1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler Emitter. 11 // It contains the implementation of a single recognizable instruction. 12 // Documentation for the disassembler emitter in general can be found in 13 // X86DisasemblerEmitter.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86DisassemblerShared.h" 18 #include "X86RecognizableInstr.h" 19 #include "X86ModRMFilters.h" 20 21 #include "llvm/Support/ErrorHandling.h" 22 23 #include <string> 24 25 using namespace llvm; 26 27 #define MRM_MAPPING \ 28 MAP(C1, 33) \ 29 MAP(C2, 34) \ 30 MAP(C3, 35) \ 31 MAP(C4, 36) \ 32 MAP(C8, 37) \ 33 MAP(C9, 38) \ 34 MAP(E8, 39) \ 35 MAP(F0, 40) \ 36 MAP(F8, 41) \ 37 MAP(F9, 42) \ 38 MAP(D0, 45) \ 39 MAP(D1, 46) 40 41 // A clone of X86 since we can't depend on something that is generated. 42 namespace X86Local { 43 enum { 44 Pseudo = 0, 45 RawFrm = 1, 46 AddRegFrm = 2, 47 MRMDestReg = 3, 48 MRMDestMem = 4, 49 MRMSrcReg = 5, 50 MRMSrcMem = 6, 51 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, 52 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, 53 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, 54 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, 55 MRMInitReg = 32, 56 #define MAP(from, to) MRM_##from = to, 57 MRM_MAPPING 58 #undef MAP 59 RawFrmImm8 = 43, 60 RawFrmImm16 = 44, 61 lastMRM 62 }; 63 64 enum { 65 TB = 1, 66 REP = 2, 67 D8 = 3, D9 = 4, DA = 5, DB = 6, 68 DC = 7, DD = 8, DE = 9, DF = 10, 69 XD = 11, XS = 12, 70 T8 = 13, P_TA = 14, 71 A6 = 15, A7 = 16 72 }; 73 } 74 75 // If rows are added to the opcode extension tables, then corresponding entries 76 // must be added here. 77 // 78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for 79 // that byte to ONE_BYTE_EXTENSION_TABLES. 80 // 81 // If the row corresponds to two bytes where the first is 0f, add an entry for 82 // the second byte to TWO_BYTE_EXTENSION_TABLES. 83 // 84 // If the row corresponds to some other set of bytes, you will need to modify 85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes 86 // to the X86 TD files, except in two cases: if the first two bytes of such a 87 // new combination are 0f 38 or 0f 3a, you just have to add maps called 88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a 89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line 90 // in RecognizableInstr::emitDecodePath(). 91 92 #define ONE_BYTE_EXTENSION_TABLES \ 93 EXTENSION_TABLE(80) \ 94 EXTENSION_TABLE(81) \ 95 EXTENSION_TABLE(82) \ 96 EXTENSION_TABLE(83) \ 97 EXTENSION_TABLE(8f) \ 98 EXTENSION_TABLE(c0) \ 99 EXTENSION_TABLE(c1) \ 100 EXTENSION_TABLE(c6) \ 101 EXTENSION_TABLE(c7) \ 102 EXTENSION_TABLE(d0) \ 103 EXTENSION_TABLE(d1) \ 104 EXTENSION_TABLE(d2) \ 105 EXTENSION_TABLE(d3) \ 106 EXTENSION_TABLE(f6) \ 107 EXTENSION_TABLE(f7) \ 108 EXTENSION_TABLE(fe) \ 109 EXTENSION_TABLE(ff) 110 111 #define TWO_BYTE_EXTENSION_TABLES \ 112 EXTENSION_TABLE(00) \ 113 EXTENSION_TABLE(01) \ 114 EXTENSION_TABLE(18) \ 115 EXTENSION_TABLE(71) \ 116 EXTENSION_TABLE(72) \ 117 EXTENSION_TABLE(73) \ 118 EXTENSION_TABLE(ae) \ 119 EXTENSION_TABLE(ba) \ 120 EXTENSION_TABLE(c7) 121 122 using namespace X86Disassembler; 123 124 /// needsModRMForDecode - Indicates whether a particular instruction requires a 125 /// ModR/M byte for the instruction to be properly decoded. For example, a 126 /// MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to 127 /// 0b11. 128 /// 129 /// @param form - The form of the instruction. 130 /// @return - true if the form implies that a ModR/M byte is required, false 131 /// otherwise. 132 static bool needsModRMForDecode(uint8_t form) { 133 if (form == X86Local::MRMDestReg || 134 form == X86Local::MRMDestMem || 135 form == X86Local::MRMSrcReg || 136 form == X86Local::MRMSrcMem || 137 (form >= X86Local::MRM0r && form <= X86Local::MRM7r) || 138 (form >= X86Local::MRM0m && form <= X86Local::MRM7m)) 139 return true; 140 else 141 return false; 142 } 143 144 /// isRegFormat - Indicates whether a particular form requires the Mod field of 145 /// the ModR/M byte to be 0b11. 146 /// 147 /// @param form - The form of the instruction. 148 /// @return - true if the form implies that Mod must be 0b11, false 149 /// otherwise. 150 static bool isRegFormat(uint8_t form) { 151 if (form == X86Local::MRMDestReg || 152 form == X86Local::MRMSrcReg || 153 (form >= X86Local::MRM0r && form <= X86Local::MRM7r)) 154 return true; 155 else 156 return false; 157 } 158 159 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. 160 /// Useful for switch statements and the like. 161 /// 162 /// @param init - A reference to the BitsInit to be decoded. 163 /// @return - The field, with the first bit in the BitsInit as the lowest 164 /// order bit. 165 static uint8_t byteFromBitsInit(BitsInit &init) { 166 int width = init.getNumBits(); 167 168 assert(width <= 8 && "Field is too large for uint8_t!"); 169 170 int index; 171 uint8_t mask = 0x01; 172 173 uint8_t ret = 0; 174 175 for (index = 0; index < width; index++) { 176 if (static_cast<BitInit*>(init.getBit(index))->getValue()) 177 ret |= mask; 178 179 mask <<= 1; 180 } 181 182 return ret; 183 } 184 185 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the 186 /// name of the field. 187 /// 188 /// @param rec - The record from which to extract the value. 189 /// @param name - The name of the field in the record. 190 /// @return - The field, as translated by byteFromBitsInit(). 191 static uint8_t byteFromRec(const Record* rec, const std::string &name) { 192 BitsInit* bits = rec->getValueAsBitsInit(name); 193 return byteFromBitsInit(*bits); 194 } 195 196 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, 197 const CodeGenInstruction &insn, 198 InstrUID uid) { 199 UID = uid; 200 201 Rec = insn.TheDef; 202 Name = Rec->getName(); 203 Spec = &tables.specForUID(UID); 204 205 if (!Rec->isSubClassOf("X86Inst")) { 206 ShouldBeEmitted = false; 207 return; 208 } 209 210 Prefix = byteFromRec(Rec, "Prefix"); 211 Opcode = byteFromRec(Rec, "Opcode"); 212 Form = byteFromRec(Rec, "FormBits"); 213 SegOvr = byteFromRec(Rec, "SegOvrBits"); 214 215 HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix"); 216 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); 217 HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix"); 218 HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix"); 219 HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); 220 HasLockPrefix = Rec->getValueAsBit("hasLockPrefix"); 221 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); 222 223 Name = Rec->getName(); 224 AsmString = Rec->getValueAsString("AsmString"); 225 226 Operands = &insn.Operands.OperandList; 227 228 IsSSE = HasOpSizePrefix && (Name.find("16") == Name.npos); 229 HasFROperands = hasFROperands(); 230 HasVEX_LPrefix = has256BitOperands() || Rec->getValueAsBit("hasVEX_L"); 231 232 ShouldBeEmitted = true; 233 } 234 235 void RecognizableInstr::processInstr(DisassemblerTables &tables, 236 const CodeGenInstruction &insn, 237 InstrUID uid) 238 { 239 // Ignore "asm parser only" instructions. 240 if (insn.TheDef->getValueAsBit("isAsmParserOnly")) 241 return; 242 243 RecognizableInstr recogInstr(tables, insn, uid); 244 245 recogInstr.emitInstructionSpecifier(tables); 246 247 if (recogInstr.shouldBeEmitted()) 248 recogInstr.emitDecodePath(tables); 249 } 250 251 InstructionContext RecognizableInstr::insnContext() const { 252 InstructionContext insnContext; 253 254 if (HasVEX_4VPrefix || HasVEXPrefix) { 255 if (HasOpSizePrefix && HasVEX_LPrefix) 256 insnContext = IC_VEX_L_OPSIZE; 257 else if (HasOpSizePrefix && HasVEX_WPrefix) 258 insnContext = IC_VEX_W_OPSIZE; 259 else if (HasOpSizePrefix) 260 insnContext = IC_VEX_OPSIZE; 261 else if (HasVEX_LPrefix && Prefix == X86Local::XS) 262 insnContext = IC_VEX_L_XS; 263 else if (HasVEX_LPrefix && Prefix == X86Local::XD) 264 insnContext = IC_VEX_L_XD; 265 else if (HasVEX_WPrefix && Prefix == X86Local::XS) 266 insnContext = IC_VEX_W_XS; 267 else if (HasVEX_WPrefix && Prefix == X86Local::XD) 268 insnContext = IC_VEX_W_XD; 269 else if (HasVEX_WPrefix) 270 insnContext = IC_VEX_W; 271 else if (HasVEX_LPrefix) 272 insnContext = IC_VEX_L; 273 else if (Prefix == X86Local::XD) 274 insnContext = IC_VEX_XD; 275 else if (Prefix == X86Local::XS) 276 insnContext = IC_VEX_XS; 277 else 278 insnContext = IC_VEX; 279 } else if (Name.find("64") != Name.npos || HasREX_WPrefix) { 280 if (HasREX_WPrefix && HasOpSizePrefix) 281 insnContext = IC_64BIT_REXW_OPSIZE; 282 else if (HasOpSizePrefix) 283 insnContext = IC_64BIT_OPSIZE; 284 else if (HasREX_WPrefix && Prefix == X86Local::XS) 285 insnContext = IC_64BIT_REXW_XS; 286 else if (HasREX_WPrefix && Prefix == X86Local::XD) 287 insnContext = IC_64BIT_REXW_XD; 288 else if (Prefix == X86Local::XD) 289 insnContext = IC_64BIT_XD; 290 else if (Prefix == X86Local::XS) 291 insnContext = IC_64BIT_XS; 292 else if (HasREX_WPrefix) 293 insnContext = IC_64BIT_REXW; 294 else 295 insnContext = IC_64BIT; 296 } else { 297 if (HasOpSizePrefix) 298 insnContext = IC_OPSIZE; 299 else if (Prefix == X86Local::XD) 300 insnContext = IC_XD; 301 else if (Prefix == X86Local::XS) 302 insnContext = IC_XS; 303 else 304 insnContext = IC; 305 } 306 307 return insnContext; 308 } 309 310 RecognizableInstr::filter_ret RecognizableInstr::filter() const { 311 /////////////////// 312 // FILTER_STRONG 313 // 314 315 // Filter out intrinsics 316 317 if (!Rec->isSubClassOf("X86Inst")) 318 return FILTER_STRONG; 319 320 if (Form == X86Local::Pseudo || 321 IsCodeGenOnly) 322 return FILTER_STRONG; 323 324 if (Form == X86Local::MRMInitReg) 325 return FILTER_STRONG; 326 327 328 // TEMPORARY pending bug fixes 329 330 if (Name.find("VMOVDQU") != Name.npos || 331 Name.find("VMOVDQA") != Name.npos || 332 Name.find("VROUND") != Name.npos) 333 return FILTER_STRONG; 334 335 // Filter out artificial instructions 336 337 if (Name.find("TAILJMP") != Name.npos || 338 Name.find("_Int") != Name.npos || 339 Name.find("_int") != Name.npos || 340 Name.find("Int_") != Name.npos || 341 Name.find("_NOREX") != Name.npos || 342 Name.find("_TC") != Name.npos || 343 Name.find("EH_RETURN") != Name.npos || 344 Name.find("V_SET") != Name.npos || 345 Name.find("LOCK_") != Name.npos || 346 Name.find("WIN") != Name.npos || 347 Name.find("_AVX") != Name.npos || 348 Name.find("2SDL") != Name.npos) 349 return FILTER_STRONG; 350 351 // Filter out instructions with segment override prefixes. 352 // They're too messy to handle now and we'll special case them if needed. 353 354 if (SegOvr) 355 return FILTER_STRONG; 356 357 // Filter out instructions that can't be printed. 358 359 if (AsmString.size() == 0) 360 return FILTER_STRONG; 361 362 // Filter out instructions with subreg operands. 363 364 if (AsmString.find("subreg") != AsmString.npos) 365 return FILTER_STRONG; 366 367 ///////////////// 368 // FILTER_WEAK 369 // 370 371 372 // Filter out instructions with a LOCK prefix; 373 // prefer forms that do not have the prefix 374 if (HasLockPrefix) 375 return FILTER_WEAK; 376 377 // Filter out alternate forms of AVX instructions 378 if (Name.find("_alt") != Name.npos || 379 Name.find("XrYr") != Name.npos || 380 Name.find("r64r") != Name.npos || 381 Name.find("_64mr") != Name.npos || 382 Name.find("Xrr") != Name.npos || 383 Name.find("rr64") != Name.npos) 384 return FILTER_WEAK; 385 386 if (Name == "VMASKMOVDQU64" || 387 Name == "VEXTRACTPSrr64" || 388 Name == "VMOVQd64rr" || 389 Name == "VMOVQs64rr") 390 return FILTER_WEAK; 391 392 // Special cases. 393 394 if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI") 395 return FILTER_WEAK; 396 if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI") 397 return FILTER_WEAK; 398 399 if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos) 400 return FILTER_WEAK; 401 if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos) 402 return FILTER_WEAK; 403 if (Name.find("Fs") != Name.npos) 404 return FILTER_WEAK; 405 if (Name == "MOVLPDrr" || 406 Name == "MOVLPSrr" || 407 Name == "PUSHFQ" || 408 Name == "BSF16rr" || 409 Name == "BSF16rm" || 410 Name == "BSR16rr" || 411 Name == "BSR16rm" || 412 Name == "MOVSX16rm8" || 413 Name == "MOVSX16rr8" || 414 Name == "MOVZX16rm8" || 415 Name == "MOVZX16rr8" || 416 Name == "PUSH32i16" || 417 Name == "PUSH64i16" || 418 Name == "MOVPQI2QImr" || 419 Name == "VMOVPQI2QImr" || 420 Name == "MOVSDmr" || 421 Name == "MOVSDrm" || 422 Name == "MOVSSmr" || 423 Name == "MOVSSrm" || 424 Name == "MMX_MOVD64rrv164" || 425 Name == "CRC32m16" || 426 Name == "MOV64ri64i32" || 427 Name == "CRC32r16") 428 return FILTER_WEAK; 429 430 if (HasFROperands && Name.find("MOV") != Name.npos && 431 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 432 (Name.find("to") != Name.npos))) 433 return FILTER_WEAK; 434 435 return FILTER_NORMAL; 436 } 437 438 bool RecognizableInstr::hasFROperands() const { 439 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 440 unsigned numOperands = OperandList.size(); 441 442 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 443 const std::string &recName = OperandList[operandIndex].Rec->getName(); 444 445 if (recName.find("FR") != recName.npos) 446 return true; 447 } 448 return false; 449 } 450 451 bool RecognizableInstr::has256BitOperands() const { 452 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 453 unsigned numOperands = OperandList.size(); 454 455 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 456 const std::string &recName = OperandList[operandIndex].Rec->getName(); 457 458 if (!recName.compare("VR256") || !recName.compare("f256mem")) { 459 return true; 460 } 461 } 462 return false; 463 } 464 465 void RecognizableInstr::handleOperand( 466 bool optional, 467 unsigned &operandIndex, 468 unsigned &physicalOperandIndex, 469 unsigned &numPhysicalOperands, 470 unsigned *operandMapping, 471 OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) { 472 if (optional) { 473 if (physicalOperandIndex >= numPhysicalOperands) 474 return; 475 } else { 476 assert(physicalOperandIndex < numPhysicalOperands); 477 } 478 479 while (operandMapping[operandIndex] != operandIndex) { 480 Spec->operands[operandIndex].encoding = ENCODING_DUP; 481 Spec->operands[operandIndex].type = 482 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); 483 ++operandIndex; 484 } 485 486 const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); 487 488 Spec->operands[operandIndex].encoding = encodingFromString(typeName, 489 HasOpSizePrefix); 490 Spec->operands[operandIndex].type = typeFromString(typeName, 491 IsSSE, 492 HasREX_WPrefix, 493 HasOpSizePrefix); 494 495 ++operandIndex; 496 ++physicalOperandIndex; 497 } 498 499 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) { 500 Spec->name = Name; 501 502 if (!Rec->isSubClassOf("X86Inst")) 503 return; 504 505 switch (filter()) { 506 case FILTER_WEAK: 507 Spec->filtered = true; 508 break; 509 case FILTER_STRONG: 510 ShouldBeEmitted = false; 511 return; 512 case FILTER_NORMAL: 513 break; 514 } 515 516 Spec->insnContext = insnContext(); 517 518 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; 519 520 unsigned operandIndex; 521 unsigned numOperands = OperandList.size(); 522 unsigned numPhysicalOperands = 0; 523 524 // operandMapping maps from operands in OperandList to their originals. 525 // If operandMapping[i] != i, then the entry is a duplicate. 526 unsigned operandMapping[X86_MAX_OPERANDS]; 527 528 bool hasFROperands = false; 529 530 assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); 531 532 for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) { 533 if (OperandList[operandIndex].Constraints.size()) { 534 const CGIOperandList::ConstraintInfo &Constraint = 535 OperandList[operandIndex].Constraints[0]; 536 if (Constraint.isTied()) { 537 operandMapping[operandIndex] = Constraint.getTiedOperand(); 538 } else { 539 ++numPhysicalOperands; 540 operandMapping[operandIndex] = operandIndex; 541 } 542 } else { 543 ++numPhysicalOperands; 544 operandMapping[operandIndex] = operandIndex; 545 } 546 547 const std::string &recName = OperandList[operandIndex].Rec->getName(); 548 549 if (recName.find("FR") != recName.npos) 550 hasFROperands = true; 551 } 552 553 if (hasFROperands && Name.find("MOV") != Name.npos && 554 ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) || 555 (Name.find("to") != Name.npos))) 556 ShouldBeEmitted = false; 557 558 if (!ShouldBeEmitted) 559 return; 560 561 #define HANDLE_OPERAND(class) \ 562 handleOperand(false, \ 563 operandIndex, \ 564 physicalOperandIndex, \ 565 numPhysicalOperands, \ 566 operandMapping, \ 567 class##EncodingFromString); 568 569 #define HANDLE_OPTIONAL(class) \ 570 handleOperand(true, \ 571 operandIndex, \ 572 physicalOperandIndex, \ 573 numPhysicalOperands, \ 574 operandMapping, \ 575 class##EncodingFromString); 576 577 // operandIndex should always be < numOperands 578 operandIndex = 0; 579 // physicalOperandIndex should always be < numPhysicalOperands 580 unsigned physicalOperandIndex = 0; 581 582 switch (Form) { 583 case X86Local::RawFrm: 584 // Operand 1 (optional) is an address or immediate. 585 // Operand 2 (optional) is an immediate. 586 assert(numPhysicalOperands <= 2 && 587 "Unexpected number of operands for RawFrm"); 588 HANDLE_OPTIONAL(relocation) 589 HANDLE_OPTIONAL(immediate) 590 break; 591 case X86Local::AddRegFrm: 592 // Operand 1 is added to the opcode. 593 // Operand 2 (optional) is an address. 594 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 595 "Unexpected number of operands for AddRegFrm"); 596 HANDLE_OPERAND(opcodeModifier) 597 HANDLE_OPTIONAL(relocation) 598 break; 599 case X86Local::MRMDestReg: 600 // Operand 1 is a register operand in the R/M field. 601 // Operand 2 is a register operand in the Reg/Opcode field. 602 // Operand 3 (optional) is an immediate. 603 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 604 "Unexpected number of operands for MRMDestRegFrm"); 605 HANDLE_OPERAND(rmRegister) 606 HANDLE_OPERAND(roRegister) 607 HANDLE_OPTIONAL(immediate) 608 break; 609 case X86Local::MRMDestMem: 610 // Operand 1 is a memory operand (possibly SIB-extended) 611 // Operand 2 is a register operand in the Reg/Opcode field. 612 // Operand 3 (optional) is an immediate. 613 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 614 "Unexpected number of operands for MRMDestMemFrm"); 615 HANDLE_OPERAND(memory) 616 HANDLE_OPERAND(roRegister) 617 HANDLE_OPTIONAL(immediate) 618 break; 619 case X86Local::MRMSrcReg: 620 // Operand 1 is a register operand in the Reg/Opcode field. 621 // Operand 2 is a register operand in the R/M field. 622 // - In AVX, there is a register operand in the VEX.vvvv field here - 623 // Operand 3 (optional) is an immediate. 624 625 if (HasVEX_4VPrefix) 626 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 627 "Unexpected number of operands for MRMSrcRegFrm with VEX_4V"); 628 else 629 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 630 "Unexpected number of operands for MRMSrcRegFrm"); 631 632 HANDLE_OPERAND(roRegister) 633 634 if (HasVEX_4VPrefix) 635 // FIXME: In AVX, the register below becomes the one encoded 636 // in ModRMVEX and the one above the one in the VEX.VVVV field 637 HANDLE_OPERAND(vvvvRegister) 638 639 HANDLE_OPERAND(rmRegister) 640 HANDLE_OPTIONAL(immediate) 641 break; 642 case X86Local::MRMSrcMem: 643 // Operand 1 is a register operand in the Reg/Opcode field. 644 // Operand 2 is a memory operand (possibly SIB-extended) 645 // - In AVX, there is a register operand in the VEX.vvvv field here - 646 // Operand 3 (optional) is an immediate. 647 648 if (HasVEX_4VPrefix) 649 assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && 650 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 651 else 652 assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 && 653 "Unexpected number of operands for MRMSrcMemFrm"); 654 655 HANDLE_OPERAND(roRegister) 656 657 if (HasVEX_4VPrefix) 658 // FIXME: In AVX, the register below becomes the one encoded 659 // in ModRMVEX and the one above the one in the VEX.VVVV field 660 HANDLE_OPERAND(vvvvRegister) 661 662 HANDLE_OPERAND(memory) 663 HANDLE_OPTIONAL(immediate) 664 break; 665 case X86Local::MRM0r: 666 case X86Local::MRM1r: 667 case X86Local::MRM2r: 668 case X86Local::MRM3r: 669 case X86Local::MRM4r: 670 case X86Local::MRM5r: 671 case X86Local::MRM6r: 672 case X86Local::MRM7r: 673 // Operand 1 is a register operand in the R/M field. 674 // Operand 2 (optional) is an immediate or relocation. 675 if (HasVEX_4VPrefix) 676 assert(numPhysicalOperands <= 3 && 677 "Unexpected number of operands for MRMSrcMemFrm with VEX_4V"); 678 else 679 assert(numPhysicalOperands <= 2 && 680 "Unexpected number of operands for MRMnRFrm"); 681 if (HasVEX_4VPrefix) 682 HANDLE_OPERAND(vvvvRegister); 683 HANDLE_OPTIONAL(rmRegister) 684 HANDLE_OPTIONAL(relocation) 685 break; 686 case X86Local::MRM0m: 687 case X86Local::MRM1m: 688 case X86Local::MRM2m: 689 case X86Local::MRM3m: 690 case X86Local::MRM4m: 691 case X86Local::MRM5m: 692 case X86Local::MRM6m: 693 case X86Local::MRM7m: 694 // Operand 1 is a memory operand (possibly SIB-extended) 695 // Operand 2 (optional) is an immediate or relocation. 696 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && 697 "Unexpected number of operands for MRMnMFrm"); 698 HANDLE_OPERAND(memory) 699 HANDLE_OPTIONAL(relocation) 700 break; 701 case X86Local::RawFrmImm8: 702 // operand 1 is a 16-bit immediate 703 // operand 2 is an 8-bit immediate 704 assert(numPhysicalOperands == 2 && 705 "Unexpected number of operands for X86Local::RawFrmImm8"); 706 HANDLE_OPERAND(immediate) 707 HANDLE_OPERAND(immediate) 708 break; 709 case X86Local::RawFrmImm16: 710 // operand 1 is a 16-bit immediate 711 // operand 2 is a 16-bit immediate 712 HANDLE_OPERAND(immediate) 713 HANDLE_OPERAND(immediate) 714 break; 715 case X86Local::MRMInitReg: 716 // Ignored. 717 break; 718 } 719 720 #undef HANDLE_OPERAND 721 #undef HANDLE_OPTIONAL 722 } 723 724 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { 725 // Special cases where the LLVM tables are not complete 726 727 #define MAP(from, to) \ 728 case X86Local::MRM_##from: \ 729 filter = new ExactFilter(0x##from); \ 730 break; 731 732 OpcodeType opcodeType = (OpcodeType)-1; 733 734 ModRMFilter* filter = NULL; 735 uint8_t opcodeToSet = 0; 736 737 switch (Prefix) { 738 // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f 739 case X86Local::XD: 740 case X86Local::XS: 741 case X86Local::TB: 742 opcodeType = TWOBYTE; 743 744 switch (Opcode) { 745 default: 746 if (needsModRMForDecode(Form)) 747 filter = new ModFilter(isRegFormat(Form)); 748 else 749 filter = new DumbFilter(); 750 break; 751 #define EXTENSION_TABLE(n) case 0x##n: 752 TWO_BYTE_EXTENSION_TABLES 753 #undef EXTENSION_TABLE 754 switch (Form) { 755 default: 756 llvm_unreachable("Unhandled two-byte extended opcode"); 757 case X86Local::MRM0r: 758 case X86Local::MRM1r: 759 case X86Local::MRM2r: 760 case X86Local::MRM3r: 761 case X86Local::MRM4r: 762 case X86Local::MRM5r: 763 case X86Local::MRM6r: 764 case X86Local::MRM7r: 765 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 766 break; 767 case X86Local::MRM0m: 768 case X86Local::MRM1m: 769 case X86Local::MRM2m: 770 case X86Local::MRM3m: 771 case X86Local::MRM4m: 772 case X86Local::MRM5m: 773 case X86Local::MRM6m: 774 case X86Local::MRM7m: 775 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 776 break; 777 MRM_MAPPING 778 } // switch (Form) 779 break; 780 } // switch (Opcode) 781 opcodeToSet = Opcode; 782 break; 783 case X86Local::T8: 784 opcodeType = THREEBYTE_38; 785 if (needsModRMForDecode(Form)) 786 filter = new ModFilter(isRegFormat(Form)); 787 else 788 filter = new DumbFilter(); 789 opcodeToSet = Opcode; 790 break; 791 case X86Local::P_TA: 792 opcodeType = THREEBYTE_3A; 793 if (needsModRMForDecode(Form)) 794 filter = new ModFilter(isRegFormat(Form)); 795 else 796 filter = new DumbFilter(); 797 opcodeToSet = Opcode; 798 break; 799 case X86Local::A6: 800 opcodeType = THREEBYTE_A6; 801 if (needsModRMForDecode(Form)) 802 filter = new ModFilter(isRegFormat(Form)); 803 else 804 filter = new DumbFilter(); 805 opcodeToSet = Opcode; 806 break; 807 case X86Local::A7: 808 opcodeType = THREEBYTE_A7; 809 if (needsModRMForDecode(Form)) 810 filter = new ModFilter(isRegFormat(Form)); 811 else 812 filter = new DumbFilter(); 813 opcodeToSet = Opcode; 814 break; 815 case X86Local::D8: 816 case X86Local::D9: 817 case X86Local::DA: 818 case X86Local::DB: 819 case X86Local::DC: 820 case X86Local::DD: 821 case X86Local::DE: 822 case X86Local::DF: 823 assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode"); 824 opcodeType = ONEBYTE; 825 if (Form == X86Local::AddRegFrm) { 826 Spec->modifierType = MODIFIER_MODRM; 827 Spec->modifierBase = Opcode; 828 filter = new AddRegEscapeFilter(Opcode); 829 } else { 830 filter = new EscapeFilter(true, Opcode); 831 } 832 opcodeToSet = 0xd8 + (Prefix - X86Local::D8); 833 break; 834 default: 835 opcodeType = ONEBYTE; 836 switch (Opcode) { 837 #define EXTENSION_TABLE(n) case 0x##n: 838 ONE_BYTE_EXTENSION_TABLES 839 #undef EXTENSION_TABLE 840 switch (Form) { 841 default: 842 llvm_unreachable("Fell through the cracks of a single-byte " 843 "extended opcode"); 844 case X86Local::MRM0r: 845 case X86Local::MRM1r: 846 case X86Local::MRM2r: 847 case X86Local::MRM3r: 848 case X86Local::MRM4r: 849 case X86Local::MRM5r: 850 case X86Local::MRM6r: 851 case X86Local::MRM7r: 852 filter = new ExtendedFilter(true, Form - X86Local::MRM0r); 853 break; 854 case X86Local::MRM0m: 855 case X86Local::MRM1m: 856 case X86Local::MRM2m: 857 case X86Local::MRM3m: 858 case X86Local::MRM4m: 859 case X86Local::MRM5m: 860 case X86Local::MRM6m: 861 case X86Local::MRM7m: 862 filter = new ExtendedFilter(false, Form - X86Local::MRM0m); 863 break; 864 MRM_MAPPING 865 } // switch (Form) 866 break; 867 case 0xd8: 868 case 0xd9: 869 case 0xda: 870 case 0xdb: 871 case 0xdc: 872 case 0xdd: 873 case 0xde: 874 case 0xdf: 875 filter = new EscapeFilter(false, Form - X86Local::MRM0m); 876 break; 877 default: 878 if (needsModRMForDecode(Form)) 879 filter = new ModFilter(isRegFormat(Form)); 880 else 881 filter = new DumbFilter(); 882 break; 883 } // switch (Opcode) 884 opcodeToSet = Opcode; 885 } // switch (Prefix) 886 887 assert(opcodeType != (OpcodeType)-1 && 888 "Opcode type not set"); 889 assert(filter && "Filter not set"); 890 891 if (Form == X86Local::AddRegFrm) { 892 if(Spec->modifierType != MODIFIER_MODRM) { 893 assert(opcodeToSet < 0xf9 && 894 "Not enough room for all ADDREG_FRM operands"); 895 896 uint8_t currentOpcode; 897 898 for (currentOpcode = opcodeToSet; 899 currentOpcode < opcodeToSet + 8; 900 ++currentOpcode) 901 tables.setTableFields(opcodeType, 902 insnContext(), 903 currentOpcode, 904 *filter, 905 UID); 906 907 Spec->modifierType = MODIFIER_OPCODE; 908 Spec->modifierBase = opcodeToSet; 909 } else { 910 // modifierBase was set where MODIFIER_MODRM was set 911 tables.setTableFields(opcodeType, 912 insnContext(), 913 opcodeToSet, 914 *filter, 915 UID); 916 } 917 } else { 918 tables.setTableFields(opcodeType, 919 insnContext(), 920 opcodeToSet, 921 *filter, 922 UID); 923 924 Spec->modifierType = MODIFIER_NONE; 925 Spec->modifierBase = opcodeToSet; 926 } 927 928 delete filter; 929 930 #undef MAP 931 } 932 933 #define TYPE(str, type) if (s == str) return type; 934 OperandType RecognizableInstr::typeFromString(const std::string &s, 935 bool isSSE, 936 bool hasREX_WPrefix, 937 bool hasOpSizePrefix) { 938 if (isSSE) { 939 // For SSE instructions, we ignore the OpSize prefix and force operand 940 // sizes. 941 TYPE("GR16", TYPE_R16) 942 TYPE("GR32", TYPE_R32) 943 TYPE("GR64", TYPE_R64) 944 } 945 if(hasREX_WPrefix) { 946 // For instructions with a REX_W prefix, a declared 32-bit register encoding 947 // is special. 948 TYPE("GR32", TYPE_R32) 949 } 950 if(!hasOpSizePrefix) { 951 // For instructions without an OpSize prefix, a declared 16-bit register or 952 // immediate encoding is special. 953 TYPE("GR16", TYPE_R16) 954 TYPE("i16imm", TYPE_IMM16) 955 } 956 TYPE("i16mem", TYPE_Mv) 957 TYPE("i16imm", TYPE_IMMv) 958 TYPE("i16i8imm", TYPE_IMMv) 959 TYPE("GR16", TYPE_Rv) 960 TYPE("i32mem", TYPE_Mv) 961 TYPE("i32imm", TYPE_IMMv) 962 TYPE("i32i8imm", TYPE_IMM32) 963 TYPE("GR32", TYPE_Rv) 964 TYPE("i64mem", TYPE_Mv) 965 TYPE("i64i32imm", TYPE_IMM64) 966 TYPE("i64i8imm", TYPE_IMM64) 967 TYPE("GR64", TYPE_R64) 968 TYPE("i8mem", TYPE_M8) 969 TYPE("i8imm", TYPE_IMM8) 970 TYPE("GR8", TYPE_R8) 971 TYPE("VR128", TYPE_XMM128) 972 TYPE("f128mem", TYPE_M128) 973 TYPE("f256mem", TYPE_M256) 974 TYPE("FR64", TYPE_XMM64) 975 TYPE("f64mem", TYPE_M64FP) 976 TYPE("sdmem", TYPE_M64FP) 977 TYPE("FR32", TYPE_XMM32) 978 TYPE("f32mem", TYPE_M32FP) 979 TYPE("ssmem", TYPE_M32FP) 980 TYPE("RST", TYPE_ST) 981 TYPE("i128mem", TYPE_M128) 982 TYPE("i256mem", TYPE_M256) 983 TYPE("i64i32imm_pcrel", TYPE_REL64) 984 TYPE("i16imm_pcrel", TYPE_REL16) 985 TYPE("i32imm_pcrel", TYPE_REL32) 986 TYPE("SSECC", TYPE_IMM3) 987 TYPE("brtarget", TYPE_RELv) 988 TYPE("uncondbrtarget", TYPE_RELv) 989 TYPE("brtarget8", TYPE_REL8) 990 TYPE("f80mem", TYPE_M80FP) 991 TYPE("lea32mem", TYPE_LEA) 992 TYPE("lea64_32mem", TYPE_LEA) 993 TYPE("lea64mem", TYPE_LEA) 994 TYPE("VR64", TYPE_MM64) 995 TYPE("i64imm", TYPE_IMMv) 996 TYPE("opaque32mem", TYPE_M1616) 997 TYPE("opaque48mem", TYPE_M1632) 998 TYPE("opaque80mem", TYPE_M1664) 999 TYPE("opaque512mem", TYPE_M512) 1000 TYPE("SEGMENT_REG", TYPE_SEGMENTREG) 1001 TYPE("DEBUG_REG", TYPE_DEBUGREG) 1002 TYPE("CONTROL_REG", TYPE_CONTROLREG) 1003 TYPE("offset8", TYPE_MOFFS8) 1004 TYPE("offset16", TYPE_MOFFS16) 1005 TYPE("offset32", TYPE_MOFFS32) 1006 TYPE("offset64", TYPE_MOFFS64) 1007 TYPE("VR256", TYPE_XMM256) 1008 errs() << "Unhandled type string " << s << "\n"; 1009 llvm_unreachable("Unhandled type string"); 1010 } 1011 #undef TYPE 1012 1013 #define ENCODING(str, encoding) if (s == str) return encoding; 1014 OperandEncoding RecognizableInstr::immediateEncodingFromString 1015 (const std::string &s, 1016 bool hasOpSizePrefix) { 1017 if(!hasOpSizePrefix) { 1018 // For instructions without an OpSize prefix, a declared 16-bit register or 1019 // immediate encoding is special. 1020 ENCODING("i16imm", ENCODING_IW) 1021 } 1022 ENCODING("i32i8imm", ENCODING_IB) 1023 ENCODING("SSECC", ENCODING_IB) 1024 ENCODING("i16imm", ENCODING_Iv) 1025 ENCODING("i16i8imm", ENCODING_IB) 1026 ENCODING("i32imm", ENCODING_Iv) 1027 ENCODING("i64i32imm", ENCODING_ID) 1028 ENCODING("i64i8imm", ENCODING_IB) 1029 ENCODING("i8imm", ENCODING_IB) 1030 // This is not a typo. Instructions like BLENDVPD put 1031 // register IDs in 8-bit immediates nowadays. 1032 ENCODING("VR256", ENCODING_IB) 1033 ENCODING("VR128", ENCODING_IB) 1034 errs() << "Unhandled immediate encoding " << s << "\n"; 1035 llvm_unreachable("Unhandled immediate encoding"); 1036 } 1037 1038 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString 1039 (const std::string &s, 1040 bool hasOpSizePrefix) { 1041 ENCODING("GR16", ENCODING_RM) 1042 ENCODING("GR32", ENCODING_RM) 1043 ENCODING("GR64", ENCODING_RM) 1044 ENCODING("GR8", ENCODING_RM) 1045 ENCODING("VR128", ENCODING_RM) 1046 ENCODING("FR64", ENCODING_RM) 1047 ENCODING("FR32", ENCODING_RM) 1048 ENCODING("VR64", ENCODING_RM) 1049 ENCODING("VR256", ENCODING_RM) 1050 errs() << "Unhandled R/M register encoding " << s << "\n"; 1051 llvm_unreachable("Unhandled R/M register encoding"); 1052 } 1053 1054 OperandEncoding RecognizableInstr::roRegisterEncodingFromString 1055 (const std::string &s, 1056 bool hasOpSizePrefix) { 1057 ENCODING("GR16", ENCODING_REG) 1058 ENCODING("GR32", ENCODING_REG) 1059 ENCODING("GR64", ENCODING_REG) 1060 ENCODING("GR8", ENCODING_REG) 1061 ENCODING("VR128", ENCODING_REG) 1062 ENCODING("FR64", ENCODING_REG) 1063 ENCODING("FR32", ENCODING_REG) 1064 ENCODING("VR64", ENCODING_REG) 1065 ENCODING("SEGMENT_REG", ENCODING_REG) 1066 ENCODING("DEBUG_REG", ENCODING_REG) 1067 ENCODING("CONTROL_REG", ENCODING_REG) 1068 ENCODING("VR256", ENCODING_REG) 1069 errs() << "Unhandled reg/opcode register encoding " << s << "\n"; 1070 llvm_unreachable("Unhandled reg/opcode register encoding"); 1071 } 1072 1073 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString 1074 (const std::string &s, 1075 bool hasOpSizePrefix) { 1076 ENCODING("FR32", ENCODING_VVVV) 1077 ENCODING("FR64", ENCODING_VVVV) 1078 ENCODING("VR128", ENCODING_VVVV) 1079 ENCODING("VR256", ENCODING_VVVV) 1080 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; 1081 llvm_unreachable("Unhandled VEX.vvvv register encoding"); 1082 } 1083 1084 OperandEncoding RecognizableInstr::memoryEncodingFromString 1085 (const std::string &s, 1086 bool hasOpSizePrefix) { 1087 ENCODING("i16mem", ENCODING_RM) 1088 ENCODING("i32mem", ENCODING_RM) 1089 ENCODING("i64mem", ENCODING_RM) 1090 ENCODING("i8mem", ENCODING_RM) 1091 ENCODING("ssmem", ENCODING_RM) 1092 ENCODING("sdmem", ENCODING_RM) 1093 ENCODING("f128mem", ENCODING_RM) 1094 ENCODING("f256mem", ENCODING_RM) 1095 ENCODING("f64mem", ENCODING_RM) 1096 ENCODING("f32mem", ENCODING_RM) 1097 ENCODING("i128mem", ENCODING_RM) 1098 ENCODING("i256mem", ENCODING_RM) 1099 ENCODING("f80mem", ENCODING_RM) 1100 ENCODING("lea32mem", ENCODING_RM) 1101 ENCODING("lea64_32mem", ENCODING_RM) 1102 ENCODING("lea64mem", ENCODING_RM) 1103 ENCODING("opaque32mem", ENCODING_RM) 1104 ENCODING("opaque48mem", ENCODING_RM) 1105 ENCODING("opaque80mem", ENCODING_RM) 1106 ENCODING("opaque512mem", ENCODING_RM) 1107 errs() << "Unhandled memory encoding " << s << "\n"; 1108 llvm_unreachable("Unhandled memory encoding"); 1109 } 1110 1111 OperandEncoding RecognizableInstr::relocationEncodingFromString 1112 (const std::string &s, 1113 bool hasOpSizePrefix) { 1114 if(!hasOpSizePrefix) { 1115 // For instructions without an OpSize prefix, a declared 16-bit register or 1116 // immediate encoding is special. 1117 ENCODING("i16imm", ENCODING_IW) 1118 } 1119 ENCODING("i16imm", ENCODING_Iv) 1120 ENCODING("i16i8imm", ENCODING_IB) 1121 ENCODING("i32imm", ENCODING_Iv) 1122 ENCODING("i32i8imm", ENCODING_IB) 1123 ENCODING("i64i32imm", ENCODING_ID) 1124 ENCODING("i64i8imm", ENCODING_IB) 1125 ENCODING("i8imm", ENCODING_IB) 1126 ENCODING("i64i32imm_pcrel", ENCODING_ID) 1127 ENCODING("i16imm_pcrel", ENCODING_IW) 1128 ENCODING("i32imm_pcrel", ENCODING_ID) 1129 ENCODING("brtarget", ENCODING_Iv) 1130 ENCODING("brtarget8", ENCODING_IB) 1131 ENCODING("i64imm", ENCODING_IO) 1132 ENCODING("offset8", ENCODING_Ia) 1133 ENCODING("offset16", ENCODING_Ia) 1134 ENCODING("offset32", ENCODING_Ia) 1135 ENCODING("offset64", ENCODING_Ia) 1136 errs() << "Unhandled relocation encoding " << s << "\n"; 1137 llvm_unreachable("Unhandled relocation encoding"); 1138 } 1139 1140 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString 1141 (const std::string &s, 1142 bool hasOpSizePrefix) { 1143 ENCODING("RST", ENCODING_I) 1144 ENCODING("GR32", ENCODING_Rv) 1145 ENCODING("GR64", ENCODING_RO) 1146 ENCODING("GR16", ENCODING_Rv) 1147 ENCODING("GR8", ENCODING_RB) 1148 errs() << "Unhandled opcode modifier encoding " << s << "\n"; 1149 llvm_unreachable("Unhandled opcode modifier encoding"); 1150 } 1151 #undef ENCODING 1152