1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 //  X86DisassemblerEmitter.h.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86ModRMFilters.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include <string>
21 
22 using namespace llvm;
23 using namespace X86Disassembler;
24 
25 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
26 ///   Useful for switch statements and the like.
27 ///
28 /// @param init - A reference to the BitsInit to be decoded.
29 /// @return     - The field, with the first bit in the BitsInit as the lowest
30 ///               order bit.
31 static uint8_t byteFromBitsInit(BitsInit &init) {
32   int width = init.getNumBits();
33 
34   assert(width <= 8 && "Field is too large for uint8_t!");
35 
36   int     index;
37   uint8_t mask = 0x01;
38 
39   uint8_t ret = 0;
40 
41   for (index = 0; index < width; index++) {
42     if (cast<BitInit>(init.getBit(index))->getValue())
43       ret |= mask;
44 
45     mask <<= 1;
46   }
47 
48   return ret;
49 }
50 
51 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
52 ///   name of the field.
53 ///
54 /// @param rec  - The record from which to extract the value.
55 /// @param name - The name of the field in the record.
56 /// @return     - The field, as translated by byteFromBitsInit().
57 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
58   BitsInit* bits = rec->getValueAsBitsInit(name);
59   return byteFromBitsInit(*bits);
60 }
61 
62 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
63                                      const CodeGenInstruction &insn,
64                                      InstrUID uid) {
65   UID = uid;
66 
67   Rec = insn.TheDef;
68   Name = std::string(Rec->getName());
69   Spec = &tables.specForUID(UID);
70 
71   if (!Rec->isSubClassOf("X86Inst")) {
72     ShouldBeEmitted = false;
73     return;
74   }
75 
76   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
77   OpMap    = byteFromRec(Rec, "OpMapBits");
78   Opcode   = byteFromRec(Rec, "Opcode");
79   Form     = byteFromRec(Rec, "FormBits");
80   Encoding = byteFromRec(Rec, "OpEncBits");
81 
82   OpSize             = byteFromRec(Rec, "OpSizeBits");
83   AdSize             = byteFromRec(Rec, "AdSizeBits");
84   HasREX_WPrefix     = Rec->getValueAsBit("hasREX_WPrefix");
85   HasVEX_4V          = Rec->getValueAsBit("hasVEX_4V");
86   HasVEX_W           = Rec->getValueAsBit("HasVEX_W");
87   IgnoresVEX_W       = Rec->getValueAsBit("IgnoresVEX_W");
88   IgnoresVEX_L       = Rec->getValueAsBit("ignoresVEX_L");
89   HasEVEX_L2Prefix   = Rec->getValueAsBit("hasEVEX_L2");
90   HasEVEX_K          = Rec->getValueAsBit("hasEVEX_K");
91   HasEVEX_KZ         = Rec->getValueAsBit("hasEVEX_Z");
92   HasEVEX_B          = Rec->getValueAsBit("hasEVEX_B");
93   IsCodeGenOnly      = Rec->getValueAsBit("isCodeGenOnly");
94   ForceDisassemble   = Rec->getValueAsBit("ForceDisassemble");
95   CD8_Scale          = byteFromRec(Rec, "CD8_Scale");
96 
97   Name = std::string(Rec->getName());
98 
99   Operands = &insn.Operands.OperandList;
100 
101   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
102 
103   EncodeRC = HasEVEX_B &&
104              (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
105 
106   // Check for 64-bit inst which does not require REX
107   Is32Bit = false;
108   Is64Bit = false;
109   // FIXME: Is there some better way to check for In64BitMode?
110   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
111   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
112     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
113         Predicates[i]->getName().find("In32Bit") != Name.npos) {
114       Is32Bit = true;
115       break;
116     }
117     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
118       Is64Bit = true;
119       break;
120     }
121   }
122 
123   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
124     ShouldBeEmitted = false;
125     return;
126   }
127 
128   // Special case since there is no attribute class for 64-bit and VEX
129   if (Name == "VMASKMOVDQU64") {
130     ShouldBeEmitted = false;
131     return;
132   }
133 
134   ShouldBeEmitted  = true;
135 }
136 
137 void RecognizableInstr::processInstr(DisassemblerTables &tables,
138                                      const CodeGenInstruction &insn,
139                                      InstrUID uid)
140 {
141   // Ignore "asm parser only" instructions.
142   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
143     return;
144 
145   RecognizableInstr recogInstr(tables, insn, uid);
146 
147   if (recogInstr.shouldBeEmitted()) {
148     recogInstr.emitInstructionSpecifier();
149     recogInstr.emitDecodePath(tables);
150   }
151 }
152 
153 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
154                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
155                     (HasEVEX_KZ ? n##_KZ : \
156                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
157 
158 InstructionContext RecognizableInstr::insnContext() const {
159   InstructionContext insnContext;
160 
161   if (Encoding == X86Local::EVEX) {
162     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
163       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
164       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
165     }
166     // VEX_L & VEX_W
167     if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) {
168       if (OpPrefix == X86Local::PD)
169         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
170       else if (OpPrefix == X86Local::XS)
171         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
172       else if (OpPrefix == X86Local::XD)
173         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
174       else if (OpPrefix == X86Local::PS)
175         insnContext = EVEX_KB(IC_EVEX_L_W);
176       else {
177         errs() << "Instruction does not use a prefix: " << Name << "\n";
178         llvm_unreachable("Invalid prefix");
179       }
180     } else if (!EncodeRC && HasVEX_LPrefix) {
181       // VEX_L
182       if (OpPrefix == X86Local::PD)
183         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
184       else if (OpPrefix == X86Local::XS)
185         insnContext = EVEX_KB(IC_EVEX_L_XS);
186       else if (OpPrefix == X86Local::XD)
187         insnContext = EVEX_KB(IC_EVEX_L_XD);
188       else if (OpPrefix == X86Local::PS)
189         insnContext = EVEX_KB(IC_EVEX_L);
190       else {
191         errs() << "Instruction does not use a prefix: " << Name << "\n";
192         llvm_unreachable("Invalid prefix");
193       }
194     } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) {
195       // EVEX_L2 & VEX_W
196       if (OpPrefix == X86Local::PD)
197         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
198       else if (OpPrefix == X86Local::XS)
199         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
200       else if (OpPrefix == X86Local::XD)
201         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
202       else if (OpPrefix == X86Local::PS)
203         insnContext = EVEX_KB(IC_EVEX_L2_W);
204       else {
205         errs() << "Instruction does not use a prefix: " << Name << "\n";
206         llvm_unreachable("Invalid prefix");
207       }
208     } else if (!EncodeRC && HasEVEX_L2Prefix) {
209       // EVEX_L2
210       if (OpPrefix == X86Local::PD)
211         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
212       else if (OpPrefix == X86Local::XD)
213         insnContext = EVEX_KB(IC_EVEX_L2_XD);
214       else if (OpPrefix == X86Local::XS)
215         insnContext = EVEX_KB(IC_EVEX_L2_XS);
216       else if (OpPrefix == X86Local::PS)
217         insnContext = EVEX_KB(IC_EVEX_L2);
218       else {
219         errs() << "Instruction does not use a prefix: " << Name << "\n";
220         llvm_unreachable("Invalid prefix");
221       }
222     }
223     else if (HasVEX_W) {
224       // VEX_W
225       if (OpPrefix == X86Local::PD)
226         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
227       else if (OpPrefix == X86Local::XS)
228         insnContext = EVEX_KB(IC_EVEX_W_XS);
229       else if (OpPrefix == X86Local::XD)
230         insnContext = EVEX_KB(IC_EVEX_W_XD);
231       else if (OpPrefix == X86Local::PS)
232         insnContext = EVEX_KB(IC_EVEX_W);
233       else {
234         errs() << "Instruction does not use a prefix: " << Name << "\n";
235         llvm_unreachable("Invalid prefix");
236       }
237     }
238     // No L, no W
239     else if (OpPrefix == X86Local::PD)
240       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
241     else if (OpPrefix == X86Local::XD)
242       insnContext = EVEX_KB(IC_EVEX_XD);
243     else if (OpPrefix == X86Local::XS)
244       insnContext = EVEX_KB(IC_EVEX_XS);
245     else if (OpPrefix == X86Local::PS)
246       insnContext = EVEX_KB(IC_EVEX);
247     else {
248       errs() << "Instruction does not use a prefix: " << Name << "\n";
249       llvm_unreachable("Invalid prefix");
250     }
251     /// eof EVEX
252   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
253     if (HasVEX_LPrefix && HasVEX_W) {
254       if (OpPrefix == X86Local::PD)
255         insnContext = IC_VEX_L_W_OPSIZE;
256       else if (OpPrefix == X86Local::XS)
257         insnContext = IC_VEX_L_W_XS;
258       else if (OpPrefix == X86Local::XD)
259         insnContext = IC_VEX_L_W_XD;
260       else if (OpPrefix == X86Local::PS)
261         insnContext = IC_VEX_L_W;
262       else {
263         errs() << "Instruction does not use a prefix: " << Name << "\n";
264         llvm_unreachable("Invalid prefix");
265       }
266     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
267       insnContext = IC_VEX_L_OPSIZE;
268     else if (OpPrefix == X86Local::PD && HasVEX_W)
269       insnContext = IC_VEX_W_OPSIZE;
270     else if (OpPrefix == X86Local::PD)
271       insnContext = IC_VEX_OPSIZE;
272     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
273       insnContext = IC_VEX_L_XS;
274     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
275       insnContext = IC_VEX_L_XD;
276     else if (HasVEX_W && OpPrefix == X86Local::XS)
277       insnContext = IC_VEX_W_XS;
278     else if (HasVEX_W && OpPrefix == X86Local::XD)
279       insnContext = IC_VEX_W_XD;
280     else if (HasVEX_W && OpPrefix == X86Local::PS)
281       insnContext = IC_VEX_W;
282     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
283       insnContext = IC_VEX_L;
284     else if (OpPrefix == X86Local::XD)
285       insnContext = IC_VEX_XD;
286     else if (OpPrefix == X86Local::XS)
287       insnContext = IC_VEX_XS;
288     else if (OpPrefix == X86Local::PS)
289       insnContext = IC_VEX;
290     else {
291       errs() << "Instruction does not use a prefix: " << Name << "\n";
292       llvm_unreachable("Invalid prefix");
293     }
294   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
295     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
296       insnContext = IC_64BIT_REXW_OPSIZE;
297     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
298       insnContext = IC_64BIT_REXW_ADSIZE;
299     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
300       insnContext = IC_64BIT_XD_OPSIZE;
301     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
302       insnContext = IC_64BIT_XS_OPSIZE;
303     else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
304       insnContext = IC_64BIT_OPSIZE_ADSIZE;
305     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
306       insnContext = IC_64BIT_OPSIZE_ADSIZE;
307     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
308       insnContext = IC_64BIT_OPSIZE;
309     else if (AdSize == X86Local::AdSize32)
310       insnContext = IC_64BIT_ADSIZE;
311     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
312       insnContext = IC_64BIT_REXW_XS;
313     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
314       insnContext = IC_64BIT_REXW_XD;
315     else if (OpPrefix == X86Local::XD)
316       insnContext = IC_64BIT_XD;
317     else if (OpPrefix == X86Local::XS)
318       insnContext = IC_64BIT_XS;
319     else if (HasREX_WPrefix)
320       insnContext = IC_64BIT_REXW;
321     else
322       insnContext = IC_64BIT;
323   } else {
324     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
325       insnContext = IC_XD_OPSIZE;
326     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
327       insnContext = IC_XS_OPSIZE;
328     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
329       insnContext = IC_XD_ADSIZE;
330     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
331       insnContext = IC_XS_ADSIZE;
332     else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
333       insnContext = IC_OPSIZE_ADSIZE;
334     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
335       insnContext = IC_OPSIZE_ADSIZE;
336     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
337       insnContext = IC_OPSIZE;
338     else if (AdSize == X86Local::AdSize16)
339       insnContext = IC_ADSIZE;
340     else if (OpPrefix == X86Local::XD)
341       insnContext = IC_XD;
342     else if (OpPrefix == X86Local::XS)
343       insnContext = IC_XS;
344     else
345       insnContext = IC;
346   }
347 
348   return insnContext;
349 }
350 
351 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
352   // The scaling factor for AVX512 compressed displacement encoding is an
353   // instruction attribute.  Adjust the ModRM encoding type to include the
354   // scale for compressed displacement.
355   if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB) ||CD8_Scale == 0)
356     return;
357   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
358   assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
359           (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
360          "Invalid CDisp scaling");
361 }
362 
363 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
364                                       unsigned &physicalOperandIndex,
365                                       unsigned numPhysicalOperands,
366                                       const unsigned *operandMapping,
367                                       OperandEncoding (*encodingFromString)
368                                         (const std::string&,
369                                          uint8_t OpSize)) {
370   if (optional) {
371     if (physicalOperandIndex >= numPhysicalOperands)
372       return;
373   } else {
374     assert(physicalOperandIndex < numPhysicalOperands);
375   }
376 
377   while (operandMapping[operandIndex] != operandIndex) {
378     Spec->operands[operandIndex].encoding = ENCODING_DUP;
379     Spec->operands[operandIndex].type =
380       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
381     ++operandIndex;
382   }
383 
384   StringRef typeName = (*Operands)[operandIndex].Rec->getName();
385 
386   OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
387   // Adjust the encoding type for an operand based on the instruction.
388   adjustOperandEncoding(encoding);
389   Spec->operands[operandIndex].encoding = encoding;
390   Spec->operands[operandIndex].type =
391       typeFromString(std::string(typeName), HasREX_WPrefix, OpSize);
392 
393   ++operandIndex;
394   ++physicalOperandIndex;
395 }
396 
397 void RecognizableInstr::emitInstructionSpecifier() {
398   Spec->name       = Name;
399 
400   Spec->insnContext = insnContext();
401 
402   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
403 
404   unsigned numOperands = OperandList.size();
405   unsigned numPhysicalOperands = 0;
406 
407   // operandMapping maps from operands in OperandList to their originals.
408   // If operandMapping[i] != i, then the entry is a duplicate.
409   unsigned operandMapping[X86_MAX_OPERANDS];
410   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
411 
412   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
413     if (!OperandList[operandIndex].Constraints.empty()) {
414       const CGIOperandList::ConstraintInfo &Constraint =
415         OperandList[operandIndex].Constraints[0];
416       if (Constraint.isTied()) {
417         operandMapping[operandIndex] = operandIndex;
418         operandMapping[Constraint.getTiedOperand()] = operandIndex;
419       } else {
420         ++numPhysicalOperands;
421         operandMapping[operandIndex] = operandIndex;
422       }
423     } else {
424       ++numPhysicalOperands;
425       operandMapping[operandIndex] = operandIndex;
426     }
427   }
428 
429 #define HANDLE_OPERAND(class)               \
430   handleOperand(false,                      \
431                 operandIndex,               \
432                 physicalOperandIndex,       \
433                 numPhysicalOperands,        \
434                 operandMapping,             \
435                 class##EncodingFromString);
436 
437 #define HANDLE_OPTIONAL(class)              \
438   handleOperand(true,                       \
439                 operandIndex,               \
440                 physicalOperandIndex,       \
441                 numPhysicalOperands,        \
442                 operandMapping,             \
443                 class##EncodingFromString);
444 
445   // operandIndex should always be < numOperands
446   unsigned operandIndex = 0;
447   // physicalOperandIndex should always be < numPhysicalOperands
448   unsigned physicalOperandIndex = 0;
449 
450 #ifndef NDEBUG
451   // Given the set of prefix bits, how many additional operands does the
452   // instruction have?
453   unsigned additionalOperands = 0;
454   if (HasVEX_4V)
455     ++additionalOperands;
456   if (HasEVEX_K)
457     ++additionalOperands;
458 #endif
459 
460   switch (Form) {
461   default: llvm_unreachable("Unhandled form");
462   case X86Local::PrefixByte:
463     return;
464   case X86Local::RawFrmSrc:
465     HANDLE_OPERAND(relocation);
466     return;
467   case X86Local::RawFrmDst:
468     HANDLE_OPERAND(relocation);
469     return;
470   case X86Local::RawFrmDstSrc:
471     HANDLE_OPERAND(relocation);
472     HANDLE_OPERAND(relocation);
473     return;
474   case X86Local::RawFrm:
475     // Operand 1 (optional) is an address or immediate.
476     assert(numPhysicalOperands <= 1 &&
477            "Unexpected number of operands for RawFrm");
478     HANDLE_OPTIONAL(relocation)
479     break;
480   case X86Local::RawFrmMemOffs:
481     // Operand 1 is an address.
482     HANDLE_OPERAND(relocation);
483     break;
484   case X86Local::AddRegFrm:
485     // Operand 1 is added to the opcode.
486     // Operand 2 (optional) is an address.
487     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
488            "Unexpected number of operands for AddRegFrm");
489     HANDLE_OPERAND(opcodeModifier)
490     HANDLE_OPTIONAL(relocation)
491     break;
492   case X86Local::AddCCFrm:
493     // Operand 1 (optional) is an address or immediate.
494     assert(numPhysicalOperands == 2 &&
495            "Unexpected number of operands for AddCCFrm");
496     HANDLE_OPERAND(relocation)
497     HANDLE_OPERAND(opcodeModifier)
498     break;
499   case X86Local::MRMDestReg:
500     // Operand 1 is a register operand in the R/M field.
501     // - In AVX512 there may be a mask operand here -
502     // Operand 2 is a register operand in the Reg/Opcode field.
503     // - In AVX, there is a register operand in the VEX.vvvv field here -
504     // Operand 3 (optional) is an immediate.
505     assert(numPhysicalOperands >= 2 + additionalOperands &&
506            numPhysicalOperands <= 3 + additionalOperands &&
507            "Unexpected number of operands for MRMDestRegFrm");
508 
509     HANDLE_OPERAND(rmRegister)
510     if (HasEVEX_K)
511       HANDLE_OPERAND(writemaskRegister)
512 
513     if (HasVEX_4V)
514       // FIXME: In AVX, the register below becomes the one encoded
515       // in ModRMVEX and the one above the one in the VEX.VVVV field
516       HANDLE_OPERAND(vvvvRegister)
517 
518     HANDLE_OPERAND(roRegister)
519     HANDLE_OPTIONAL(immediate)
520     break;
521   case X86Local::MRMDestMem:
522     // Operand 1 is a memory operand (possibly SIB-extended)
523     // Operand 2 is a register operand in the Reg/Opcode field.
524     // - In AVX, there is a register operand in the VEX.vvvv field here -
525     // Operand 3 (optional) is an immediate.
526     assert(numPhysicalOperands >= 2 + additionalOperands &&
527            numPhysicalOperands <= 3 + additionalOperands &&
528            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
529 
530     HANDLE_OPERAND(memory)
531 
532     if (HasEVEX_K)
533       HANDLE_OPERAND(writemaskRegister)
534 
535     if (HasVEX_4V)
536       // FIXME: In AVX, the register below becomes the one encoded
537       // in ModRMVEX and the one above the one in the VEX.VVVV field
538       HANDLE_OPERAND(vvvvRegister)
539 
540     HANDLE_OPERAND(roRegister)
541     HANDLE_OPTIONAL(immediate)
542     break;
543   case X86Local::MRMSrcReg:
544     // Operand 1 is a register operand in the Reg/Opcode field.
545     // Operand 2 is a register operand in the R/M field.
546     // - In AVX, there is a register operand in the VEX.vvvv field here -
547     // Operand 3 (optional) is an immediate.
548     // Operand 4 (optional) is an immediate.
549 
550     assert(numPhysicalOperands >= 2 + additionalOperands &&
551            numPhysicalOperands <= 4 + additionalOperands &&
552            "Unexpected number of operands for MRMSrcRegFrm");
553 
554     HANDLE_OPERAND(roRegister)
555 
556     if (HasEVEX_K)
557       HANDLE_OPERAND(writemaskRegister)
558 
559     if (HasVEX_4V)
560       // FIXME: In AVX, the register below becomes the one encoded
561       // in ModRMVEX and the one above the one in the VEX.VVVV field
562       HANDLE_OPERAND(vvvvRegister)
563 
564     HANDLE_OPERAND(rmRegister)
565     HANDLE_OPTIONAL(immediate)
566     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
567     break;
568   case X86Local::MRMSrcReg4VOp3:
569     assert(numPhysicalOperands == 3 &&
570            "Unexpected number of operands for MRMSrcReg4VOp3Frm");
571     HANDLE_OPERAND(roRegister)
572     HANDLE_OPERAND(rmRegister)
573     HANDLE_OPERAND(vvvvRegister)
574     break;
575   case X86Local::MRMSrcRegOp4:
576     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
577            "Unexpected number of operands for MRMSrcRegOp4Frm");
578     HANDLE_OPERAND(roRegister)
579     HANDLE_OPERAND(vvvvRegister)
580     HANDLE_OPERAND(immediate) // Register in imm[7:4]
581     HANDLE_OPERAND(rmRegister)
582     HANDLE_OPTIONAL(immediate)
583     break;
584   case X86Local::MRMSrcRegCC:
585     assert(numPhysicalOperands == 3 &&
586            "Unexpected number of operands for MRMSrcRegCC");
587     HANDLE_OPERAND(roRegister)
588     HANDLE_OPERAND(rmRegister)
589     HANDLE_OPERAND(opcodeModifier)
590     break;
591   case X86Local::MRMSrcMem:
592     // Operand 1 is a register operand in the Reg/Opcode field.
593     // Operand 2 is a memory operand (possibly SIB-extended)
594     // - In AVX, there is a register operand in the VEX.vvvv field here -
595     // Operand 3 (optional) is an immediate.
596 
597     assert(numPhysicalOperands >= 2 + additionalOperands &&
598            numPhysicalOperands <= 4 + additionalOperands &&
599            "Unexpected number of operands for MRMSrcMemFrm");
600 
601     HANDLE_OPERAND(roRegister)
602 
603     if (HasEVEX_K)
604       HANDLE_OPERAND(writemaskRegister)
605 
606     if (HasVEX_4V)
607       // FIXME: In AVX, the register below becomes the one encoded
608       // in ModRMVEX and the one above the one in the VEX.VVVV field
609       HANDLE_OPERAND(vvvvRegister)
610 
611     HANDLE_OPERAND(memory)
612     HANDLE_OPTIONAL(immediate)
613     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
614     break;
615   case X86Local::MRMSrcMem4VOp3:
616     assert(numPhysicalOperands == 3 &&
617            "Unexpected number of operands for MRMSrcMem4VOp3Frm");
618     HANDLE_OPERAND(roRegister)
619     HANDLE_OPERAND(memory)
620     HANDLE_OPERAND(vvvvRegister)
621     break;
622   case X86Local::MRMSrcMemOp4:
623     assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
624            "Unexpected number of operands for MRMSrcMemOp4Frm");
625     HANDLE_OPERAND(roRegister)
626     HANDLE_OPERAND(vvvvRegister)
627     HANDLE_OPERAND(immediate) // Register in imm[7:4]
628     HANDLE_OPERAND(memory)
629     HANDLE_OPTIONAL(immediate)
630     break;
631   case X86Local::MRMSrcMemCC:
632     assert(numPhysicalOperands == 3 &&
633            "Unexpected number of operands for MRMSrcMemCC");
634     HANDLE_OPERAND(roRegister)
635     HANDLE_OPERAND(memory)
636     HANDLE_OPERAND(opcodeModifier)
637     break;
638   case X86Local::MRMXrCC:
639     assert(numPhysicalOperands == 2 &&
640            "Unexpected number of operands for MRMXrCC");
641     HANDLE_OPERAND(rmRegister)
642     HANDLE_OPERAND(opcodeModifier)
643     break;
644   case X86Local::MRMXr:
645   case X86Local::MRM0r:
646   case X86Local::MRM1r:
647   case X86Local::MRM2r:
648   case X86Local::MRM3r:
649   case X86Local::MRM4r:
650   case X86Local::MRM5r:
651   case X86Local::MRM6r:
652   case X86Local::MRM7r:
653     // Operand 1 is a register operand in the R/M field.
654     // Operand 2 (optional) is an immediate or relocation.
655     // Operand 3 (optional) is an immediate.
656     assert(numPhysicalOperands >= 0 + additionalOperands &&
657            numPhysicalOperands <= 3 + additionalOperands &&
658            "Unexpected number of operands for MRMnr");
659 
660     if (HasVEX_4V)
661       HANDLE_OPERAND(vvvvRegister)
662 
663     if (HasEVEX_K)
664       HANDLE_OPERAND(writemaskRegister)
665     HANDLE_OPTIONAL(rmRegister)
666     HANDLE_OPTIONAL(relocation)
667     HANDLE_OPTIONAL(immediate)
668     break;
669   case X86Local::MRMXmCC:
670     assert(numPhysicalOperands == 2 &&
671            "Unexpected number of operands for MRMXm");
672     HANDLE_OPERAND(memory)
673     HANDLE_OPERAND(opcodeModifier)
674     break;
675   case X86Local::MRMXm:
676   case X86Local::MRM0m:
677   case X86Local::MRM1m:
678   case X86Local::MRM2m:
679   case X86Local::MRM3m:
680   case X86Local::MRM4m:
681   case X86Local::MRM5m:
682   case X86Local::MRM6m:
683   case X86Local::MRM7m:
684     // Operand 1 is a memory operand (possibly SIB-extended)
685     // Operand 2 (optional) is an immediate or relocation.
686     assert(numPhysicalOperands >= 1 + additionalOperands &&
687            numPhysicalOperands <= 2 + additionalOperands &&
688            "Unexpected number of operands for MRMnm");
689 
690     if (HasVEX_4V)
691       HANDLE_OPERAND(vvvvRegister)
692     if (HasEVEX_K)
693       HANDLE_OPERAND(writemaskRegister)
694     HANDLE_OPERAND(memory)
695     HANDLE_OPTIONAL(relocation)
696     break;
697   case X86Local::RawFrmImm8:
698     // operand 1 is a 16-bit immediate
699     // operand 2 is an 8-bit immediate
700     assert(numPhysicalOperands == 2 &&
701            "Unexpected number of operands for X86Local::RawFrmImm8");
702     HANDLE_OPERAND(immediate)
703     HANDLE_OPERAND(immediate)
704     break;
705   case X86Local::RawFrmImm16:
706     // operand 1 is a 16-bit immediate
707     // operand 2 is a 16-bit immediate
708     HANDLE_OPERAND(immediate)
709     HANDLE_OPERAND(immediate)
710     break;
711 #define MAP(from, to) case X86Local::MRM_##from:
712   X86_INSTR_MRM_MAPPING
713 #undef MAP
714     HANDLE_OPTIONAL(relocation)
715     break;
716   }
717 
718 #undef HANDLE_OPERAND
719 #undef HANDLE_OPTIONAL
720 }
721 
722 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
723   // Special cases where the LLVM tables are not complete
724 
725 #define MAP(from, to)                     \
726   case X86Local::MRM_##from:
727 
728   llvm::Optional<OpcodeType> opcodeType;
729   switch (OpMap) {
730   default: llvm_unreachable("Invalid map!");
731   case X86Local::OB:        opcodeType = ONEBYTE;       break;
732   case X86Local::TB:        opcodeType = TWOBYTE;       break;
733   case X86Local::T8:        opcodeType = THREEBYTE_38;  break;
734   case X86Local::TA:        opcodeType = THREEBYTE_3A;  break;
735   case X86Local::XOP8:      opcodeType = XOP8_MAP;      break;
736   case X86Local::XOP9:      opcodeType = XOP9_MAP;      break;
737   case X86Local::XOPA:      opcodeType = XOPA_MAP;      break;
738   case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
739   }
740 
741   std::unique_ptr<ModRMFilter> filter;
742   switch (Form) {
743   default: llvm_unreachable("Invalid form!");
744   case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
745   case X86Local::RawFrm:
746   case X86Local::AddRegFrm:
747   case X86Local::RawFrmMemOffs:
748   case X86Local::RawFrmSrc:
749   case X86Local::RawFrmDst:
750   case X86Local::RawFrmDstSrc:
751   case X86Local::RawFrmImm8:
752   case X86Local::RawFrmImm16:
753   case X86Local::AddCCFrm:
754   case X86Local::PrefixByte:
755     filter = std::make_unique<DumbFilter>();
756     break;
757   case X86Local::MRMDestReg:
758   case X86Local::MRMSrcReg:
759   case X86Local::MRMSrcReg4VOp3:
760   case X86Local::MRMSrcRegOp4:
761   case X86Local::MRMSrcRegCC:
762   case X86Local::MRMXrCC:
763   case X86Local::MRMXr:
764     filter = std::make_unique<ModFilter>(true);
765     break;
766   case X86Local::MRMDestMem:
767   case X86Local::MRMSrcMem:
768   case X86Local::MRMSrcMem4VOp3:
769   case X86Local::MRMSrcMemOp4:
770   case X86Local::MRMSrcMemCC:
771   case X86Local::MRMXmCC:
772   case X86Local::MRMXm:
773     filter = std::make_unique<ModFilter>(false);
774     break;
775   case X86Local::MRM0r: case X86Local::MRM1r:
776   case X86Local::MRM2r: case X86Local::MRM3r:
777   case X86Local::MRM4r: case X86Local::MRM5r:
778   case X86Local::MRM6r: case X86Local::MRM7r:
779     filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
780     break;
781   case X86Local::MRM0m: case X86Local::MRM1m:
782   case X86Local::MRM2m: case X86Local::MRM3m:
783   case X86Local::MRM4m: case X86Local::MRM5m:
784   case X86Local::MRM6m: case X86Local::MRM7m:
785     filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
786     break;
787   X86_INSTR_MRM_MAPPING
788     filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
789     break;
790   } // switch (Form)
791 
792   uint8_t opcodeToSet = Opcode;
793 
794   unsigned AddressSize = 0;
795   switch (AdSize) {
796   case X86Local::AdSize16: AddressSize = 16; break;
797   case X86Local::AdSize32: AddressSize = 32; break;
798   case X86Local::AdSize64: AddressSize = 64; break;
799   }
800 
801   assert(opcodeType && "Opcode type not set");
802   assert(filter && "Filter not set");
803 
804   if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
805       Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
806       Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
807     unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16;
808     assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
809 
810     uint8_t currentOpcode;
811 
812     for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count;
813          ++currentOpcode)
814       tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
815                             UID, Is32Bit, OpPrefix == 0,
816                             IgnoresVEX_L || EncodeRC,
817                             IgnoresVEX_W, AddressSize);
818   } else {
819     tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
820                           Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
821                           IgnoresVEX_W, AddressSize);
822   }
823 
824 #undef MAP
825 }
826 
827 #define TYPE(str, type) if (s == str) return type;
828 OperandType RecognizableInstr::typeFromString(const std::string &s,
829                                               bool hasREX_WPrefix,
830                                               uint8_t OpSize) {
831   if(hasREX_WPrefix) {
832     // For instructions with a REX_W prefix, a declared 32-bit register encoding
833     // is special.
834     TYPE("GR32",              TYPE_R32)
835   }
836   if(OpSize == X86Local::OpSize16) {
837     // For OpSize16 instructions, a declared 16-bit register or
838     // immediate encoding is special.
839     TYPE("GR16",              TYPE_Rv)
840   } else if(OpSize == X86Local::OpSize32) {
841     // For OpSize32 instructions, a declared 32-bit register or
842     // immediate encoding is special.
843     TYPE("GR32",              TYPE_Rv)
844   }
845   TYPE("i16mem",              TYPE_M)
846   TYPE("i16imm",              TYPE_IMM)
847   TYPE("i16i8imm",            TYPE_IMM)
848   TYPE("GR16",                TYPE_R16)
849   TYPE("i32mem",              TYPE_M)
850   TYPE("i32imm",              TYPE_IMM)
851   TYPE("i32i8imm",            TYPE_IMM)
852   TYPE("GR32",                TYPE_R32)
853   TYPE("GR32orGR64",          TYPE_R32)
854   TYPE("i64mem",              TYPE_M)
855   TYPE("i64i32imm",           TYPE_IMM)
856   TYPE("i64i8imm",            TYPE_IMM)
857   TYPE("GR64",                TYPE_R64)
858   TYPE("i8mem",               TYPE_M)
859   TYPE("i8imm",               TYPE_IMM)
860   TYPE("u4imm",               TYPE_UIMM8)
861   TYPE("u8imm",               TYPE_UIMM8)
862   TYPE("i16u8imm",            TYPE_UIMM8)
863   TYPE("i32u8imm",            TYPE_UIMM8)
864   TYPE("i64u8imm",            TYPE_UIMM8)
865   TYPE("GR8",                 TYPE_R8)
866   TYPE("VR128",               TYPE_XMM)
867   TYPE("VR128X",              TYPE_XMM)
868   TYPE("f128mem",             TYPE_M)
869   TYPE("f256mem",             TYPE_M)
870   TYPE("f512mem",             TYPE_M)
871   TYPE("FR128",               TYPE_XMM)
872   TYPE("FR64",                TYPE_XMM)
873   TYPE("FR64X",               TYPE_XMM)
874   TYPE("f64mem",              TYPE_M)
875   TYPE("sdmem",               TYPE_M)
876   TYPE("FR32",                TYPE_XMM)
877   TYPE("FR32X",               TYPE_XMM)
878   TYPE("f32mem",              TYPE_M)
879   TYPE("ssmem",               TYPE_M)
880   TYPE("RST",                 TYPE_ST)
881   TYPE("RSTi",                TYPE_ST)
882   TYPE("i128mem",             TYPE_M)
883   TYPE("i256mem",             TYPE_M)
884   TYPE("i512mem",             TYPE_M)
885   TYPE("i64i32imm_brtarget",  TYPE_REL)
886   TYPE("i16imm_brtarget",     TYPE_REL)
887   TYPE("i32imm_brtarget",     TYPE_REL)
888   TYPE("ccode",               TYPE_IMM)
889   TYPE("AVX512RC",            TYPE_IMM)
890   TYPE("brtarget32",          TYPE_REL)
891   TYPE("brtarget16",          TYPE_REL)
892   TYPE("brtarget8",           TYPE_REL)
893   TYPE("f80mem",              TYPE_M)
894   TYPE("lea64_32mem",         TYPE_M)
895   TYPE("lea64mem",            TYPE_M)
896   TYPE("VR64",                TYPE_MM64)
897   TYPE("i64imm",              TYPE_IMM)
898   TYPE("anymem",              TYPE_M)
899   TYPE("opaquemem",           TYPE_M)
900   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
901   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
902   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
903   TYPE("srcidx8",             TYPE_SRCIDX)
904   TYPE("srcidx16",            TYPE_SRCIDX)
905   TYPE("srcidx32",            TYPE_SRCIDX)
906   TYPE("srcidx64",            TYPE_SRCIDX)
907   TYPE("dstidx8",             TYPE_DSTIDX)
908   TYPE("dstidx16",            TYPE_DSTIDX)
909   TYPE("dstidx32",            TYPE_DSTIDX)
910   TYPE("dstidx64",            TYPE_DSTIDX)
911   TYPE("offset16_8",          TYPE_MOFFS)
912   TYPE("offset16_16",         TYPE_MOFFS)
913   TYPE("offset16_32",         TYPE_MOFFS)
914   TYPE("offset32_8",          TYPE_MOFFS)
915   TYPE("offset32_16",         TYPE_MOFFS)
916   TYPE("offset32_32",         TYPE_MOFFS)
917   TYPE("offset32_64",         TYPE_MOFFS)
918   TYPE("offset64_8",          TYPE_MOFFS)
919   TYPE("offset64_16",         TYPE_MOFFS)
920   TYPE("offset64_32",         TYPE_MOFFS)
921   TYPE("offset64_64",         TYPE_MOFFS)
922   TYPE("VR256",               TYPE_YMM)
923   TYPE("VR256X",              TYPE_YMM)
924   TYPE("VR512",               TYPE_ZMM)
925   TYPE("VK1",                 TYPE_VK)
926   TYPE("VK1WM",               TYPE_VK)
927   TYPE("VK2",                 TYPE_VK)
928   TYPE("VK2WM",               TYPE_VK)
929   TYPE("VK4",                 TYPE_VK)
930   TYPE("VK4WM",               TYPE_VK)
931   TYPE("VK8",                 TYPE_VK)
932   TYPE("VK8WM",               TYPE_VK)
933   TYPE("VK16",                TYPE_VK)
934   TYPE("VK16WM",              TYPE_VK)
935   TYPE("VK32",                TYPE_VK)
936   TYPE("VK32WM",              TYPE_VK)
937   TYPE("VK64",                TYPE_VK)
938   TYPE("VK64WM",              TYPE_VK)
939   TYPE("VK1Pair",             TYPE_VK_PAIR)
940   TYPE("VK2Pair",             TYPE_VK_PAIR)
941   TYPE("VK4Pair",             TYPE_VK_PAIR)
942   TYPE("VK8Pair",             TYPE_VK_PAIR)
943   TYPE("VK16Pair",            TYPE_VK_PAIR)
944   TYPE("vx64mem",             TYPE_MVSIBX)
945   TYPE("vx128mem",            TYPE_MVSIBX)
946   TYPE("vx256mem",            TYPE_MVSIBX)
947   TYPE("vy128mem",            TYPE_MVSIBY)
948   TYPE("vy256mem",            TYPE_MVSIBY)
949   TYPE("vx64xmem",            TYPE_MVSIBX)
950   TYPE("vx128xmem",           TYPE_MVSIBX)
951   TYPE("vx256xmem",           TYPE_MVSIBX)
952   TYPE("vy128xmem",           TYPE_MVSIBY)
953   TYPE("vy256xmem",           TYPE_MVSIBY)
954   TYPE("vy512xmem",           TYPE_MVSIBY)
955   TYPE("vz256mem",            TYPE_MVSIBZ)
956   TYPE("vz512mem",            TYPE_MVSIBZ)
957   TYPE("BNDR",                TYPE_BNDR)
958   errs() << "Unhandled type string " << s << "\n";
959   llvm_unreachable("Unhandled type string");
960 }
961 #undef TYPE
962 
963 #define ENCODING(str, encoding) if (s == str) return encoding;
964 OperandEncoding
965 RecognizableInstr::immediateEncodingFromString(const std::string &s,
966                                                uint8_t OpSize) {
967   if(OpSize != X86Local::OpSize16) {
968     // For instructions without an OpSize prefix, a declared 16-bit register or
969     // immediate encoding is special.
970     ENCODING("i16imm",        ENCODING_IW)
971   }
972   ENCODING("i32i8imm",        ENCODING_IB)
973   ENCODING("AVX512RC",        ENCODING_IRC)
974   ENCODING("i16imm",          ENCODING_Iv)
975   ENCODING("i16i8imm",        ENCODING_IB)
976   ENCODING("i32imm",          ENCODING_Iv)
977   ENCODING("i64i32imm",       ENCODING_ID)
978   ENCODING("i64i8imm",        ENCODING_IB)
979   ENCODING("i8imm",           ENCODING_IB)
980   ENCODING("u4imm",           ENCODING_IB)
981   ENCODING("u8imm",           ENCODING_IB)
982   ENCODING("i16u8imm",        ENCODING_IB)
983   ENCODING("i32u8imm",        ENCODING_IB)
984   ENCODING("i64u8imm",        ENCODING_IB)
985   // This is not a typo.  Instructions like BLENDVPD put
986   // register IDs in 8-bit immediates nowadays.
987   ENCODING("FR32",            ENCODING_IB)
988   ENCODING("FR64",            ENCODING_IB)
989   ENCODING("FR128",           ENCODING_IB)
990   ENCODING("VR128",           ENCODING_IB)
991   ENCODING("VR256",           ENCODING_IB)
992   ENCODING("FR32X",           ENCODING_IB)
993   ENCODING("FR64X",           ENCODING_IB)
994   ENCODING("VR128X",          ENCODING_IB)
995   ENCODING("VR256X",          ENCODING_IB)
996   ENCODING("VR512",           ENCODING_IB)
997   errs() << "Unhandled immediate encoding " << s << "\n";
998   llvm_unreachable("Unhandled immediate encoding");
999 }
1000 
1001 OperandEncoding
1002 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1003                                                 uint8_t OpSize) {
1004   ENCODING("RST",             ENCODING_FP)
1005   ENCODING("RSTi",            ENCODING_FP)
1006   ENCODING("GR16",            ENCODING_RM)
1007   ENCODING("GR32",            ENCODING_RM)
1008   ENCODING("GR32orGR64",      ENCODING_RM)
1009   ENCODING("GR64",            ENCODING_RM)
1010   ENCODING("GR8",             ENCODING_RM)
1011   ENCODING("VR128",           ENCODING_RM)
1012   ENCODING("VR128X",          ENCODING_RM)
1013   ENCODING("FR128",           ENCODING_RM)
1014   ENCODING("FR64",            ENCODING_RM)
1015   ENCODING("FR32",            ENCODING_RM)
1016   ENCODING("FR64X",           ENCODING_RM)
1017   ENCODING("FR32X",           ENCODING_RM)
1018   ENCODING("VR64",            ENCODING_RM)
1019   ENCODING("VR256",           ENCODING_RM)
1020   ENCODING("VR256X",          ENCODING_RM)
1021   ENCODING("VR512",           ENCODING_RM)
1022   ENCODING("VK1",             ENCODING_RM)
1023   ENCODING("VK2",             ENCODING_RM)
1024   ENCODING("VK4",             ENCODING_RM)
1025   ENCODING("VK8",             ENCODING_RM)
1026   ENCODING("VK16",            ENCODING_RM)
1027   ENCODING("VK32",            ENCODING_RM)
1028   ENCODING("VK64",            ENCODING_RM)
1029   ENCODING("VK1PAIR",         ENCODING_RM)
1030   ENCODING("VK2PAIR",         ENCODING_RM)
1031   ENCODING("VK4PAIR",         ENCODING_RM)
1032   ENCODING("VK8PAIR",         ENCODING_RM)
1033   ENCODING("VK16PAIR",        ENCODING_RM)
1034   ENCODING("BNDR",            ENCODING_RM)
1035   errs() << "Unhandled R/M register encoding " << s << "\n";
1036   llvm_unreachable("Unhandled R/M register encoding");
1037 }
1038 
1039 OperandEncoding
1040 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1041                                                 uint8_t OpSize) {
1042   ENCODING("GR16",            ENCODING_REG)
1043   ENCODING("GR32",            ENCODING_REG)
1044   ENCODING("GR32orGR64",      ENCODING_REG)
1045   ENCODING("GR64",            ENCODING_REG)
1046   ENCODING("GR8",             ENCODING_REG)
1047   ENCODING("VR128",           ENCODING_REG)
1048   ENCODING("FR128",           ENCODING_REG)
1049   ENCODING("FR64",            ENCODING_REG)
1050   ENCODING("FR32",            ENCODING_REG)
1051   ENCODING("VR64",            ENCODING_REG)
1052   ENCODING("SEGMENT_REG",     ENCODING_REG)
1053   ENCODING("DEBUG_REG",       ENCODING_REG)
1054   ENCODING("CONTROL_REG",     ENCODING_REG)
1055   ENCODING("VR256",           ENCODING_REG)
1056   ENCODING("VR256X",          ENCODING_REG)
1057   ENCODING("VR128X",          ENCODING_REG)
1058   ENCODING("FR64X",           ENCODING_REG)
1059   ENCODING("FR32X",           ENCODING_REG)
1060   ENCODING("VR512",           ENCODING_REG)
1061   ENCODING("VK1",             ENCODING_REG)
1062   ENCODING("VK2",             ENCODING_REG)
1063   ENCODING("VK4",             ENCODING_REG)
1064   ENCODING("VK8",             ENCODING_REG)
1065   ENCODING("VK16",            ENCODING_REG)
1066   ENCODING("VK32",            ENCODING_REG)
1067   ENCODING("VK64",            ENCODING_REG)
1068   ENCODING("VK1Pair",         ENCODING_REG)
1069   ENCODING("VK2Pair",         ENCODING_REG)
1070   ENCODING("VK4Pair",         ENCODING_REG)
1071   ENCODING("VK8Pair",         ENCODING_REG)
1072   ENCODING("VK16Pair",        ENCODING_REG)
1073   ENCODING("VK1WM",           ENCODING_REG)
1074   ENCODING("VK2WM",           ENCODING_REG)
1075   ENCODING("VK4WM",           ENCODING_REG)
1076   ENCODING("VK8WM",           ENCODING_REG)
1077   ENCODING("VK16WM",          ENCODING_REG)
1078   ENCODING("VK32WM",          ENCODING_REG)
1079   ENCODING("VK64WM",          ENCODING_REG)
1080   ENCODING("BNDR",            ENCODING_REG)
1081   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1082   llvm_unreachable("Unhandled reg/opcode register encoding");
1083 }
1084 
1085 OperandEncoding
1086 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1087                                                   uint8_t OpSize) {
1088   ENCODING("GR32",            ENCODING_VVVV)
1089   ENCODING("GR64",            ENCODING_VVVV)
1090   ENCODING("FR32",            ENCODING_VVVV)
1091   ENCODING("FR128",           ENCODING_VVVV)
1092   ENCODING("FR64",            ENCODING_VVVV)
1093   ENCODING("VR128",           ENCODING_VVVV)
1094   ENCODING("VR256",           ENCODING_VVVV)
1095   ENCODING("FR32X",           ENCODING_VVVV)
1096   ENCODING("FR64X",           ENCODING_VVVV)
1097   ENCODING("VR128X",          ENCODING_VVVV)
1098   ENCODING("VR256X",          ENCODING_VVVV)
1099   ENCODING("VR512",           ENCODING_VVVV)
1100   ENCODING("VK1",             ENCODING_VVVV)
1101   ENCODING("VK2",             ENCODING_VVVV)
1102   ENCODING("VK4",             ENCODING_VVVV)
1103   ENCODING("VK8",             ENCODING_VVVV)
1104   ENCODING("VK16",            ENCODING_VVVV)
1105   ENCODING("VK32",            ENCODING_VVVV)
1106   ENCODING("VK64",            ENCODING_VVVV)
1107   ENCODING("VK1PAIR",         ENCODING_VVVV)
1108   ENCODING("VK2PAIR",         ENCODING_VVVV)
1109   ENCODING("VK4PAIR",         ENCODING_VVVV)
1110   ENCODING("VK8PAIR",         ENCODING_VVVV)
1111   ENCODING("VK16PAIR",        ENCODING_VVVV)
1112   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1113   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1114 }
1115 
1116 OperandEncoding
1117 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1118                                                        uint8_t OpSize) {
1119   ENCODING("VK1WM",           ENCODING_WRITEMASK)
1120   ENCODING("VK2WM",           ENCODING_WRITEMASK)
1121   ENCODING("VK4WM",           ENCODING_WRITEMASK)
1122   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1123   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1124   ENCODING("VK32WM",          ENCODING_WRITEMASK)
1125   ENCODING("VK64WM",          ENCODING_WRITEMASK)
1126   errs() << "Unhandled mask register encoding " << s << "\n";
1127   llvm_unreachable("Unhandled mask register encoding");
1128 }
1129 
1130 OperandEncoding
1131 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1132                                             uint8_t OpSize) {
1133   ENCODING("i16mem",          ENCODING_RM)
1134   ENCODING("i32mem",          ENCODING_RM)
1135   ENCODING("i64mem",          ENCODING_RM)
1136   ENCODING("i8mem",           ENCODING_RM)
1137   ENCODING("ssmem",           ENCODING_RM)
1138   ENCODING("sdmem",           ENCODING_RM)
1139   ENCODING("f128mem",         ENCODING_RM)
1140   ENCODING("f256mem",         ENCODING_RM)
1141   ENCODING("f512mem",         ENCODING_RM)
1142   ENCODING("f64mem",          ENCODING_RM)
1143   ENCODING("f32mem",          ENCODING_RM)
1144   ENCODING("i128mem",         ENCODING_RM)
1145   ENCODING("i256mem",         ENCODING_RM)
1146   ENCODING("i512mem",         ENCODING_RM)
1147   ENCODING("f80mem",          ENCODING_RM)
1148   ENCODING("lea64_32mem",     ENCODING_RM)
1149   ENCODING("lea64mem",        ENCODING_RM)
1150   ENCODING("anymem",          ENCODING_RM)
1151   ENCODING("opaquemem",       ENCODING_RM)
1152   ENCODING("vx64mem",         ENCODING_VSIB)
1153   ENCODING("vx128mem",        ENCODING_VSIB)
1154   ENCODING("vx256mem",        ENCODING_VSIB)
1155   ENCODING("vy128mem",        ENCODING_VSIB)
1156   ENCODING("vy256mem",        ENCODING_VSIB)
1157   ENCODING("vx64xmem",        ENCODING_VSIB)
1158   ENCODING("vx128xmem",       ENCODING_VSIB)
1159   ENCODING("vx256xmem",       ENCODING_VSIB)
1160   ENCODING("vy128xmem",       ENCODING_VSIB)
1161   ENCODING("vy256xmem",       ENCODING_VSIB)
1162   ENCODING("vy512xmem",       ENCODING_VSIB)
1163   ENCODING("vz256mem",        ENCODING_VSIB)
1164   ENCODING("vz512mem",        ENCODING_VSIB)
1165   errs() << "Unhandled memory encoding " << s << "\n";
1166   llvm_unreachable("Unhandled memory encoding");
1167 }
1168 
1169 OperandEncoding
1170 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1171                                                 uint8_t OpSize) {
1172   if(OpSize != X86Local::OpSize16) {
1173     // For instructions without an OpSize prefix, a declared 16-bit register or
1174     // immediate encoding is special.
1175     ENCODING("i16imm",           ENCODING_IW)
1176   }
1177   ENCODING("i16imm",             ENCODING_Iv)
1178   ENCODING("i16i8imm",           ENCODING_IB)
1179   ENCODING("i32imm",             ENCODING_Iv)
1180   ENCODING("i32i8imm",           ENCODING_IB)
1181   ENCODING("i64i32imm",          ENCODING_ID)
1182   ENCODING("i64i8imm",           ENCODING_IB)
1183   ENCODING("i8imm",              ENCODING_IB)
1184   ENCODING("u8imm",              ENCODING_IB)
1185   ENCODING("i16u8imm",           ENCODING_IB)
1186   ENCODING("i32u8imm",           ENCODING_IB)
1187   ENCODING("i64u8imm",           ENCODING_IB)
1188   ENCODING("i64i32imm_brtarget", ENCODING_ID)
1189   ENCODING("i16imm_brtarget",    ENCODING_IW)
1190   ENCODING("i32imm_brtarget",    ENCODING_ID)
1191   ENCODING("brtarget32",         ENCODING_ID)
1192   ENCODING("brtarget16",         ENCODING_IW)
1193   ENCODING("brtarget8",          ENCODING_IB)
1194   ENCODING("i64imm",             ENCODING_IO)
1195   ENCODING("offset16_8",         ENCODING_Ia)
1196   ENCODING("offset16_16",        ENCODING_Ia)
1197   ENCODING("offset16_32",        ENCODING_Ia)
1198   ENCODING("offset32_8",         ENCODING_Ia)
1199   ENCODING("offset32_16",        ENCODING_Ia)
1200   ENCODING("offset32_32",        ENCODING_Ia)
1201   ENCODING("offset32_64",        ENCODING_Ia)
1202   ENCODING("offset64_8",         ENCODING_Ia)
1203   ENCODING("offset64_16",        ENCODING_Ia)
1204   ENCODING("offset64_32",        ENCODING_Ia)
1205   ENCODING("offset64_64",        ENCODING_Ia)
1206   ENCODING("srcidx8",            ENCODING_SI)
1207   ENCODING("srcidx16",           ENCODING_SI)
1208   ENCODING("srcidx32",           ENCODING_SI)
1209   ENCODING("srcidx64",           ENCODING_SI)
1210   ENCODING("dstidx8",            ENCODING_DI)
1211   ENCODING("dstidx16",           ENCODING_DI)
1212   ENCODING("dstidx32",           ENCODING_DI)
1213   ENCODING("dstidx64",           ENCODING_DI)
1214   errs() << "Unhandled relocation encoding " << s << "\n";
1215   llvm_unreachable("Unhandled relocation encoding");
1216 }
1217 
1218 OperandEncoding
1219 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1220                                                     uint8_t OpSize) {
1221   ENCODING("GR32",            ENCODING_Rv)
1222   ENCODING("GR64",            ENCODING_RO)
1223   ENCODING("GR16",            ENCODING_Rv)
1224   ENCODING("GR8",             ENCODING_RB)
1225   ENCODING("ccode",           ENCODING_CC)
1226   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1227   llvm_unreachable("Unhandled opcode modifier encoding");
1228 }
1229 #undef ENCODING
1230