 465 Name == "PUSHFQ" || 466 Name == "BSF16rr" || 467 Name == "BSF16rm" || 468 Name == "BSR16rr" || 469 Name == "BSR16rm" || 470 Name == "MOVSX16rm8" || 471 Name == "MOVSX16rr8" || 472 Name == "MOVZX16rm8" || 473 Name == "MOVZX16rr8" || 474 Name == "PUSH32i16" || 475 Name == "PUSH64i16" || 476 Name == "MOVPQI2QImr" || 477 Name == "VMOVPQI2QImr" || 478 Name == "MOVSDmr" || 479 Name == "MOVSDrm" || 480 Name == "MOVSSmr" || 481 Name == "MOVSSrm" || 482 Name == "MMX_MOVD64rrv164" || 483 Name == "CRC32m16" || 484 Name == "MOV64ri64i32" || 485 Name == "CRC32r16") 486 return FILTER_WEAK; 487 488 if (HasFROperands && Name.find("MOV") != Name.npos && 489 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 490 (Name.find("to") != Name.npos))) 491 return FILTER_WEAK; 492 493 return FILTER_NORMAL; 494 } 495 496 bool RecognizableInstr::hasFROperands() const { 497 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 498 unsigned numOperands = OperandList.size(); 499 500 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 501 const std::string &recName = OperandList[operandIndex].Rec->getName(); 502 503 if (recName.find("FR") != recName.npos) 504 return true; 505 } 506 return false; 507 } 508 509 bool RecognizableInstr::has256BitOperands() const { 510 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 511 unsigned numOperands = OperandList.size(); 512 513 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 514 const std::string &recName = OperandList[operandIndex].Rec->getName(); 515 516 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 517 return true; 518 } 519 } 520 return false; 521 } 522 523 void RecognizableInstr::handleOperand( 524 bool optional, 525 unsigned &operandIndex, 526 unsigned &physicalOperandIndex, 527 unsigned &numPhysicalOperands, 528 unsigned *operandMapping, 529 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 530 if (optional) { 531 if (physicalOperandIndex >= numPhysicalOperands) 532 return; 533 } else { 534 assert(physicalOperandIndex < numPhysicalOperands); 535 } 536 537 while (operandMapping[operandIndex] != operandIndex) { 538 Spec->operands[operandIndex].encoding = ENCODING_DUP; 539 Spec->operands[operandIndex].type = 540 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 541 ++operandIndex; 542 } 543 544 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 545 546 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 547 HasOpSizePrefix); 548 Spec->operands[operandIndex].type = typeFromString(typeName, 549 IsSSE, 550 HasREX_WPrefix, 551 HasOpSizePrefix); 552 553 ++operandIndex; 554 ++physicalOperandIndex; 555 } 556 557 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 558 Spec->name = Name; 559 560 if (!Rec->isSubClassOf("X86Inst")) 561 return; 562 563 switch (filter()) { 564 case FILTER_WEAK: 565 Spec->filtered = true; 566 break; 567 case FILTER_STRONG: 568 ShouldBeEmitted = false; 569 return; 570 case FILTER_NORMAL: 571 break; 572 } 573 574 Spec->insnContext = insnContext(); 575 576 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 577 578 unsigned operandIndex; 579 unsigned numOperands = OperandList.size(); 580 unsigned numPhysicalOperands = 0; 581 582 // operandMapping maps from operands in OperandList to their originals. 583 // If operandMapping[i] != i, then the entry is a duplicate. 584 unsigned operandMapping[X86_MAX_OPERANDS]; 585 586 bool hasFROperands = false; 587 588 assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 589 590 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 591 if (OperandList[operandIndex].Constraints.size()) { 592 const CGIOperandList::ConstraintInfo &Constraint = 593 OperandList[operandIndex].Constraints[0]; 594 if (Constraint.isTied()) { 595 operandMapping[operandIndex] = Constraint.getTiedOperand(); 596 } else { 597 ++numPhysicalOperands; 598 operandMapping[operandIndex] = operandIndex; 599 } 600 } else { 601 ++numPhysicalOperands; 602 operandMapping[operandIndex] = operandIndex; 603 } 604 605 const std::string &recName = OperandList[operandIndex].Rec->getName(); 606 607 if (recName.find("FR") != recName.npos) 608 hasFROperands = true; 609 } 610 611 if (hasFROperands && Name.find("MOV") != Name.npos && 612 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 613 (Name.find("to") != Name.npos))) 614 ShouldBeEmitted = false; 615 616 if (!ShouldBeEmitted) 617 return; 618 619 #define HANDLE_OPERAND(class) \ 620 handleOperand(false, \ 621 operandIndex, \ 622 physicalOperandIndex, \ 623 numPhysicalOperands, \ 624 operandMapping, \ 625 class##EncodingFromString); 626 627 #define HANDLE_OPTIONAL(class) \ 628 handleOperand(true, \ 629 operandIndex, \ 630 physicalOperandIndex, \ 631 numPhysicalOperands, \ 632 operandMapping, \ 633 class##EncodingFromString); 634 635 // operandIndex should always be < numOperands 636 operandIndex = 0; 637 // physicalOperandIndex should always be < numPhysicalOperands 638 unsigned physicalOperandIndex = 0; 639 640 switch (Form) { 641 case X86Local::RawFrm: 642 // Operand 1 (optional) is an address or immediate. 643 // Operand 2 (optional) is an immediate. 644 assert(numPhysicalOperands <= 2 && 645 "Unexpected number of operands for RawFrm"); 646 HANDLE_OPTIONAL(relocation) 647 HANDLE_OPTIONAL(immediate) 648 break; 649 case X86Local::AddRegFrm: 650 // Operand 1 is added to the opcode. 651 // Operand 2 (optional) is an address. 652 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 653 "Unexpected number of operands for AddRegFrm"); 654 HANDLE_OPERAND(opcodeModifier) 655 HANDLE_OPTIONAL(relocation) 656 break; 657 case X86Local::MRMDestReg: 658 // Operand 1 is a register operand in the R/M field. 659 // Operand 2 is a register operand in the Reg/Opcode field. 660 // - In AVX, there is a register operand in the VEX.vvvv field here - 661 // Operand 3 (optional) is an immediate. 662 if (HasVEX_4VPrefix) 663 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 664 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 665 else 666 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 667 "Unexpected number of operands for MRMDestRegFrm"); 668 669 HANDLE_OPERAND(rmRegister) 670 671 if (HasVEX_4VPrefix) 672 // FIXME: In AVX, the register below becomes the one encoded 673 // in ModRMVEX and the one above the one in the VEX.VVVV field 674 HANDLE_OPERAND(vvvvRegister) 675 676 HANDLE_OPERAND(roRegister) 677 HANDLE_OPTIONAL(immediate) 678 break; 679 case X86Local::MRMDestMem: 680 // Operand 1 is a memory operand (possibly SIB-extended) 681 // Operand 2 is a register operand in the Reg/Opcode field. 682 // - In AVX, there is a register operand in the VEX.vvvv field here - 683 // Operand 3 (optional) is an immediate. 684 if (HasVEX_4VPrefix) 685 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 686 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 687 else 688 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 689 "Unexpected number of operands for MRMDestMemFrm"); 690 HANDLE_OPERAND(memory) 691 692 if (HasVEX_4VPrefix) 693 // FIXME: In AVX, the register below becomes the one encoded 694 // in ModRMVEX and the one above the one in the VEX.VVVV field 695 HANDLE_OPERAND(vvvvRegister) 696 697 HANDLE_OPERAND(roRegister) 698 HANDLE_OPTIONAL(immediate) 699 break; 700 case X86Local::MRMSrcReg: 701 // Operand 1 is a register operand in the Reg/Opcode field. 702 // Operand 2 is a register operand in the R/M field. 703 // - In AVX, there is a register operand in the VEX.vvvv field here - 704 // Operand 3 (optional) is an immediate. 705 706 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 707 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 708 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 709 else 710 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 711 "Unexpected number of operands for MRMSrcRegFrm"); 712 713 HANDLE_OPERAND(roRegister) 714 715 if (HasVEX_4VPrefix) 716 // FIXME: In AVX, the register below becomes the one encoded 717 // in ModRMVEX and the one above the one in the VEX.VVVV field 718 HANDLE_OPERAND(vvvvRegister) 719 720 HANDLE_OPERAND(rmRegister) 721 722 if (HasVEX_4VOp3Prefix) 723 HANDLE_OPERAND(vvvvRegister) 724 725 HANDLE_OPTIONAL(immediate) 726 break; 727 case X86Local::MRMSrcMem: 728 // Operand 1 is a register operand in the Reg/Opcode field. 729 // Operand 2 is a memory operand (possibly SIB-extended) 730 // - In AVX, there is a register operand in the VEX.vvvv field here - 731 // Operand 3 (optional) is an immediate. 732 733 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 734 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 735 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 736 else 737 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 738 "Unexpected number of operands for MRMSrcMemFrm"); 739 740 HANDLE_OPERAND(roRegister) 741 742 if (HasVEX_4VPrefix) 743 // FIXME: In AVX, the register below becomes the one encoded 744 // in ModRMVEX and the one above the one in the VEX.VVVV field 745 HANDLE_OPERAND(vvvvRegister) 746 747 HANDLE_OPERAND(memory) 748 749 if (HasVEX_4VOp3Prefix) 750 HANDLE_OPERAND(vvvvRegister) 751 752 HANDLE_OPTIONAL(immediate) 753 break; 754 case X86Local::MRM0r: 755 case X86Local::MRM1r: 756 case X86Local::MRM2r: 757 case X86Local::MRM3r: 758 case X86Local::MRM4r: 759 case X86Local::MRM5r: 760 case X86Local::MRM6r: 761 case X86Local::MRM7r: 762 // Operand 1 is a register operand in the R/M field. 763 // Operand 2 (optional) is an immediate or relocation. 764 if (HasVEX_4VPrefix) 765 assert(numPhysicalOperands <= 3 && 766 "Unexpected number of operands for MRMnRFrm with VEX_4V"); 767 else 768 assert(numPhysicalOperands <= 2 && 769 "Unexpected number of operands for MRMnRFrm"); 770 if (HasVEX_4VPrefix) 771 HANDLE_OPERAND(vvvvRegister) 772 HANDLE_OPTIONAL(rmRegister) 773 HANDLE_OPTIONAL(relocation) 774 break; 775 case X86Local::MRM0m: 776 case X86Local::MRM1m: 777 case X86Local::MRM2m: 778 case X86Local::MRM3m: 779 case X86Local::MRM4m: 780 case X86Local::MRM5m: 781 case X86Local::MRM6m: 782 case X86Local::MRM7m: 783 // Operand 1 is a memory operand (possibly SIB-extended) 784 // Operand 2 (optional) is an immediate or relocation. 785 if (HasVEX_4VPrefix) 786 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 787 "Unexpected number of operands for MRMnMFrm"); 788 else 789 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 790 "Unexpected number of operands for MRMnMFrm"); 791 if (HasVEX_4VPrefix) 792 HANDLE_OPERAND(vvvvRegister) 793 HANDLE_OPERAND(memory) 794 HANDLE_OPTIONAL(relocation) 795 break; 796 case X86Local::RawFrmImm8: 797 // operand 1 is a 16-bit immediate 798 // operand 2 is an 8-bit immediate 799 assert(numPhysicalOperands == 2 && 800 "Unexpected number of operands for X86Local::RawFrmImm8"); 801 HANDLE_OPERAND(immediate) 802 HANDLE_OPERAND(immediate) 803 break; 804 case X86Local::RawFrmImm16: 805 // operand 1 is a 16-bit immediate 806 // operand 2 is a 16-bit immediate 807 HANDLE_OPERAND(immediate) 808 HANDLE_OPERAND(immediate) 809 break; 810 case X86Local::MRMInitReg: 811 // Ignored. 812 break; 813 } 814 815 #undef HANDLE_OPERAND 816 #undef HANDLE_OPTIONAL 817 } 818 819 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 820 // Special cases where the LLVM tables are not complete 821 822 #define MAP(from, to) \ 823 case X86Local::MRM_##from: \ 824 filter = new ExactFilter(0x##from); \ 825 break; 826 827 OpcodeType opcodeType = (OpcodeType)-1; 828 829 ModRMFilter* filter = NULL; 830 uint8_t opcodeToSet = 0; 831 832 switch (Prefix) { 833 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 834 case X86Local::XD: 835 case X86Local::XS: 836 case X86Local::TB: 837 opcodeType = TWOBYTE; 838 839 switch (Opcode) { 840 default: 841 if (needsModRMForDecode(Form)) 842 filter = new ModFilter(isRegFormat(Form)); 843 else 844 filter = new DumbFilter(); 845 break; 846 #define EXTENSION_TABLE(n) case 0x##n: 847 TWO_BYTE_EXTENSION_TABLES 848 #undef EXTENSION_TABLE 849 switch (Form) { 850 default: 851 llvm_unreachable("Unhandled two-byte extended opcode"); 852 case X86Local::MRM0r: 853 case X86Local::MRM1r: 854 case X86Local::MRM2r: 855 case X86Local::MRM3r: 856 case X86Local::MRM4r: 857 case X86Local::MRM5r: 858 case X86Local::MRM6r: 859 case X86Local::MRM7r: 860 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 861 break; 862 case X86Local::MRM0m: 863 case X86Local::MRM1m: 864 case X86Local::MRM2m: 865 case X86Local::MRM3m: 866 case X86Local::MRM4m: 867 case X86Local::MRM5m: 868 case X86Local::MRM6m: 869 case X86Local::MRM7m: 870 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 871 break; 872 MRM_MAPPING 873 } // switch (Form) 874 break; 875 } // switch (Opcode) 876 opcodeToSet = Opcode; 877 break; 878 case X86Local::T8: 879 case X86Local::T8XD: 880 case X86Local::T8XS: 881 opcodeType = THREEBYTE_38; 882 switch (Opcode) { 883 default: 884 if (needsModRMForDecode(Form)) 885 filter = new ModFilter(isRegFormat(Form)); 886 else 887 filter = new DumbFilter(); 888 break; 889 #define EXTENSION_TABLE(n) case 0x##n: 890 THREE_BYTE_38_EXTENSION_TABLES 891 #undef EXTENSION_TABLE 892 switch (Form) { 893 default: 894 llvm_unreachable("Unhandled two-byte extended opcode"); 895 case X86Local::MRM0r: 896 case X86Local::MRM1r: 897 case X86Local::MRM2r: 898 case X86Local::MRM3r: 899 case X86Local::MRM4r: 900 case X86Local::MRM5r: 901 case X86Local::MRM6r: 902 case X86Local::MRM7r: 903 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 904 break; 905 case X86Local::MRM0m: 906 case X86Local::MRM1m: 907 case X86Local::MRM2m: 908 case X86Local::MRM3m: 909 case X86Local::MRM4m: 910 case X86Local::MRM5m: 911 case X86Local::MRM6m: 912 case X86Local::MRM7m: 913 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 914 break; 915 MRM_MAPPING 916 } // switch (Form) 917 break; 918 } // switch (Opcode) 919 opcodeToSet = Opcode; 920 break; 921 case X86Local::P_TA: 922 case X86Local::TAXD: 923 opcodeType = THREEBYTE_3A; 924 if (needsModRMForDecode(Form)) 925 filter = new ModFilter(isRegFormat(Form)); 926 else 927 filter = new DumbFilter(); 928 opcodeToSet = Opcode; 929 break; 930 case X86Local::A6: 931 opcodeType = THREEBYTE_A6; 932 if (needsModRMForDecode(Form)) 933 filter = new ModFilter(isRegFormat(Form)); 934 else 935 filter = new DumbFilter(); 936 opcodeToSet = Opcode; 937 break; 938 case X86Local::A7: 939 opcodeType = THREEBYTE_A7; 940 if (needsModRMForDecode(Form)) 941 filter = new ModFilter(isRegFormat(Form)); 942 else 943 filter = new DumbFilter(); 944 opcodeToSet = Opcode; 945 break; 946 case X86Local::D8: 947 case X86Local::D9: 948 case X86Local::DA: 949 case X86Local::DB: 950 case X86Local::DC: 951 case X86Local::DD: 952 case X86Local::DE: 953 case X86Local::DF: 954 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 955 opcodeType = ONEBYTE; 956 if (Form == X86Local::AddRegFrm) { 957 Spec->modifierType = MODIFIER_MODRM; 958 Spec->modifierBase = Opcode; 959 filter = new AddRegEscapeFilter(Opcode); 960 } else { 961 filter = new EscapeFilter(true, Opcode); 962 } 963 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 964 break; 965 case X86Local::REP: 966 default: 967 opcodeType = ONEBYTE; 968 switch (Opcode) { 969 #define EXTENSION_TABLE(n) case 0x##n: 970 ONE_BYTE_EXTENSION_TABLES 971 #undef EXTENSION_TABLE 972 switch (Form) { 973 default: 974 llvm_unreachable("Fell through the cracks of a single-byte " 975 "extended opcode"); 976 case X86Local::MRM0r: 977 case X86Local::MRM1r: 978 case X86Local::MRM2r: 979 case X86Local::MRM3r: 980 case X86Local::MRM4r: 981 case X86Local::MRM5r: 982 case X86Local::MRM6r: 983 case X86Local::MRM7r: 984 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 985 break; 986 case X86Local::MRM0m: 987 case X86Local::MRM1m: 988 case X86Local::MRM2m: 989 case X86Local::MRM3m: 990 case X86Local::MRM4m: 991 case X86Local::MRM5m: 992 case X86Local::MRM6m: 993 case X86Local::MRM7m: 994 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 995 break; 996 MRM_MAPPING 997 } // switch (Form) 998 break; 999 case 0xd8: 1000 case 0xd9: 1001 case 0xda: 1002 case 0xdb: 1003 case 0xdc: 1004 case 0xdd: 1005 case 0xde: 1006 case 0xdf: 1007 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 1008 break; 1009 default: 1010 if (needsModRMForDecode(Form)) 1011 filter = new ModFilter(isRegFormat(Form)); 1012 else 1013 filter = new DumbFilter(); 1014 break; 1015 } // switch (Opcode) 1016 opcodeToSet = Opcode; 1017 } // switch (Prefix) 1018 1019 assert(opcodeType != (OpcodeType)-1 && 1020 "Opcode type not set"); 1021 assert(filter && "Filter not set"); 1022 1023 if (Form == X86Local::AddRegFrm) { 1024 if(Spec->modifierType != MODIFIER_MODRM) { 1025 assert(opcodeToSet < 0xf9 && 1026 "Not enough room for all ADDREG_FRM operands"); 1027 1028 uint8_t currentOpcode; 1029 1030 for (currentOpcode = opcodeToSet; 1031 currentOpcode < opcodeToSet + 8; 1032 ++currentOpcode) 1033 tables.setTableFields(opcodeType, 1034 insnContext(), 1035 currentOpcode, 1036 *filter, 1037 UID, Is32Bit, IgnoresVEX_L); 1038 1039 Spec->modifierType = MODIFIER_OPCODE; 1040 Spec->modifierBase = opcodeToSet; 1041 } else { 1042 // modifierBase was set where MODIFIER_MODRM was set 1043 tables.setTableFields(opcodeType, 1044 insnContext(), 1045 opcodeToSet, 1046 *filter, 1047 UID, Is32Bit, IgnoresVEX_L); 1048 } 1049 } else { 1050 tables.setTableFields(opcodeType, 1051 insnContext(), 1052 opcodeToSet, 1053 *filter, 1054 UID, Is32Bit, IgnoresVEX_L); 1055 1056 Spec->modifierType = MODIFIER_NONE; 1057 Spec->modifierBase = opcodeToSet; 1058 } 1059 1060 delete filter; 1061 1062 #undef MAP 1063 } 1064 1065 #define TYPE(str, type) if (s == str) return type; 1066 OperandType RecognizableInstr::typeFromString(const std::string &s, 1067 bool isSSE, 1068 bool hasREX_WPrefix, 1069 bool hasOpSizePrefix) { 1070 if (isSSE) { 1071 // For SSE instructions, we ignore the OpSize prefix and force operand 1072 // sizes. 1073 TYPE("GR16", TYPE_R16) 1074 TYPE("GR32", TYPE_R32) 1075 TYPE("GR64", TYPE_R64) 1076 } 1077 if(hasREX_WPrefix) { 1078 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1079 // is special. 1080 TYPE("GR32", TYPE_R32) 1081 } 1082 if(!hasOpSizePrefix) { 1083 // For instructions without an OpSize prefix, a declared 16-bit register or 1084 // immediate encoding is special. 1085 TYPE("GR16", TYPE_R16) 1086 TYPE("i16imm", TYPE_IMM16) 1087 } 1088 TYPE("i16mem", TYPE_Mv) 1089 TYPE("i16imm", TYPE_IMMv) 1090 TYPE("i16i8imm", TYPE_IMMv) 1091 TYPE("GR16", TYPE_Rv) 1092 TYPE("i32mem", TYPE_Mv) 1093 TYPE("i32imm", TYPE_IMMv) 1094 TYPE("i32i8imm", TYPE_IMM32) 1095 TYPE("u32u8imm", TYPE_IMM32) 1096 TYPE("GR32", TYPE_Rv) 1097 TYPE("i64mem", TYPE_Mv) 1098 TYPE("i64i32imm", TYPE_IMM64) 1099 TYPE("i64i8imm", TYPE_IMM64) 1100 TYPE("GR64", TYPE_R64) 1101 TYPE("i8mem", TYPE_M8) 1102 TYPE("i8imm", TYPE_IMM8) 1103 TYPE("GR8", TYPE_R8) 1104 TYPE("VR128", TYPE_XMM128) 1105 TYPE("f128mem", TYPE_M128) 1106 TYPE("f256mem", TYPE_M256) 1107 TYPE("FR64", TYPE_XMM64) 1108 TYPE("f64mem", TYPE_M64FP) 1109 TYPE("sdmem", TYPE_M64FP) 1110 TYPE("FR32", TYPE_XMM32) 1111 TYPE("f32mem", TYPE_M32FP) 1112 TYPE("ssmem", TYPE_M32FP) 1113 TYPE("RST", TYPE_ST) 1114 TYPE("i128mem", TYPE_M128) 1115 TYPE("i256mem", TYPE_M256) 1116 TYPE("i64i32imm_pcrel", TYPE_REL64) 1117 TYPE("i16imm_pcrel", TYPE_REL16) 1118 TYPE("i32imm_pcrel", TYPE_REL32) 1119 TYPE("SSECC", TYPE_IMM3) 1120 TYPE("brtarget", TYPE_RELv) 1121 TYPE("uncondbrtarget", TYPE_RELv) 1122 TYPE("brtarget8", TYPE_REL8) 1123 TYPE("f80mem", TYPE_M80FP) 1124 TYPE("lea32mem", TYPE_LEA) 1125 TYPE("lea64_32mem", TYPE_LEA) 1126 TYPE("lea64mem", TYPE_LEA) 1127 TYPE("VR64", TYPE_MM64) 1128 TYPE("i64imm", TYPE_IMMv) 1129 TYPE("opaque32mem", TYPE_M1616) 1130 TYPE("opaque48mem", TYPE_M1632) 1131 TYPE("opaque80mem", TYPE_M1664) 1132 TYPE("opaque512mem", TYPE_M512) 1133 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1134 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1135 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1136 TYPE("offset8", TYPE_MOFFS8) 1137 TYPE("offset16", TYPE_MOFFS16) 1138 TYPE("offset32", TYPE_MOFFS32) 1139 TYPE("offset64", TYPE_MOFFS64) 1140 TYPE("VR256", TYPE_XMM256) 1141 TYPE("GR16_NOAX", TYPE_Rv) 1142 TYPE("GR32_NOAX", TYPE_Rv) 1143 TYPE("GR64_NOAX", TYPE_R64) 1144 errs() << "Unhandled type string " << s << "\n"; 1145 llvm_unreachable("Unhandled type string"); 1146 } 1147 #undef TYPE 1148 1149 #define ENCODING(str, encoding) if (s == str) return encoding; 1150 OperandEncoding RecognizableInstr::immediateEncodingFromString 1151 (const std::string &s, 1152 bool hasOpSizePrefix) { 1153 if(!hasOpSizePrefix) { 1154 // For instructions without an OpSize prefix, a declared 16-bit register or 1155 // immediate encoding is special. 1156 ENCODING("i16imm", ENCODING_IW) 1157 } 1158 ENCODING("i32i8imm", ENCODING_IB) 1159 ENCODING("u32u8imm", ENCODING_IB) 1160 ENCODING("SSECC", ENCODING_IB) 1161 ENCODING("i16imm", ENCODING_Iv) 1162 ENCODING("i16i8imm", ENCODING_IB) 1163 ENCODING("i32imm", ENCODING_Iv) 1164 ENCODING("i64i32imm", ENCODING_ID) 1165 ENCODING("i64i8imm", ENCODING_IB) 1166 ENCODING("i8imm", ENCODING_IB) 1167 // This is not a typo. Instructions like BLENDVPD put 1168 // register IDs in 8-bit immediates nowadays. 1169 ENCODING("VR256", ENCODING_IB) 1170 ENCODING("VR128", ENCODING_IB) 1171 errs() << "Unhandled immediate encoding " << s << "\n"; 1172 llvm_unreachable("Unhandled immediate encoding"); 1173 } 1174 1175 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1176 (const std::string &s, 1177 bool hasOpSizePrefix) { 1178 ENCODING("GR16", ENCODING_RM) 1179 ENCODING("GR32", ENCODING_RM) 1180 ENCODING("GR64", ENCODING_RM) 1181 ENCODING("GR8", ENCODING_RM) 1182 ENCODING("VR128", ENCODING_RM) 1183 ENCODING("FR64", ENCODING_RM) 1184 ENCODING("FR32", ENCODING_RM) 1185 ENCODING("VR64", ENCODING_RM) 1186 ENCODING("VR256", ENCODING_RM) 1187 errs() << "Unhandled R/M register encoding " << s << "\n"; 1188 llvm_unreachable("Unhandled R/M register encoding"); 1189 } 1190 1191 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1192 (const std::string &s, 1193 bool hasOpSizePrefix) { 1194 ENCODING("GR16", ENCODING_REG) 1195 ENCODING("GR32", ENCODING_REG) 1196 ENCODING("GR64", ENCODING_REG) 1197 ENCODING("GR8", ENCODING_REG) 1198 ENCODING("VR128", ENCODING_REG) 1199 ENCODING("FR64", ENCODING_REG) 1200 ENCODING("FR32", ENCODING_REG) 1201 ENCODING("VR64", ENCODING_REG) 1202 ENCODING("SEGMENT_REG", ENCODING_REG) 1203 ENCODING("DEBUG_REG", ENCODING_REG) 1204 ENCODING("CONTROL_REG", ENCODING_REG) 1205 ENCODING("VR256", ENCODING_REG) 1206 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1207 llvm_unreachable("Unhandled reg/opcode register encoding"); 1208 } 1209 1210 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1211 (const std::string &s, 1212 bool hasOpSizePrefix) { 1213 ENCODING("GR32", ENCODING_VVVV) 1214 ENCODING("GR64", ENCODING_VVVV) 1215 ENCODING("FR32", ENCODING_VVVV) 1216 ENCODING("FR64", ENCODING_VVVV) 1217 ENCODING("VR128", ENCODING_VVVV) 1218 ENCODING("VR256", ENCODING_VVVV) 1219 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1220 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1221 } 1222 1223 OperandEncoding RecognizableInstr::memoryEncodingFromString 1224 (const std::string &s, 1225 bool hasOpSizePrefix) { 1226 ENCODING("i16mem", ENCODING_RM) 1227 ENCODING("i32mem", ENCODING_RM) 1228 ENCODING("i64mem", ENCODING_RM) 1229 ENCODING("i8mem", ENCODING_RM) 1230 ENCODING("ssmem", ENCODING_RM) 1231 ENCODING("sdmem", ENCODING_RM) 1232 ENCODING("f128mem", ENCODING_RM) 1233 ENCODING("f256mem", ENCODING_RM) 1234 ENCODING("f64mem", ENCODING_RM) 1235 ENCODING("f32mem", ENCODING_RM) 1236 ENCODING("i128mem", ENCODING_RM) 1237 ENCODING("i256mem", ENCODING_RM) 1238 ENCODING("f80mem", ENCODING_RM) 1239 ENCODING("lea32mem", ENCODING_RM) 1240 ENCODING("lea64_32mem", ENCODING_RM) 1241 ENCODING("lea64mem", ENCODING_RM) 1242 ENCODING("opaque32mem", ENCODING_RM) 1243 ENCODING("opaque48mem", ENCODING_RM) 1244 ENCODING("opaque80mem", ENCODING_RM) 1245 ENCODING("opaque512mem", ENCODING_RM) 1246 errs() << "Unhandled memory encoding " << s << "\n"; 1247 llvm_unreachable("Unhandled memory encoding"); 1248 } 1249 1250 OperandEncoding RecognizableInstr::relocationEncodingFromString 1251 (const std::string &s, 1252 bool hasOpSizePrefix) { 1253 if(!hasOpSizePrefix) { 1254 // For instructions without an OpSize prefix, a declared 16-bit register or 1255 // immediate encoding is special. 1256 ENCODING("i16imm", ENCODING_IW) 1257 } 1258 ENCODING("i16imm", ENCODING_Iv) 1259 ENCODING("i16i8imm", ENCODING_IB) 1260 ENCODING("i32imm", ENCODING_Iv) 1261 ENCODING("i32i8imm", ENCODING_IB) 1262 ENCODING("i64i32imm", ENCODING_ID) 1263 ENCODING("i64i8imm", ENCODING_IB) 1264 ENCODING("i8imm", ENCODING_IB) 1265 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1266 ENCODING("i16imm_pcrel", ENCODING_IW) 1267 ENCODING("i32imm_pcrel", ENCODING_ID) 1268 ENCODING("brtarget", ENCODING_Iv) 1269 ENCODING("brtarget8", ENCODING_IB) 1270 ENCODING("i64imm", ENCODING_IO) 1271 ENCODING("offset8", ENCODING_Ia) 1272 ENCODING("offset16", ENCODING_Ia) 1273 ENCODING("offset32", ENCODING_Ia) 1274 ENCODING("offset64", ENCODING_Ia) 1275 errs() << "Unhandled relocation encoding " << s << "\n"; 1276 llvm_unreachable("Unhandled relocation encoding"); 1277 } 1278 1279 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1280 (const std::string &s, 1281 bool hasOpSizePrefix) { 1282 ENCODING("RST", ENCODING_I) 1283 ENCODING("GR32", ENCODING_Rv) 1284 ENCODING("GR64", ENCODING_RO) 1285 ENCODING("GR16", ENCODING_Rv) 1286 ENCODING("GR8", ENCODING_RB) 1287 ENCODING("GR16_NOAX", ENCODING_Rv) 1288 ENCODING("GR32_NOAX", ENCODING_Rv) 1289 ENCODING("GR64_NOAX", ENCODING_RO) 1290 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1291 llvm_unreachable("Unhandled opcode modifier encoding"); 1292 } 1293 #undef ENCODING 1294