1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86RecognizableInstr.h" 18 #include "X86DisassemblerShared.h" 19 #include "X86ModRMFilters.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <string> 22 23 using namespace llvm; 24 25 #define MRM_MAPPING \ 26 MAP(C1, 33) \ 27 MAP(C2, 34) \ 28 MAP(C3, 35) \ 29 MAP(C4, 36) \ 30 MAP(C8, 37) \ 31 MAP(C9, 38) \ 32 MAP(CA, 39) \ 33 MAP(CB, 40) \ 34 MAP(E8, 41) \ 35 MAP(F0, 42) \ 36 MAP(F8, 45) \ 37 MAP(F9, 46) \ 38 MAP(D0, 47) \ 39 MAP(D1, 48) \ 40 MAP(D4, 49) \ 41 MAP(D5, 50) \ 42 MAP(D6, 51) \ 43 MAP(D8, 52) \ 44 MAP(D9, 53) \ 45 MAP(DA, 54) \ 46 MAP(DB, 55) \ 47 MAP(DC, 56) \ 48 MAP(DD, 57) \ 49 MAP(DE, 58) \ 50 MAP(DF, 59) 51 52 // A clone of X86 since we can't depend on something that is generated. 53 namespace X86Local { 54 enum { 55 Pseudo = 0, 56 RawFrm = 1, 57 AddRegFrm = 2, 58 MRMDestReg = 3, 59 MRMDestMem = 4, 60 MRMSrcReg = 5, 61 MRMSrcMem = 6, 62 RawFrmMemOffs = 7, 63 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 64 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 65 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 66 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 67 RawFrmImm8 = 43, 68 RawFrmImm16 = 44, 69 #define MAP(from, to) MRM_##from = to, 70 MRM_MAPPING 71 #undef MAP 72 lastMRM 73 }; 74 75 enum { 76 TB = 1, 77 REP = 2, 78 D8 = 3, D9 = 4, DA = 5, DB = 6, 79 DC = 7, DD = 8, DE = 9, DF = 10, 80 XD = 11, XS = 12, 81 T8 = 13, P_TA = 14, 82 A6 = 15, A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19, 83 XOP8 = 20, XOP9 = 21, XOPA = 22, PD = 23, T8PD = 24, TAPD = 25 84 }; 85 } 86 87 // If rows are added to the opcode extension tables, then corresponding entries 88 // must be added here. 89 // 90 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 91 // that byte to ONE_BYTE_EXTENSION_TABLES. 92 // 93 // If the row corresponds to two bytes where the first is 0f, add an entry for 94 // the second byte to TWO_BYTE_EXTENSION_TABLES. 95 // 96 // If the row corresponds to some other set of bytes, you will need to modify 97 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 98 // to the X86 TD files, except in two cases: if the first two bytes of such a 99 // new combination are 0f 38 or 0f 3a, you just have to add maps called 100 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 101 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 102 // in RecognizableInstr::emitDecodePath(). 103 104 #define ONE_BYTE_EXTENSION_TABLES \ 105 EXTENSION_TABLE(80) \ 106 EXTENSION_TABLE(81) \ 107 EXTENSION_TABLE(82) \ 108 EXTENSION_TABLE(83) \ 109 EXTENSION_TABLE(8f) \ 110 EXTENSION_TABLE(c0) \ 111 EXTENSION_TABLE(c1) \ 112 EXTENSION_TABLE(c6) \ 113 EXTENSION_TABLE(c7) \ 114 EXTENSION_TABLE(d0) \ 115 EXTENSION_TABLE(d1) \ 116 EXTENSION_TABLE(d2) \ 117 EXTENSION_TABLE(d3) \ 118 EXTENSION_TABLE(f6) \ 119 EXTENSION_TABLE(f7) \ 120 EXTENSION_TABLE(fe) \ 121 EXTENSION_TABLE(ff) 122 123 #define TWO_BYTE_EXTENSION_TABLES \ 124 EXTENSION_TABLE(00) \ 125 EXTENSION_TABLE(01) \ 126 EXTENSION_TABLE(0d) \ 127 EXTENSION_TABLE(18) \ 128 EXTENSION_TABLE(71) \ 129 EXTENSION_TABLE(72) \ 130 EXTENSION_TABLE(73) \ 131 EXTENSION_TABLE(ae) \ 132 EXTENSION_TABLE(ba) \ 133 EXTENSION_TABLE(c7) 134 135 #define THREE_BYTE_38_EXTENSION_TABLES \ 136 EXTENSION_TABLE(F3) 137 138 #define XOP9_MAP_EXTENSION_TABLES \ 139 EXTENSION_TABLE(01) \ 140 EXTENSION_TABLE(02) 141 142 using namespace X86Disassembler; 143 144 /// needsModRMForDecode - Indicates whether a particular instruction requires a 145 /// ModR/M byte for the instruction to be properly decoded. For example, a 146 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 147 /// 0b11. 148 /// 149 /// @param form - The form of the instruction. 150 /// @return - true if the form implies that a ModR/M byte is required, false 151 /// otherwise. 152 static bool needsModRMForDecode(uint8_t form) { 153 if (form == X86Local::MRMDestReg || 154 form == X86Local::MRMDestMem || 155 form == X86Local::MRMSrcReg || 156 form == X86Local::MRMSrcMem || 157 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 158 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 159 return true; 160 else 161 return false; 162 } 163 164 /// isRegFormat - Indicates whether a particular form requires the Mod field of 165 /// the ModR/M byte to be 0b11. 166 /// 167 /// @param form - The form of the instruction. 168 /// @return - true if the form implies that Mod must be 0b11, false 169 /// otherwise. 170 static bool isRegFormat(uint8_t form) { 171 if (form == X86Local::MRMDestReg || 172 form == X86Local::MRMSrcReg || 173 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 174 return true; 175 else 176 return false; 177 } 178 179 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 180 /// Useful for switch statements and the like. 181 /// 182 /// @param init - A reference to the BitsInit to be decoded. 183 /// @return - The field, with the first bit in the BitsInit as the lowest 184 /// order bit. 185 static uint8_t byteFromBitsInit(BitsInit &init) { 186 int width = init.getNumBits(); 187 188 assert(width <= 8 && "Field is too large for uint8_t!"); 189 190 int index; 191 uint8_t mask = 0x01; 192 193 uint8_t ret = 0; 194 195 for (index = 0; index < width; index++) { 196 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 197 ret |= mask; 198 199 mask <<= 1; 200 } 201 202 return ret; 203 } 204 205 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 206 /// name of the field. 207 /// 208 /// @param rec - The record from which to extract the value. 209 /// @param name - The name of the field in the record. 210 /// @return - The field, as translated by byteFromBitsInit(). 211 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 212 BitsInit* bits = rec->getValueAsBitsInit(name); 213 return byteFromBitsInit(*bits); 214 } 215 216 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 217 const CodeGenInstruction &insn, 218 InstrUID uid) { 219 UID = uid; 220 221 Rec = insn.TheDef; 222 Name = Rec->getName(); 223 Spec = &tables.specForUID(UID); 224 225 if (!Rec->isSubClassOf("X86Inst")) { 226 ShouldBeEmitted = false; 227 return; 228 } 229 230 Prefix = byteFromRec(Rec, "Prefix"); 231 Opcode = byteFromRec(Rec, "Opcode"); 232 Form = byteFromRec(Rec, "FormBits"); 233 234 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 235 HasOpSize16Prefix = Rec->getValueAsBit("hasOpSize16Prefix"); 236 HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix"); 237 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 238 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 239 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 240 HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix"); 241 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 242 HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); 243 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); 244 HasEVEXPrefix = Rec->getValueAsBit("hasEVEXPrefix"); 245 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); 246 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); 247 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); 248 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); 249 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 250 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 251 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); 252 253 Name = Rec->getName(); 254 AsmString = Rec->getValueAsString("AsmString"); 255 256 Operands = &insn.Operands.OperandList; 257 258 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); 259 260 // Check for 64-bit inst which does not require REX 261 Is32Bit = false; 262 Is64Bit = false; 263 // FIXME: Is there some better way to check for In64BitMode? 264 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); 265 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { 266 if (Predicates[i]->getName().find("Not64Bit") != Name.npos || 267 Predicates[i]->getName().find("In32Bit") != Name.npos) { 268 Is32Bit = true; 269 break; 270 } 271 if (Predicates[i]->getName().find("In64Bit") != Name.npos) { 272 Is64Bit = true; 273 break; 274 } 275 } 276 277 ShouldBeEmitted = true; 278 } 279 280 void RecognizableInstr::processInstr(DisassemblerTables &tables, 281 const CodeGenInstruction &insn, 282 InstrUID uid) 283 { 284 // Ignore "asm parser only" instructions. 285 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 286 return; 287 288 RecognizableInstr recogInstr(tables, insn, uid); 289 290 recogInstr.emitInstructionSpecifier(); 291 292 if (recogInstr.shouldBeEmitted()) 293 recogInstr.emitDecodePath(tables); 294 } 295 296 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ 297 (HasEVEX_K && HasEVEX_B ? n##_K_B : \ 298 (HasEVEX_KZ ? n##_KZ : \ 299 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) 300 301 InstructionContext RecognizableInstr::insnContext() const { 302 InstructionContext insnContext; 303 304 if (HasEVEXPrefix) { 305 if (HasVEX_LPrefix && HasEVEX_L2Prefix) { 306 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; 307 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); 308 } 309 // VEX_L & VEX_W 310 if (HasVEX_LPrefix && HasVEX_WPrefix) { 311 if (HasOpSizePrefix || Prefix == X86Local::PD) 312 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); 313 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 314 insnContext = EVEX_KB(IC_EVEX_L_W_XS); 315 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 316 Prefix == X86Local::TAXD) 317 insnContext = EVEX_KB(IC_EVEX_L_W_XD); 318 else 319 insnContext = EVEX_KB(IC_EVEX_L_W); 320 } else if (HasVEX_LPrefix) { 321 // VEX_L 322 if (HasOpSizePrefix || Prefix == X86Local::PD || 323 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 324 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); 325 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 326 insnContext = EVEX_KB(IC_EVEX_L_XS); 327 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 328 Prefix == X86Local::TAXD) 329 insnContext = EVEX_KB(IC_EVEX_L_XD); 330 else 331 insnContext = EVEX_KB(IC_EVEX_L); 332 } 333 else if (HasEVEX_L2Prefix && HasVEX_WPrefix) { 334 // EVEX_L2 & VEX_W 335 if (HasOpSizePrefix || Prefix == X86Local::PD || 336 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 337 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); 338 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 339 insnContext = EVEX_KB(IC_EVEX_L2_W_XS); 340 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 341 Prefix == X86Local::TAXD) 342 insnContext = EVEX_KB(IC_EVEX_L2_W_XD); 343 else 344 insnContext = EVEX_KB(IC_EVEX_L2_W); 345 } else if (HasEVEX_L2Prefix) { 346 // EVEX_L2 347 if (HasOpSizePrefix || Prefix == X86Local::PD || 348 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 349 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); 350 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 351 Prefix == X86Local::TAXD) 352 insnContext = EVEX_KB(IC_EVEX_L2_XD); 353 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 354 insnContext = EVEX_KB(IC_EVEX_L2_XS); 355 else 356 insnContext = EVEX_KB(IC_EVEX_L2); 357 } 358 else if (HasVEX_WPrefix) { 359 // VEX_W 360 if (HasOpSizePrefix || Prefix == X86Local::PD || 361 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 362 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); 363 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 364 insnContext = EVEX_KB(IC_EVEX_W_XS); 365 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 366 Prefix == X86Local::TAXD) 367 insnContext = EVEX_KB(IC_EVEX_W_XD); 368 else 369 insnContext = EVEX_KB(IC_EVEX_W); 370 } 371 // No L, no W 372 else if (HasOpSizePrefix || Prefix == X86Local::PD || 373 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 374 insnContext = EVEX_KB(IC_EVEX_OPSIZE); 375 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 376 Prefix == X86Local::TAXD) 377 insnContext = EVEX_KB(IC_EVEX_XD); 378 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 379 insnContext = EVEX_KB(IC_EVEX_XS); 380 else 381 insnContext = EVEX_KB(IC_EVEX); 382 /// eof EVEX 383 } else if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) { 384 if (HasVEX_LPrefix && HasVEX_WPrefix) { 385 if (HasOpSizePrefix || Prefix == X86Local::PD || 386 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 387 insnContext = IC_VEX_L_W_OPSIZE; 388 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 389 insnContext = IC_VEX_L_W_XS; 390 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 391 Prefix == X86Local::TAXD) 392 insnContext = IC_VEX_L_W_XD; 393 else 394 insnContext = IC_VEX_L_W; 395 } else if ((HasOpSizePrefix || Prefix == X86Local::PD || 396 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) && 397 HasVEX_LPrefix) 398 insnContext = IC_VEX_L_OPSIZE; 399 else if ((HasOpSizePrefix || Prefix == X86Local::PD || 400 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) && 401 HasVEX_WPrefix) 402 insnContext = IC_VEX_W_OPSIZE; 403 else if (HasOpSizePrefix || Prefix == X86Local::PD || 404 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 405 insnContext = IC_VEX_OPSIZE; 406 else if (HasVEX_LPrefix && 407 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 408 insnContext = IC_VEX_L_XS; 409 else if (HasVEX_LPrefix && (Prefix == X86Local::XD || 410 Prefix == X86Local::T8XD || 411 Prefix == X86Local::TAXD)) 412 insnContext = IC_VEX_L_XD; 413 else if (HasVEX_WPrefix && 414 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 415 insnContext = IC_VEX_W_XS; 416 else if (HasVEX_WPrefix && (Prefix == X86Local::XD || 417 Prefix == X86Local::T8XD || 418 Prefix == X86Local::TAXD)) 419 insnContext = IC_VEX_W_XD; 420 else if (HasVEX_WPrefix) 421 insnContext = IC_VEX_W; 422 else if (HasVEX_LPrefix) 423 insnContext = IC_VEX_L; 424 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 425 Prefix == X86Local::TAXD) 426 insnContext = IC_VEX_XD; 427 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 428 insnContext = IC_VEX_XS; 429 else 430 insnContext = IC_VEX; 431 } else if (Is64Bit || HasREX_WPrefix) { 432 if (HasREX_WPrefix && (HasOpSizePrefix || Prefix == X86Local::PD || 433 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD)) 434 insnContext = IC_64BIT_REXW_OPSIZE; 435 else if (HasOpSizePrefix && (Prefix == X86Local::XD || 436 Prefix == X86Local::T8XD || 437 Prefix == X86Local::TAXD)) 438 insnContext = IC_64BIT_XD_OPSIZE; 439 else if (HasOpSizePrefix && 440 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 441 insnContext = IC_64BIT_XS_OPSIZE; 442 else if (HasOpSizePrefix || Prefix == X86Local::PD || 443 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 444 insnContext = IC_64BIT_OPSIZE; 445 else if (HasAdSizePrefix) 446 insnContext = IC_64BIT_ADSIZE; 447 else if (HasREX_WPrefix && 448 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 449 insnContext = IC_64BIT_REXW_XS; 450 else if (HasREX_WPrefix && (Prefix == X86Local::XD || 451 Prefix == X86Local::T8XD || 452 Prefix == X86Local::TAXD)) 453 insnContext = IC_64BIT_REXW_XD; 454 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 455 Prefix == X86Local::TAXD) 456 insnContext = IC_64BIT_XD; 457 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS) 458 insnContext = IC_64BIT_XS; 459 else if (HasREX_WPrefix) 460 insnContext = IC_64BIT_REXW; 461 else 462 insnContext = IC_64BIT; 463 } else { 464 if (HasOpSizePrefix && (Prefix == X86Local::XD || 465 Prefix == X86Local::T8XD || 466 Prefix == X86Local::TAXD)) 467 insnContext = IC_XD_OPSIZE; 468 else if (HasOpSizePrefix && 469 (Prefix == X86Local::XS || Prefix == X86Local::T8XS)) 470 insnContext = IC_XS_OPSIZE; 471 else if (HasOpSizePrefix && HasAdSizePrefix) 472 insnContext = IC_OPSIZE_ADSIZE; 473 else if (HasOpSizePrefix || Prefix == X86Local::PD || 474 Prefix == X86Local::T8PD || Prefix == X86Local::TAPD) 475 insnContext = IC_OPSIZE; 476 else if (HasAdSizePrefix) 477 insnContext = IC_ADSIZE; 478 else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD || 479 Prefix == X86Local::TAXD) 480 insnContext = IC_XD; 481 else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS || 482 Prefix == X86Local::REP) 483 insnContext = IC_XS; 484 else 485 insnContext = IC; 486 } 487 488 return insnContext; 489 } 490 491 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 492 /////////////////// 493 // FILTER_STRONG 494 // 495 496 // Filter out intrinsics 497 498 assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions"); 499 500 if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) 501 return FILTER_STRONG; 502 503 504 // Filter out artificial instructions but leave in the LOCK_PREFIX so it is 505 // printed as a separate "instruction". 506 507 508 ///////////////// 509 // FILTER_WEAK 510 // 511 512 513 // Filter out instructions with a LOCK prefix; 514 // prefer forms that do not have the prefix 515 if (HasLockPrefix) 516 return FILTER_WEAK; 517 518 // Special cases. 519 520 if (Name == "VMASKMOVDQU64") 521 return FILTER_WEAK; 522 523 // XACQUIRE and XRELEASE reuse REPNE and REP respectively. 524 // For now, just prefer the REP versions. 525 if (Name == "XACQUIRE_PREFIX" || 526 Name == "XRELEASE_PREFIX") 527 return FILTER_WEAK; 528 529 return FILTER_NORMAL; 530 } 531 532 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, 533 unsigned &physicalOperandIndex, 534 unsigned &numPhysicalOperands, 535 const unsigned *operandMapping, 536 OperandEncoding (*encodingFromString) 537 (const std::string&, 538 bool hasOpSizePrefix)) { 539 if (optional) { 540 if (physicalOperandIndex >= numPhysicalOperands) 541 return; 542 } else { 543 assert(physicalOperandIndex < numPhysicalOperands); 544 } 545 546 while (operandMapping[operandIndex] != operandIndex) { 547 Spec->operands[operandIndex].encoding = ENCODING_DUP; 548 Spec->operands[operandIndex].type = 549 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 550 ++operandIndex; 551 } 552 553 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 554 555 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 556 HasOpSizePrefix); 557 Spec->operands[operandIndex].type = typeFromString(typeName, 558 HasREX_WPrefix, 559 HasOpSizePrefix, 560 HasOpSize16Prefix); 561 562 ++operandIndex; 563 ++physicalOperandIndex; 564 } 565 566 void RecognizableInstr::emitInstructionSpecifier() { 567 Spec->name = Name; 568 569 if (!ShouldBeEmitted) 570 return; 571 572 switch (filter()) { 573 case FILTER_WEAK: 574 Spec->filtered = true; 575 break; 576 case FILTER_STRONG: 577 ShouldBeEmitted = false; 578 return; 579 case FILTER_NORMAL: 580 break; 581 } 582 583 Spec->insnContext = insnContext(); 584 585 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 586 587 unsigned numOperands = OperandList.size(); 588 unsigned numPhysicalOperands = 0; 589 590 // operandMapping maps from operands in OperandList to their originals. 591 // If operandMapping[i] != i, then the entry is a duplicate. 592 unsigned operandMapping[X86_MAX_OPERANDS]; 593 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 594 595 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 596 if (OperandList[operandIndex].Constraints.size()) { 597 const CGIOperandList::ConstraintInfo &Constraint = 598 OperandList[operandIndex].Constraints[0]; 599 if (Constraint.isTied()) { 600 operandMapping[operandIndex] = operandIndex; 601 operandMapping[Constraint.getTiedOperand()] = operandIndex; 602 } else { 603 ++numPhysicalOperands; 604 operandMapping[operandIndex] = operandIndex; 605 } 606 } else { 607 ++numPhysicalOperands; 608 operandMapping[operandIndex] = operandIndex; 609 } 610 } 611 612 #define HANDLE_OPERAND(class) \ 613 handleOperand(false, \ 614 operandIndex, \ 615 physicalOperandIndex, \ 616 numPhysicalOperands, \ 617 operandMapping, \ 618 class##EncodingFromString); 619 620 #define HANDLE_OPTIONAL(class) \ 621 handleOperand(true, \ 622 operandIndex, \ 623 physicalOperandIndex, \ 624 numPhysicalOperands, \ 625 operandMapping, \ 626 class##EncodingFromString); 627 628 // operandIndex should always be < numOperands 629 unsigned operandIndex = 0; 630 // physicalOperandIndex should always be < numPhysicalOperands 631 unsigned physicalOperandIndex = 0; 632 633 switch (Form) { 634 default: llvm_unreachable("Unhandled form"); 635 case X86Local::RawFrm: 636 // Operand 1 (optional) is an address or immediate. 637 // Operand 2 (optional) is an immediate. 638 assert(numPhysicalOperands <= 2 && 639 "Unexpected number of operands for RawFrm"); 640 HANDLE_OPTIONAL(relocation) 641 HANDLE_OPTIONAL(immediate) 642 break; 643 case X86Local::RawFrmMemOffs: 644 // Operand 1 is an address. 645 HANDLE_OPERAND(relocation); 646 break; 647 case X86Local::AddRegFrm: 648 // Operand 1 is added to the opcode. 649 // Operand 2 (optional) is an address. 650 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 651 "Unexpected number of operands for AddRegFrm"); 652 HANDLE_OPERAND(opcodeModifier) 653 HANDLE_OPTIONAL(relocation) 654 break; 655 case X86Local::MRMDestReg: 656 // Operand 1 is a register operand in the R/M field. 657 // Operand 2 is a register operand in the Reg/Opcode field. 658 // - In AVX, there is a register operand in the VEX.vvvv field here - 659 // Operand 3 (optional) is an immediate. 660 if (HasVEX_4VPrefix) 661 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 662 "Unexpected number of operands for MRMDestRegFrm with VEX_4V"); 663 else 664 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 665 "Unexpected number of operands for MRMDestRegFrm"); 666 667 HANDLE_OPERAND(rmRegister) 668 669 if (HasVEX_4VPrefix) 670 // FIXME: In AVX, the register below becomes the one encoded 671 // in ModRMVEX and the one above the one in the VEX.VVVV field 672 HANDLE_OPERAND(vvvvRegister) 673 674 HANDLE_OPERAND(roRegister) 675 HANDLE_OPTIONAL(immediate) 676 break; 677 case X86Local::MRMDestMem: 678 // Operand 1 is a memory operand (possibly SIB-extended) 679 // Operand 2 is a register operand in the Reg/Opcode field. 680 // - In AVX, there is a register operand in the VEX.vvvv field here - 681 // Operand 3 (optional) is an immediate. 682 if (HasVEX_4VPrefix) 683 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 684 "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); 685 else 686 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 687 "Unexpected number of operands for MRMDestMemFrm"); 688 HANDLE_OPERAND(memory) 689 690 if (HasEVEX_K) 691 HANDLE_OPERAND(writemaskRegister) 692 693 if (HasVEX_4VPrefix) 694 // FIXME: In AVX, the register below becomes the one encoded 695 // in ModRMVEX and the one above the one in the VEX.VVVV field 696 HANDLE_OPERAND(vvvvRegister) 697 698 HANDLE_OPERAND(roRegister) 699 HANDLE_OPTIONAL(immediate) 700 break; 701 case X86Local::MRMSrcReg: 702 // Operand 1 is a register operand in the Reg/Opcode field. 703 // Operand 2 is a register operand in the R/M field. 704 // - In AVX, there is a register operand in the VEX.vvvv field here - 705 // Operand 3 (optional) is an immediate. 706 // Operand 4 (optional) is an immediate. 707 708 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 709 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 710 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 711 else 712 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 && 713 "Unexpected number of operands for MRMSrcRegFrm"); 714 715 HANDLE_OPERAND(roRegister) 716 717 if (HasEVEX_K) 718 HANDLE_OPERAND(writemaskRegister) 719 720 if (HasVEX_4VPrefix) 721 // FIXME: In AVX, the register below becomes the one encoded 722 // in ModRMVEX and the one above the one in the VEX.VVVV field 723 HANDLE_OPERAND(vvvvRegister) 724 725 if (HasMemOp4Prefix) 726 HANDLE_OPERAND(immediate) 727 728 HANDLE_OPERAND(rmRegister) 729 730 if (HasVEX_4VOp3Prefix) 731 HANDLE_OPERAND(vvvvRegister) 732 733 if (!HasMemOp4Prefix) 734 HANDLE_OPTIONAL(immediate) 735 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 736 HANDLE_OPTIONAL(immediate) 737 break; 738 case X86Local::MRMSrcMem: 739 // Operand 1 is a register operand in the Reg/Opcode field. 740 // Operand 2 is a memory operand (possibly SIB-extended) 741 // - In AVX, there is a register operand in the VEX.vvvv field here - 742 // Operand 3 (optional) is an immediate. 743 744 if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix) 745 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 && 746 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 747 else 748 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 749 "Unexpected number of operands for MRMSrcMemFrm"); 750 751 HANDLE_OPERAND(roRegister) 752 753 if (HasEVEX_K) 754 HANDLE_OPERAND(writemaskRegister) 755 756 if (HasVEX_4VPrefix) 757 // FIXME: In AVX, the register below becomes the one encoded 758 // in ModRMVEX and the one above the one in the VEX.VVVV field 759 HANDLE_OPERAND(vvvvRegister) 760 761 if (HasMemOp4Prefix) 762 HANDLE_OPERAND(immediate) 763 764 HANDLE_OPERAND(memory) 765 766 if (HasVEX_4VOp3Prefix) 767 HANDLE_OPERAND(vvvvRegister) 768 769 if (!HasMemOp4Prefix) 770 HANDLE_OPTIONAL(immediate) 771 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 772 break; 773 case X86Local::MRM0r: 774 case X86Local::MRM1r: 775 case X86Local::MRM2r: 776 case X86Local::MRM3r: 777 case X86Local::MRM4r: 778 case X86Local::MRM5r: 779 case X86Local::MRM6r: 780 case X86Local::MRM7r: 781 { 782 // Operand 1 is a register operand in the R/M field. 783 // Operand 2 (optional) is an immediate or relocation. 784 // Operand 3 (optional) is an immediate. 785 unsigned kOp = (HasEVEX_K) ? 1:0; 786 unsigned Op4v = (HasVEX_4VPrefix) ? 1:0; 787 if (numPhysicalOperands > 3 + kOp + Op4v) 788 llvm_unreachable("Unexpected number of operands for MRMnr"); 789 } 790 if (HasVEX_4VPrefix) 791 HANDLE_OPERAND(vvvvRegister) 792 793 if (HasEVEX_K) 794 HANDLE_OPERAND(writemaskRegister) 795 HANDLE_OPTIONAL(rmRegister) 796 HANDLE_OPTIONAL(relocation) 797 HANDLE_OPTIONAL(immediate) 798 break; 799 case X86Local::MRM0m: 800 case X86Local::MRM1m: 801 case X86Local::MRM2m: 802 case X86Local::MRM3m: 803 case X86Local::MRM4m: 804 case X86Local::MRM5m: 805 case X86Local::MRM6m: 806 case X86Local::MRM7m: 807 { 808 // Operand 1 is a memory operand (possibly SIB-extended) 809 // Operand 2 (optional) is an immediate or relocation. 810 unsigned kOp = (HasEVEX_K) ? 1:0; 811 unsigned Op4v = (HasVEX_4VPrefix) ? 1:0; 812 if (numPhysicalOperands < 1 + kOp + Op4v || 813 numPhysicalOperands > 2 + kOp + Op4v) 814 llvm_unreachable("Unexpected number of operands for MRMnm"); 815 } 816 if (HasVEX_4VPrefix) 817 HANDLE_OPERAND(vvvvRegister) 818 if (HasEVEX_K) 819 HANDLE_OPERAND(writemaskRegister) 820 HANDLE_OPERAND(memory) 821 HANDLE_OPTIONAL(relocation) 822 break; 823 case X86Local::RawFrmImm8: 824 // operand 1 is a 16-bit immediate 825 // operand 2 is an 8-bit immediate 826 assert(numPhysicalOperands == 2 && 827 "Unexpected number of operands for X86Local::RawFrmImm8"); 828 HANDLE_OPERAND(immediate) 829 HANDLE_OPERAND(immediate) 830 break; 831 case X86Local::RawFrmImm16: 832 // operand 1 is a 16-bit immediate 833 // operand 2 is a 16-bit immediate 834 HANDLE_OPERAND(immediate) 835 HANDLE_OPERAND(immediate) 836 break; 837 case X86Local::MRM_F8: 838 if (Opcode == 0xc6) { 839 assert(numPhysicalOperands == 1 && 840 "Unexpected number of operands for X86Local::MRM_F8"); 841 HANDLE_OPERAND(immediate) 842 } else if (Opcode == 0xc7) { 843 assert(numPhysicalOperands == 1 && 844 "Unexpected number of operands for X86Local::MRM_F8"); 845 HANDLE_OPERAND(relocation) 846 } 847 break; 848 case X86Local::MRM_C1: 849 case X86Local::MRM_C2: 850 case X86Local::MRM_C3: 851 case X86Local::MRM_C4: 852 case X86Local::MRM_C8: 853 case X86Local::MRM_C9: 854 case X86Local::MRM_CA: 855 case X86Local::MRM_CB: 856 case X86Local::MRM_E8: 857 case X86Local::MRM_F0: 858 case X86Local::MRM_F9: 859 case X86Local::MRM_D0: 860 case X86Local::MRM_D1: 861 case X86Local::MRM_D4: 862 case X86Local::MRM_D5: 863 case X86Local::MRM_D6: 864 case X86Local::MRM_D8: 865 case X86Local::MRM_D9: 866 case X86Local::MRM_DA: 867 case X86Local::MRM_DB: 868 case X86Local::MRM_DC: 869 case X86Local::MRM_DD: 870 case X86Local::MRM_DE: 871 case X86Local::MRM_DF: 872 // Ignored. 873 break; 874 } 875 876 #undef HANDLE_OPERAND 877 #undef HANDLE_OPTIONAL 878 } 879 880 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 881 // Special cases where the LLVM tables are not complete 882 883 #define MAP(from, to) \ 884 case X86Local::MRM_##from: \ 885 filter = new ExactFilter(0x##from); \ 886 break; 887 888 OpcodeType opcodeType = (OpcodeType)-1; 889 890 ModRMFilter* filter = NULL; 891 uint8_t opcodeToSet = 0; 892 893 switch (Prefix) { 894 default: llvm_unreachable("Invalid prefix!"); 895 // Extended two-byte opcodes can start with 66 0f, f2 0f, f3 0f, or 0f 896 case X86Local::PD: 897 case X86Local::XD: 898 case X86Local::XS: 899 case X86Local::TB: 900 opcodeType = TWOBYTE; 901 902 switch (Opcode) { 903 default: 904 if (needsModRMForDecode(Form)) 905 filter = new ModFilter(isRegFormat(Form)); 906 else 907 filter = new DumbFilter(); 908 break; 909 #define EXTENSION_TABLE(n) case 0x##n: 910 TWO_BYTE_EXTENSION_TABLES 911 #undef EXTENSION_TABLE 912 switch (Form) { 913 default: 914 llvm_unreachable("Unhandled two-byte extended opcode"); 915 case X86Local::MRM0r: 916 case X86Local::MRM1r: 917 case X86Local::MRM2r: 918 case X86Local::MRM3r: 919 case X86Local::MRM4r: 920 case X86Local::MRM5r: 921 case X86Local::MRM6r: 922 case X86Local::MRM7r: 923 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 924 break; 925 case X86Local::MRM0m: 926 case X86Local::MRM1m: 927 case X86Local::MRM2m: 928 case X86Local::MRM3m: 929 case X86Local::MRM4m: 930 case X86Local::MRM5m: 931 case X86Local::MRM6m: 932 case X86Local::MRM7m: 933 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 934 break; 935 MRM_MAPPING 936 } // switch (Form) 937 break; 938 } // switch (Opcode) 939 opcodeToSet = Opcode; 940 break; 941 case X86Local::T8: 942 case X86Local::T8PD: 943 case X86Local::T8XD: 944 case X86Local::T8XS: 945 opcodeType = THREEBYTE_38; 946 switch (Opcode) { 947 default: 948 if (needsModRMForDecode(Form)) 949 filter = new ModFilter(isRegFormat(Form)); 950 else 951 filter = new DumbFilter(); 952 break; 953 #define EXTENSION_TABLE(n) case 0x##n: 954 THREE_BYTE_38_EXTENSION_TABLES 955 #undef EXTENSION_TABLE 956 switch (Form) { 957 default: 958 llvm_unreachable("Unhandled two-byte extended opcode"); 959 case X86Local::MRM0r: 960 case X86Local::MRM1r: 961 case X86Local::MRM2r: 962 case X86Local::MRM3r: 963 case X86Local::MRM4r: 964 case X86Local::MRM5r: 965 case X86Local::MRM6r: 966 case X86Local::MRM7r: 967 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 968 break; 969 case X86Local::MRM0m: 970 case X86Local::MRM1m: 971 case X86Local::MRM2m: 972 case X86Local::MRM3m: 973 case X86Local::MRM4m: 974 case X86Local::MRM5m: 975 case X86Local::MRM6m: 976 case X86Local::MRM7m: 977 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 978 break; 979 MRM_MAPPING 980 } // switch (Form) 981 break; 982 } // switch (Opcode) 983 opcodeToSet = Opcode; 984 break; 985 case X86Local::P_TA: 986 case X86Local::TAPD: 987 case X86Local::TAXD: 988 opcodeType = THREEBYTE_3A; 989 if (needsModRMForDecode(Form)) 990 filter = new ModFilter(isRegFormat(Form)); 991 else 992 filter = new DumbFilter(); 993 opcodeToSet = Opcode; 994 break; 995 case X86Local::A6: 996 opcodeType = THREEBYTE_A6; 997 if (needsModRMForDecode(Form)) 998 filter = new ModFilter(isRegFormat(Form)); 999 else 1000 filter = new DumbFilter(); 1001 opcodeToSet = Opcode; 1002 break; 1003 case X86Local::A7: 1004 opcodeType = THREEBYTE_A7; 1005 if (needsModRMForDecode(Form)) 1006 filter = new ModFilter(isRegFormat(Form)); 1007 else 1008 filter = new DumbFilter(); 1009 opcodeToSet = Opcode; 1010 break; 1011 case X86Local::XOP8: 1012 opcodeType = XOP8_MAP; 1013 if (needsModRMForDecode(Form)) 1014 filter = new ModFilter(isRegFormat(Form)); 1015 else 1016 filter = new DumbFilter(); 1017 opcodeToSet = Opcode; 1018 break; 1019 case X86Local::XOP9: 1020 opcodeType = XOP9_MAP; 1021 switch (Opcode) { 1022 default: 1023 if (needsModRMForDecode(Form)) 1024 filter = new ModFilter(isRegFormat(Form)); 1025 else 1026 filter = new DumbFilter(); 1027 break; 1028 #define EXTENSION_TABLE(n) case 0x##n: 1029 XOP9_MAP_EXTENSION_TABLES 1030 #undef EXTENSION_TABLE 1031 switch (Form) { 1032 default: 1033 llvm_unreachable("Unhandled XOP9 extended opcode"); 1034 case X86Local::MRM0r: 1035 case X86Local::MRM1r: 1036 case X86Local::MRM2r: 1037 case X86Local::MRM3r: 1038 case X86Local::MRM4r: 1039 case X86Local::MRM5r: 1040 case X86Local::MRM6r: 1041 case X86Local::MRM7r: 1042 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1043 break; 1044 case X86Local::MRM0m: 1045 case X86Local::MRM1m: 1046 case X86Local::MRM2m: 1047 case X86Local::MRM3m: 1048 case X86Local::MRM4m: 1049 case X86Local::MRM5m: 1050 case X86Local::MRM6m: 1051 case X86Local::MRM7m: 1052 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1053 break; 1054 MRM_MAPPING 1055 } // switch (Form) 1056 break; 1057 } // switch (Opcode) 1058 opcodeToSet = Opcode; 1059 break; 1060 case X86Local::XOPA: 1061 opcodeType = XOPA_MAP; 1062 if (needsModRMForDecode(Form)) 1063 filter = new ModFilter(isRegFormat(Form)); 1064 else 1065 filter = new DumbFilter(); 1066 opcodeToSet = Opcode; 1067 break; 1068 case X86Local::D8: 1069 case X86Local::D9: 1070 case X86Local::DA: 1071 case X86Local::DB: 1072 case X86Local::DC: 1073 case X86Local::DD: 1074 case X86Local::DE: 1075 case X86Local::DF: 1076 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 1077 assert(Form == X86Local::RawFrm); 1078 opcodeType = ONEBYTE; 1079 filter = new ExactFilter(Opcode); 1080 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 1081 break; 1082 case X86Local::REP: 1083 case 0: 1084 opcodeType = ONEBYTE; 1085 switch (Opcode) { 1086 #define EXTENSION_TABLE(n) case 0x##n: 1087 ONE_BYTE_EXTENSION_TABLES 1088 #undef EXTENSION_TABLE 1089 switch (Form) { 1090 default: 1091 llvm_unreachable("Fell through the cracks of a single-byte " 1092 "extended opcode"); 1093 case X86Local::MRM0r: 1094 case X86Local::MRM1r: 1095 case X86Local::MRM2r: 1096 case X86Local::MRM3r: 1097 case X86Local::MRM4r: 1098 case X86Local::MRM5r: 1099 case X86Local::MRM6r: 1100 case X86Local::MRM7r: 1101 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1102 break; 1103 case X86Local::MRM0m: 1104 case X86Local::MRM1m: 1105 case X86Local::MRM2m: 1106 case X86Local::MRM3m: 1107 case X86Local::MRM4m: 1108 case X86Local::MRM5m: 1109 case X86Local::MRM6m: 1110 case X86Local::MRM7m: 1111 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1112 break; 1113 MRM_MAPPING 1114 } // switch (Form) 1115 break; 1116 case 0xd8: 1117 case 0xd9: 1118 case 0xda: 1119 case 0xdb: 1120 case 0xdc: 1121 case 0xdd: 1122 case 0xde: 1123 case 0xdf: 1124 switch (Form) { 1125 default: 1126 llvm_unreachable("Unhandled escape opcode form"); 1127 case X86Local::MRM0r: 1128 case X86Local::MRM1r: 1129 case X86Local::MRM2r: 1130 case X86Local::MRM3r: 1131 case X86Local::MRM4r: 1132 case X86Local::MRM5r: 1133 case X86Local::MRM6r: 1134 case X86Local::MRM7r: 1135 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 1136 break; 1137 case X86Local::MRM0m: 1138 case X86Local::MRM1m: 1139 case X86Local::MRM2m: 1140 case X86Local::MRM3m: 1141 case X86Local::MRM4m: 1142 case X86Local::MRM5m: 1143 case X86Local::MRM6m: 1144 case X86Local::MRM7m: 1145 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 1146 break; 1147 } // switch (Form) 1148 break; 1149 default: 1150 if (needsModRMForDecode(Form)) 1151 filter = new ModFilter(isRegFormat(Form)); 1152 else 1153 filter = new DumbFilter(); 1154 break; 1155 } // switch (Opcode) 1156 opcodeToSet = Opcode; 1157 } // switch (Prefix) 1158 1159 assert(opcodeType != (OpcodeType)-1 && 1160 "Opcode type not set"); 1161 assert(filter && "Filter not set"); 1162 1163 if (Form == X86Local::AddRegFrm) { 1164 assert(((opcodeToSet & 7) == 0) && 1165 "ADDREG_FRM opcode not aligned"); 1166 1167 uint8_t currentOpcode; 1168 1169 for (currentOpcode = opcodeToSet; 1170 currentOpcode < opcodeToSet + 8; 1171 ++currentOpcode) 1172 tables.setTableFields(opcodeType, 1173 insnContext(), 1174 currentOpcode, 1175 *filter, 1176 UID, Is32Bit, IgnoresVEX_L); 1177 } else { 1178 tables.setTableFields(opcodeType, 1179 insnContext(), 1180 opcodeToSet, 1181 *filter, 1182 UID, Is32Bit, IgnoresVEX_L); 1183 } 1184 1185 delete filter; 1186 1187 #undef MAP 1188 } 1189 1190 #define TYPE(str, type) if (s == str) return type; 1191 OperandType RecognizableInstr::typeFromString(const std::string &s, 1192 bool hasREX_WPrefix, 1193 bool hasOpSizePrefix, 1194 bool hasOpSize16Prefix) { 1195 if(hasREX_WPrefix) { 1196 // For instructions with a REX_W prefix, a declared 32-bit register encoding 1197 // is special. 1198 TYPE("GR32", TYPE_R32) 1199 } 1200 if(hasOpSizePrefix) { 1201 // For instructions with an OpSize prefix, a declared 16-bit register or 1202 // immediate encoding is special. 1203 TYPE("GR16", TYPE_Rv) 1204 TYPE("i16imm", TYPE_IMMv) 1205 } 1206 if(hasOpSize16Prefix) { 1207 // For instructions with an OpSize16 prefix, a declared 32-bit register or 1208 // immediate encoding is special. 1209 TYPE("GR32", TYPE_Rv) 1210 } 1211 TYPE("i16mem", TYPE_Mv) 1212 TYPE("i16imm", TYPE_IMM16) 1213 TYPE("i16i8imm", TYPE_IMMv) 1214 TYPE("GR16", TYPE_R16) 1215 TYPE("i32mem", TYPE_Mv) 1216 TYPE("i32imm", TYPE_IMMv) 1217 TYPE("i32i8imm", TYPE_IMM32) 1218 TYPE("u32u8imm", TYPE_IMM32) 1219 TYPE("GR32", TYPE_R32) 1220 TYPE("GR32orGR64", TYPE_R32) 1221 TYPE("i64mem", TYPE_Mv) 1222 TYPE("i64i32imm", TYPE_IMM64) 1223 TYPE("i64i8imm", TYPE_IMM64) 1224 TYPE("GR64", TYPE_R64) 1225 TYPE("i8mem", TYPE_M8) 1226 TYPE("i8imm", TYPE_IMM8) 1227 TYPE("GR8", TYPE_R8) 1228 TYPE("VR128", TYPE_XMM128) 1229 TYPE("VR128X", TYPE_XMM128) 1230 TYPE("f128mem", TYPE_M128) 1231 TYPE("f256mem", TYPE_M256) 1232 TYPE("f512mem", TYPE_M512) 1233 TYPE("FR64", TYPE_XMM64) 1234 TYPE("FR64X", TYPE_XMM64) 1235 TYPE("f64mem", TYPE_M64FP) 1236 TYPE("sdmem", TYPE_M64FP) 1237 TYPE("FR32", TYPE_XMM32) 1238 TYPE("FR32X", TYPE_XMM32) 1239 TYPE("f32mem", TYPE_M32FP) 1240 TYPE("ssmem", TYPE_M32FP) 1241 TYPE("RST", TYPE_ST) 1242 TYPE("i128mem", TYPE_M128) 1243 TYPE("i256mem", TYPE_M256) 1244 TYPE("i512mem", TYPE_M512) 1245 TYPE("i64i32imm_pcrel", TYPE_REL64) 1246 TYPE("i16imm_pcrel", TYPE_REL16) 1247 TYPE("i32imm_pcrel", TYPE_REL32) 1248 TYPE("SSECC", TYPE_IMM3) 1249 TYPE("AVXCC", TYPE_IMM5) 1250 TYPE("AVX512RC", TYPE_IMM32) 1251 TYPE("brtarget", TYPE_RELv) 1252 TYPE("uncondbrtarget", TYPE_RELv) 1253 TYPE("brtarget8", TYPE_REL8) 1254 TYPE("f80mem", TYPE_M80FP) 1255 TYPE("lea32mem", TYPE_LEA) 1256 TYPE("lea64_32mem", TYPE_LEA) 1257 TYPE("lea64mem", TYPE_LEA) 1258 TYPE("VR64", TYPE_MM64) 1259 TYPE("i64imm", TYPE_IMMv) 1260 TYPE("opaque32mem", TYPE_M1616) 1261 TYPE("opaque48mem", TYPE_M1632) 1262 TYPE("opaque80mem", TYPE_M1664) 1263 TYPE("opaque512mem", TYPE_M512) 1264 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1265 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1266 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1267 TYPE("offset8", TYPE_MOFFS8) 1268 TYPE("offset16", TYPE_MOFFS16) 1269 TYPE("offset32", TYPE_MOFFS32) 1270 TYPE("offset64", TYPE_MOFFS64) 1271 TYPE("VR256", TYPE_XMM256) 1272 TYPE("VR256X", TYPE_XMM256) 1273 TYPE("VR512", TYPE_XMM512) 1274 TYPE("VK1", TYPE_VK1) 1275 TYPE("VK1WM", TYPE_VK1) 1276 TYPE("VK8", TYPE_VK8) 1277 TYPE("VK8WM", TYPE_VK8) 1278 TYPE("VK16", TYPE_VK16) 1279 TYPE("VK16WM", TYPE_VK16) 1280 TYPE("GR16_NOAX", TYPE_Rv) 1281 TYPE("GR32_NOAX", TYPE_Rv) 1282 TYPE("GR64_NOAX", TYPE_R64) 1283 TYPE("vx32mem", TYPE_M32) 1284 TYPE("vy32mem", TYPE_M32) 1285 TYPE("vz32mem", TYPE_M32) 1286 TYPE("vx64mem", TYPE_M64) 1287 TYPE("vy64mem", TYPE_M64) 1288 TYPE("vy64xmem", TYPE_M64) 1289 TYPE("vz64mem", TYPE_M64) 1290 errs() << "Unhandled type string " << s << "\n"; 1291 llvm_unreachable("Unhandled type string"); 1292 } 1293 #undef TYPE 1294 1295 #define ENCODING(str, encoding) if (s == str) return encoding; 1296 OperandEncoding RecognizableInstr::immediateEncodingFromString 1297 (const std::string &s, 1298 bool hasOpSizePrefix) { 1299 if(!hasOpSizePrefix) { 1300 // For instructions without an OpSize prefix, a declared 16-bit register or 1301 // immediate encoding is special. 1302 ENCODING("i16imm", ENCODING_IW) 1303 } 1304 ENCODING("i32i8imm", ENCODING_IB) 1305 ENCODING("u32u8imm", ENCODING_IB) 1306 ENCODING("SSECC", ENCODING_IB) 1307 ENCODING("AVXCC", ENCODING_IB) 1308 ENCODING("AVX512RC", ENCODING_IB) 1309 ENCODING("i16imm", ENCODING_Iv) 1310 ENCODING("i16i8imm", ENCODING_IB) 1311 ENCODING("i32imm", ENCODING_Iv) 1312 ENCODING("i64i32imm", ENCODING_ID) 1313 ENCODING("i64i8imm", ENCODING_IB) 1314 ENCODING("i8imm", ENCODING_IB) 1315 // This is not a typo. Instructions like BLENDVPD put 1316 // register IDs in 8-bit immediates nowadays. 1317 ENCODING("FR32", ENCODING_IB) 1318 ENCODING("FR64", ENCODING_IB) 1319 ENCODING("VR128", ENCODING_IB) 1320 ENCODING("VR256", ENCODING_IB) 1321 ENCODING("FR32X", ENCODING_IB) 1322 ENCODING("FR64X", ENCODING_IB) 1323 ENCODING("VR128X", ENCODING_IB) 1324 ENCODING("VR256X", ENCODING_IB) 1325 ENCODING("VR512", ENCODING_IB) 1326 errs() << "Unhandled immediate encoding " << s << "\n"; 1327 llvm_unreachable("Unhandled immediate encoding"); 1328 } 1329 1330 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1331 (const std::string &s, 1332 bool hasOpSizePrefix) { 1333 ENCODING("RST", ENCODING_FP) 1334 ENCODING("GR16", ENCODING_RM) 1335 ENCODING("GR32", ENCODING_RM) 1336 ENCODING("GR32orGR64", ENCODING_RM) 1337 ENCODING("GR64", ENCODING_RM) 1338 ENCODING("GR8", ENCODING_RM) 1339 ENCODING("VR128", ENCODING_RM) 1340 ENCODING("VR128X", ENCODING_RM) 1341 ENCODING("FR64", ENCODING_RM) 1342 ENCODING("FR32", ENCODING_RM) 1343 ENCODING("FR64X", ENCODING_RM) 1344 ENCODING("FR32X", ENCODING_RM) 1345 ENCODING("VR64", ENCODING_RM) 1346 ENCODING("VR256", ENCODING_RM) 1347 ENCODING("VR256X", ENCODING_RM) 1348 ENCODING("VR512", ENCODING_RM) 1349 ENCODING("VK1", ENCODING_RM) 1350 ENCODING("VK8", ENCODING_RM) 1351 ENCODING("VK16", ENCODING_RM) 1352 errs() << "Unhandled R/M register encoding " << s << "\n"; 1353 llvm_unreachable("Unhandled R/M register encoding"); 1354 } 1355 1356 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1357 (const std::string &s, 1358 bool hasOpSizePrefix) { 1359 ENCODING("GR16", ENCODING_REG) 1360 ENCODING("GR32", ENCODING_REG) 1361 ENCODING("GR32orGR64", ENCODING_REG) 1362 ENCODING("GR64", ENCODING_REG) 1363 ENCODING("GR8", ENCODING_REG) 1364 ENCODING("VR128", ENCODING_REG) 1365 ENCODING("FR64", ENCODING_REG) 1366 ENCODING("FR32", ENCODING_REG) 1367 ENCODING("VR64", ENCODING_REG) 1368 ENCODING("SEGMENT_REG", ENCODING_REG) 1369 ENCODING("DEBUG_REG", ENCODING_REG) 1370 ENCODING("CONTROL_REG", ENCODING_REG) 1371 ENCODING("VR256", ENCODING_REG) 1372 ENCODING("VR256X", ENCODING_REG) 1373 ENCODING("VR128X", ENCODING_REG) 1374 ENCODING("FR64X", ENCODING_REG) 1375 ENCODING("FR32X", ENCODING_REG) 1376 ENCODING("VR512", ENCODING_REG) 1377 ENCODING("VK1", ENCODING_REG) 1378 ENCODING("VK8", ENCODING_REG) 1379 ENCODING("VK16", ENCODING_REG) 1380 ENCODING("VK1WM", ENCODING_REG) 1381 ENCODING("VK8WM", ENCODING_REG) 1382 ENCODING("VK16WM", ENCODING_REG) 1383 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1384 llvm_unreachable("Unhandled reg/opcode register encoding"); 1385 } 1386 1387 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1388 (const std::string &s, 1389 bool hasOpSizePrefix) { 1390 ENCODING("GR32", ENCODING_VVVV) 1391 ENCODING("GR64", ENCODING_VVVV) 1392 ENCODING("FR32", ENCODING_VVVV) 1393 ENCODING("FR64", ENCODING_VVVV) 1394 ENCODING("VR128", ENCODING_VVVV) 1395 ENCODING("VR256", ENCODING_VVVV) 1396 ENCODING("FR32X", ENCODING_VVVV) 1397 ENCODING("FR64X", ENCODING_VVVV) 1398 ENCODING("VR128X", ENCODING_VVVV) 1399 ENCODING("VR256X", ENCODING_VVVV) 1400 ENCODING("VR512", ENCODING_VVVV) 1401 ENCODING("VK1", ENCODING_VVVV) 1402 ENCODING("VK8", ENCODING_VVVV) 1403 ENCODING("VK16", ENCODING_VVVV) 1404 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1405 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1406 } 1407 1408 OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString 1409 (const std::string &s, 1410 bool hasOpSizePrefix) { 1411 ENCODING("VK1WM", ENCODING_WRITEMASK) 1412 ENCODING("VK8WM", ENCODING_WRITEMASK) 1413 ENCODING("VK16WM", ENCODING_WRITEMASK) 1414 errs() << "Unhandled mask register encoding " << s << "\n"; 1415 llvm_unreachable("Unhandled mask register encoding"); 1416 } 1417 1418 OperandEncoding RecognizableInstr::memoryEncodingFromString 1419 (const std::string &s, 1420 bool hasOpSizePrefix) { 1421 ENCODING("i16mem", ENCODING_RM) 1422 ENCODING("i32mem", ENCODING_RM) 1423 ENCODING("i64mem", ENCODING_RM) 1424 ENCODING("i8mem", ENCODING_RM) 1425 ENCODING("ssmem", ENCODING_RM) 1426 ENCODING("sdmem", ENCODING_RM) 1427 ENCODING("f128mem", ENCODING_RM) 1428 ENCODING("f256mem", ENCODING_RM) 1429 ENCODING("f512mem", ENCODING_RM) 1430 ENCODING("f64mem", ENCODING_RM) 1431 ENCODING("f32mem", ENCODING_RM) 1432 ENCODING("i128mem", ENCODING_RM) 1433 ENCODING("i256mem", ENCODING_RM) 1434 ENCODING("i512mem", ENCODING_RM) 1435 ENCODING("f80mem", ENCODING_RM) 1436 ENCODING("lea32mem", ENCODING_RM) 1437 ENCODING("lea64_32mem", ENCODING_RM) 1438 ENCODING("lea64mem", ENCODING_RM) 1439 ENCODING("opaque32mem", ENCODING_RM) 1440 ENCODING("opaque48mem", ENCODING_RM) 1441 ENCODING("opaque80mem", ENCODING_RM) 1442 ENCODING("opaque512mem", ENCODING_RM) 1443 ENCODING("vx32mem", ENCODING_RM) 1444 ENCODING("vy32mem", ENCODING_RM) 1445 ENCODING("vz32mem", ENCODING_RM) 1446 ENCODING("vx64mem", ENCODING_RM) 1447 ENCODING("vy64mem", ENCODING_RM) 1448 ENCODING("vy64xmem", ENCODING_RM) 1449 ENCODING("vz64mem", ENCODING_RM) 1450 errs() << "Unhandled memory encoding " << s << "\n"; 1451 llvm_unreachable("Unhandled memory encoding"); 1452 } 1453 1454 OperandEncoding RecognizableInstr::relocationEncodingFromString 1455 (const std::string &s, 1456 bool hasOpSizePrefix) { 1457 if(!hasOpSizePrefix) { 1458 // For instructions without an OpSize prefix, a declared 16-bit register or 1459 // immediate encoding is special. 1460 ENCODING("i16imm", ENCODING_IW) 1461 } 1462 ENCODING("i16imm", ENCODING_Iv) 1463 ENCODING("i16i8imm", ENCODING_IB) 1464 ENCODING("i32imm", ENCODING_Iv) 1465 ENCODING("i32i8imm", ENCODING_IB) 1466 ENCODING("i64i32imm", ENCODING_ID) 1467 ENCODING("i64i8imm", ENCODING_IB) 1468 ENCODING("i8imm", ENCODING_IB) 1469 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1470 ENCODING("i16imm_pcrel", ENCODING_IW) 1471 ENCODING("i32imm_pcrel", ENCODING_ID) 1472 ENCODING("brtarget", ENCODING_Iv) 1473 ENCODING("brtarget8", ENCODING_IB) 1474 ENCODING("i64imm", ENCODING_IO) 1475 ENCODING("offset8", ENCODING_Ia) 1476 ENCODING("offset16", ENCODING_Ia) 1477 ENCODING("offset32", ENCODING_Ia) 1478 ENCODING("offset64", ENCODING_Ia) 1479 errs() << "Unhandled relocation encoding " << s << "\n"; 1480 llvm_unreachable("Unhandled relocation encoding"); 1481 } 1482 1483 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1484 (const std::string &s, 1485 bool hasOpSizePrefix) { 1486 ENCODING("GR32", ENCODING_Rv) 1487 ENCODING("GR64", ENCODING_RO) 1488 ENCODING("GR16", ENCODING_Rv) 1489 ENCODING("GR8", ENCODING_RB) 1490 ENCODING("GR16_NOAX", ENCODING_Rv) 1491 ENCODING("GR32_NOAX", ENCODING_Rv) 1492 ENCODING("GR64_NOAX", ENCODING_RO) 1493 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1494 llvm_unreachable("Unhandled opcode modifier encoding"); 1495 } 1496 #undef ENCODING 1497