1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) 40 41 // A clone of X86 since we can't depend on something that is generated. 42 namespace X86Local { 43 enum { 44 Pseudo = 0, 45 RawFrm = 1, 46 AddRegFrm = 2, 47 MRMDestReg = 3, 48 MRMDestMem = 4, 49 MRMSrcReg = 5, 50 MRMSrcMem = 6, 51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 55 MRMInitReg = 32, 56 #define MAP(from, to) MRM_##from = to, 57 MRM_MAPPING 58 #undef MAP 59 RawFrmImm8 = 43, 60 RawFrmImm16 = 44, 61 lastMRM 62 }; 63 64 enum { 65 TB = 1, 66 REP = 2, 67 D8 = 3, D9 = 4, DA = 5, DB = 6, 68 DC = 7, DD = 8, DE = 9, DF = 10, 69 XD = 11, XS = 12, 70 T8 = 13, P_TA = 14, 71 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19 72 }; 73 } 74 75 // If rows are added to the opcode extension tables, then corresponding entries 76 // must be added here. 77 // 78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 79 // that byte to ONE_BYTE_EXTENSION_TABLES. 80 // 81 // If the row corresponds to two bytes where the first is 0f, add an entry for 82 // the second byte to TWO_BYTE_EXTENSION_TABLES. 83 // 84 // If the row corresponds to some other set of bytes, you will need to modify 85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 86 // to the X86 TD files, except in two cases: if the first two bytes of such a 87 // new combination are 0f 38 or 0f 3a, you just have to add maps called 88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 90 // in RecognizableInstr::emitDecodePath(). 91 92 #define ONE_BYTE_EXTENSION_TABLES \ 93 EXTENSION_TABLE(80) \ 94 EXTENSION_TABLE(81) \ 95 EXTENSION_TABLE(82) \ 96 EXTENSION_TABLE(83) \ 97 EXTENSION_TABLE(8f) \ 98 EXTENSION_TABLE(c0) \ 99 EXTENSION_TABLE(c1) \ 100 EXTENSION_TABLE(c6) \ 101 EXTENSION_TABLE(c7) \ 102 EXTENSION_TABLE(d0) \ 103 EXTENSION_TABLE(d1) \ 104 EXTENSION_TABLE(d2) \ 105 EXTENSION_TABLE(d3) \ 106 EXTENSION_TABLE(f6) \ 107 EXTENSION_TABLE(f7) \ 108 EXTENSION_TABLE(fe) \ 109 EXTENSION_TABLE(ff) 110 111 #define TWO_BYTE_EXTENSION_TABLES \ 112 EXTENSION_TABLE(00) \ 113 EXTENSION_TABLE(01) \ 114 EXTENSION_TABLE(18) \ 115 EXTENSION_TABLE(71) \ 116 EXTENSION_TABLE(72) \ 117 EXTENSION_TABLE(73) \ 118 EXTENSION_TABLE(ae) \ 119 EXTENSION_TABLE(ba) \ 120 EXTENSION_TABLE(c7) 121 122 #define THREE_BYTE_38_EXTENSION_TABLES \ 123 EXTENSION_TABLE(F3) 124 125 using namespace X86Disassembler; 126 127 /// needsModRMForDecode - Indicates whether a particular instruction requires a 128 /// ModR/M byte for the instruction to be properly decoded. For example, a 129 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 130 /// 0b11. 131 /// 132 /// @param form - The form of the instruction. 133 /// @return - true if the form implies that a ModR/M byte is required, false 134 /// otherwise. 135 static bool needsModRMForDecode(uint8_t form) { 136 if (form == X86Local::MRMDestReg || 137 form == X86Local::MRMDestMem || 138 form == X86Local::MRMSrcReg || 139 form == X86Local::MRMSrcMem || 140 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 141 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 142 return true; 143 else 144 return false; 145 } 146 147 /// isRegFormat - Indicates whether a particular form requires the Mod field of 148 /// the ModR/M byte to be 0b11. 149 /// 150 /// @param form - The form of the instruction. 151 /// @return - true if the form implies that Mod must be 0b11, false 152 /// otherwise. 153 static bool isRegFormat(uint8_t form) { 154 if (form == X86Local::MRMDestReg || 155 form == X86Local::MRMSrcReg || 156 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 157 return true; 158 else 159 return false; 160 } 161 162 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 163 /// Useful for switch statements and the like. 164 /// 165 /// @param init - A reference to the BitsInit to be decoded. 166 /// @return - The field, with the first bit in the BitsInit as the lowest 167 /// order bit. 168 static uint8_t byteFromBitsInit(BitsInit &init) { 169 int width = init.getNumBits(); 170 171 assert(width <= 8 && "Field is too large for uint8_t!"); 172 173 int index; 174 uint8_t mask = 0x01; 175 176 uint8_t ret = 0; 177 178 for (index = 0; index < width; index++) { 179 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 180 ret |= mask; 181 182 mask <<= 1; 183 } 184 185 return ret; 186 } 187 188 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 189 /// name of the field. 190 /// 191 /// @param rec - The record from which to extract the value. 192 /// @param name - The name of the field in the record. 193 /// @return - The field, as translated by byteFromBitsInit(). 194 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 195 BitsInit* bits = rec->getValueAsBitsInit(name); 196 return byteFromBitsInit(*bits); 197 } 198 199 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 200 const CodeGenInstruction &insn, 201 InstrUID uid) { 202 UID = uid; 203 204 Rec = insn.TheDef; 205 Name = Rec->getName(); 206 Spec = &tables.specForUID(UID); 207 208 if (!Rec->isSubClassOf("X86Inst")) { 209 ShouldBeEmitted = false; 210 return; 211 } 212 213 Prefix = byteFromRec(Rec, "Prefix"); 214 Opcode = byteFromRec(Rec, "Opcode"); 215 Form = byteFromRec(Rec, "FormBits"); 216 SegOvr = byteFromRec(Rec, "SegOvrBits"); 217 218 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 219 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 220 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 221 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 222 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 223 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 224 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 225 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 226 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 227 228 Name = Rec->getName(); 229 AsmString = Rec->getValueAsString("AsmString"); 230 231 Operands = &insn.Operands.OperandList; 232 233 IsSSE = (HasOpSizePrefix && (Name.find("16") == Name.npos)) || 234 (Name.find("CRC32") != Name.npos); 235 HasFROperands = hasFROperands(); 236 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 237 238 // Check for 64-bit inst which does not require REX 239 Is32Bit = false; 240 Is64Bit = false; 241 // FIXME: Is there some better way to check for In64BitMode? 242 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 243 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 244 if (Predicates[i]->getName().find("32Bit") != Name.npos) { 245 Is32Bit = true; 246 break; 247 } 248 if (Predicates[i]->getName().find("64Bit") != Name.npos) { 249 Is64Bit = true; 250 break; 251 } 252 } 253 // FIXME: These instructions aren't marked as 64-bit in any way 254 Is64Bit |= Rec->getName() == "JMP64pcrel32" || 255 Rec->getName() == "MASKMOVDQU64" || 256 Rec->getName() == "POPFS64" || 257 Rec->getName() == "POPGS64" || 258 Rec->getName() == "PUSHFS64" || 259 Rec->getName() == "PUSHGS64" || 260 Rec->getName() == "REX64_PREFIX" || 261 Rec->getName().find("MOV64") != Name.npos || 262 Rec->getName().find("PUSH64") != Name.npos || 263 Rec->getName().find("POP64") != Name.npos; 264 265 ShouldBeEmitted = true; 266 } 267 268 void RecognizableInstr::processInstr(DisassemblerTables &tables, 269 const CodeGenInstruction &insn, 270 InstrUID uid) 271 { 272 // Ignore "asm parser only" instructions. 273 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 274 return; 275 276 RecognizableInstr recogInstr(tables, insn, uid); 277 278 recogInstr.emitInstructionSpecifier(tables); 279 280 if (recogInstr.shouldBeEmitted()) 281 recogInstr.emitDecodePath(tables); 282 } 283 284 InstructionContext RecognizableInstr::insnContext() const { 285 InstructionContext insnContext; 286 287 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 288 if (HasVEX_LPrefix && HasVEX_WPrefix) { 289 if (HasOpSizePrefix) 290 insnContext = IC_VEX_L_W_OPSIZE; 291 else 292 llvm_unreachable("Don't support VEX.L and VEX.W together"); 293 } else if (HasOpSizePrefix && HasVEX_LPrefix) 294 insnContext = IC_VEX_L_OPSIZE; 295 else if (HasOpSizePrefix && HasVEX_WPrefix) 296 insnContext = IC_VEX_W_OPSIZE; 297 else if (HasOpSizePrefix) 298 insnContext = IC_VEX_OPSIZE; 299 else if (HasVEX_LPrefix && 300 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 301 insnContext = IC_VEX_L_XS; 302 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 303 Prefix == X86Local::T8XD || 304 Prefix == X86Local::TAXD)) 305 insnContext = IC_VEX_L_XD; 306 else if (HasVEX_WPrefix && 307 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 308 insnContext = IC_VEX_W_XS; 309 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 310 Prefix == X86Local::T8XD || 311 Prefix == X86Local::TAXD)) 312 insnContext = IC_VEX_W_XD; 313 else if (HasVEX_WPrefix) 314 insnContext = IC_VEX_W; 315 else if (HasVEX_LPrefix) 316 insnContext = IC_VEX_L; 317 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 318 Prefix == X86Local::TAXD) 319 insnContext = IC_VEX_XD; 320 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 321 insnContext = IC_VEX_XS; 322 else 323 insnContext = IC_VEX; 324 } else if (Is64Bit || HasREX_WPrefix) { 325 if (HasREX_WPrefix && HasOpSizePrefix) 326 insnContext = IC_64BIT_REXW_OPSIZE; 327 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 328 Prefix == X86Local::T8XD || 329 Prefix == X86Local::TAXD)) 330 insnContext = IC_64BIT_XD_OPSIZE; 331 else if (HasOpSizePrefix && 332 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 333 insnContext = IC_64BIT_XS_OPSIZE; 334 else if (HasOpSizePrefix) 335 insnContext = IC_64BIT_OPSIZE; 336 else if (HasREX_WPrefix && 337 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 338 insnContext = IC_64BIT_REXW_XS; 339 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 340 Prefix == X86Local::T8XD || 341 Prefix == X86Local::TAXD)) 342 insnContext = IC_64BIT_REXW_XD; 343 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 344 Prefix == X86Local::TAXD) 345 insnContext = IC_64BIT_XD; 346 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 347 insnContext = IC_64BIT_XS; 348 else if (HasREX_WPrefix) 349 insnContext = IC_64BIT_REXW; 350 else 351 insnContext = IC_64BIT; 352 } else { 353 if (HasOpSizePrefix && (Prefix == X86Local::XD || 354 Prefix == X86Local::T8XD || 355 Prefix == X86Local::TAXD)) 356 insnContext = IC_XD_OPSIZE; 357 else if (HasOpSizePrefix && 358 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 359 insnContext = IC_XS_OPSIZE; 360 else if (HasOpSizePrefix) 361 insnContext = IC_OPSIZE; 362 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 363 Prefix == X86Local::TAXD) 364 insnContext = IC_XD; 365 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 366 Prefix == X86Local::REP) 367 insnContext = IC_XS; 368 else 369 insnContext = IC; 370 } 371 372 return insnContext; 373 } 374 375 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 376 /////////////////// 377 // FILTER_STRONG 378 // 379 380 // Filter out intrinsics 381 382 if (!Rec->isSubClassOf("X86Inst")) 383 return FILTER_STRONG; 384 385 if (Form == X86Local::Pseudo || 386 (IsCodeGenOnly && Name.find("_REV") == Name.npos)) 387 return FILTER_STRONG; 388 389 if (Form == X86Local::MRMInitReg) 390 return FILTER_STRONG; 391 392 393 // Filter out artificial instructions 394 395 if (Name.find("_Int") != Name.npos || 396 Name.find("Int_") != Name.npos || 397 Name.find("_NOREX") != Name.npos || 398 Name.find("2SDL") != Name.npos || 399 Name == "LOCK_PREFIX") 400 return FILTER_STRONG; 401 402 // Filter out instructions with segment override prefixes. 403 // They're too messy to handle now and we'll special case them if needed. 404 405 if (SegOvr) 406 return FILTER_STRONG; 407 408 // Filter out instructions that can't be printed. 409 410 if (AsmString.size() == 0) 411 return FILTER_STRONG; 412 413 // Filter out instructions with subreg operands. 414 415 if (AsmString.find("subreg") != AsmString.npos) 416 return FILTER_STRONG; 417 418 ///////////////// 419 // FILTER_WEAK 420 // 421 422 423 // Filter out instructions with a LOCK prefix; 424 // prefer forms that do not have the prefix 425 if (HasLockPrefix) 426 return FILTER_WEAK; 427 428 // Filter out alternate forms of AVX instructions 429 if (Name.find("_alt") != Name.npos || 430 Name.find("XrYr") != Name.npos || 431 (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) || 432 Name.find("_64mr") != Name.npos || 433 Name.find("Xrr") != Name.npos || 434 Name.find("rr64") != Name.npos) 435 return FILTER_WEAK; 436 437 // Special cases. 438 439 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 440 return FILTER_WEAK; 441 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 442 return FILTER_WEAK; 443 444 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 445 return FILTER_WEAK; 446 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 447 return FILTER_WEAK; 448 if (Name.find("Fs") != Name.npos) 449 return FILTER_WEAK; 450 if (Name == "PUSH64i16" || 451 Name == "MOVPQI2QImr" || 452 Name == "VMOVPQI2QImr" || 453 Name == "MMX_MOVD64rrv164" || 454 Name == "MOV64ri64i32" || 455 Name == "VMASKMOVDQU64" || 456 Name == "VEXTRACTPSrr64" || 457 Name == "VMOVQd64rr" || 458 Name == "VMOVQs64rr") 459 return FILTER_WEAK; 460 461 if (HasFROperands && Name.find("MOV") != Name.npos && 462 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 463 (Name.find("to") != Name.npos))) 464 return FILTER_WEAK; 465 466 return FILTER_NORMAL; 467 } 468 469 bool RecognizableInstr::hasFROperands() const { 470 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 471 unsigned numOperands = OperandList.size(); 472 473 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 474 const std::string &recName = OperandList[operandIndex].Rec->getName(); 475 476 if (recName.find("FR") != recName.npos) 477 return true; 478 } 479 return false; 480 } 481 482 bool RecognizableInstr::has256BitOperands() const { 483 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 484 unsigned numOperands = OperandList.size(); 485 486 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 487 const std::string &recName = OperandList[operandIndex].Rec->getName(); 488 489 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 490 return true; 491 } 492 } 493 return false; 494 } 495 496 void RecognizableInstr::handleOperand( 497 bool optional, 498 unsigned &operandIndex, 499 unsigned &physicalOperandIndex, 500 unsigned &numPhysicalOperands, 501 unsigned *operandMapping, 502 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 503 if (optional) { 504 if (physicalOperandIndex >= numPhysicalOperands) 505 return; 506 } else { 507 assert(physicalOperandIndex < numPhysicalOperands); 508 } 509 510 while (operandMapping[operandIndex] != operandIndex) { 511 Spec->operands[operandIndex].encoding = ENCODING_DUP; 512 Spec->operands[operandIndex].type = 513 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 514 ++operandIndex; 515 } 516 517 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 518 519 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 520 HasOpSizePrefix); 521 Spec->operands[operandIndex].type = typeFromString(typeName, 522 IsSSE, 523 HasREX_WPrefix, 524 HasOpSizePrefix); 525 526 ++operandIndex; 527 ++physicalOperandIndex; 528 } 529 530 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 531 Spec->name = Name; 532 533 if (!Rec->isSubClassOf("X86Inst")) 534 return; 535 536 switch (filter()) { 537 case FILTER_WEAK: 538 Spec->filtered = true; 539 break; 540 case FILTER_STRONG: 541 ShouldBeEmitted = false; 542 return; 543 case FILTER_NORMAL: 544 break; 545 } 546 547 Spec->insnContext = insnContext(); 548 549 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 550 551 unsigned operandIndex; 552 unsigned numOperands = OperandList.size(); 553 unsigned numPhysicalOperands = 0; 554 555 // operandMapping maps from operands in OperandList to their originals. 556 // If operandMapping[i] != i, then the entry is a duplicate. 557 unsigned operandMapping[X86_MAX_OPERANDS]; 558 559 bool hasFROperands = false; 560 561 assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 562 563 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 564 if (OperandList[operandIndex].Constraints.size()) { 565 const CGIOperandList::ConstraintInfo &Constraint = 566 OperandList[operandIndex].Constraints[0]; 567 if (Constraint.isTied()) { 568 operandMapping[operandIndex] = Constraint.getTiedOperand(); 569 } else { 570 ++numPhysicalOperands; 571 operandMapping[operandIndex] = operandIndex; 572 } 573 } else { 574 ++numPhysicalOperands; 575 operandMapping[operandIndex] = operandIndex; 576 } 577 578 const std::string &recName = OperandList[operandIndex].Rec->getName(); 579 580 if (recName.find("FR") != recName.npos) 581 hasFROperands = true; 582 } 583 584 if (hasFROperands && Name.find("MOV") != Name.npos && 585 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 586 (Name.find("to") != Name.npos))) 587 ShouldBeEmitted = false; 588 589 if (!ShouldBeEmitted) 590 return; 591 592 #define HANDLE_OPERAND(class) \ 593 handleOperand(false, \ 594 operandIndex, \ 595 physicalOperandIndex, \ 596 numPhysicalOperands, \ 597 operandMapping, \ 598 class##EncodingFromString); 599 600 #define HANDLE_OPTIONAL(class) \ 601 handleOperand(true, \ 602 operandIndex, \ 603 physicalOperandIndex, \ 604 numPhysicalOperands, \ 605 operandMapping, \ 606 class##EncodingFromString); 607 608 // operandIndex should always be < numOperands 609 operandIndex = 0; 610 // physicalOperandIndex should always be < numPhysicalOperands 611 unsigned physicalOperandIndex = 0; 612 613 switch (Form) { 614 case X86Local::RawFrm: 615 // Operand 1 (optional) is an address or immediate. 616 // Operand 2 (optional) is an immediate. 617 assert(numPhysicalOperands <= 2 && 618 "Unexpected number of operands for RawFrm"); 619 HANDLE_OPTIONAL(relocation) 620 HANDLE_OPTIONAL(immediate) 621 break; 622 case X86Local::AddRegFrm: 623 // Operand 1 is added to the opcode. 624 // Operand 2 (optional) is an address. 625 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 626 "Unexpected number of operands for AddRegFrm"); 627 HANDLE_OPERAND(opcodeModifier) 628 HANDLE_OPTIONAL(relocation) 629 break; 630 case X86Local::MRMDestReg: 631 // Operand 1 is a register operand in the R/M field. 632 // Operand 2 is a register operand in the Reg/Opcode field. 633 // - In AVX, there is a register operand in the VEX.vvvv field here - 634 // Operand 3 (optional) is an immediate. 635 if (HasVEX_4VPrefix) 636 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 637 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 638 else 639 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 640 "Unexpected number of operands for MRMDestRegFrm"); 641 642 HANDLE_OPERAND(rmRegister) 643 644 if (HasVEX_4VPrefix) 645 // FIXME: In AVX, the register below becomes the one encoded 646 // in ModRMVEX and the one above the one in the VEX.VVVV field 647 HANDLE_OPERAND(vvvvRegister) 648 649 HANDLE_OPERAND(roRegister) 650 HANDLE_OPTIONAL(immediate) 651 break; 652 case X86Local::MRMDestMem: 653 // Operand 1 is a memory operand (possibly SIB-extended) 654 // Operand 2 is a register operand in the Reg/Opcode field. 655 // - In AVX, there is a register operand in the VEX.vvvv field here - 656 // Operand 3 (optional) is an immediate. 657 if (HasVEX_4VPrefix) 658 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 659 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 660 else 661 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 662 "Unexpected number of operands for MRMDestMemFrm"); 663 HANDLE_OPERAND(memory) 664 665 if (HasVEX_4VPrefix) 666 // FIXME: In AVX, the register below becomes the one encoded 667 // in ModRMVEX and the one above the one in the VEX.VVVV field 668 HANDLE_OPERAND(vvvvRegister) 669 670 HANDLE_OPERAND(roRegister) 671 HANDLE_OPTIONAL(immediate) 672 break; 673 case X86Local::MRMSrcReg: 674 // Operand 1 is a register operand in the Reg/Opcode field. 675 // Operand 2 is a register operand in the R/M field. 676 // - In AVX, there is a register operand in the VEX.vvvv field here - 677 // Operand 3 (optional) is an immediate. 678 679 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 680 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 681 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 682 else 683 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 684 "Unexpected number of operands for MRMSrcRegFrm"); 685 686 HANDLE_OPERAND(roRegister) 687 688 if (HasVEX_4VPrefix) 689 // FIXME: In AVX, the register below becomes the one encoded 690 // in ModRMVEX and the one above the one in the VEX.VVVV field 691 HANDLE_OPERAND(vvvvRegister) 692 693 HANDLE_OPERAND(rmRegister) 694 695 if (HasVEX_4VOp3Prefix) 696 HANDLE_OPERAND(vvvvRegister) 697 698 HANDLE_OPTIONAL(immediate) 699 break; 700 case X86Local::MRMSrcMem: 701 // Operand 1 is a register operand in the Reg/Opcode field. 702 // Operand 2 is a memory operand (possibly SIB-extended) 703 // - In AVX, there is a register operand in the VEX.vvvv field here - 704 // Operand 3 (optional) is an immediate. 705 706 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 707 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 708 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 709 else 710 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 711 "Unexpected number of operands for MRMSrcMemFrm"); 712 713 HANDLE_OPERAND(roRegister) 714 715 if (HasVEX_4VPrefix) 716 // FIXME: In AVX, the register below becomes the one encoded 717 // in ModRMVEX and the one above the one in the VEX.VVVV field 718 HANDLE_OPERAND(vvvvRegister) 719 720 HANDLE_OPERAND(memory) 721 722 if (HasVEX_4VOp3Prefix) 723 HANDLE_OPERAND(vvvvRegister) 724 725 HANDLE_OPTIONAL(immediate) 726 break; 727 case X86Local::MRM0r: 728 case X86Local::MRM1r: 729 case X86Local::MRM2r: 730 case X86Local::MRM3r: 731 case X86Local::MRM4r: 732 case X86Local::MRM5r: 733 case X86Local::MRM6r: 734 case X86Local::MRM7r: 735 // Operand 1 is a register operand in the R/M field. 736 // Operand 2 (optional) is an immediate or relocation. 737 if (HasVEX_4VPrefix) 738 assert(numPhysicalOperands <= 3 && 739 "Unexpected number of operands for MRMnRFrm with VEX_4V"); 740 else 741 assert(numPhysicalOperands <= 2 && 742 "Unexpected number of operands for MRMnRFrm"); 743 if (HasVEX_4VPrefix) 744 HANDLE_OPERAND(vvvvRegister) 745 HANDLE_OPTIONAL(rmRegister) 746 HANDLE_OPTIONAL(relocation) 747 break; 748 case X86Local::MRM0m: 749 case X86Local::MRM1m: 750 case X86Local::MRM2m: 751 case X86Local::MRM3m: 752 case X86Local::MRM4m: 753 case X86Local::MRM5m: 754 case X86Local::MRM6m: 755 case X86Local::MRM7m: 756 // Operand 1 is a memory operand (possibly SIB-extended) 757 // Operand 2 (optional) is an immediate or relocation. 758 if (HasVEX_4VPrefix) 759 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 760 "Unexpected number of operands for MRMnMFrm"); 761 else 762 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 763 "Unexpected number of operands for MRMnMFrm"); 764 if (HasVEX_4VPrefix) 765 HANDLE_OPERAND(vvvvRegister) 766 HANDLE_OPERAND(memory) 767 HANDLE_OPTIONAL(relocation) 768 break; 769 case X86Local::RawFrmImm8: 770 // operand 1 is a 16-bit immediate 771 // operand 2 is an 8-bit immediate 772 assert(numPhysicalOperands == 2 && 773 "Unexpected number of operands for X86Local::RawFrmImm8"); 774 HANDLE_OPERAND(immediate) 775 HANDLE_OPERAND(immediate) 776 break; 777 case X86Local::RawFrmImm16: 778 // operand 1 is a 16-bit immediate 779 // operand 2 is a 16-bit immediate 780 HANDLE_OPERAND(immediate) 781 HANDLE_OPERAND(immediate) 782 break; 783 case X86Local::MRMInitReg: 784 // Ignored. 785 break; 786 } 787 788 #undef HANDLE_OPERAND 789 #undef HANDLE_OPTIONAL 790 } 791 792 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 793 // Special cases where the LLVM tables are not complete 794 795 #define MAP(from, to) \ 796 case X86Local::MRM_##from: \ 797 filter = new ExactFilter(0x##from); \ 798 break; 799 800 OpcodeType opcodeType = (OpcodeType)-1; 801 802 ModRMFilter* filter = NULL; 803 uint8_t opcodeToSet = 0; 804 805 switch (Prefix) { 806 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 807 case X86Local::XD: 808 case X86Local::XS: 809 case X86Local::TB: 810 opcodeType = TWOBYTE; 811 812 switch (Opcode) { 813 default: 814 if (needsModRMForDecode(Form)) 815 filter = new ModFilter(isRegFormat(Form)); 816 else 817 filter = new DumbFilter(); 818 break; 819 #define EXTENSION_TABLE(n) case 0x##n: 820 TWO_BYTE_EXTENSION_TABLES 821 #undef EXTENSION_TABLE 822 switch (Form) { 823 default: 824 llvm_unreachable("Unhandled two-byte extended opcode"); 825 case X86Local::MRM0r: 826 case X86Local::MRM1r: 827 case X86Local::MRM2r: 828 case X86Local::MRM3r: 829 case X86Local::MRM4r: 830 case X86Local::MRM5r: 831 case X86Local::MRM6r: 832 case X86Local::MRM7r: 833 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 834 break; 835 case X86Local::MRM0m: 836 case X86Local::MRM1m: 837 case X86Local::MRM2m: 838 case X86Local::MRM3m: 839 case X86Local::MRM4m: 840 case X86Local::MRM5m: 841 case X86Local::MRM6m: 842 case X86Local::MRM7m: 843 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 844 break; 845 MRM_MAPPING 846 } // switch (Form) 847 break; 848 } // switch (Opcode) 849 opcodeToSet = Opcode; 850 break; 851 case X86Local::T8: 852 case X86Local::T8XD: 853 case X86Local::T8XS: 854 opcodeType = THREEBYTE_38; 855 switch (Opcode) { 856 default: 857 if (needsModRMForDecode(Form)) 858 filter = new ModFilter(isRegFormat(Form)); 859 else 860 filter = new DumbFilter(); 861 break; 862 #define EXTENSION_TABLE(n) case 0x##n: 863 THREE_BYTE_38_EXTENSION_TABLES 864 #undef EXTENSION_TABLE 865 switch (Form) { 866 default: 867 llvm_unreachable("Unhandled two-byte extended opcode"); 868 case X86Local::MRM0r: 869 case X86Local::MRM1r: 870 case X86Local::MRM2r: 871 case X86Local::MRM3r: 872 case X86Local::MRM4r: 873 case X86Local::MRM5r: 874 case X86Local::MRM6r: 875 case X86Local::MRM7r: 876 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 877 break; 878 case X86Local::MRM0m: 879 case X86Local::MRM1m: 880 case X86Local::MRM2m: 881 case X86Local::MRM3m: 882 case X86Local::MRM4m: 883 case X86Local::MRM5m: 884 case X86Local::MRM6m: 885 case X86Local::MRM7m: 886 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 887 break; 888 MRM_MAPPING 889 } // switch (Form) 890 break; 891 } // switch (Opcode) 892 opcodeToSet = Opcode; 893 break; 894 case X86Local::P_TA: 895 case X86Local::TAXD: 896 opcodeType = THREEBYTE_3A; 897 if (needsModRMForDecode(Form)) 898 filter = new ModFilter(isRegFormat(Form)); 899 else 900 filter = new DumbFilter(); 901 opcodeToSet = Opcode; 902 break; 903 case X86Local::A6: 904 opcodeType = THREEBYTE_A6; 905 if (needsModRMForDecode(Form)) 906 filter = new ModFilter(isRegFormat(Form)); 907 else 908 filter = new DumbFilter(); 909 opcodeToSet = Opcode; 910 break; 911 case X86Local::A7: 912 opcodeType = THREEBYTE_A7; 913 if (needsModRMForDecode(Form)) 914 filter = new ModFilter(isRegFormat(Form)); 915 else 916 filter = new DumbFilter(); 917 opcodeToSet = Opcode; 918 break; 919 case X86Local::D8: 920 case X86Local::D9: 921 case X86Local::DA: 922 case X86Local::DB: 923 case X86Local::DC: 924 case X86Local::DD: 925 case X86Local::DE: 926 case X86Local::DF: 927 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 928 opcodeType = ONEBYTE; 929 if (Form == X86Local::AddRegFrm) { 930 Spec->modifierType = MODIFIER_MODRM; 931 Spec->modifierBase = Opcode; 932 filter = new AddRegEscapeFilter(Opcode); 933 } else { 934 filter = new EscapeFilter(true, Opcode); 935 } 936 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 937 break; 938 case X86Local::REP: 939 default: 940 opcodeType = ONEBYTE; 941 switch (Opcode) { 942 #define EXTENSION_TABLE(n) case 0x##n: 943 ONE_BYTE_EXTENSION_TABLES 944 #undef EXTENSION_TABLE 945 switch (Form) { 946 default: 947 llvm_unreachable("Fell through the cracks of a single-byte " 948 "extended opcode"); 949 case X86Local::MRM0r: 950 case X86Local::MRM1r: 951 case X86Local::MRM2r: 952 case X86Local::MRM3r: 953 case X86Local::MRM4r: 954 case X86Local::MRM5r: 955 case X86Local::MRM6r: 956 case X86Local::MRM7r: 957 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 958 break; 959 case X86Local::MRM0m: 960 case X86Local::MRM1m: 961 case X86Local::MRM2m: 962 case X86Local::MRM3m: 963 case X86Local::MRM4m: 964 case X86Local::MRM5m: 965 case X86Local::MRM6m: 966 case X86Local::MRM7m: 967 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 968 break; 969 MRM_MAPPING 970 } // switch (Form) 971 break; 972 case 0xd8: 973 case 0xd9: 974 case 0xda: 975 case 0xdb: 976 case 0xdc: 977 case 0xdd: 978 case 0xde: 979 case 0xdf: 980 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 981 break; 982 default: 983 if (needsModRMForDecode(Form)) 984 filter = new ModFilter(isRegFormat(Form)); 985 else 986 filter = new DumbFilter(); 987 break; 988 } // switch (Opcode) 989 opcodeToSet = Opcode; 990 } // switch (Prefix) 991 992 assert(opcodeType != (OpcodeType)-1 && 993 "Opcode type not set"); 994 assert(filter && "Filter not set"); 995 996 if (Form == X86Local::AddRegFrm) { 997 if(Spec->modifierType != MODIFIER_MODRM) { 998 assert(opcodeToSet < 0xf9 && 999 "Not enough room for all ADDREG_FRM operands"); 1000 1001 uint8_t currentOpcode; 1002 1003 for (currentOpcode = opcodeToSet; 1004 currentOpcode < opcodeToSet + 8; 1005 ++currentOpcode) 1006 tables.setTableFields(opcodeType, 1007 insnContext(), 1008 currentOpcode, 1009 *filter, 1010 UID, Is32Bit, IgnoresVEX_L); 1011 1012 Spec->modifierType = MODIFIER_OPCODE; 1013 Spec->modifierBase = opcodeToSet; 1014 } else { 1015 // modifierBase was set where MODIFIER_MODRM was set 1016 tables.setTableFields(opcodeType, 1017 insnContext(), 1018 opcodeToSet, 1019 *filter, 1020 UID, Is32Bit, IgnoresVEX_L); 1021 } 1022 } else { 1023 tables.setTableFields(opcodeType, 1024 insnContext(), 1025 opcodeToSet, 1026 *filter, 1027 UID, Is32Bit, IgnoresVEX_L); 1028 1029 Spec->modifierType = MODIFIER_NONE; 1030 Spec->modifierBase = opcodeToSet; 1031 } 1032 1033 delete filter; 1034 1035 #undef MAP 1036 } 1037 1038 #define TYPE(str, type) if (s == str) return type; 1039 OperandType RecognizableInstr::typeFromString(const std::string &s, 1040 bool isSSE, 1041 bool hasREX_WPrefix, 1042 bool hasOpSizePrefix) { 1043 if (isSSE) { 1044 // For SSE instructions, we ignore the OpSize prefix and force operand 1045 // sizes. 1046 TYPE("GR16", TYPE_R16) 1047 TYPE("GR32", TYPE_R32) 1048 TYPE("GR64", TYPE_R64) 1049 } 1050 if(hasREX_WPrefix) { 1051 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1052 // is special. 1053 TYPE("GR32", TYPE_R32) 1054 } 1055 if(!hasOpSizePrefix) { 1056 // For instructions without an OpSize prefix, a declared 16-bit register or 1057 // immediate encoding is special. 1058 TYPE("GR16", TYPE_R16) 1059 TYPE("i16imm", TYPE_IMM16) 1060 } 1061 TYPE("i16mem", TYPE_Mv) 1062 TYPE("i16imm", TYPE_IMMv) 1063 TYPE("i16i8imm", TYPE_IMMv) 1064 TYPE("GR16", TYPE_Rv) 1065 TYPE("i32mem", TYPE_Mv) 1066 TYPE("i32imm", TYPE_IMMv) 1067 TYPE("i32i8imm", TYPE_IMM32) 1068 TYPE("u32u8imm", TYPE_IMM32) 1069 TYPE("GR32", TYPE_Rv) 1070 TYPE("i64mem", TYPE_Mv) 1071 TYPE("i64i32imm", TYPE_IMM64) 1072 TYPE("i64i8imm", TYPE_IMM64) 1073 TYPE("GR64", TYPE_R64) 1074 TYPE("i8mem", TYPE_M8) 1075 TYPE("i8imm", TYPE_IMM8) 1076 TYPE("GR8", TYPE_R8) 1077 TYPE("VR128", TYPE_XMM128) 1078 TYPE("f128mem", TYPE_M128) 1079 TYPE("f256mem", TYPE_M256) 1080 TYPE("FR64", TYPE_XMM64) 1081 TYPE("f64mem", TYPE_M64FP) 1082 TYPE("sdmem", TYPE_M64FP) 1083 TYPE("FR32", TYPE_XMM32) 1084 TYPE("f32mem", TYPE_M32FP) 1085 TYPE("ssmem", TYPE_M32FP) 1086 TYPE("RST", TYPE_ST) 1087 TYPE("i128mem", TYPE_M128) 1088 TYPE("i256mem", TYPE_M256) 1089 TYPE("i64i32imm_pcrel", TYPE_REL64) 1090 TYPE("i16imm_pcrel", TYPE_REL16) 1091 TYPE("i32imm_pcrel", TYPE_REL32) 1092 TYPE("SSECC", TYPE_IMM3) 1093 TYPE("brtarget", TYPE_RELv) 1094 TYPE("uncondbrtarget", TYPE_RELv) 1095 TYPE("brtarget8", TYPE_REL8) 1096 TYPE("f80mem", TYPE_M80FP) 1097 TYPE("lea32mem", TYPE_LEA) 1098 TYPE("lea64_32mem", TYPE_LEA) 1099 TYPE("lea64mem", TYPE_LEA) 1100 TYPE("VR64", TYPE_MM64) 1101 TYPE("i64imm", TYPE_IMMv) 1102 TYPE("opaque32mem", TYPE_M1616) 1103 TYPE("opaque48mem", TYPE_M1632) 1104 TYPE("opaque80mem", TYPE_M1664) 1105 TYPE("opaque512mem", TYPE_M512) 1106 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1107 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1108 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1109 TYPE("offset8", TYPE_MOFFS8) 1110 TYPE("offset16", TYPE_MOFFS16) 1111 TYPE("offset32", TYPE_MOFFS32) 1112 TYPE("offset64", TYPE_MOFFS64) 1113 TYPE("VR256", TYPE_XMM256) 1114 TYPE("GR16_NOAX", TYPE_Rv) 1115 TYPE("GR32_NOAX", TYPE_Rv) 1116 TYPE("GR64_NOAX", TYPE_R64) 1117 errs() << "Unhandled type string " << s << "\n"; 1118 llvm_unreachable("Unhandled type string"); 1119 } 1120 #undef TYPE 1121 1122 #define ENCODING(str, encoding) if (s == str) return encoding; 1123 OperandEncoding RecognizableInstr::immediateEncodingFromString 1124 (const std::string &s, 1125 bool hasOpSizePrefix) { 1126 if(!hasOpSizePrefix) { 1127 // For instructions without an OpSize prefix, a declared 16-bit register or 1128 // immediate encoding is special. 1129 ENCODING("i16imm", ENCODING_IW) 1130 } 1131 ENCODING("i32i8imm", ENCODING_IB) 1132 ENCODING("u32u8imm", ENCODING_IB) 1133 ENCODING("SSECC", ENCODING_IB) 1134 ENCODING("i16imm", ENCODING_Iv) 1135 ENCODING("i16i8imm", ENCODING_IB) 1136 ENCODING("i32imm", ENCODING_Iv) 1137 ENCODING("i64i32imm", ENCODING_ID) 1138 ENCODING("i64i8imm", ENCODING_IB) 1139 ENCODING("i8imm", ENCODING_IB) 1140 // This is not a typo. Instructions like BLENDVPD put 1141 // register IDs in 8-bit immediates nowadays. 1142 ENCODING("VR256", ENCODING_IB) 1143 ENCODING("VR128", ENCODING_IB) 1144 errs() << "Unhandled immediate encoding " << s << "\n"; 1145 llvm_unreachable("Unhandled immediate encoding"); 1146 } 1147 1148 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1149 (const std::string &s, 1150 bool hasOpSizePrefix) { 1151 ENCODING("GR16", ENCODING_RM) 1152 ENCODING("GR32", ENCODING_RM) 1153 ENCODING("GR64", ENCODING_RM) 1154 ENCODING("GR8", ENCODING_RM) 1155 ENCODING("VR128", ENCODING_RM) 1156 ENCODING("FR64", ENCODING_RM) 1157 ENCODING("FR32", ENCODING_RM) 1158 ENCODING("VR64", ENCODING_RM) 1159 ENCODING("VR256", ENCODING_RM) 1160 errs() << "Unhandled R/M register encoding " << s << "\n"; 1161 llvm_unreachable("Unhandled R/M register encoding"); 1162 } 1163 1164 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1165 (const std::string &s, 1166 bool hasOpSizePrefix) { 1167 ENCODING("GR16", ENCODING_REG) 1168 ENCODING("GR32", ENCODING_REG) 1169 ENCODING("GR64", ENCODING_REG) 1170 ENCODING("GR8", ENCODING_REG) 1171 ENCODING("VR128", ENCODING_REG) 1172 ENCODING("FR64", ENCODING_REG) 1173 ENCODING("FR32", ENCODING_REG) 1174 ENCODING("VR64", ENCODING_REG) 1175 ENCODING("SEGMENT_REG", ENCODING_REG) 1176 ENCODING("DEBUG_REG", ENCODING_REG) 1177 ENCODING("CONTROL_REG", ENCODING_REG) 1178 ENCODING("VR256", ENCODING_REG) 1179 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1180 llvm_unreachable("Unhandled reg/opcode register encoding"); 1181 } 1182 1183 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1184 (const std::string &s, 1185 bool hasOpSizePrefix) { 1186 ENCODING("GR32", ENCODING_VVVV) 1187 ENCODING("GR64", ENCODING_VVVV) 1188 ENCODING("FR32", ENCODING_VVVV) 1189 ENCODING("FR64", ENCODING_VVVV) 1190 ENCODING("VR128", ENCODING_VVVV) 1191 ENCODING("VR256", ENCODING_VVVV) 1192 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1193 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1194 } 1195 1196 OperandEncoding RecognizableInstr::memoryEncodingFromString 1197 (const std::string &s, 1198 bool hasOpSizePrefix) { 1199 ENCODING("i16mem", ENCODING_RM) 1200 ENCODING("i32mem", ENCODING_RM) 1201 ENCODING("i64mem", ENCODING_RM) 1202 ENCODING("i8mem", ENCODING_RM) 1203 ENCODING("ssmem", ENCODING_RM) 1204 ENCODING("sdmem", ENCODING_RM) 1205 ENCODING("f128mem", ENCODING_RM) 1206 ENCODING("f256mem", ENCODING_RM) 1207 ENCODING("f64mem", ENCODING_RM) 1208 ENCODING("f32mem", ENCODING_RM) 1209 ENCODING("i128mem", ENCODING_RM) 1210 ENCODING("i256mem", ENCODING_RM) 1211 ENCODING("f80mem", ENCODING_RM) 1212 ENCODING("lea32mem", ENCODING_RM) 1213 ENCODING("lea64_32mem", ENCODING_RM) 1214 ENCODING("lea64mem", ENCODING_RM) 1215 ENCODING("opaque32mem", ENCODING_RM) 1216 ENCODING("opaque48mem", ENCODING_RM) 1217 ENCODING("opaque80mem", ENCODING_RM) 1218 ENCODING("opaque512mem", ENCODING_RM) 1219 errs() << "Unhandled memory encoding " << s << "\n"; 1220 llvm_unreachable("Unhandled memory encoding"); 1221 } 1222 1223 OperandEncoding RecognizableInstr::relocationEncodingFromString 1224 (const std::string &s, 1225 bool hasOpSizePrefix) { 1226 if(!hasOpSizePrefix) { 1227 // For instructions without an OpSize prefix, a declared 16-bit register or 1228 // immediate encoding is special. 1229 ENCODING("i16imm", ENCODING_IW) 1230 } 1231 ENCODING("i16imm", ENCODING_Iv) 1232 ENCODING("i16i8imm", ENCODING_IB) 1233 ENCODING("i32imm", ENCODING_Iv) 1234 ENCODING("i32i8imm", ENCODING_IB) 1235 ENCODING("i64i32imm", ENCODING_ID) 1236 ENCODING("i64i8imm", ENCODING_IB) 1237 ENCODING("i8imm", ENCODING_IB) 1238 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1239 ENCODING("i16imm_pcrel", ENCODING_IW) 1240 ENCODING("i32imm_pcrel", ENCODING_ID) 1241 ENCODING("brtarget", ENCODING_Iv) 1242 ENCODING("brtarget8", ENCODING_IB) 1243 ENCODING("i64imm", ENCODING_IO) 1244 ENCODING("offset8", ENCODING_Ia) 1245 ENCODING("offset16", ENCODING_Ia) 1246 ENCODING("offset32", ENCODING_Ia) 1247 ENCODING("offset64", ENCODING_Ia) 1248 errs() << "Unhandled relocation encoding " << s << "\n"; 1249 llvm_unreachable("Unhandled relocation encoding"); 1250 } 1251 1252 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1253 (const std::string &s, 1254 bool hasOpSizePrefix) { 1255 ENCODING("RST", ENCODING_I) 1256 ENCODING("GR32", ENCODING_Rv) 1257 ENCODING("GR64", ENCODING_RO) 1258 ENCODING("GR16", ENCODING_Rv) 1259 ENCODING("GR8", ENCODING_RB) 1260 ENCODING("GR16_NOAX", ENCODING_Rv) 1261 ENCODING("GR32_NOAX", ENCODING_Rv) 1262 ENCODING("GR64_NOAX", ENCODING_RO) 1263 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1264 llvm_unreachable("Unhandled opcode modifier encoding"); 1265 } 1266 #undef ENCODING 1267