1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86RecognizableInstr.h" 18 #include "X86DisassemblerShared.h" 19 #include "X86ModRMFilters.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <string> 22 23 using namespace llvm; 24 25 #define MRM_MAPPING \ 26 MAP(C1, 33) \ 27 MAP(C2, 34) \ 28 MAP(C3, 35) \ 29 MAP(C4, 36) \ 30 MAP(C8, 37) \ 31 MAP(C9, 38) \ 32 MAP(CA, 39) \ 33 MAP(CB, 40) \ 34 MAP(E8, 41) \ 35 MAP(F0, 42) \ 36 MAP(F8, 45) \ 37 MAP(F9, 46) \ 38 MAP(D0, 47) \ 39 MAP(D1, 48) \ 40 MAP(D4, 49) \ 41 MAP(D5, 50) \ 42 MAP(D6, 51) \ 43 MAP(D8, 52) \ 44 MAP(D9, 53) \ 45 MAP(DA, 54) \ 46 MAP(DB, 55) \ 47 MAP(DC, 56) \ 48 MAP(DD, 57) \ 49 MAP(DE, 58) \ 50 MAP(DF, 59) 51 52 // A clone of X86 since we can't depend on something that is generated. 53 namespace X86Local { 54 enum { 55 Pseudo = 0, 56 RawFrm = 1, 57 AddRegFrm = 2, 58 MRMDestReg = 3, 59 MRMDestMem = 4, 60 MRMSrcReg = 5, 61 MRMSrcMem = 6, 62 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 63 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 64 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 65 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 66 MRMInitReg = 32, 67 RawFrmImm8 = 43, 68 RawFrmImm16 = 44, 69 #define MAP(from, to) MRM_##from = to, 70 MRM_MAPPING 71 #undef MAP 72 lastMRM 73 }; 74 75 enum { 76 TB = 1, 77 REP = 2, 78 D8 = 3, D9 = 4, DA = 5, DB = 6, 79 DC = 7, DD = 8, DE = 9, DF = 10, 80 XD = 11, XS = 12, 81 T8 = 13, P_TA = 14, 82 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19, 83 XOP8 = 20, XOP9 = 21, XOPA = 22 84 }; 85 } 86 87 // If rows are added to the opcode extension tables, then corresponding entries 88 // must be added here. 89 // 90 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 91 // that byte to ONE_BYTE_EXTENSION_TABLES. 92 // 93 // If the row corresponds to two bytes where the first is 0f, add an entry for 94 // the second byte to TWO_BYTE_EXTENSION_TABLES. 95 // 96 // If the row corresponds to some other set of bytes, you will need to modify 97 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 98 // to the X86 TD files, except in two cases: if the first two bytes of such a 99 // new combination are 0f 38 or 0f 3a, you just have to add maps called 100 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 101 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 102 // in RecognizableInstr::emitDecodePath(). 103 104 #define ONE_BYTE_EXTENSION_TABLES \ 105 EXTENSION_TABLE(80) \ 106 EXTENSION_TABLE(81) \ 107 EXTENSION_TABLE(82) \ 108 EXTENSION_TABLE(83) \ 109 EXTENSION_TABLE(8f) \ 110 EXTENSION_TABLE(c0) \ 111 EXTENSION_TABLE(c1) \ 112 EXTENSION_TABLE(c6) \ 113 EXTENSION_TABLE(c7) \ 114 EXTENSION_TABLE(d0) \ 115 EXTENSION_TABLE(d1) \ 116 EXTENSION_TABLE(d2) \ 117 EXTENSION_TABLE(d3) \ 118 EXTENSION_TABLE(f6) \ 119 EXTENSION_TABLE(f7) \ 120 EXTENSION_TABLE(fe) \ 121 EXTENSION_TABLE(ff) 122 123 #define TWO_BYTE_EXTENSION_TABLES \ 124 EXTENSION_TABLE(00) \ 125 EXTENSION_TABLE(01) \ 126 EXTENSION_TABLE(0d) \ 127 EXTENSION_TABLE(18) \ 128 EXTENSION_TABLE(71) \ 129 EXTENSION_TABLE(72) \ 130 EXTENSION_TABLE(73) \ 131 EXTENSION_TABLE(ae) \ 132 EXTENSION_TABLE(ba) \ 133 EXTENSION_TABLE(c7) 134 135 #define THREE_BYTE_38_EXTENSION_TABLES \ 136 EXTENSION_TABLE(F3) 137 138 #define XOP9_MAP_EXTENSION_TABLES \ 139 EXTENSION_TABLE(01) \ 140 EXTENSION_TABLE(02) 141 142 using namespace X86Disassembler; 143 144 /// needsModRMForDecode - Indicates whether a particular instruction requires a 145 /// ModR/M byte for the instruction to be properly decoded. For example, a 146 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 147 /// 0b11. 148 /// 149 /// @param form - The form of the instruction. 150 /// @return - true if the form implies that a ModR/M byte is required, false 151 /// otherwise. 152 static bool needsModRMForDecode(uint8_t form) { 153 if (form == X86Local::MRMDestReg || 154 form == X86Local::MRMDestMem || 155 form == X86Local::MRMSrcReg || 156 form == X86Local::MRMSrcMem || 157 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 158 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 159 return true; 160 else 161 return false; 162 } 163 164 /// isRegFormat - Indicates whether a particular form requires the Mod field of 165 /// the ModR/M byte to be 0b11. 166 /// 167 /// @param form - The form of the instruction. 168 /// @return - true if the form implies that Mod must be 0b11, false 169 /// otherwise. 170 static bool isRegFormat(uint8_t form) { 171 if (form == X86Local::MRMDestReg || 172 form == X86Local::MRMSrcReg || 173 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 174 return true; 175 else 176 return false; 177 } 178 179 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 180 /// Useful for switch statements and the like. 181 /// 182 /// @param init - A reference to the BitsInit to be decoded. 183 /// @return - The field, with the first bit in the BitsInit as the lowest 184 /// order bit. 185 static uint8_t byteFromBitsInit(BitsInit &init) { 186 int width = init.getNumBits(); 187 188 assert(width <= 8 && "Field is too large for uint8_t!"); 189 190 int index; 191 uint8_t mask = 0x01; 192 193 uint8_t ret = 0; 194 195 for (index = 0; index < width; index++) { 196 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 197 ret |= mask; 198 199 mask <<= 1; 200 } 201 202 return ret; 203 } 204 205 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 206 /// name of the field. 207 /// 208 /// @param rec - The record from which to extract the value. 209 /// @param name - The name of the field in the record. 210 /// @return - The field, as translated by byteFromBitsInit(). 211 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 212 BitsInit* bits = rec->getValueAsBitsInit(name); 213 return byteFromBitsInit(*bits); 214 } 215 216 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 217 const CodeGenInstruction &insn, 218 InstrUID uid) { 219 UID = uid; 220 221 Rec = insn.TheDef; 222 Name = Rec->getName(); 223 Spec = &tables.specForUID(UID); 224 225 if (!Rec->isSubClassOf("X86Inst")) { 226 ShouldBeEmitted = false; 227 return; 228 } 229 230 Prefix = byteFromRec(Rec, "Prefix"); 231 Opcode = byteFromRec(Rec, "Opcode"); 232 Form = byteFromRec(Rec, "FormBits"); 233 SegOvr = byteFromRec(Rec, "SegOvrBits"); 234 235 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 236 HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix"); 237 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 238 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 239 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 240 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 241 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 242 HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); 243 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 244 HasEVEXPrefix = Rec->getValueAsBit("hasEVEXPrefix"); 245 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); 246 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); 247 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); 248 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 249 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 250 251 Name = Rec->getName(); 252 AsmString = Rec->getValueAsString("AsmString"); 253 254 Operands = &insn.Operands.OperandList; 255 256 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 257 (Name.find("CRC32") != Name.npos); 258 HasFROperands = hasFROperands(); 259 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); 260 261 // Check for 64-bit inst which does not require REX 262 Is32Bit = false; 263 Is64Bit = false; 264 // FIXME: Is there some better way to check for In64BitMode? 265 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 266 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 267 if (Predicates[i]->getName().find("32Bit") != Name.npos) { 268 Is32Bit = true; 269 break; 270 } 271 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 272 Is64Bit = true; 273 break; 274 } 275 } 276 // FIXME: These instructions aren't marked as 64-bit in any way 277 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 278 Rec->getName() == "MASKMOVDQU64" || 279 Rec->getName() == "POPFS64" || 280 Rec->getName() == "POPGS64" || 281 Rec->getName() == "PUSHFS64" || 282 Rec->getName() == "PUSHGS64" || 283 Rec->getName() == "REX64_PREFIX" || 284 Rec->getName().find("MOV64") != Name.npos || 285 Rec->getName().find("PUSH64") != Name.npos || 286 Rec->getName().find("POP64") != Name.npos; 287 288 ShouldBeEmitted = true; 289 } 290 291 void RecognizableInstr::processInstr(DisassemblerTables &tables, 292 const CodeGenInstruction &insn, 293 InstrUID uid) 294 { 295 // Ignore "asm parser only" instructions. 296 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 297 return; 298 299 RecognizableInstr recogInstr(tables, insn, uid); 300 301 recogInstr.emitInstructionSpecifier(tables); 302 303 if (recogInstr.shouldBeEmitted()) 304 recogInstr.emitDecodePath(tables); 305 } 306 307 #define EVEX_KB(n) (HasEVEX_K && HasEVEX_B? n##_K_B : \ 308 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))) 309 310 InstructionContext RecognizableInstr::insnContext() const { 311 InstructionContext insnContext; 312 313 if (HasEVEXPrefix) { 314 if (HasVEX_LPrefix && HasEVEX_L2Prefix) { 315 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; 316 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); 317 } 318 // VEX_L & VEX_W 319 if (HasVEX_LPrefix && HasVEX_WPrefix) { 320 if (HasOpSizePrefix) 321 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); 322 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 323 insnContext = EVEX_KB(IC_EVEX_L_W_XS); 324 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 325 Prefix == X86Local::TAXD) 326 insnContext = EVEX_KB(IC_EVEX_L_W_XD); 327 else 328 insnContext = EVEX_KB(IC_EVEX_L_W); 329 } else if (HasVEX_LPrefix) { 330 // VEX_L 331 if (HasOpSizePrefix) 332 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); 333 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 334 insnContext = EVEX_KB(IC_EVEX_L_XS); 335 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 336 Prefix == X86Local::TAXD) 337 insnContext = EVEX_KB(IC_EVEX_L_XD); 338 else 339 insnContext = EVEX_KB(IC_EVEX_L); 340 } 341 else if (HasEVEX_L2Prefix && HasVEX_WPrefix) { 342 // EVEX_L2 & VEX_W 343 if (HasOpSizePrefix) 344 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); 345 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 346 insnContext = EVEX_KB(IC_EVEX_L2_W_XS); 347 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 348 Prefix == X86Local::TAXD) 349 insnContext = EVEX_KB(IC_EVEX_L2_W_XD); 350 else 351 insnContext = EVEX_KB(IC_EVEX_L2_W); 352 } else if (HasEVEX_L2Prefix) { 353 // EVEX_L2 354 if (HasOpSizePrefix) 355 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); 356 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 357 Prefix == X86Local::TAXD) 358 insnContext = EVEX_KB(IC_EVEX_L2_XD); 359 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 360 insnContext = EVEX_KB(IC_EVEX_L2_XS); 361 else 362 insnContext = EVEX_KB(IC_EVEX_L2); 363 } 364 else if (HasVEX_WPrefix) { 365 // VEX_W 366 if (HasOpSizePrefix) 367 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); 368 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 369 insnContext = EVEX_KB(IC_EVEX_W_XS); 370 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 371 Prefix == X86Local::TAXD) 372 insnContext = EVEX_KB(IC_EVEX_W_XD); 373 else 374 insnContext = EVEX_KB(IC_EVEX_W); 375 } 376 // No L, no W 377 else if (HasOpSizePrefix) 378 insnContext = EVEX_KB(IC_EVEX_OPSIZE); 379 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 380 Prefix == X86Local::TAXD) 381 insnContext = EVEX_KB(IC_EVEX_XD); 382 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 383 insnContext = EVEX_KB(IC_EVEX_XS); 384 else 385 insnContext = EVEX_KB(IC_EVEX); 386 /// eof EVEX 387 } else if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 388 if (HasVEX_LPrefix && HasVEX_WPrefix) { 389 if (HasOpSizePrefix) 390 insnContext = IC_VEX_L_W_OPSIZE; 391 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 392 insnContext = IC_VEX_L_W_XS; 393 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 394 Prefix == X86Local::TAXD) 395 insnContext = IC_VEX_L_W_XD; 396 else 397 insnContext = IC_VEX_L_W; 398 } else if (HasOpSizePrefix && HasVEX_LPrefix) 399 insnContext = IC_VEX_L_OPSIZE; 400 else if (HasOpSizePrefix && HasVEX_WPrefix) 401 insnContext = IC_VEX_W_OPSIZE; 402 else if (HasOpSizePrefix) 403 insnContext = IC_VEX_OPSIZE; 404 else if (HasVEX_LPrefix && 405 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 406 insnContext = IC_VEX_L_XS; 407 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 408 Prefix == X86Local::T8XD || 409 Prefix == X86Local::TAXD)) 410 insnContext = IC_VEX_L_XD; 411 else if (HasVEX_WPrefix && 412 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 413 insnContext = IC_VEX_W_XS; 414 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 415 Prefix == X86Local::T8XD || 416 Prefix == X86Local::TAXD)) 417 insnContext = IC_VEX_W_XD; 418 else if (HasVEX_WPrefix) 419 insnContext = IC_VEX_W; 420 else if (HasVEX_LPrefix) 421 insnContext = IC_VEX_L; 422 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 423 Prefix == X86Local::TAXD) 424 insnContext = IC_VEX_XD; 425 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 426 insnContext = IC_VEX_XS; 427 else 428 insnContext = IC_VEX; 429 } else if (Is64Bit || HasREX_WPrefix) { 430 if (HasREX_WPrefix && HasOpSizePrefix) 431 insnContext = IC_64BIT_REXW_OPSIZE; 432 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 433 Prefix == X86Local::T8XD || 434 Prefix == X86Local::TAXD)) 435 insnContext = IC_64BIT_XD_OPSIZE; 436 else if (HasOpSizePrefix && 437 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 438 insnContext = IC_64BIT_XS_OPSIZE; 439 else if (HasOpSizePrefix) 440 insnContext = IC_64BIT_OPSIZE; 441 else if (HasAdSizePrefix) 442 insnContext = IC_64BIT_ADSIZE; 443 else if (HasREX_WPrefix && 444 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 445 insnContext = IC_64BIT_REXW_XS; 446 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 447 Prefix == X86Local::T8XD || 448 Prefix == X86Local::TAXD)) 449 insnContext = IC_64BIT_REXW_XD; 450 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 451 Prefix == X86Local::TAXD) 452 insnContext = IC_64BIT_XD; 453 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 454 insnContext = IC_64BIT_XS; 455 else if (HasREX_WPrefix) 456 insnContext = IC_64BIT_REXW; 457 else 458 insnContext = IC_64BIT; 459 } else { 460 if (HasOpSizePrefix && (Prefix == X86Local::XD || 461 Prefix == X86Local::T8XD || 462 Prefix == X86Local::TAXD)) 463 insnContext = IC_XD_OPSIZE; 464 else if (HasOpSizePrefix && 465 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 466 insnContext = IC_XS_OPSIZE; 467 else if (HasOpSizePrefix) 468 insnContext = IC_OPSIZE; 469 else if (HasAdSizePrefix) 470 insnContext = IC_ADSIZE; 471 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 472 Prefix == X86Local::TAXD) 473 insnContext = IC_XD; 474 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 475 Prefix == X86Local::REP) 476 insnContext = IC_XS; 477 else 478 insnContext = IC; 479 } 480 481 return insnContext; 482 } 483 484 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 485 /////////////////// 486 // FILTER_STRONG 487 // 488 489 // Filter out intrinsics 490 491 assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions"); 492 493 if (Form == X86Local::Pseudo || 494 (IsCodeGenOnly && Name.find("_REV") == Name.npos && 495 Name.find("INC32") == Name.npos && Name.find("DEC32") == Name.npos)) 496 return FILTER_STRONG; 497 498 499 // Filter out artificial instructions but leave in the LOCK_PREFIX so it is 500 // printed as a separate "instruction". 501 502 if (Name.find("_Int") != Name.npos || 503 Name.find("Int_") != Name.npos) 504 return FILTER_STRONG; 505 506 // Filter out instructions with segment override prefixes. 507 // They're too messy to handle now and we'll special case them if needed. 508 509 if (SegOvr) 510 return FILTER_STRONG; 511 512 513 ///////////////// 514 // FILTER_WEAK 515 // 516 517 518 // Filter out instructions with a LOCK prefix; 519 // prefer forms that do not have the prefix 520 if (HasLockPrefix) 521 return FILTER_WEAK; 522 523 // Filter out alternate forms of AVX instructions 524 if (Name.find("_alt") != Name.npos || 525 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos && Name.find("r64r8") == Name.npos) || 526 Name.find("_64mr") != Name.npos || 527 Name.find("rr64") != Name.npos) 528 return FILTER_WEAK; 529 530 // Special cases. 531 532 if (Name == "PUSH64i16" || 533 Name == "MOVPQI2QImr" || 534 Name == "VMOVPQI2QImr" || 535 Name == "VMASKMOVDQU64") 536 return FILTER_WEAK; 537 538 // XACQUIRE and XRELEASE reuse REPNE and REP respectively. 539 // For now, just prefer the REP versions. 540 if (Name == "XACQUIRE_PREFIX" || 541 Name == "XRELEASE_PREFIX") 542 return FILTER_WEAK; 543 544 return FILTER_NORMAL; 545 } 546 547 bool RecognizableInstr::hasFROperands() const { 548 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 549 unsigned numOperands = OperandList.size(); 550 551 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 552 const std::string &recName = OperandList[operandIndex].Rec->getName(); 553 554 if (recName.find("FR") != recName.npos) 555 return true; 556 } 557 return false; 558 } 559 560 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, 561 unsigned &physicalOperandIndex, 562 unsigned &numPhysicalOperands, 563 const unsigned *operandMapping, 564 OperandEncoding (*encodingFromString) 565 (const std::string&, 566 bool hasOpSizePrefix)) { 567 if (optional) { 568 if (physicalOperandIndex >= numPhysicalOperands) 569 return; 570 } else { 571 assert(physicalOperandIndex < numPhysicalOperands); 572 } 573 574 while (operandMapping[operandIndex] != operandIndex) { 575 Spec->operands[operandIndex].encoding = ENCODING_DUP; 576 Spec->operands[operandIndex].type = 577 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 578 ++operandIndex; 579 } 580 581 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 582 583 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 584 HasOpSizePrefix); 585 Spec->operands[operandIndex].type = typeFromString(typeName, 586 IsSSE, 587 HasREX_WPrefix, 588 HasOpSizePrefix); 589 590 ++operandIndex; 591 ++physicalOperandIndex; 592 } 593 594 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 595 Spec->name = Name; 596 597 if (!ShouldBeEmitted) 598 return; 599 600 switch (filter()) { 601 case FILTER_WEAK: 602 Spec->filtered = true; 603 break; 604 case FILTER_STRONG: 605 ShouldBeEmitted = false; 606 return; 607 case FILTER_NORMAL: 608 break; 609 } 610 611 Spec->insnContext = insnContext(); 612 613 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 614 615 unsigned numOperands = OperandList.size(); 616 unsigned numPhysicalOperands = 0; 617 618 // operandMapping maps from operands in OperandList to their originals. 619 // If operandMapping[i] != i, then the entry is a duplicate. 620 unsigned operandMapping[X86_MAX_OPERANDS]; 621 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 622 623 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 624 if (OperandList[operandIndex].Constraints.size()) { 625 const CGIOperandList::ConstraintInfo &Constraint = 626 OperandList[operandIndex].Constraints[0]; 627 if (Constraint.isTied()) { 628 operandMapping[operandIndex] = operandIndex; 629 operandMapping[Constraint.getTiedOperand()] = operandIndex; 630 } else { 631 ++numPhysicalOperands; 632 operandMapping[operandIndex] = operandIndex; 633 } 634 } else { 635 ++numPhysicalOperands; 636 operandMapping[operandIndex] = operandIndex; 637 } 638 } 639 640 #define HANDLE_OPERAND(class) \ 641 handleOperand(false, \ 642 operandIndex, \ 643 physicalOperandIndex, \ 644 numPhysicalOperands, \ 645 operandMapping, \ 646 class##EncodingFromString); 647 648 #define HANDLE_OPTIONAL(class) \ 649 handleOperand(true, \ 650 operandIndex, \ 651 physicalOperandIndex, \ 652 numPhysicalOperands, \ 653 operandMapping, \ 654 class##EncodingFromString); 655 656 // operandIndex should always be < numOperands 657 unsigned operandIndex = 0; 658 // physicalOperandIndex should always be < numPhysicalOperands 659 unsigned physicalOperandIndex = 0; 660 661 switch (Form) { 662 case X86Local::RawFrm: 663 // Operand 1 (optional) is an address or immediate. 664 // Operand 2 (optional) is an immediate. 665 assert(numPhysicalOperands <= 2 && 666 "Unexpected number of operands for RawFrm"); 667 HANDLE_OPTIONAL(relocation) 668 HANDLE_OPTIONAL(immediate) 669 break; 670 case X86Local::AddRegFrm: 671 // Operand 1 is added to the opcode. 672 // Operand 2 (optional) is an address. 673 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 674 "Unexpected number of operands for AddRegFrm"); 675 HANDLE_OPERAND(opcodeModifier) 676 HANDLE_OPTIONAL(relocation) 677 break; 678 case X86Local::MRMDestReg: 679 // Operand 1 is a register operand in the R/M field. 680 // Operand 2 is a register operand in the Reg/Opcode field. 681 // - In AVX, there is a register operand in the VEX.vvvv field here - 682 // Operand 3 (optional) is an immediate. 683 if (HasVEX_4VPrefix) 684 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 685 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 686 else 687 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 688 "Unexpected number of operands for MRMDestRegFrm"); 689 690 HANDLE_OPERAND(rmRegister) 691 692 if (HasVEX_4VPrefix) 693 // FIXME: In AVX, the register below becomes the one encoded 694 // in ModRMVEX and the one above the one in the VEX.VVVV field 695 HANDLE_OPERAND(vvvvRegister) 696 697 HANDLE_OPERAND(roRegister) 698 HANDLE_OPTIONAL(immediate) 699 break; 700 case X86Local::MRMDestMem: 701 // Operand 1 is a memory operand (possibly SIB-extended) 702 // Operand 2 is a register operand in the Reg/Opcode field. 703 // - In AVX, there is a register operand in the VEX.vvvv field here - 704 // Operand 3 (optional) is an immediate. 705 if (HasVEX_4VPrefix) 706 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 707 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 708 else 709 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 710 "Unexpected number of operands for MRMDestMemFrm"); 711 HANDLE_OPERAND(memory) 712 713 if (HasEVEX_K) 714 HANDLE_OPERAND(writemaskRegister) 715 716 if (HasVEX_4VPrefix) 717 // FIXME: In AVX, the register below becomes the one encoded 718 // in ModRMVEX and the one above the one in the VEX.VVVV field 719 HANDLE_OPERAND(vvvvRegister) 720 721 HANDLE_OPERAND(roRegister) 722 HANDLE_OPTIONAL(immediate) 723 break; 724 case X86Local::MRMSrcReg: 725 // Operand 1 is a register operand in the Reg/Opcode field. 726 // Operand 2 is a register operand in the R/M field. 727 // - In AVX, there is a register operand in the VEX.vvvv field here - 728 // Operand 3 (optional) is an immediate. 729 // Operand 4 (optional) is an immediate. 730 731 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 732 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 733 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 734 else 735 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 && 736 "Unexpected number of operands for MRMSrcRegFrm"); 737 738 HANDLE_OPERAND(roRegister) 739 740 if (HasEVEX_K) 741 HANDLE_OPERAND(writemaskRegister) 742 743 if (HasVEX_4VPrefix) 744 // FIXME: In AVX, the register below becomes the one encoded 745 // in ModRMVEX and the one above the one in the VEX.VVVV field 746 HANDLE_OPERAND(vvvvRegister) 747 748 if (HasMemOp4Prefix) 749 HANDLE_OPERAND(immediate) 750 751 HANDLE_OPERAND(rmRegister) 752 753 if (HasVEX_4VOp3Prefix) 754 HANDLE_OPERAND(vvvvRegister) 755 756 if (!HasMemOp4Prefix) 757 HANDLE_OPTIONAL(immediate) 758 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 759 HANDLE_OPTIONAL(immediate) 760 break; 761 case X86Local::MRMSrcMem: 762 // Operand 1 is a register operand in the Reg/Opcode field. 763 // Operand 2 is a memory operand (possibly SIB-extended) 764 // - In AVX, there is a register operand in the VEX.vvvv field here - 765 // Operand 3 (optional) is an immediate. 766 767 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 768 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 769 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 770 else 771 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 772 "Unexpected number of operands for MRMSrcMemFrm"); 773 774 HANDLE_OPERAND(roRegister) 775 776 if (HasEVEX_K) 777 HANDLE_OPERAND(writemaskRegister) 778 779 if (HasVEX_4VPrefix) 780 // FIXME: In AVX, the register below becomes the one encoded 781 // in ModRMVEX and the one above the one in the VEX.VVVV field 782 HANDLE_OPERAND(vvvvRegister) 783 784 if (HasMemOp4Prefix) 785 HANDLE_OPERAND(immediate) 786 787 HANDLE_OPERAND(memory) 788 789 if (HasVEX_4VOp3Prefix) 790 HANDLE_OPERAND(vvvvRegister) 791 792 if (!HasMemOp4Prefix) 793 HANDLE_OPTIONAL(immediate) 794 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 795 break; 796 case X86Local::MRM0r: 797 case X86Local::MRM1r: 798 case X86Local::MRM2r: 799 case X86Local::MRM3r: 800 case X86Local::MRM4r: 801 case X86Local::MRM5r: 802 case X86Local::MRM6r: 803 case X86Local::MRM7r: 804 { 805 // Operand 1 is a register operand in the R/M field. 806 // Operand 2 (optional) is an immediate or relocation. 807 // Operand 3 (optional) is an immediate. 808 unsigned kOp = (HasEVEX_K) ? 1:0; 809 unsigned Op4v = (HasVEX_4VPrefix) ? 1:0; 810 if (numPhysicalOperands > 3 + kOp + Op4v) 811 llvm_unreachable("Unexpected number of operands for MRMnr"); 812 } 813 if (HasVEX_4VPrefix) 814 HANDLE_OPERAND(vvvvRegister) 815 816 if (HasEVEX_K) 817 HANDLE_OPERAND(writemaskRegister) 818 HANDLE_OPTIONAL(rmRegister) 819 HANDLE_OPTIONAL(relocation) 820 HANDLE_OPTIONAL(immediate) 821 break; 822 case X86Local::MRM0m: 823 case X86Local::MRM1m: 824 case X86Local::MRM2m: 825 case X86Local::MRM3m: 826 case X86Local::MRM4m: 827 case X86Local::MRM5m: 828 case X86Local::MRM6m: 829 case X86Local::MRM7m: 830 { 831 // Operand 1 is a memory operand (possibly SIB-extended) 832 // Operand 2 (optional) is an immediate or relocation. 833 unsigned kOp = (HasEVEX_K) ? 1:0; 834 unsigned Op4v = (HasVEX_4VPrefix) ? 1:0; 835 if (numPhysicalOperands < 1 + kOp + Op4v || 836 numPhysicalOperands > 2 + kOp + Op4v) 837 llvm_unreachable("Unexpected number of operands for MRMnm"); 838 } 839 if (HasVEX_4VPrefix) 840 HANDLE_OPERAND(vvvvRegister) 841 if (HasEVEX_K) 842 HANDLE_OPERAND(writemaskRegister) 843 HANDLE_OPERAND(memory) 844 HANDLE_OPTIONAL(relocation) 845 break; 846 case X86Local::RawFrmImm8: 847 // operand 1 is a 16-bit immediate 848 // operand 2 is an 8-bit immediate 849 assert(numPhysicalOperands == 2 && 850 "Unexpected number of operands for X86Local::RawFrmImm8"); 851 HANDLE_OPERAND(immediate) 852 HANDLE_OPERAND(immediate) 853 break; 854 case X86Local::RawFrmImm16: 855 // operand 1 is a 16-bit immediate 856 // operand 2 is a 16-bit immediate 857 HANDLE_OPERAND(immediate) 858 HANDLE_OPERAND(immediate) 859 break; 860 case X86Local::MRM_F8: 861 if (Opcode == 0xc6) { 862 assert(numPhysicalOperands == 1 && 863 "Unexpected number of operands for X86Local::MRM_F8"); 864 HANDLE_OPERAND(immediate) 865 } else if (Opcode == 0xc7) { 866 assert(numPhysicalOperands == 1 && 867 "Unexpected number of operands for X86Local::MRM_F8"); 868 HANDLE_OPERAND(relocation) 869 } 870 break; 871 case X86Local::MRMInitReg: 872 // Ignored. 873 break; 874 } 875 876 #undef HANDLE_OPERAND 877 #undef HANDLE_OPTIONAL 878 } 879 880 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 881 // Special cases where the LLVM tables are not complete 882 883 #define MAP(from, to) \ 884 case X86Local::MRM_##from: \ 885 filter = new ExactFilter(0x##from); \ 886 break; 887 888 OpcodeType opcodeType = (OpcodeType)-1; 889 890 ModRMFilter* filter = NULL; 891 uint8_t opcodeToSet = 0; 892 893 switch (Prefix) { 894 default: llvm_unreachable("Invalid prefix!"); 895 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 896 case X86Local::XD: 897 case X86Local::XS: 898 case X86Local::TB: 899 opcodeType = TWOBYTE; 900 901 switch (Opcode) { 902 default: 903 if (needsModRMForDecode(Form)) 904 filter = new ModFilter(isRegFormat(Form)); 905 else 906 filter = new DumbFilter(); 907 break; 908 #define EXTENSION_TABLE(n) case 0x##n: 909 TWO_BYTE_EXTENSION_TABLES 910 #undef EXTENSION_TABLE 911 switch (Form) { 912 default: 913 llvm_unreachable("Unhandled two-byte extended opcode"); 914 case X86Local::MRM0r: 915 case X86Local::MRM1r: 916 case X86Local::MRM2r: 917 case X86Local::MRM3r: 918 case X86Local::MRM4r: 919 case X86Local::MRM5r: 920 case X86Local::MRM6r: 921 case X86Local::MRM7r: 922 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 923 break; 924 case X86Local::MRM0m: 925 case X86Local::MRM1m: 926 case X86Local::MRM2m: 927 case X86Local::MRM3m: 928 case X86Local::MRM4m: 929 case X86Local::MRM5m: 930 case X86Local::MRM6m: 931 case X86Local::MRM7m: 932 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 933 break; 934 MRM_MAPPING 935 } // switch (Form) 936 break; 937 } // switch (Opcode) 938 opcodeToSet = Opcode; 939 break; 940 case X86Local::T8: 941 case X86Local::T8XD: 942 case X86Local::T8XS: 943 opcodeType = THREEBYTE_38; 944 switch (Opcode) { 945 default: 946 if (needsModRMForDecode(Form)) 947 filter = new ModFilter(isRegFormat(Form)); 948 else 949 filter = new DumbFilter(); 950 break; 951 #define EXTENSION_TABLE(n) case 0x##n: 952 THREE_BYTE_38_EXTENSION_TABLES 953 #undef EXTENSION_TABLE 954 switch (Form) { 955 default: 956 llvm_unreachable("Unhandled two-byte extended opcode"); 957 case X86Local::MRM0r: 958 case X86Local::MRM1r: 959 case X86Local::MRM2r: 960 case X86Local::MRM3r: 961 case X86Local::MRM4r: 962 case X86Local::MRM5r: 963 case X86Local::MRM6r: 964 case X86Local::MRM7r: 965 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 966 break; 967 case X86Local::MRM0m: 968 case X86Local::MRM1m: 969 case X86Local::MRM2m: 970 case X86Local::MRM3m: 971 case X86Local::MRM4m: 972 case X86Local::MRM5m: 973 case X86Local::MRM6m: 974 case X86Local::MRM7m: 975 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 976 break; 977 MRM_MAPPING 978 } // switch (Form) 979 break; 980 } // switch (Opcode) 981 opcodeToSet = Opcode; 982 break; 983 case X86Local::P_TA: 984 case X86Local::TAXD: 985 opcodeType = THREEBYTE_3A; 986 if (needsModRMForDecode(Form)) 987 filter = new ModFilter(isRegFormat(Form)); 988 else 989 filter = new DumbFilter(); 990 opcodeToSet = Opcode; 991 break; 992 case X86Local::A6: 993 opcodeType = THREEBYTE_A6; 994 if (needsModRMForDecode(Form)) 995 filter = new ModFilter(isRegFormat(Form)); 996 else 997 filter = new DumbFilter(); 998 opcodeToSet = Opcode; 999 break; 1000 case X86Local::A7: 1001 opcodeType = THREEBYTE_A7; 1002 if (needsModRMForDecode(Form)) 1003 filter = new ModFilter(isRegFormat(Form)); 1004 else 1005 filter = new DumbFilter(); 1006 opcodeToSet = Opcode; 1007 break; 1008 case X86Local::XOP8: 1009 opcodeType = XOP8_MAP; 1010 if (needsModRMForDecode(Form)) 1011 filter = new ModFilter(isRegFormat(Form)); 1012 else 1013 filter = new DumbFilter(); 1014 opcodeToSet = Opcode; 1015 break; 1016 case X86Local::XOP9: 1017 opcodeType = XOP9_MAP; 1018 switch (Opcode) { 1019 default: 1020 if (needsModRMForDecode(Form)) 1021 filter = new ModFilter(isRegFormat(Form)); 1022 else 1023 filter = new DumbFilter(); 1024 break; 1025 #define EXTENSION_TABLE(n) case 0x##n: 1026 XOP9_MAP_EXTENSION_TABLES 1027 #undef EXTENSION_TABLE 1028 switch (Form) { 1029 default: 1030 llvm_unreachable("Unhandled XOP9 extended opcode"); 1031 case X86Local::MRM0r: 1032 case X86Local::MRM1r: 1033 case X86Local::MRM2r: 1034 case X86Local::MRM3r: 1035 case X86Local::MRM4r: 1036 case X86Local::MRM5r: 1037 case X86Local::MRM6r: 1038 case X86Local::MRM7r: 1039 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1040 break; 1041 case X86Local::MRM0m: 1042 case X86Local::MRM1m: 1043 case X86Local::MRM2m: 1044 case X86Local::MRM3m: 1045 case X86Local::MRM4m: 1046 case X86Local::MRM5m: 1047 case X86Local::MRM6m: 1048 case X86Local::MRM7m: 1049 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1050 break; 1051 MRM_MAPPING 1052 } // switch (Form) 1053 break; 1054 } // switch (Opcode) 1055 opcodeToSet = Opcode; 1056 break; 1057 case X86Local::XOPA: 1058 opcodeType = XOPA_MAP; 1059 if (needsModRMForDecode(Form)) 1060 filter = new ModFilter(isRegFormat(Form)); 1061 else 1062 filter = new DumbFilter(); 1063 opcodeToSet = Opcode; 1064 break; 1065 case X86Local::D8: 1066 case X86Local::D9: 1067 case X86Local::DA: 1068 case X86Local::DB: 1069 case X86Local::DC: 1070 case X86Local::DD: 1071 case X86Local::DE: 1072 case X86Local::DF: 1073 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 1074 opcodeType = ONEBYTE; 1075 if (Form == X86Local::AddRegFrm) { 1076 Spec->modifierType = MODIFIER_MODRM; 1077 Spec->modifierBase = Opcode; 1078 filter = new AddRegEscapeFilter(Opcode); 1079 } else { 1080 filter = new EscapeFilter(true, Opcode); 1081 } 1082 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 1083 break; 1084 case X86Local::REP: 1085 case 0: 1086 opcodeType = ONEBYTE; 1087 switch (Opcode) { 1088 #define EXTENSION_TABLE(n) case 0x##n: 1089 ONE_BYTE_EXTENSION_TABLES 1090 #undef EXTENSION_TABLE 1091 switch (Form) { 1092 default: 1093 llvm_unreachable("Fell through the cracks of a single-byte " 1094 "extended opcode"); 1095 case X86Local::MRM0r: 1096 case X86Local::MRM1r: 1097 case X86Local::MRM2r: 1098 case X86Local::MRM3r: 1099 case X86Local::MRM4r: 1100 case X86Local::MRM5r: 1101 case X86Local::MRM6r: 1102 case X86Local::MRM7r: 1103 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1104 break; 1105 case X86Local::MRM0m: 1106 case X86Local::MRM1m: 1107 case X86Local::MRM2m: 1108 case X86Local::MRM3m: 1109 case X86Local::MRM4m: 1110 case X86Local::MRM5m: 1111 case X86Local::MRM6m: 1112 case X86Local::MRM7m: 1113 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1114 break; 1115 MRM_MAPPING 1116 } // switch (Form) 1117 break; 1118 case 0xd8: 1119 case 0xd9: 1120 case 0xda: 1121 case 0xdb: 1122 case 0xdc: 1123 case 0xdd: 1124 case 0xde: 1125 case 0xdf: 1126 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 1127 break; 1128 default: 1129 if (needsModRMForDecode(Form)) 1130 filter = new ModFilter(isRegFormat(Form)); 1131 else 1132 filter = new DumbFilter(); 1133 break; 1134 } // switch (Opcode) 1135 opcodeToSet = Opcode; 1136 } // switch (Prefix) 1137 1138 assert(opcodeType != (OpcodeType)-1 && 1139 "Opcode type not set"); 1140 assert(filter && "Filter not set"); 1141 1142 if (Form == X86Local::AddRegFrm) { 1143 if(Spec->modifierType != MODIFIER_MODRM) { 1144 assert(opcodeToSet < 0xf9 && 1145 "Not enough room for all ADDREG_FRM operands"); 1146 1147 uint8_t currentOpcode; 1148 1149 for (currentOpcode = opcodeToSet; 1150 currentOpcode < opcodeToSet + 8; 1151 ++currentOpcode) 1152 tables.setTableFields(opcodeType, 1153 insnContext(), 1154 currentOpcode, 1155 *filter, 1156 UID, Is32Bit, IgnoresVEX_L); 1157 1158 Spec->modifierType = MODIFIER_OPCODE; 1159 Spec->modifierBase = opcodeToSet; 1160 } else { 1161 // modifierBase was set where MODIFIER_MODRM was set 1162 tables.setTableFields(opcodeType, 1163 insnContext(), 1164 opcodeToSet, 1165 *filter, 1166 UID, Is32Bit, IgnoresVEX_L); 1167 } 1168 } else { 1169 tables.setTableFields(opcodeType, 1170 insnContext(), 1171 opcodeToSet, 1172 *filter, 1173 UID, Is32Bit, IgnoresVEX_L); 1174 1175 Spec->modifierType = MODIFIER_NONE; 1176 Spec->modifierBase = opcodeToSet; 1177 } 1178 1179 delete filter; 1180 1181 #undef MAP 1182 } 1183 1184 #define TYPE(str, type) if (s == str) return type; 1185 OperandType RecognizableInstr::typeFromString(const std::string &s, 1186 bool isSSE, 1187 bool hasREX_WPrefix, 1188 bool hasOpSizePrefix) { 1189 if (isSSE) { 1190 // For SSE instructions, we ignore the OpSize prefix and force operand 1191 // sizes. 1192 TYPE("GR16", TYPE_R16) 1193 TYPE("GR32", TYPE_R32) 1194 TYPE("GR64", TYPE_R64) 1195 } 1196 if(hasREX_WPrefix) { 1197 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1198 // is special. 1199 TYPE("GR32", TYPE_R32) 1200 } 1201 if(!hasOpSizePrefix) { 1202 // For instructions without an OpSize prefix, a declared 16-bit register or 1203 // immediate encoding is special. 1204 TYPE("GR16", TYPE_R16) 1205 TYPE("i16imm", TYPE_IMM16) 1206 } 1207 TYPE("i16mem", TYPE_Mv) 1208 TYPE("i16imm", TYPE_IMMv) 1209 TYPE("i16i8imm", TYPE_IMMv) 1210 TYPE("GR16", TYPE_Rv) 1211 TYPE("i32mem", TYPE_Mv) 1212 TYPE("i32imm", TYPE_IMMv) 1213 TYPE("i32i8imm", TYPE_IMM32) 1214 TYPE("u32u8imm", TYPE_IMM32) 1215 TYPE("GR32", TYPE_Rv) 1216 TYPE("GR32orGR64", TYPE_R32) 1217 TYPE("i64mem", TYPE_Mv) 1218 TYPE("i64i32imm", TYPE_IMM64) 1219 TYPE("i64i8imm", TYPE_IMM64) 1220 TYPE("GR64", TYPE_R64) 1221 TYPE("i8mem", TYPE_M8) 1222 TYPE("i8imm", TYPE_IMM8) 1223 TYPE("GR8", TYPE_R8) 1224 TYPE("VR128", TYPE_XMM128) 1225 TYPE("VR128X", TYPE_XMM128) 1226 TYPE("f128mem", TYPE_M128) 1227 TYPE("f256mem", TYPE_M256) 1228 TYPE("f512mem", TYPE_M512) 1229 TYPE("FR64", TYPE_XMM64) 1230 TYPE("FR64X", TYPE_XMM64) 1231 TYPE("f64mem", TYPE_M64FP) 1232 TYPE("sdmem", TYPE_M64FP) 1233 TYPE("FR32", TYPE_XMM32) 1234 TYPE("FR32X", TYPE_XMM32) 1235 TYPE("f32mem", TYPE_M32FP) 1236 TYPE("ssmem", TYPE_M32FP) 1237 TYPE("RST", TYPE_ST) 1238 TYPE("i128mem", TYPE_M128) 1239 TYPE("i256mem", TYPE_M256) 1240 TYPE("i512mem", TYPE_M512) 1241 TYPE("i64i32imm_pcrel", TYPE_REL64) 1242 TYPE("i16imm_pcrel", TYPE_REL16) 1243 TYPE("i32imm_pcrel", TYPE_REL32) 1244 TYPE("SSECC", TYPE_IMM3) 1245 TYPE("AVXCC", TYPE_IMM5) 1246 TYPE("brtarget", TYPE_RELv) 1247 TYPE("uncondbrtarget", TYPE_RELv) 1248 TYPE("brtarget8", TYPE_REL8) 1249 TYPE("f80mem", TYPE_M80FP) 1250 TYPE("lea32mem", TYPE_LEA) 1251 TYPE("lea64_32mem", TYPE_LEA) 1252 TYPE("lea64mem", TYPE_LEA) 1253 TYPE("VR64", TYPE_MM64) 1254 TYPE("i64imm", TYPE_IMMv) 1255 TYPE("opaque32mem", TYPE_M1616) 1256 TYPE("opaque48mem", TYPE_M1632) 1257 TYPE("opaque80mem", TYPE_M1664) 1258 TYPE("opaque512mem", TYPE_M512) 1259 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1260 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1261 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1262 TYPE("offset8", TYPE_MOFFS8) 1263 TYPE("offset16", TYPE_MOFFS16) 1264 TYPE("offset32", TYPE_MOFFS32) 1265 TYPE("offset64", TYPE_MOFFS64) 1266 TYPE("VR256", TYPE_XMM256) 1267 TYPE("VR256X", TYPE_XMM256) 1268 TYPE("VR512", TYPE_XMM512) 1269 TYPE("VK8", TYPE_VK8) 1270 TYPE("VK8WM", TYPE_VK8) 1271 TYPE("VK16", TYPE_VK16) 1272 TYPE("VK16WM", TYPE_VK16) 1273 TYPE("GR16_NOAX", TYPE_Rv) 1274 TYPE("GR32_NOAX", TYPE_Rv) 1275 TYPE("GR64_NOAX", TYPE_R64) 1276 TYPE("vx32mem", TYPE_M32) 1277 TYPE("vy32mem", TYPE_M32) 1278 TYPE("vz32mem", TYPE_M32) 1279 TYPE("vx64mem", TYPE_M64) 1280 TYPE("vy64mem", TYPE_M64) 1281 TYPE("vy64xmem", TYPE_M64) 1282 TYPE("vz64mem", TYPE_M64) 1283 errs() << "Unhandled type string " << s << "\n"; 1284 llvm_unreachable("Unhandled type string"); 1285 } 1286 #undef TYPE 1287 1288 #define ENCODING(str, encoding) if (s == str) return encoding; 1289 OperandEncoding RecognizableInstr::immediateEncodingFromString 1290 (const std::string &s, 1291 bool hasOpSizePrefix) { 1292 if(!hasOpSizePrefix) { 1293 // For instructions without an OpSize prefix, a declared 16-bit register or 1294 // immediate encoding is special. 1295 ENCODING("i16imm", ENCODING_IW) 1296 } 1297 ENCODING("i32i8imm", ENCODING_IB) 1298 ENCODING("u32u8imm", ENCODING_IB) 1299 ENCODING("SSECC", ENCODING_IB) 1300 ENCODING("AVXCC", ENCODING_IB) 1301 ENCODING("i16imm", ENCODING_Iv) 1302 ENCODING("i16i8imm", ENCODING_IB) 1303 ENCODING("i32imm", ENCODING_Iv) 1304 ENCODING("i64i32imm", ENCODING_ID) 1305 ENCODING("i64i8imm", ENCODING_IB) 1306 ENCODING("i8imm", ENCODING_IB) 1307 // This is not a typo. Instructions like BLENDVPD put 1308 // register IDs in 8-bit immediates nowadays. 1309 ENCODING("FR32", ENCODING_IB) 1310 ENCODING("FR64", ENCODING_IB) 1311 ENCODING("VR128", ENCODING_IB) 1312 ENCODING("VR256", ENCODING_IB) 1313 ENCODING("FR32X", ENCODING_IB) 1314 ENCODING("FR64X", ENCODING_IB) 1315 ENCODING("VR128X", ENCODING_IB) 1316 ENCODING("VR256X", ENCODING_IB) 1317 ENCODING("VR512", ENCODING_IB) 1318 errs() << "Unhandled immediate encoding " << s << "\n"; 1319 llvm_unreachable("Unhandled immediate encoding"); 1320 } 1321 1322 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1323 (const std::string &s, 1324 bool hasOpSizePrefix) { 1325 ENCODING("GR16", ENCODING_RM) 1326 ENCODING("GR32", ENCODING_RM) 1327 ENCODING("GR32orGR64", ENCODING_RM) 1328 ENCODING("GR64", ENCODING_RM) 1329 ENCODING("GR8", ENCODING_RM) 1330 ENCODING("VR128", ENCODING_RM) 1331 ENCODING("VR128X", ENCODING_RM) 1332 ENCODING("FR64", ENCODING_RM) 1333 ENCODING("FR32", ENCODING_RM) 1334 ENCODING("FR64X", ENCODING_RM) 1335 ENCODING("FR32X", ENCODING_RM) 1336 ENCODING("VR64", ENCODING_RM) 1337 ENCODING("VR256", ENCODING_RM) 1338 ENCODING("VR256X", ENCODING_RM) 1339 ENCODING("VR512", ENCODING_RM) 1340 ENCODING("VK8", ENCODING_RM) 1341 ENCODING("VK16", ENCODING_RM) 1342 errs() << "Unhandled R/M register encoding " << s << "\n"; 1343 llvm_unreachable("Unhandled R/M register encoding"); 1344 } 1345 1346 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1347 (const std::string &s, 1348 bool hasOpSizePrefix) { 1349 ENCODING("GR16", ENCODING_REG) 1350 ENCODING("GR32", ENCODING_REG) 1351 ENCODING("GR32orGR64", ENCODING_REG) 1352 ENCODING("GR64", ENCODING_REG) 1353 ENCODING("GR8", ENCODING_REG) 1354 ENCODING("VR128", ENCODING_REG) 1355 ENCODING("FR64", ENCODING_REG) 1356 ENCODING("FR32", ENCODING_REG) 1357 ENCODING("VR64", ENCODING_REG) 1358 ENCODING("SEGMENT_REG", ENCODING_REG) 1359 ENCODING("DEBUG_REG", ENCODING_REG) 1360 ENCODING("CONTROL_REG", ENCODING_REG) 1361 ENCODING("VR256", ENCODING_REG) 1362 ENCODING("VR256X", ENCODING_REG) 1363 ENCODING("VR128X", ENCODING_REG) 1364 ENCODING("FR64X", ENCODING_REG) 1365 ENCODING("FR32X", ENCODING_REG) 1366 ENCODING("VR512", ENCODING_REG) 1367 ENCODING("VK8", ENCODING_REG) 1368 ENCODING("VK16", ENCODING_REG) 1369 ENCODING("VK8WM", ENCODING_REG) 1370 ENCODING("VK16WM", ENCODING_REG) 1371 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1372 llvm_unreachable("Unhandled reg/opcode register encoding"); 1373 } 1374 1375 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1376 (const std::string &s, 1377 bool hasOpSizePrefix) { 1378 ENCODING("GR32", ENCODING_VVVV) 1379 ENCODING("GR64", ENCODING_VVVV) 1380 ENCODING("FR32", ENCODING_VVVV) 1381 ENCODING("FR64", ENCODING_VVVV) 1382 ENCODING("VR128", ENCODING_VVVV) 1383 ENCODING("VR256", ENCODING_VVVV) 1384 ENCODING("FR32X", ENCODING_VVVV) 1385 ENCODING("FR64X", ENCODING_VVVV) 1386 ENCODING("VR128X", ENCODING_VVVV) 1387 ENCODING("VR256X", ENCODING_VVVV) 1388 ENCODING("VR512", ENCODING_VVVV) 1389 ENCODING("VK8", ENCODING_VVVV) 1390 ENCODING("VK16", ENCODING_VVVV) 1391 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1392 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1393 } 1394 1395 OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString 1396 (const std::string &s, 1397 bool hasOpSizePrefix) { 1398 ENCODING("VK8WM", ENCODING_WRITEMASK) 1399 ENCODING("VK16WM", ENCODING_WRITEMASK) 1400 errs() << "Unhandled mask register encoding " << s << "\n"; 1401 llvm_unreachable("Unhandled mask register encoding"); 1402 } 1403 1404 OperandEncoding RecognizableInstr::memoryEncodingFromString 1405 (const std::string &s, 1406 bool hasOpSizePrefix) { 1407 ENCODING("i16mem", ENCODING_RM) 1408 ENCODING("i32mem", ENCODING_RM) 1409 ENCODING("i64mem", ENCODING_RM) 1410 ENCODING("i8mem", ENCODING_RM) 1411 ENCODING("ssmem", ENCODING_RM) 1412 ENCODING("sdmem", ENCODING_RM) 1413 ENCODING("f128mem", ENCODING_RM) 1414 ENCODING("f256mem", ENCODING_RM) 1415 ENCODING("f512mem", ENCODING_RM) 1416 ENCODING("f64mem", ENCODING_RM) 1417 ENCODING("f32mem", ENCODING_RM) 1418 ENCODING("i128mem", ENCODING_RM) 1419 ENCODING("i256mem", ENCODING_RM) 1420 ENCODING("i512mem", ENCODING_RM) 1421 ENCODING("f80mem", ENCODING_RM) 1422 ENCODING("lea32mem", ENCODING_RM) 1423 ENCODING("lea64_32mem", ENCODING_RM) 1424 ENCODING("lea64mem", ENCODING_RM) 1425 ENCODING("opaque32mem", ENCODING_RM) 1426 ENCODING("opaque48mem", ENCODING_RM) 1427 ENCODING("opaque80mem", ENCODING_RM) 1428 ENCODING("opaque512mem", ENCODING_RM) 1429 ENCODING("vx32mem", ENCODING_RM) 1430 ENCODING("vy32mem", ENCODING_RM) 1431 ENCODING("vz32mem", ENCODING_RM) 1432 ENCODING("vx64mem", ENCODING_RM) 1433 ENCODING("vy64mem", ENCODING_RM) 1434 ENCODING("vy64xmem", ENCODING_RM) 1435 ENCODING("vz64mem", ENCODING_RM) 1436 errs() << "Unhandled memory encoding " << s << "\n"; 1437 llvm_unreachable("Unhandled memory encoding"); 1438 } 1439 1440 OperandEncoding RecognizableInstr::relocationEncodingFromString 1441 (const std::string &s, 1442 bool hasOpSizePrefix) { 1443 if(!hasOpSizePrefix) { 1444 // For instructions without an OpSize prefix, a declared 16-bit register or 1445 // immediate encoding is special. 1446 ENCODING("i16imm", ENCODING_IW) 1447 } 1448 ENCODING("i16imm", ENCODING_Iv) 1449 ENCODING("i16i8imm", ENCODING_IB) 1450 ENCODING("i32imm", ENCODING_Iv) 1451 ENCODING("i32i8imm", ENCODING_IB) 1452 ENCODING("i64i32imm", ENCODING_ID) 1453 ENCODING("i64i8imm", ENCODING_IB) 1454 ENCODING("i8imm", ENCODING_IB) 1455 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1456 ENCODING("i16imm_pcrel", ENCODING_IW) 1457 ENCODING("i32imm_pcrel", ENCODING_ID) 1458 ENCODING("brtarget", ENCODING_Iv) 1459 ENCODING("brtarget8", ENCODING_IB) 1460 ENCODING("i64imm", ENCODING_IO) 1461 ENCODING("offset8", ENCODING_Ia) 1462 ENCODING("offset16", ENCODING_Ia) 1463 ENCODING("offset32", ENCODING_Ia) 1464 ENCODING("offset64", ENCODING_Ia) 1465 errs() << "Unhandled relocation encoding " << s << "\n"; 1466 llvm_unreachable("Unhandled relocation encoding"); 1467 } 1468 1469 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1470 (const std::string &s, 1471 bool hasOpSizePrefix) { 1472 ENCODING("RST", ENCODING_I) 1473 ENCODING("GR32", ENCODING_Rv) 1474 ENCODING("GR64", ENCODING_RO) 1475 ENCODING("GR16", ENCODING_Rv) 1476 ENCODING("GR8", ENCODING_RB) 1477 ENCODING("GR16_NOAX", ENCODING_Rv) 1478 ENCODING("GR32_NOAX", ENCODING_Rv) 1479 ENCODING("GR64_NOAX", ENCODING_RO) 1480 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1481 llvm_unreachable("Unhandled opcode modifier encoding"); 1482 } 1483 #undef ENCODING 1484