1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 // X86DisassemblerEmitter.h.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86DisassemblerTables.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Record.h"
22 #include <string>
23
24 using namespace llvm;
25 using namespace X86Disassembler;
26
getMnemonic(const CodeGenInstruction * I,unsigned Variant)27 std::string X86Disassembler::getMnemonic(const CodeGenInstruction *I, unsigned Variant) {
28 std::string AsmString = I->FlattenAsmStringVariants(I->AsmString, Variant);
29 StringRef Mnemonic(AsmString);
30 // Extract a mnemonic assuming it's separated by \t
31 Mnemonic = Mnemonic.take_until([](char C) { return C == '\t'; });
32
33 // Special case: CMOVCC, JCC, SETCC have "${cond}" in mnemonic.
34 // Replace it with "CC" in-place.
35 size_t CondPos = Mnemonic.find("${cond}");
36 if (CondPos != StringRef::npos)
37 Mnemonic = AsmString.replace(CondPos, StringRef::npos, "CC");
38 return Mnemonic.upper();
39 }
40
isRegisterOperand(const Record * Rec)41 bool X86Disassembler::isRegisterOperand(const Record *Rec) {
42 return Rec->isSubClassOf("RegisterClass") ||
43 Rec->isSubClassOf("RegisterOperand");
44 }
45
isMemoryOperand(const Record * Rec)46 bool X86Disassembler::isMemoryOperand(const Record *Rec) {
47 return Rec->isSubClassOf("Operand") &&
48 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
49 }
50
isImmediateOperand(const Record * Rec)51 bool X86Disassembler::isImmediateOperand(const Record *Rec) {
52 return Rec->isSubClassOf("Operand") &&
53 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
54 }
55
getRegOperandSize(const Record * RegRec)56 unsigned X86Disassembler::getRegOperandSize(const Record *RegRec) {
57 if (RegRec->isSubClassOf("RegisterClass"))
58 return RegRec->getValueAsInt("Alignment");
59 if (RegRec->isSubClassOf("RegisterOperand"))
60 return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment");
61
62 llvm_unreachable("Register operand's size not known!");
63 }
64
getMemOperandSize(const Record * MemRec)65 unsigned X86Disassembler::getMemOperandSize(const Record *MemRec) {
66 if (MemRec->isSubClassOf("X86MemOperand"))
67 return MemRec->getValueAsInt("Size");
68
69 llvm_unreachable("Memory operand's size not known!");
70 }
71
72 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
73 /// Useful for switch statements and the like.
74 ///
75 /// @param init - A reference to the BitsInit to be decoded.
76 /// @return - The field, with the first bit in the BitsInit as the lowest
77 /// order bit.
byteFromBitsInit(BitsInit & init)78 static uint8_t byteFromBitsInit(BitsInit &init) {
79 int width = init.getNumBits();
80
81 assert(width <= 8 && "Field is too large for uint8_t!");
82
83 int index;
84 uint8_t mask = 0x01;
85
86 uint8_t ret = 0;
87
88 for (index = 0; index < width; index++) {
89 if (cast<BitInit>(init.getBit(index))->getValue())
90 ret |= mask;
91
92 mask <<= 1;
93 }
94
95 return ret;
96 }
97
98 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
99 /// name of the field.
100 ///
101 /// @param rec - The record from which to extract the value.
102 /// @param name - The name of the field in the record.
103 /// @return - The field, as translated by byteFromBitsInit().
byteFromRec(const Record * rec,StringRef name)104 static uint8_t byteFromRec(const Record* rec, StringRef name) {
105 BitsInit* bits = rec->getValueAsBitsInit(name);
106 return byteFromBitsInit(*bits);
107 }
108
RecognizableInstrBase(const CodeGenInstruction & insn)109 RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction &insn) {
110 const Record *Rec = insn.TheDef;
111 assert(Rec->isSubClassOf("X86Inst") && "Not a X86 Instruction");
112 OpPrefix = byteFromRec(Rec, "OpPrefixBits");
113 OpMap = byteFromRec(Rec, "OpMapBits");
114 Opcode = byteFromRec(Rec, "Opcode");
115 Form = byteFromRec(Rec, "FormBits");
116 Encoding = byteFromRec(Rec, "OpEncBits");
117 OpSize = byteFromRec(Rec, "OpSizeBits");
118 AdSize = byteFromRec(Rec, "AdSizeBits");
119 HasREX_W = Rec->getValueAsBit("hasREX_W");
120 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
121 HasVEX_W = Rec->getValueAsBit("HasVEX_W");
122 IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W");
123 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
124 HasEVEX_L2 = Rec->getValueAsBit("hasEVEX_L2");
125 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
126 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
127 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
128 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
129 IsAsmParserOnly = Rec->getValueAsBit("isAsmParserOnly");
130 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
131 CD8_Scale = byteFromRec(Rec, "CD8_Scale");
132 HasVEX_L = Rec->getValueAsBit("hasVEX_L");
133
134 EncodeRC = HasEVEX_B &&
135 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
136 }
137
shouldBeEmitted() const138 bool RecognizableInstrBase::shouldBeEmitted() const {
139 return Form != X86Local::Pseudo && (!IsCodeGenOnly || ForceDisassemble) &&
140 !IsAsmParserOnly;
141 }
142
RecognizableInstr(DisassemblerTables & tables,const CodeGenInstruction & insn,InstrUID uid)143 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
144 const CodeGenInstruction &insn,
145 InstrUID uid)
146 : RecognizableInstrBase(insn), Rec(insn.TheDef), Name(Rec->getName().str()),
147 Is32Bit(false), Is64Bit(false), Operands(&insn.Operands.OperandList),
148 UID(uid), Spec(&tables.specForUID(uid)) {
149 // Check for 64-bit inst which does not require REX
150 // FIXME: Is there some better way to check for In64BitMode?
151 std::vector<Record *> Predicates = Rec->getValueAsListOfDefs("Predicates");
152 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
153 if (Predicates[i]->getName().contains("Not64Bit") ||
154 Predicates[i]->getName().contains("In32Bit")) {
155 Is32Bit = true;
156 break;
157 }
158 if (Predicates[i]->getName().contains("In64Bit")) {
159 Is64Bit = true;
160 break;
161 }
162 }
163 }
164
processInstr(DisassemblerTables & tables,const CodeGenInstruction & insn,InstrUID uid)165 void RecognizableInstr::processInstr(DisassemblerTables &tables,
166 const CodeGenInstruction &insn,
167 InstrUID uid) {
168 if (!insn.TheDef->isSubClassOf("X86Inst"))
169 return;
170 RecognizableInstr recogInstr(tables, insn, uid);
171
172 if (!recogInstr.shouldBeEmitted())
173 return;
174 recogInstr.emitInstructionSpecifier();
175 recogInstr.emitDecodePath(tables);
176 }
177
178 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
179 (HasEVEX_K && HasEVEX_B ? n##_K_B : \
180 (HasEVEX_KZ ? n##_KZ : \
181 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
182
insnContext() const183 InstructionContext RecognizableInstr::insnContext() const {
184 InstructionContext insnContext;
185
186 if (Encoding == X86Local::EVEX) {
187 if (HasVEX_L && HasEVEX_L2) {
188 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
189 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
190 }
191 // VEX_L & VEX_W
192 if (!EncodeRC && HasVEX_L && HasVEX_W) {
193 if (OpPrefix == X86Local::PD)
194 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
195 else if (OpPrefix == X86Local::XS)
196 insnContext = EVEX_KB(IC_EVEX_L_W_XS);
197 else if (OpPrefix == X86Local::XD)
198 insnContext = EVEX_KB(IC_EVEX_L_W_XD);
199 else if (OpPrefix == X86Local::PS)
200 insnContext = EVEX_KB(IC_EVEX_L_W);
201 else {
202 errs() << "Instruction does not use a prefix: " << Name << "\n";
203 llvm_unreachable("Invalid prefix");
204 }
205 } else if (!EncodeRC && HasVEX_L) {
206 // VEX_L
207 if (OpPrefix == X86Local::PD)
208 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
209 else if (OpPrefix == X86Local::XS)
210 insnContext = EVEX_KB(IC_EVEX_L_XS);
211 else if (OpPrefix == X86Local::XD)
212 insnContext = EVEX_KB(IC_EVEX_L_XD);
213 else if (OpPrefix == X86Local::PS)
214 insnContext = EVEX_KB(IC_EVEX_L);
215 else {
216 errs() << "Instruction does not use a prefix: " << Name << "\n";
217 llvm_unreachable("Invalid prefix");
218 }
219 } else if (!EncodeRC && HasEVEX_L2 && HasVEX_W) {
220 // EVEX_L2 & VEX_W
221 if (OpPrefix == X86Local::PD)
222 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
223 else if (OpPrefix == X86Local::XS)
224 insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
225 else if (OpPrefix == X86Local::XD)
226 insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
227 else if (OpPrefix == X86Local::PS)
228 insnContext = EVEX_KB(IC_EVEX_L2_W);
229 else {
230 errs() << "Instruction does not use a prefix: " << Name << "\n";
231 llvm_unreachable("Invalid prefix");
232 }
233 } else if (!EncodeRC && HasEVEX_L2) {
234 // EVEX_L2
235 if (OpPrefix == X86Local::PD)
236 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
237 else if (OpPrefix == X86Local::XD)
238 insnContext = EVEX_KB(IC_EVEX_L2_XD);
239 else if (OpPrefix == X86Local::XS)
240 insnContext = EVEX_KB(IC_EVEX_L2_XS);
241 else if (OpPrefix == X86Local::PS)
242 insnContext = EVEX_KB(IC_EVEX_L2);
243 else {
244 errs() << "Instruction does not use a prefix: " << Name << "\n";
245 llvm_unreachable("Invalid prefix");
246 }
247 }
248 else if (HasVEX_W) {
249 // VEX_W
250 if (OpPrefix == X86Local::PD)
251 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
252 else if (OpPrefix == X86Local::XS)
253 insnContext = EVEX_KB(IC_EVEX_W_XS);
254 else if (OpPrefix == X86Local::XD)
255 insnContext = EVEX_KB(IC_EVEX_W_XD);
256 else if (OpPrefix == X86Local::PS)
257 insnContext = EVEX_KB(IC_EVEX_W);
258 else {
259 errs() << "Instruction does not use a prefix: " << Name << "\n";
260 llvm_unreachable("Invalid prefix");
261 }
262 }
263 // No L, no W
264 else if (OpPrefix == X86Local::PD)
265 insnContext = EVEX_KB(IC_EVEX_OPSIZE);
266 else if (OpPrefix == X86Local::XD)
267 insnContext = EVEX_KB(IC_EVEX_XD);
268 else if (OpPrefix == X86Local::XS)
269 insnContext = EVEX_KB(IC_EVEX_XS);
270 else if (OpPrefix == X86Local::PS)
271 insnContext = EVEX_KB(IC_EVEX);
272 else {
273 errs() << "Instruction does not use a prefix: " << Name << "\n";
274 llvm_unreachable("Invalid prefix");
275 }
276 /// eof EVEX
277 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
278 if (HasVEX_L && HasVEX_W) {
279 if (OpPrefix == X86Local::PD)
280 insnContext = IC_VEX_L_W_OPSIZE;
281 else if (OpPrefix == X86Local::XS)
282 insnContext = IC_VEX_L_W_XS;
283 else if (OpPrefix == X86Local::XD)
284 insnContext = IC_VEX_L_W_XD;
285 else if (OpPrefix == X86Local::PS)
286 insnContext = IC_VEX_L_W;
287 else {
288 errs() << "Instruction does not use a prefix: " << Name << "\n";
289 llvm_unreachable("Invalid prefix");
290 }
291 } else if (OpPrefix == X86Local::PD && HasVEX_L)
292 insnContext = IC_VEX_L_OPSIZE;
293 else if (OpPrefix == X86Local::PD && HasVEX_W)
294 insnContext = IC_VEX_W_OPSIZE;
295 else if (OpPrefix == X86Local::PD)
296 insnContext = IC_VEX_OPSIZE;
297 else if (HasVEX_L && OpPrefix == X86Local::XS)
298 insnContext = IC_VEX_L_XS;
299 else if (HasVEX_L && OpPrefix == X86Local::XD)
300 insnContext = IC_VEX_L_XD;
301 else if (HasVEX_W && OpPrefix == X86Local::XS)
302 insnContext = IC_VEX_W_XS;
303 else if (HasVEX_W && OpPrefix == X86Local::XD)
304 insnContext = IC_VEX_W_XD;
305 else if (HasVEX_W && OpPrefix == X86Local::PS)
306 insnContext = IC_VEX_W;
307 else if (HasVEX_L && OpPrefix == X86Local::PS)
308 insnContext = IC_VEX_L;
309 else if (OpPrefix == X86Local::XD)
310 insnContext = IC_VEX_XD;
311 else if (OpPrefix == X86Local::XS)
312 insnContext = IC_VEX_XS;
313 else if (OpPrefix == X86Local::PS)
314 insnContext = IC_VEX;
315 else {
316 errs() << "Instruction does not use a prefix: " << Name << "\n";
317 llvm_unreachable("Invalid prefix");
318 }
319 } else if (Is64Bit || HasREX_W || AdSize == X86Local::AdSize64) {
320 if (HasREX_W && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
321 insnContext = IC_64BIT_REXW_OPSIZE;
322 else if (HasREX_W && AdSize == X86Local::AdSize32)
323 insnContext = IC_64BIT_REXW_ADSIZE;
324 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
325 insnContext = IC_64BIT_XD_OPSIZE;
326 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
327 insnContext = IC_64BIT_XS_OPSIZE;
328 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
329 insnContext = IC_64BIT_OPSIZE_ADSIZE;
330 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
331 insnContext = IC_64BIT_OPSIZE_ADSIZE;
332 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
333 insnContext = IC_64BIT_OPSIZE;
334 else if (AdSize == X86Local::AdSize32)
335 insnContext = IC_64BIT_ADSIZE;
336 else if (HasREX_W && OpPrefix == X86Local::XS)
337 insnContext = IC_64BIT_REXW_XS;
338 else if (HasREX_W && OpPrefix == X86Local::XD)
339 insnContext = IC_64BIT_REXW_XD;
340 else if (OpPrefix == X86Local::XD)
341 insnContext = IC_64BIT_XD;
342 else if (OpPrefix == X86Local::XS)
343 insnContext = IC_64BIT_XS;
344 else if (HasREX_W)
345 insnContext = IC_64BIT_REXW;
346 else
347 insnContext = IC_64BIT;
348 } else {
349 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
350 insnContext = IC_XD_OPSIZE;
351 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
352 insnContext = IC_XS_OPSIZE;
353 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
354 insnContext = IC_XD_ADSIZE;
355 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
356 insnContext = IC_XS_ADSIZE;
357 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
358 insnContext = IC_OPSIZE_ADSIZE;
359 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
360 insnContext = IC_OPSIZE_ADSIZE;
361 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
362 insnContext = IC_OPSIZE;
363 else if (AdSize == X86Local::AdSize16)
364 insnContext = IC_ADSIZE;
365 else if (OpPrefix == X86Local::XD)
366 insnContext = IC_XD;
367 else if (OpPrefix == X86Local::XS)
368 insnContext = IC_XS;
369 else
370 insnContext = IC;
371 }
372
373 return insnContext;
374 }
375
adjustOperandEncoding(OperandEncoding & encoding)376 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
377 // The scaling factor for AVX512 compressed displacement encoding is an
378 // instruction attribute. Adjust the ModRM encoding type to include the
379 // scale for compressed displacement.
380 if ((encoding != ENCODING_RM &&
381 encoding != ENCODING_VSIB &&
382 encoding != ENCODING_SIB) ||CD8_Scale == 0)
383 return;
384 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
385 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
386 (encoding == ENCODING_SIB) ||
387 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
388 "Invalid CDisp scaling");
389 }
390
handleOperand(bool optional,unsigned & operandIndex,unsigned & physicalOperandIndex,unsigned numPhysicalOperands,const unsigned * operandMapping,OperandEncoding (* encodingFromString)(const std::string &,uint8_t OpSize))391 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
392 unsigned &physicalOperandIndex,
393 unsigned numPhysicalOperands,
394 const unsigned *operandMapping,
395 OperandEncoding (*encodingFromString)
396 (const std::string&,
397 uint8_t OpSize)) {
398 if (optional) {
399 if (physicalOperandIndex >= numPhysicalOperands)
400 return;
401 } else {
402 assert(physicalOperandIndex < numPhysicalOperands);
403 }
404
405 while (operandMapping[operandIndex] != operandIndex) {
406 Spec->operands[operandIndex].encoding = ENCODING_DUP;
407 Spec->operands[operandIndex].type =
408 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
409 ++operandIndex;
410 }
411
412 StringRef typeName = (*Operands)[operandIndex].Rec->getName();
413
414 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
415 // Adjust the encoding type for an operand based on the instruction.
416 adjustOperandEncoding(encoding);
417 Spec->operands[operandIndex].encoding = encoding;
418 Spec->operands[operandIndex].type =
419 typeFromString(std::string(typeName), HasREX_W, OpSize);
420
421 ++operandIndex;
422 ++physicalOperandIndex;
423 }
424
emitInstructionSpecifier()425 void RecognizableInstr::emitInstructionSpecifier() {
426 Spec->name = Name;
427
428 Spec->insnContext = insnContext();
429
430 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
431
432 unsigned numOperands = OperandList.size();
433 unsigned numPhysicalOperands = 0;
434
435 // operandMapping maps from operands in OperandList to their originals.
436 // If operandMapping[i] != i, then the entry is a duplicate.
437 unsigned operandMapping[X86_MAX_OPERANDS];
438 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
439
440 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
441 if (!OperandList[operandIndex].Constraints.empty()) {
442 const CGIOperandList::ConstraintInfo &Constraint =
443 OperandList[operandIndex].Constraints[0];
444 if (Constraint.isTied()) {
445 operandMapping[operandIndex] = operandIndex;
446 operandMapping[Constraint.getTiedOperand()] = operandIndex;
447 } else {
448 ++numPhysicalOperands;
449 operandMapping[operandIndex] = operandIndex;
450 }
451 } else {
452 ++numPhysicalOperands;
453 operandMapping[operandIndex] = operandIndex;
454 }
455 }
456
457 #define HANDLE_OPERAND(class) \
458 handleOperand(false, \
459 operandIndex, \
460 physicalOperandIndex, \
461 numPhysicalOperands, \
462 operandMapping, \
463 class##EncodingFromString);
464
465 #define HANDLE_OPTIONAL(class) \
466 handleOperand(true, \
467 operandIndex, \
468 physicalOperandIndex, \
469 numPhysicalOperands, \
470 operandMapping, \
471 class##EncodingFromString);
472
473 // operandIndex should always be < numOperands
474 unsigned operandIndex = 0;
475 // physicalOperandIndex should always be < numPhysicalOperands
476 unsigned physicalOperandIndex = 0;
477
478 #ifndef NDEBUG
479 // Given the set of prefix bits, how many additional operands does the
480 // instruction have?
481 unsigned additionalOperands = 0;
482 if (HasVEX_4V)
483 ++additionalOperands;
484 if (HasEVEX_K)
485 ++additionalOperands;
486 #endif
487
488 switch (Form) {
489 default: llvm_unreachable("Unhandled form");
490 case X86Local::PrefixByte:
491 return;
492 case X86Local::RawFrmSrc:
493 HANDLE_OPERAND(relocation);
494 return;
495 case X86Local::RawFrmDst:
496 HANDLE_OPERAND(relocation);
497 return;
498 case X86Local::RawFrmDstSrc:
499 HANDLE_OPERAND(relocation);
500 HANDLE_OPERAND(relocation);
501 return;
502 case X86Local::RawFrm:
503 // Operand 1 (optional) is an address or immediate.
504 assert(numPhysicalOperands <= 1 &&
505 "Unexpected number of operands for RawFrm");
506 HANDLE_OPTIONAL(relocation)
507 break;
508 case X86Local::RawFrmMemOffs:
509 // Operand 1 is an address.
510 HANDLE_OPERAND(relocation);
511 break;
512 case X86Local::AddRegFrm:
513 // Operand 1 is added to the opcode.
514 // Operand 2 (optional) is an address.
515 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
516 "Unexpected number of operands for AddRegFrm");
517 HANDLE_OPERAND(opcodeModifier)
518 HANDLE_OPTIONAL(relocation)
519 break;
520 case X86Local::AddCCFrm:
521 // Operand 1 (optional) is an address or immediate.
522 assert(numPhysicalOperands == 2 &&
523 "Unexpected number of operands for AddCCFrm");
524 HANDLE_OPERAND(relocation)
525 HANDLE_OPERAND(opcodeModifier)
526 break;
527 case X86Local::MRMDestReg:
528 // Operand 1 is a register operand in the R/M field.
529 // - In AVX512 there may be a mask operand here -
530 // Operand 2 is a register operand in the Reg/Opcode field.
531 // - In AVX, there is a register operand in the VEX.vvvv field here -
532 // Operand 3 (optional) is an immediate.
533 assert(numPhysicalOperands >= 2 + additionalOperands &&
534 numPhysicalOperands <= 3 + additionalOperands &&
535 "Unexpected number of operands for MRMDestRegFrm");
536
537 HANDLE_OPERAND(rmRegister)
538 if (HasEVEX_K)
539 HANDLE_OPERAND(writemaskRegister)
540
541 if (HasVEX_4V)
542 // FIXME: In AVX, the register below becomes the one encoded
543 // in ModRMVEX and the one above the one in the VEX.VVVV field
544 HANDLE_OPERAND(vvvvRegister)
545
546 HANDLE_OPERAND(roRegister)
547 HANDLE_OPTIONAL(immediate)
548 break;
549 case X86Local::MRMDestMem:
550 case X86Local::MRMDestMemFSIB:
551 // Operand 1 is a memory operand (possibly SIB-extended)
552 // Operand 2 is a register operand in the Reg/Opcode field.
553 // - In AVX, there is a register operand in the VEX.vvvv field here -
554 // Operand 3 (optional) is an immediate.
555 assert(numPhysicalOperands >= 2 + additionalOperands &&
556 numPhysicalOperands <= 3 + additionalOperands &&
557 "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
558
559 HANDLE_OPERAND(memory)
560
561 if (HasEVEX_K)
562 HANDLE_OPERAND(writemaskRegister)
563
564 if (HasVEX_4V)
565 // FIXME: In AVX, the register below becomes the one encoded
566 // in ModRMVEX and the one above the one in the VEX.VVVV field
567 HANDLE_OPERAND(vvvvRegister)
568
569 HANDLE_OPERAND(roRegister)
570 HANDLE_OPTIONAL(immediate)
571 break;
572 case X86Local::MRMSrcReg:
573 // Operand 1 is a register operand in the Reg/Opcode field.
574 // Operand 2 is a register operand in the R/M field.
575 // - In AVX, there is a register operand in the VEX.vvvv field here -
576 // Operand 3 (optional) is an immediate.
577 // Operand 4 (optional) is an immediate.
578
579 assert(numPhysicalOperands >= 2 + additionalOperands &&
580 numPhysicalOperands <= 4 + additionalOperands &&
581 "Unexpected number of operands for MRMSrcRegFrm");
582
583 HANDLE_OPERAND(roRegister)
584
585 if (HasEVEX_K)
586 HANDLE_OPERAND(writemaskRegister)
587
588 if (HasVEX_4V)
589 // FIXME: In AVX, the register below becomes the one encoded
590 // in ModRMVEX and the one above the one in the VEX.VVVV field
591 HANDLE_OPERAND(vvvvRegister)
592
593 HANDLE_OPERAND(rmRegister)
594 HANDLE_OPTIONAL(immediate)
595 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
596 break;
597 case X86Local::MRMSrcReg4VOp3:
598 assert(numPhysicalOperands == 3 &&
599 "Unexpected number of operands for MRMSrcReg4VOp3Frm");
600 HANDLE_OPERAND(roRegister)
601 HANDLE_OPERAND(rmRegister)
602 HANDLE_OPERAND(vvvvRegister)
603 break;
604 case X86Local::MRMSrcRegOp4:
605 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
606 "Unexpected number of operands for MRMSrcRegOp4Frm");
607 HANDLE_OPERAND(roRegister)
608 HANDLE_OPERAND(vvvvRegister)
609 HANDLE_OPERAND(immediate) // Register in imm[7:4]
610 HANDLE_OPERAND(rmRegister)
611 HANDLE_OPTIONAL(immediate)
612 break;
613 case X86Local::MRMSrcRegCC:
614 assert(numPhysicalOperands == 3 &&
615 "Unexpected number of operands for MRMSrcRegCC");
616 HANDLE_OPERAND(roRegister)
617 HANDLE_OPERAND(rmRegister)
618 HANDLE_OPERAND(opcodeModifier)
619 break;
620 case X86Local::MRMSrcMem:
621 case X86Local::MRMSrcMemFSIB:
622 // Operand 1 is a register operand in the Reg/Opcode field.
623 // Operand 2 is a memory operand (possibly SIB-extended)
624 // - In AVX, there is a register operand in the VEX.vvvv field here -
625 // Operand 3 (optional) is an immediate.
626
627 assert(numPhysicalOperands >= 2 + additionalOperands &&
628 numPhysicalOperands <= 4 + additionalOperands &&
629 "Unexpected number of operands for MRMSrcMemFrm");
630
631 HANDLE_OPERAND(roRegister)
632
633 if (HasEVEX_K)
634 HANDLE_OPERAND(writemaskRegister)
635
636 if (HasVEX_4V)
637 // FIXME: In AVX, the register below becomes the one encoded
638 // in ModRMVEX and the one above the one in the VEX.VVVV field
639 HANDLE_OPERAND(vvvvRegister)
640
641 HANDLE_OPERAND(memory)
642 HANDLE_OPTIONAL(immediate)
643 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
644 break;
645 case X86Local::MRMSrcMem4VOp3:
646 assert(numPhysicalOperands == 3 &&
647 "Unexpected number of operands for MRMSrcMem4VOp3Frm");
648 HANDLE_OPERAND(roRegister)
649 HANDLE_OPERAND(memory)
650 HANDLE_OPERAND(vvvvRegister)
651 break;
652 case X86Local::MRMSrcMemOp4:
653 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
654 "Unexpected number of operands for MRMSrcMemOp4Frm");
655 HANDLE_OPERAND(roRegister)
656 HANDLE_OPERAND(vvvvRegister)
657 HANDLE_OPERAND(immediate) // Register in imm[7:4]
658 HANDLE_OPERAND(memory)
659 HANDLE_OPTIONAL(immediate)
660 break;
661 case X86Local::MRMSrcMemCC:
662 assert(numPhysicalOperands == 3 &&
663 "Unexpected number of operands for MRMSrcMemCC");
664 HANDLE_OPERAND(roRegister)
665 HANDLE_OPERAND(memory)
666 HANDLE_OPERAND(opcodeModifier)
667 break;
668 case X86Local::MRMXrCC:
669 assert(numPhysicalOperands == 2 &&
670 "Unexpected number of operands for MRMXrCC");
671 HANDLE_OPERAND(rmRegister)
672 HANDLE_OPERAND(opcodeModifier)
673 break;
674 case X86Local::MRMr0:
675 // Operand 1 is a register operand in the R/M field.
676 HANDLE_OPERAND(roRegister)
677 break;
678 case X86Local::MRMXr:
679 case X86Local::MRM0r:
680 case X86Local::MRM1r:
681 case X86Local::MRM2r:
682 case X86Local::MRM3r:
683 case X86Local::MRM4r:
684 case X86Local::MRM5r:
685 case X86Local::MRM6r:
686 case X86Local::MRM7r:
687 // Operand 1 is a register operand in the R/M field.
688 // Operand 2 (optional) is an immediate or relocation.
689 // Operand 3 (optional) is an immediate.
690 assert(numPhysicalOperands >= 0 + additionalOperands &&
691 numPhysicalOperands <= 3 + additionalOperands &&
692 "Unexpected number of operands for MRMnr");
693
694 if (HasVEX_4V)
695 HANDLE_OPERAND(vvvvRegister)
696
697 if (HasEVEX_K)
698 HANDLE_OPERAND(writemaskRegister)
699 HANDLE_OPTIONAL(rmRegister)
700 HANDLE_OPTIONAL(relocation)
701 HANDLE_OPTIONAL(immediate)
702 break;
703 case X86Local::MRMXmCC:
704 assert(numPhysicalOperands == 2 &&
705 "Unexpected number of operands for MRMXm");
706 HANDLE_OPERAND(memory)
707 HANDLE_OPERAND(opcodeModifier)
708 break;
709 case X86Local::MRMXm:
710 case X86Local::MRM0m:
711 case X86Local::MRM1m:
712 case X86Local::MRM2m:
713 case X86Local::MRM3m:
714 case X86Local::MRM4m:
715 case X86Local::MRM5m:
716 case X86Local::MRM6m:
717 case X86Local::MRM7m:
718 // Operand 1 is a memory operand (possibly SIB-extended)
719 // Operand 2 (optional) is an immediate or relocation.
720 assert(numPhysicalOperands >= 1 + additionalOperands &&
721 numPhysicalOperands <= 2 + additionalOperands &&
722 "Unexpected number of operands for MRMnm");
723
724 if (HasVEX_4V)
725 HANDLE_OPERAND(vvvvRegister)
726 if (HasEVEX_K)
727 HANDLE_OPERAND(writemaskRegister)
728 HANDLE_OPERAND(memory)
729 HANDLE_OPTIONAL(relocation)
730 break;
731 case X86Local::RawFrmImm8:
732 // operand 1 is a 16-bit immediate
733 // operand 2 is an 8-bit immediate
734 assert(numPhysicalOperands == 2 &&
735 "Unexpected number of operands for X86Local::RawFrmImm8");
736 HANDLE_OPERAND(immediate)
737 HANDLE_OPERAND(immediate)
738 break;
739 case X86Local::RawFrmImm16:
740 // operand 1 is a 16-bit immediate
741 // operand 2 is a 16-bit immediate
742 HANDLE_OPERAND(immediate)
743 HANDLE_OPERAND(immediate)
744 break;
745 case X86Local::MRM0X:
746 case X86Local::MRM1X:
747 case X86Local::MRM2X:
748 case X86Local::MRM3X:
749 case X86Local::MRM4X:
750 case X86Local::MRM5X:
751 case X86Local::MRM6X:
752 case X86Local::MRM7X:
753 #define MAP(from, to) case X86Local::MRM_##from:
754 X86_INSTR_MRM_MAPPING
755 #undef MAP
756 HANDLE_OPTIONAL(relocation)
757 break;
758 }
759
760 #undef HANDLE_OPERAND
761 #undef HANDLE_OPTIONAL
762 }
763
emitDecodePath(DisassemblerTables & tables) const764 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
765 // Special cases where the LLVM tables are not complete
766
767 #define MAP(from, to) \
768 case X86Local::MRM_##from:
769
770 llvm::Optional<OpcodeType> opcodeType;
771 switch (OpMap) {
772 default: llvm_unreachable("Invalid map!");
773 case X86Local::OB: opcodeType = ONEBYTE; break;
774 case X86Local::TB: opcodeType = TWOBYTE; break;
775 case X86Local::T8: opcodeType = THREEBYTE_38; break;
776 case X86Local::TA: opcodeType = THREEBYTE_3A; break;
777 case X86Local::XOP8: opcodeType = XOP8_MAP; break;
778 case X86Local::XOP9: opcodeType = XOP9_MAP; break;
779 case X86Local::XOPA: opcodeType = XOPA_MAP; break;
780 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
781 case X86Local::T_MAP5: opcodeType = MAP5; break;
782 case X86Local::T_MAP6: opcodeType = MAP6; break;
783 }
784
785 std::unique_ptr<ModRMFilter> filter;
786 switch (Form) {
787 default: llvm_unreachable("Invalid form!");
788 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
789 case X86Local::RawFrm:
790 case X86Local::AddRegFrm:
791 case X86Local::RawFrmMemOffs:
792 case X86Local::RawFrmSrc:
793 case X86Local::RawFrmDst:
794 case X86Local::RawFrmDstSrc:
795 case X86Local::RawFrmImm8:
796 case X86Local::RawFrmImm16:
797 case X86Local::AddCCFrm:
798 case X86Local::PrefixByte:
799 filter = std::make_unique<DumbFilter>();
800 break;
801 case X86Local::MRMDestReg:
802 case X86Local::MRMSrcReg:
803 case X86Local::MRMSrcReg4VOp3:
804 case X86Local::MRMSrcRegOp4:
805 case X86Local::MRMSrcRegCC:
806 case X86Local::MRMXrCC:
807 case X86Local::MRMXr:
808 filter = std::make_unique<ModFilter>(true);
809 break;
810 case X86Local::MRMDestMem:
811 case X86Local::MRMDestMemFSIB:
812 case X86Local::MRMSrcMem:
813 case X86Local::MRMSrcMemFSIB:
814 case X86Local::MRMSrcMem4VOp3:
815 case X86Local::MRMSrcMemOp4:
816 case X86Local::MRMSrcMemCC:
817 case X86Local::MRMXmCC:
818 case X86Local::MRMXm:
819 filter = std::make_unique<ModFilter>(false);
820 break;
821 case X86Local::MRM0r: case X86Local::MRM1r:
822 case X86Local::MRM2r: case X86Local::MRM3r:
823 case X86Local::MRM4r: case X86Local::MRM5r:
824 case X86Local::MRM6r: case X86Local::MRM7r:
825 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
826 break;
827 case X86Local::MRM0X: case X86Local::MRM1X:
828 case X86Local::MRM2X: case X86Local::MRM3X:
829 case X86Local::MRM4X: case X86Local::MRM5X:
830 case X86Local::MRM6X: case X86Local::MRM7X:
831 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
832 break;
833 case X86Local::MRMr0:
834 filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
835 break;
836 case X86Local::MRM0m: case X86Local::MRM1m:
837 case X86Local::MRM2m: case X86Local::MRM3m:
838 case X86Local::MRM4m: case X86Local::MRM5m:
839 case X86Local::MRM6m: case X86Local::MRM7m:
840 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
841 break;
842 X86_INSTR_MRM_MAPPING
843 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
844 break;
845 } // switch (Form)
846
847 uint8_t opcodeToSet = Opcode;
848
849 unsigned AddressSize = 0;
850 switch (AdSize) {
851 case X86Local::AdSize16: AddressSize = 16; break;
852 case X86Local::AdSize32: AddressSize = 32; break;
853 case X86Local::AdSize64: AddressSize = 64; break;
854 }
855
856 assert(opcodeType && "Opcode type not set");
857 assert(filter && "Filter not set");
858
859 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
860 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
861 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
862 uint8_t Count = Form == X86Local::AddRegFrm ? 8 : 16;
863 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
864
865 uint8_t currentOpcode;
866
867 for (currentOpcode = opcodeToSet;
868 currentOpcode < (uint8_t)(opcodeToSet + Count); ++currentOpcode)
869 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
870 UID, Is32Bit, OpPrefix == 0,
871 IgnoresVEX_L || EncodeRC,
872 IgnoresVEX_W, AddressSize);
873 } else {
874 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
875 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
876 IgnoresVEX_W, AddressSize);
877 }
878
879 #undef MAP
880 }
881
882 #define TYPE(str, type) if (s == str) return type;
typeFromString(const std::string & s,bool hasREX_W,uint8_t OpSize)883 OperandType RecognizableInstr::typeFromString(const std::string &s,
884 bool hasREX_W,
885 uint8_t OpSize) {
886 if(hasREX_W) {
887 // For instructions with a REX_W prefix, a declared 32-bit register encoding
888 // is special.
889 TYPE("GR32", TYPE_R32)
890 }
891 if(OpSize == X86Local::OpSize16) {
892 // For OpSize16 instructions, a declared 16-bit register or
893 // immediate encoding is special.
894 TYPE("GR16", TYPE_Rv)
895 } else if(OpSize == X86Local::OpSize32) {
896 // For OpSize32 instructions, a declared 32-bit register or
897 // immediate encoding is special.
898 TYPE("GR32", TYPE_Rv)
899 }
900 TYPE("i16mem", TYPE_M)
901 TYPE("i16imm", TYPE_IMM)
902 TYPE("i16i8imm", TYPE_IMM)
903 TYPE("GR16", TYPE_R16)
904 TYPE("GR16orGR32orGR64", TYPE_R16)
905 TYPE("i32mem", TYPE_M)
906 TYPE("i32imm", TYPE_IMM)
907 TYPE("i32i8imm", TYPE_IMM)
908 TYPE("GR32", TYPE_R32)
909 TYPE("GR32orGR64", TYPE_R32)
910 TYPE("i64mem", TYPE_M)
911 TYPE("i64i32imm", TYPE_IMM)
912 TYPE("i64i8imm", TYPE_IMM)
913 TYPE("GR64", TYPE_R64)
914 TYPE("i8mem", TYPE_M)
915 TYPE("i8imm", TYPE_IMM)
916 TYPE("u4imm", TYPE_UIMM8)
917 TYPE("u8imm", TYPE_UIMM8)
918 TYPE("i16u8imm", TYPE_UIMM8)
919 TYPE("i32u8imm", TYPE_UIMM8)
920 TYPE("i64u8imm", TYPE_UIMM8)
921 TYPE("GR8", TYPE_R8)
922 TYPE("VR128", TYPE_XMM)
923 TYPE("VR128X", TYPE_XMM)
924 TYPE("f128mem", TYPE_M)
925 TYPE("f256mem", TYPE_M)
926 TYPE("f512mem", TYPE_M)
927 TYPE("FR128", TYPE_XMM)
928 TYPE("FR64", TYPE_XMM)
929 TYPE("FR64X", TYPE_XMM)
930 TYPE("f64mem", TYPE_M)
931 TYPE("sdmem", TYPE_M)
932 TYPE("FR16X", TYPE_XMM)
933 TYPE("FR32", TYPE_XMM)
934 TYPE("FR32X", TYPE_XMM)
935 TYPE("f32mem", TYPE_M)
936 TYPE("f16mem", TYPE_M)
937 TYPE("ssmem", TYPE_M)
938 TYPE("shmem", TYPE_M)
939 TYPE("RST", TYPE_ST)
940 TYPE("RSTi", TYPE_ST)
941 TYPE("i128mem", TYPE_M)
942 TYPE("i256mem", TYPE_M)
943 TYPE("i512mem", TYPE_M)
944 TYPE("i64i32imm_brtarget", TYPE_REL)
945 TYPE("i16imm_brtarget", TYPE_REL)
946 TYPE("i32imm_brtarget", TYPE_REL)
947 TYPE("ccode", TYPE_IMM)
948 TYPE("AVX512RC", TYPE_IMM)
949 TYPE("brtarget32", TYPE_REL)
950 TYPE("brtarget16", TYPE_REL)
951 TYPE("brtarget8", TYPE_REL)
952 TYPE("f80mem", TYPE_M)
953 TYPE("lea64_32mem", TYPE_M)
954 TYPE("lea64mem", TYPE_M)
955 TYPE("VR64", TYPE_MM64)
956 TYPE("i64imm", TYPE_IMM)
957 TYPE("anymem", TYPE_M)
958 TYPE("opaquemem", TYPE_M)
959 TYPE("sibmem", TYPE_MSIB)
960 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
961 TYPE("DEBUG_REG", TYPE_DEBUGREG)
962 TYPE("CONTROL_REG", TYPE_CONTROLREG)
963 TYPE("srcidx8", TYPE_SRCIDX)
964 TYPE("srcidx16", TYPE_SRCIDX)
965 TYPE("srcidx32", TYPE_SRCIDX)
966 TYPE("srcidx64", TYPE_SRCIDX)
967 TYPE("dstidx8", TYPE_DSTIDX)
968 TYPE("dstidx16", TYPE_DSTIDX)
969 TYPE("dstidx32", TYPE_DSTIDX)
970 TYPE("dstidx64", TYPE_DSTIDX)
971 TYPE("offset16_8", TYPE_MOFFS)
972 TYPE("offset16_16", TYPE_MOFFS)
973 TYPE("offset16_32", TYPE_MOFFS)
974 TYPE("offset32_8", TYPE_MOFFS)
975 TYPE("offset32_16", TYPE_MOFFS)
976 TYPE("offset32_32", TYPE_MOFFS)
977 TYPE("offset32_64", TYPE_MOFFS)
978 TYPE("offset64_8", TYPE_MOFFS)
979 TYPE("offset64_16", TYPE_MOFFS)
980 TYPE("offset64_32", TYPE_MOFFS)
981 TYPE("offset64_64", TYPE_MOFFS)
982 TYPE("VR256", TYPE_YMM)
983 TYPE("VR256X", TYPE_YMM)
984 TYPE("VR512", TYPE_ZMM)
985 TYPE("VK1", TYPE_VK)
986 TYPE("VK1WM", TYPE_VK)
987 TYPE("VK2", TYPE_VK)
988 TYPE("VK2WM", TYPE_VK)
989 TYPE("VK4", TYPE_VK)
990 TYPE("VK4WM", TYPE_VK)
991 TYPE("VK8", TYPE_VK)
992 TYPE("VK8WM", TYPE_VK)
993 TYPE("VK16", TYPE_VK)
994 TYPE("VK16WM", TYPE_VK)
995 TYPE("VK32", TYPE_VK)
996 TYPE("VK32WM", TYPE_VK)
997 TYPE("VK64", TYPE_VK)
998 TYPE("VK64WM", TYPE_VK)
999 TYPE("VK1Pair", TYPE_VK_PAIR)
1000 TYPE("VK2Pair", TYPE_VK_PAIR)
1001 TYPE("VK4Pair", TYPE_VK_PAIR)
1002 TYPE("VK8Pair", TYPE_VK_PAIR)
1003 TYPE("VK16Pair", TYPE_VK_PAIR)
1004 TYPE("vx64mem", TYPE_MVSIBX)
1005 TYPE("vx128mem", TYPE_MVSIBX)
1006 TYPE("vx256mem", TYPE_MVSIBX)
1007 TYPE("vy128mem", TYPE_MVSIBY)
1008 TYPE("vy256mem", TYPE_MVSIBY)
1009 TYPE("vx64xmem", TYPE_MVSIBX)
1010 TYPE("vx128xmem", TYPE_MVSIBX)
1011 TYPE("vx256xmem", TYPE_MVSIBX)
1012 TYPE("vy128xmem", TYPE_MVSIBY)
1013 TYPE("vy256xmem", TYPE_MVSIBY)
1014 TYPE("vy512xmem", TYPE_MVSIBY)
1015 TYPE("vz256mem", TYPE_MVSIBZ)
1016 TYPE("vz512mem", TYPE_MVSIBZ)
1017 TYPE("BNDR", TYPE_BNDR)
1018 TYPE("TILE", TYPE_TMM)
1019 errs() << "Unhandled type string " << s << "\n";
1020 llvm_unreachable("Unhandled type string");
1021 }
1022 #undef TYPE
1023
1024 #define ENCODING(str, encoding) if (s == str) return encoding;
1025 OperandEncoding
immediateEncodingFromString(const std::string & s,uint8_t OpSize)1026 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1027 uint8_t OpSize) {
1028 if(OpSize != X86Local::OpSize16) {
1029 // For instructions without an OpSize prefix, a declared 16-bit register or
1030 // immediate encoding is special.
1031 ENCODING("i16imm", ENCODING_IW)
1032 }
1033 ENCODING("i32i8imm", ENCODING_IB)
1034 ENCODING("AVX512RC", ENCODING_IRC)
1035 ENCODING("i16imm", ENCODING_Iv)
1036 ENCODING("i16i8imm", ENCODING_IB)
1037 ENCODING("i32imm", ENCODING_Iv)
1038 ENCODING("i64i32imm", ENCODING_ID)
1039 ENCODING("i64i8imm", ENCODING_IB)
1040 ENCODING("i8imm", ENCODING_IB)
1041 ENCODING("u4imm", ENCODING_IB)
1042 ENCODING("u8imm", ENCODING_IB)
1043 ENCODING("i16u8imm", ENCODING_IB)
1044 ENCODING("i32u8imm", ENCODING_IB)
1045 ENCODING("i64u8imm", ENCODING_IB)
1046 // This is not a typo. Instructions like BLENDVPD put
1047 // register IDs in 8-bit immediates nowadays.
1048 ENCODING("FR32", ENCODING_IB)
1049 ENCODING("FR64", ENCODING_IB)
1050 ENCODING("FR128", ENCODING_IB)
1051 ENCODING("VR128", ENCODING_IB)
1052 ENCODING("VR256", ENCODING_IB)
1053 ENCODING("FR16X", ENCODING_IB)
1054 ENCODING("FR32X", ENCODING_IB)
1055 ENCODING("FR64X", ENCODING_IB)
1056 ENCODING("VR128X", ENCODING_IB)
1057 ENCODING("VR256X", ENCODING_IB)
1058 ENCODING("VR512", ENCODING_IB)
1059 ENCODING("TILE", ENCODING_IB)
1060 errs() << "Unhandled immediate encoding " << s << "\n";
1061 llvm_unreachable("Unhandled immediate encoding");
1062 }
1063
1064 OperandEncoding
rmRegisterEncodingFromString(const std::string & s,uint8_t OpSize)1065 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1066 uint8_t OpSize) {
1067 ENCODING("RST", ENCODING_FP)
1068 ENCODING("RSTi", ENCODING_FP)
1069 ENCODING("GR16", ENCODING_RM)
1070 ENCODING("GR16orGR32orGR64",ENCODING_RM)
1071 ENCODING("GR32", ENCODING_RM)
1072 ENCODING("GR32orGR64", ENCODING_RM)
1073 ENCODING("GR64", ENCODING_RM)
1074 ENCODING("GR8", ENCODING_RM)
1075 ENCODING("VR128", ENCODING_RM)
1076 ENCODING("VR128X", ENCODING_RM)
1077 ENCODING("FR128", ENCODING_RM)
1078 ENCODING("FR64", ENCODING_RM)
1079 ENCODING("FR32", ENCODING_RM)
1080 ENCODING("FR64X", ENCODING_RM)
1081 ENCODING("FR32X", ENCODING_RM)
1082 ENCODING("FR16X", ENCODING_RM)
1083 ENCODING("VR64", ENCODING_RM)
1084 ENCODING("VR256", ENCODING_RM)
1085 ENCODING("VR256X", ENCODING_RM)
1086 ENCODING("VR512", ENCODING_RM)
1087 ENCODING("VK1", ENCODING_RM)
1088 ENCODING("VK2", ENCODING_RM)
1089 ENCODING("VK4", ENCODING_RM)
1090 ENCODING("VK8", ENCODING_RM)
1091 ENCODING("VK16", ENCODING_RM)
1092 ENCODING("VK32", ENCODING_RM)
1093 ENCODING("VK64", ENCODING_RM)
1094 ENCODING("BNDR", ENCODING_RM)
1095 ENCODING("TILE", ENCODING_RM)
1096 errs() << "Unhandled R/M register encoding " << s << "\n";
1097 llvm_unreachable("Unhandled R/M register encoding");
1098 }
1099
1100 OperandEncoding
roRegisterEncodingFromString(const std::string & s,uint8_t OpSize)1101 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1102 uint8_t OpSize) {
1103 ENCODING("GR16", ENCODING_REG)
1104 ENCODING("GR16orGR32orGR64",ENCODING_REG)
1105 ENCODING("GR32", ENCODING_REG)
1106 ENCODING("GR32orGR64", ENCODING_REG)
1107 ENCODING("GR64", ENCODING_REG)
1108 ENCODING("GR8", ENCODING_REG)
1109 ENCODING("VR128", ENCODING_REG)
1110 ENCODING("FR128", ENCODING_REG)
1111 ENCODING("FR64", ENCODING_REG)
1112 ENCODING("FR32", ENCODING_REG)
1113 ENCODING("VR64", ENCODING_REG)
1114 ENCODING("SEGMENT_REG", ENCODING_REG)
1115 ENCODING("DEBUG_REG", ENCODING_REG)
1116 ENCODING("CONTROL_REG", ENCODING_REG)
1117 ENCODING("VR256", ENCODING_REG)
1118 ENCODING("VR256X", ENCODING_REG)
1119 ENCODING("VR128X", ENCODING_REG)
1120 ENCODING("FR64X", ENCODING_REG)
1121 ENCODING("FR32X", ENCODING_REG)
1122 ENCODING("FR16X", ENCODING_REG)
1123 ENCODING("VR512", ENCODING_REG)
1124 ENCODING("VK1", ENCODING_REG)
1125 ENCODING("VK2", ENCODING_REG)
1126 ENCODING("VK4", ENCODING_REG)
1127 ENCODING("VK8", ENCODING_REG)
1128 ENCODING("VK16", ENCODING_REG)
1129 ENCODING("VK32", ENCODING_REG)
1130 ENCODING("VK64", ENCODING_REG)
1131 ENCODING("VK1Pair", ENCODING_REG)
1132 ENCODING("VK2Pair", ENCODING_REG)
1133 ENCODING("VK4Pair", ENCODING_REG)
1134 ENCODING("VK8Pair", ENCODING_REG)
1135 ENCODING("VK16Pair", ENCODING_REG)
1136 ENCODING("VK1WM", ENCODING_REG)
1137 ENCODING("VK2WM", ENCODING_REG)
1138 ENCODING("VK4WM", ENCODING_REG)
1139 ENCODING("VK8WM", ENCODING_REG)
1140 ENCODING("VK16WM", ENCODING_REG)
1141 ENCODING("VK32WM", ENCODING_REG)
1142 ENCODING("VK64WM", ENCODING_REG)
1143 ENCODING("BNDR", ENCODING_REG)
1144 ENCODING("TILE", ENCODING_REG)
1145 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1146 llvm_unreachable("Unhandled reg/opcode register encoding");
1147 }
1148
1149 OperandEncoding
vvvvRegisterEncodingFromString(const std::string & s,uint8_t OpSize)1150 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1151 uint8_t OpSize) {
1152 ENCODING("GR32", ENCODING_VVVV)
1153 ENCODING("GR64", ENCODING_VVVV)
1154 ENCODING("FR32", ENCODING_VVVV)
1155 ENCODING("FR128", ENCODING_VVVV)
1156 ENCODING("FR64", ENCODING_VVVV)
1157 ENCODING("VR128", ENCODING_VVVV)
1158 ENCODING("VR256", ENCODING_VVVV)
1159 ENCODING("FR16X", ENCODING_VVVV)
1160 ENCODING("FR32X", ENCODING_VVVV)
1161 ENCODING("FR64X", ENCODING_VVVV)
1162 ENCODING("VR128X", ENCODING_VVVV)
1163 ENCODING("VR256X", ENCODING_VVVV)
1164 ENCODING("VR512", ENCODING_VVVV)
1165 ENCODING("VK1", ENCODING_VVVV)
1166 ENCODING("VK2", ENCODING_VVVV)
1167 ENCODING("VK4", ENCODING_VVVV)
1168 ENCODING("VK8", ENCODING_VVVV)
1169 ENCODING("VK16", ENCODING_VVVV)
1170 ENCODING("VK32", ENCODING_VVVV)
1171 ENCODING("VK64", ENCODING_VVVV)
1172 ENCODING("TILE", ENCODING_VVVV)
1173 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1174 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1175 }
1176
1177 OperandEncoding
writemaskRegisterEncodingFromString(const std::string & s,uint8_t OpSize)1178 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1179 uint8_t OpSize) {
1180 ENCODING("VK1WM", ENCODING_WRITEMASK)
1181 ENCODING("VK2WM", ENCODING_WRITEMASK)
1182 ENCODING("VK4WM", ENCODING_WRITEMASK)
1183 ENCODING("VK8WM", ENCODING_WRITEMASK)
1184 ENCODING("VK16WM", ENCODING_WRITEMASK)
1185 ENCODING("VK32WM", ENCODING_WRITEMASK)
1186 ENCODING("VK64WM", ENCODING_WRITEMASK)
1187 errs() << "Unhandled mask register encoding " << s << "\n";
1188 llvm_unreachable("Unhandled mask register encoding");
1189 }
1190
1191 OperandEncoding
memoryEncodingFromString(const std::string & s,uint8_t OpSize)1192 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1193 uint8_t OpSize) {
1194 ENCODING("i16mem", ENCODING_RM)
1195 ENCODING("i32mem", ENCODING_RM)
1196 ENCODING("i64mem", ENCODING_RM)
1197 ENCODING("i8mem", ENCODING_RM)
1198 ENCODING("shmem", ENCODING_RM)
1199 ENCODING("ssmem", ENCODING_RM)
1200 ENCODING("sdmem", ENCODING_RM)
1201 ENCODING("f128mem", ENCODING_RM)
1202 ENCODING("f256mem", ENCODING_RM)
1203 ENCODING("f512mem", ENCODING_RM)
1204 ENCODING("f64mem", ENCODING_RM)
1205 ENCODING("f32mem", ENCODING_RM)
1206 ENCODING("f16mem", ENCODING_RM)
1207 ENCODING("i128mem", ENCODING_RM)
1208 ENCODING("i256mem", ENCODING_RM)
1209 ENCODING("i512mem", ENCODING_RM)
1210 ENCODING("f80mem", ENCODING_RM)
1211 ENCODING("lea64_32mem", ENCODING_RM)
1212 ENCODING("lea64mem", ENCODING_RM)
1213 ENCODING("anymem", ENCODING_RM)
1214 ENCODING("opaquemem", ENCODING_RM)
1215 ENCODING("sibmem", ENCODING_SIB)
1216 ENCODING("vx64mem", ENCODING_VSIB)
1217 ENCODING("vx128mem", ENCODING_VSIB)
1218 ENCODING("vx256mem", ENCODING_VSIB)
1219 ENCODING("vy128mem", ENCODING_VSIB)
1220 ENCODING("vy256mem", ENCODING_VSIB)
1221 ENCODING("vx64xmem", ENCODING_VSIB)
1222 ENCODING("vx128xmem", ENCODING_VSIB)
1223 ENCODING("vx256xmem", ENCODING_VSIB)
1224 ENCODING("vy128xmem", ENCODING_VSIB)
1225 ENCODING("vy256xmem", ENCODING_VSIB)
1226 ENCODING("vy512xmem", ENCODING_VSIB)
1227 ENCODING("vz256mem", ENCODING_VSIB)
1228 ENCODING("vz512mem", ENCODING_VSIB)
1229 errs() << "Unhandled memory encoding " << s << "\n";
1230 llvm_unreachable("Unhandled memory encoding");
1231 }
1232
1233 OperandEncoding
relocationEncodingFromString(const std::string & s,uint8_t OpSize)1234 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1235 uint8_t OpSize) {
1236 if(OpSize != X86Local::OpSize16) {
1237 // For instructions without an OpSize prefix, a declared 16-bit register or
1238 // immediate encoding is special.
1239 ENCODING("i16imm", ENCODING_IW)
1240 }
1241 ENCODING("i16imm", ENCODING_Iv)
1242 ENCODING("i16i8imm", ENCODING_IB)
1243 ENCODING("i32imm", ENCODING_Iv)
1244 ENCODING("i32i8imm", ENCODING_IB)
1245 ENCODING("i64i32imm", ENCODING_ID)
1246 ENCODING("i64i8imm", ENCODING_IB)
1247 ENCODING("i8imm", ENCODING_IB)
1248 ENCODING("u8imm", ENCODING_IB)
1249 ENCODING("i16u8imm", ENCODING_IB)
1250 ENCODING("i32u8imm", ENCODING_IB)
1251 ENCODING("i64u8imm", ENCODING_IB)
1252 ENCODING("i64i32imm_brtarget", ENCODING_ID)
1253 ENCODING("i16imm_brtarget", ENCODING_IW)
1254 ENCODING("i32imm_brtarget", ENCODING_ID)
1255 ENCODING("brtarget32", ENCODING_ID)
1256 ENCODING("brtarget16", ENCODING_IW)
1257 ENCODING("brtarget8", ENCODING_IB)
1258 ENCODING("i64imm", ENCODING_IO)
1259 ENCODING("offset16_8", ENCODING_Ia)
1260 ENCODING("offset16_16", ENCODING_Ia)
1261 ENCODING("offset16_32", ENCODING_Ia)
1262 ENCODING("offset32_8", ENCODING_Ia)
1263 ENCODING("offset32_16", ENCODING_Ia)
1264 ENCODING("offset32_32", ENCODING_Ia)
1265 ENCODING("offset32_64", ENCODING_Ia)
1266 ENCODING("offset64_8", ENCODING_Ia)
1267 ENCODING("offset64_16", ENCODING_Ia)
1268 ENCODING("offset64_32", ENCODING_Ia)
1269 ENCODING("offset64_64", ENCODING_Ia)
1270 ENCODING("srcidx8", ENCODING_SI)
1271 ENCODING("srcidx16", ENCODING_SI)
1272 ENCODING("srcidx32", ENCODING_SI)
1273 ENCODING("srcidx64", ENCODING_SI)
1274 ENCODING("dstidx8", ENCODING_DI)
1275 ENCODING("dstidx16", ENCODING_DI)
1276 ENCODING("dstidx32", ENCODING_DI)
1277 ENCODING("dstidx64", ENCODING_DI)
1278 errs() << "Unhandled relocation encoding " << s << "\n";
1279 llvm_unreachable("Unhandled relocation encoding");
1280 }
1281
1282 OperandEncoding
opcodeModifierEncodingFromString(const std::string & s,uint8_t OpSize)1283 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1284 uint8_t OpSize) {
1285 ENCODING("GR32", ENCODING_Rv)
1286 ENCODING("GR64", ENCODING_RO)
1287 ENCODING("GR16", ENCODING_Rv)
1288 ENCODING("GR8", ENCODING_RB)
1289 ENCODING("ccode", ENCODING_CC)
1290 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1291 llvm_unreachable("Unhandled opcode modifier encoding");
1292 }
1293 #undef ENCODING
1294