1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This tablegen backend emits code for use by the GlobalISel instruction
12 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
13 ///
14 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
15 /// backend, filters out the ones that are unsupported, maps
16 /// SelectionDAG-specific constructs to their GlobalISel counterpart
17 /// (when applicable: MVT to LLT;  SDNode to generic Instruction).
18 ///
19 /// Not all patterns are supported: pass the tablegen invocation
20 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
21 /// as well as why.
22 ///
23 /// The generated file defines a single method:
24 ///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
25 /// intended to be used in InstructionSelector::select as the first-step
26 /// selector for the patterns that don't require complex C++.
27 ///
28 /// FIXME: We'll probably want to eventually define a base
29 /// "TargetGenInstructionSelector" class.
30 ///
31 //===----------------------------------------------------------------------===//
32 
33 #include "CodeGenDAGPatterns.h"
34 #include "SubtargetFeatureInfo.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Support/CodeGenCoverage.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Error.h"
41 #include "llvm/Support/LowLevelTypeImpl.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/ScopedPrinter.h"
44 #include "llvm/TableGen/Error.h"
45 #include "llvm/TableGen/Record.h"
46 #include "llvm/TableGen/TableGenBackend.h"
47 #include <numeric>
48 #include <string>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "gisel-emitter"
52 
53 STATISTIC(NumPatternTotal, "Total number of patterns");
54 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
55 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
56 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
57 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
58 
59 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
60 
61 static cl::opt<bool> WarnOnSkippedPatterns(
62     "warn-on-skipped-patterns",
63     cl::desc("Explain why a pattern was skipped for inclusion "
64              "in the GlobalISel selector"),
65     cl::init(false), cl::cat(GlobalISelEmitterCat));
66 
67 static cl::opt<bool> GenerateCoverage(
68     "instrument-gisel-coverage",
69     cl::desc("Generate coverage instrumentation for GlobalISel"),
70     cl::init(false), cl::cat(GlobalISelEmitterCat));
71 
72 static cl::opt<std::string> UseCoverageFile(
73     "gisel-coverage-file", cl::init(""),
74     cl::desc("Specify file to retrieve coverage information from"),
75     cl::cat(GlobalISelEmitterCat));
76 
77 static cl::opt<bool> OptimizeMatchTable(
78     "optimize-match-table",
79     cl::desc("Generate an optimized version of the match table"),
80     cl::init(true), cl::cat(GlobalISelEmitterCat));
81 
82 namespace {
83 //===- Helper functions ---------------------------------------------------===//
84 
85 /// Get the name of the enum value used to number the predicate function.
86 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
87   return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
88          Predicate.getFnName();
89 }
90 
91 /// Get the opcode used to check this predicate.
92 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
93   return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
94 }
95 
96 /// This class stands in for LLT wherever we want to tablegen-erate an
97 /// equivalent at compiler run-time.
98 class LLTCodeGen {
99 private:
100   LLT Ty;
101 
102 public:
103   LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
104 
105   std::string getCxxEnumValue() const {
106     std::string Str;
107     raw_string_ostream OS(Str);
108 
109     emitCxxEnumValue(OS);
110     return OS.str();
111   }
112 
113   void emitCxxEnumValue(raw_ostream &OS) const {
114     if (Ty.isScalar()) {
115       OS << "GILLT_s" << Ty.getSizeInBits();
116       return;
117     }
118     if (Ty.isVector()) {
119       OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
120       return;
121     }
122     if (Ty.isPointer()) {
123       OS << "GILLT_p" << Ty.getAddressSpace();
124       if (Ty.getSizeInBits() > 0)
125         OS << "s" << Ty.getSizeInBits();
126       return;
127     }
128     llvm_unreachable("Unhandled LLT");
129   }
130 
131   void emitCxxConstructorCall(raw_ostream &OS) const {
132     if (Ty.isScalar()) {
133       OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
134       return;
135     }
136     if (Ty.isVector()) {
137       OS << "LLT::vector(" << Ty.getNumElements() << ", "
138          << Ty.getScalarSizeInBits() << ")";
139       return;
140     }
141     if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
142       OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
143          << Ty.getSizeInBits() << ")";
144       return;
145     }
146     llvm_unreachable("Unhandled LLT");
147   }
148 
149   const LLT &get() const { return Ty; }
150 
151   /// This ordering is used for std::unique() and llvm::sort(). There's no
152   /// particular logic behind the order but either A < B or B < A must be
153   /// true if A != B.
154   bool operator<(const LLTCodeGen &Other) const {
155     if (Ty.isValid() != Other.Ty.isValid())
156       return Ty.isValid() < Other.Ty.isValid();
157     if (!Ty.isValid())
158       return false;
159 
160     if (Ty.isVector() != Other.Ty.isVector())
161       return Ty.isVector() < Other.Ty.isVector();
162     if (Ty.isScalar() != Other.Ty.isScalar())
163       return Ty.isScalar() < Other.Ty.isScalar();
164     if (Ty.isPointer() != Other.Ty.isPointer())
165       return Ty.isPointer() < Other.Ty.isPointer();
166 
167     if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
168       return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
169 
170     if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
171       return Ty.getNumElements() < Other.Ty.getNumElements();
172 
173     return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
174   }
175 
176   bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
177 };
178 
179 class InstructionMatcher;
180 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
181 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
182 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
183   MVT VT(SVT);
184 
185   if (VT.isVector() && VT.getVectorNumElements() != 1)
186     return LLTCodeGen(
187         LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
188 
189   if (VT.isInteger() || VT.isFloatingPoint())
190     return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
191   return None;
192 }
193 
194 static std::string explainPredicates(const TreePatternNode *N) {
195   std::string Explanation = "";
196   StringRef Separator = "";
197   for (const auto &P : N->getPredicateFns()) {
198     Explanation +=
199         (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
200     Separator = ", ";
201 
202     if (P.isAlwaysTrue())
203       Explanation += " always-true";
204     if (P.isImmediatePattern())
205       Explanation += " immediate";
206 
207     if (P.isUnindexed())
208       Explanation += " unindexed";
209 
210     if (P.isNonExtLoad())
211       Explanation += " non-extload";
212     if (P.isAnyExtLoad())
213       Explanation += " extload";
214     if (P.isSignExtLoad())
215       Explanation += " sextload";
216     if (P.isZeroExtLoad())
217       Explanation += " zextload";
218 
219     if (P.isNonTruncStore())
220       Explanation += " non-truncstore";
221     if (P.isTruncStore())
222       Explanation += " truncstore";
223 
224     if (Record *VT = P.getMemoryVT())
225       Explanation += (" MemVT=" + VT->getName()).str();
226     if (Record *VT = P.getScalarMemoryVT())
227       Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
228 
229     if (P.isAtomicOrderingMonotonic())
230       Explanation += " monotonic";
231     if (P.isAtomicOrderingAcquire())
232       Explanation += " acquire";
233     if (P.isAtomicOrderingRelease())
234       Explanation += " release";
235     if (P.isAtomicOrderingAcquireRelease())
236       Explanation += " acq_rel";
237     if (P.isAtomicOrderingSequentiallyConsistent())
238       Explanation += " seq_cst";
239     if (P.isAtomicOrderingAcquireOrStronger())
240       Explanation += " >=acquire";
241     if (P.isAtomicOrderingWeakerThanAcquire())
242       Explanation += " <acquire";
243     if (P.isAtomicOrderingReleaseOrStronger())
244       Explanation += " >=release";
245     if (P.isAtomicOrderingWeakerThanRelease())
246       Explanation += " <release";
247   }
248   return Explanation;
249 }
250 
251 std::string explainOperator(Record *Operator) {
252   if (Operator->isSubClassOf("SDNode"))
253     return (" (" + Operator->getValueAsString("Opcode") + ")").str();
254 
255   if (Operator->isSubClassOf("Intrinsic"))
256     return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
257 
258   if (Operator->isSubClassOf("ComplexPattern"))
259     return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
260             ")")
261         .str();
262 
263   if (Operator->isSubClassOf("SDNodeXForm"))
264     return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
265             ")")
266         .str();
267 
268   return (" (Operator " + Operator->getName() + " not understood)").str();
269 }
270 
271 /// Helper function to let the emitter report skip reason error messages.
272 static Error failedImport(const Twine &Reason) {
273   return make_error<StringError>(Reason, inconvertibleErrorCode());
274 }
275 
276 static Error isTrivialOperatorNode(const TreePatternNode *N) {
277   std::string Explanation = "";
278   std::string Separator = "";
279 
280   bool HasUnsupportedPredicate = false;
281   for (const auto &Predicate : N->getPredicateFns()) {
282     if (Predicate.isAlwaysTrue())
283       continue;
284 
285     if (Predicate.isImmediatePattern())
286       continue;
287 
288     if (Predicate.isNonExtLoad())
289       continue;
290 
291     if (Predicate.isNonTruncStore())
292       continue;
293 
294     if (Predicate.isLoad() || Predicate.isStore()) {
295       if (Predicate.isUnindexed())
296         continue;
297     }
298 
299     if (Predicate.isAtomic() && Predicate.getMemoryVT())
300       continue;
301 
302     if (Predicate.isAtomic() &&
303         (Predicate.isAtomicOrderingMonotonic() ||
304          Predicate.isAtomicOrderingAcquire() ||
305          Predicate.isAtomicOrderingRelease() ||
306          Predicate.isAtomicOrderingAcquireRelease() ||
307          Predicate.isAtomicOrderingSequentiallyConsistent() ||
308          Predicate.isAtomicOrderingAcquireOrStronger() ||
309          Predicate.isAtomicOrderingWeakerThanAcquire() ||
310          Predicate.isAtomicOrderingReleaseOrStronger() ||
311          Predicate.isAtomicOrderingWeakerThanRelease()))
312       continue;
313 
314     HasUnsupportedPredicate = true;
315     Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
316     Separator = ", ";
317     Explanation += (Separator + "first-failing:" +
318                     Predicate.getOrigPatFragRecord()->getRecord()->getName())
319                        .str();
320     break;
321   }
322 
323   if (!HasUnsupportedPredicate)
324     return Error::success();
325 
326   return failedImport(Explanation);
327 }
328 
329 static Record *getInitValueAsRegClass(Init *V) {
330   if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
331     if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
332       return VDefInit->getDef()->getValueAsDef("RegClass");
333     if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
334       return VDefInit->getDef();
335   }
336   return nullptr;
337 }
338 
339 std::string
340 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
341   std::string Name = "GIFBS";
342   for (const auto &Feature : FeatureBitset)
343     Name += ("_" + Feature->getName()).str();
344   return Name;
345 }
346 
347 //===- MatchTable Helpers -------------------------------------------------===//
348 
349 class MatchTable;
350 
351 /// A record to be stored in a MatchTable.
352 ///
353 /// This class represents any and all output that may be required to emit the
354 /// MatchTable. Instances  are most often configured to represent an opcode or
355 /// value that will be emitted to the table with some formatting but it can also
356 /// represent commas, comments, and other formatting instructions.
357 struct MatchTableRecord {
358   enum RecordFlagsBits {
359     MTRF_None = 0x0,
360     /// Causes EmitStr to be formatted as comment when emitted.
361     MTRF_Comment = 0x1,
362     /// Causes the record value to be followed by a comma when emitted.
363     MTRF_CommaFollows = 0x2,
364     /// Causes the record value to be followed by a line break when emitted.
365     MTRF_LineBreakFollows = 0x4,
366     /// Indicates that the record defines a label and causes an additional
367     /// comment to be emitted containing the index of the label.
368     MTRF_Label = 0x8,
369     /// Causes the record to be emitted as the index of the label specified by
370     /// LabelID along with a comment indicating where that label is.
371     MTRF_JumpTarget = 0x10,
372     /// Causes the formatter to add a level of indentation before emitting the
373     /// record.
374     MTRF_Indent = 0x20,
375     /// Causes the formatter to remove a level of indentation after emitting the
376     /// record.
377     MTRF_Outdent = 0x40,
378   };
379 
380   /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
381   /// reference or define.
382   unsigned LabelID;
383   /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
384   /// value, a label name.
385   std::string EmitStr;
386 
387 private:
388   /// The number of MatchTable elements described by this record. Comments are 0
389   /// while values are typically 1. Values >1 may occur when we need to emit
390   /// values that exceed the size of a MatchTable element.
391   unsigned NumElements;
392 
393 public:
394   /// A bitfield of RecordFlagsBits flags.
395   unsigned Flags;
396 
397   MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
398                    unsigned NumElements, unsigned Flags)
399       : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
400         EmitStr(EmitStr), NumElements(NumElements), Flags(Flags) {
401     assert((!LabelID_.hasValue() || LabelID != ~0u) &&
402            "This value is reserved for non-labels");
403   }
404 
405   void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
406             const MatchTable &Table) const;
407   unsigned size() const { return NumElements; }
408 };
409 
410 /// Holds the contents of a generated MatchTable to enable formatting and the
411 /// necessary index tracking needed to support GIM_Try.
412 class MatchTable {
413   /// An unique identifier for the table. The generated table will be named
414   /// MatchTable${ID}.
415   unsigned ID;
416   /// The records that make up the table. Also includes comments describing the
417   /// values being emitted and line breaks to format it.
418   std::vector<MatchTableRecord> Contents;
419   /// The currently defined labels.
420   DenseMap<unsigned, unsigned> LabelMap;
421   /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
422   unsigned CurrentSize;
423 
424   /// A unique identifier for a MatchTable label.
425   static unsigned CurrentLabelID;
426 
427 public:
428   static MatchTableRecord LineBreak;
429   static MatchTableRecord Comment(StringRef Comment) {
430     return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
431   }
432   static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
433     unsigned ExtraFlags = 0;
434     if (IndentAdjust > 0)
435       ExtraFlags |= MatchTableRecord::MTRF_Indent;
436     if (IndentAdjust < 0)
437       ExtraFlags |= MatchTableRecord::MTRF_Outdent;
438 
439     return MatchTableRecord(None, Opcode, 1,
440                             MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
441   }
442   static MatchTableRecord NamedValue(StringRef NamedValue) {
443     return MatchTableRecord(None, NamedValue, 1,
444                             MatchTableRecord::MTRF_CommaFollows);
445   }
446   static MatchTableRecord NamedValue(StringRef Namespace,
447                                      StringRef NamedValue) {
448     return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
449                             MatchTableRecord::MTRF_CommaFollows);
450   }
451   static MatchTableRecord IntValue(int64_t IntValue) {
452     return MatchTableRecord(None, llvm::to_string(IntValue), 1,
453                             MatchTableRecord::MTRF_CommaFollows);
454   }
455   static MatchTableRecord Label(unsigned LabelID) {
456     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
457                             MatchTableRecord::MTRF_Label |
458                                 MatchTableRecord::MTRF_Comment |
459                                 MatchTableRecord::MTRF_LineBreakFollows);
460   }
461   static MatchTableRecord JumpTarget(unsigned LabelID) {
462     return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
463                             MatchTableRecord::MTRF_JumpTarget |
464                                 MatchTableRecord::MTRF_Comment |
465                                 MatchTableRecord::MTRF_CommaFollows);
466   }
467 
468   MatchTable(unsigned ID) : ID(ID), CurrentSize(0) {}
469 
470   void push_back(const MatchTableRecord &Value) {
471     if (Value.Flags & MatchTableRecord::MTRF_Label)
472       defineLabel(Value.LabelID);
473     Contents.push_back(Value);
474     CurrentSize += Value.size();
475   }
476 
477   unsigned allocateLabelID() const { return CurrentLabelID++; }
478 
479   void defineLabel(unsigned LabelID) {
480     LabelMap.insert(std::make_pair(LabelID, CurrentSize));
481   }
482 
483   unsigned getLabelIndex(unsigned LabelID) const {
484     const auto I = LabelMap.find(LabelID);
485     assert(I != LabelMap.end() && "Use of undeclared label");
486     return I->second;
487   }
488 
489   void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
490 
491   void emitDeclaration(raw_ostream &OS) const {
492     unsigned Indentation = 4;
493     OS << "  constexpr static int64_t MatchTable" << ID << "[] = {";
494     LineBreak.emit(OS, true, *this);
495     OS << std::string(Indentation, ' ');
496 
497     for (auto I = Contents.begin(), E = Contents.end(); I != E;
498          ++I) {
499       bool LineBreakIsNext = false;
500       const auto &NextI = std::next(I);
501 
502       if (NextI != E) {
503         if (NextI->EmitStr == "" &&
504             NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
505           LineBreakIsNext = true;
506       }
507 
508       if (I->Flags & MatchTableRecord::MTRF_Indent)
509         Indentation += 2;
510 
511       I->emit(OS, LineBreakIsNext, *this);
512       if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
513         OS << std::string(Indentation, ' ');
514 
515       if (I->Flags & MatchTableRecord::MTRF_Outdent)
516         Indentation -= 2;
517     }
518     OS << "};\n";
519   }
520 };
521 
522 unsigned MatchTable::CurrentLabelID = 0;
523 
524 MatchTableRecord MatchTable::LineBreak = {
525     None, "" /* Emit String */, 0 /* Elements */,
526     MatchTableRecord::MTRF_LineBreakFollows};
527 
528 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
529                             const MatchTable &Table) const {
530   bool UseLineComment =
531       LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
532   if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
533     UseLineComment = false;
534 
535   if (Flags & MTRF_Comment)
536     OS << (UseLineComment ? "// " : "/*");
537 
538   OS << EmitStr;
539   if (Flags & MTRF_Label)
540     OS << ": @" << Table.getLabelIndex(LabelID);
541 
542   if (Flags & MTRF_Comment && !UseLineComment)
543     OS << "*/";
544 
545   if (Flags & MTRF_JumpTarget) {
546     if (Flags & MTRF_Comment)
547       OS << " ";
548     OS << Table.getLabelIndex(LabelID);
549   }
550 
551   if (Flags & MTRF_CommaFollows) {
552     OS << ",";
553     if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
554       OS << " ";
555   }
556 
557   if (Flags & MTRF_LineBreakFollows)
558     OS << "\n";
559 }
560 
561 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
562   Table.push_back(Value);
563   return Table;
564 }
565 
566 //===- Matchers -----------------------------------------------------------===//
567 
568 class OperandMatcher;
569 class MatchAction;
570 class PredicateMatcher;
571 class RuleMatcher;
572 
573 class Matcher {
574 public:
575   virtual ~Matcher() = default;
576   virtual void emit(MatchTable &Table) = 0;
577   virtual std::unique_ptr<PredicateMatcher> forgetFirstCondition() = 0;
578 };
579 
580 class GroupMatcher : public Matcher {
581   SmallVector<std::unique_ptr<PredicateMatcher>, 8> Conditions;
582   SmallVector<Matcher *, 8> Rules;
583 
584 public:
585   void addCondition(std::unique_ptr<PredicateMatcher> &&Predicate) {
586     Conditions.emplace_back(std::move(Predicate));
587   }
588   void addRule(Matcher &Rule) { Rules.push_back(&Rule); }
589   const std::unique_ptr<PredicateMatcher> &conditions_back() const {
590     return Conditions.back();
591   }
592   bool lastConditionMatches(const PredicateMatcher &Predicate) const;
593   bool conditions_empty() const { return Conditions.empty(); }
594   void clear() {
595     Conditions.clear();
596     Rules.clear();
597   }
598   void emit(MatchTable &Table) override;
599 
600   std::unique_ptr<PredicateMatcher> forgetFirstCondition() override {
601     // We shouldn't need to mess up with groups, since we
602     // should have merged everything shareable upfront.
603     // If we start to look into reordering predicates,
604     // we may want to reconsider this.
605     assert(0 && "Groups should be formed maximal for now");
606     llvm_unreachable("No need for this for now");
607   }
608 };
609 
610 /// Generates code to check that a match rule matches.
611 class RuleMatcher : public Matcher {
612 public:
613   using ActionList = std::list<std::unique_ptr<MatchAction>>;
614   using action_iterator = ActionList::iterator;
615 
616 protected:
617   /// A list of matchers that all need to succeed for the current rule to match.
618   /// FIXME: This currently supports a single match position but could be
619   /// extended to support multiple positions to support div/rem fusion or
620   /// load-multiple instructions.
621   std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
622 
623   /// A list of actions that need to be taken when all predicates in this rule
624   /// have succeeded.
625   ActionList Actions;
626 
627   using DefinedInsnVariablesMap =
628       std::map<const InstructionMatcher *, unsigned>;
629 
630   /// A map of instruction matchers to the local variables created by
631   /// emitCaptureOpcodes().
632   DefinedInsnVariablesMap InsnVariableIDs;
633 
634   using MutatableInsnSet = SmallPtrSet<const InstructionMatcher *, 4>;
635 
636   // The set of instruction matchers that have not yet been claimed for mutation
637   // by a BuildMI.
638   MutatableInsnSet MutatableInsns;
639 
640   /// A map of named operands defined by the matchers that may be referenced by
641   /// the renderers.
642   StringMap<OperandMatcher *> DefinedOperands;
643 
644   /// ID for the next instruction variable defined with defineInsnVar()
645   unsigned NextInsnVarID;
646 
647   /// ID for the next output instruction allocated with allocateOutputInsnID()
648   unsigned NextOutputInsnID;
649 
650   /// ID for the next temporary register ID allocated with allocateTempRegID()
651   unsigned NextTempRegID;
652 
653   std::vector<Record *> RequiredFeatures;
654 
655   ArrayRef<SMLoc> SrcLoc;
656 
657   typedef std::tuple<Record *, unsigned, unsigned>
658       DefinedComplexPatternSubOperand;
659   typedef StringMap<DefinedComplexPatternSubOperand>
660       DefinedComplexPatternSubOperandMap;
661   /// A map of Symbolic Names to ComplexPattern sub-operands.
662   DefinedComplexPatternSubOperandMap ComplexSubOperands;
663 
664   uint64_t RuleID;
665   static uint64_t NextRuleID;
666 
667 public:
668   RuleMatcher(ArrayRef<SMLoc> SrcLoc)
669       : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
670         DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
671         NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
672         RuleID(NextRuleID++) {}
673   RuleMatcher(RuleMatcher &&Other) = default;
674   RuleMatcher &operator=(RuleMatcher &&Other) = default;
675 
676   uint64_t getRuleID() const { return RuleID; }
677 
678   InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
679   void addRequiredFeature(Record *Feature);
680   const std::vector<Record *> &getRequiredFeatures() const;
681 
682   template <class Kind, class... Args> Kind &addAction(Args &&... args);
683   template <class Kind, class... Args>
684   action_iterator insertAction(action_iterator InsertPt, Args &&... args);
685 
686   /// Define an instruction without emitting any code to do so.
687   /// This is used for the root of the match.
688   unsigned implicitlyDefineInsnVar(const InstructionMatcher &Matcher);
689   void clearImplicitMap() {
690     NextInsnVarID = 0;
691     InsnVariableIDs.clear();
692   };
693   /// Define an instruction and emit corresponding state-machine opcodes.
694   unsigned defineInsnVar(MatchTable &Table, const InstructionMatcher &Matcher,
695                          unsigned InsnVarID, unsigned OpIdx);
696   unsigned getInsnVarID(const InstructionMatcher &InsnMatcher) const;
697   DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
698     return InsnVariableIDs.begin();
699   }
700   DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
701     return InsnVariableIDs.end();
702   }
703   iterator_range<typename DefinedInsnVariablesMap::const_iterator>
704   defined_insn_vars() const {
705     return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
706   }
707 
708   MutatableInsnSet::const_iterator mutatable_insns_begin() const {
709     return MutatableInsns.begin();
710   }
711   MutatableInsnSet::const_iterator mutatable_insns_end() const {
712     return MutatableInsns.end();
713   }
714   iterator_range<typename MutatableInsnSet::const_iterator>
715   mutatable_insns() const {
716     return make_range(mutatable_insns_begin(), mutatable_insns_end());
717   }
718   void reserveInsnMatcherForMutation(const InstructionMatcher *InsnMatcher) {
719     bool R = MutatableInsns.erase(InsnMatcher);
720     assert(R && "Reserving a mutatable insn that isn't available");
721     (void)R;
722   }
723 
724   action_iterator actions_begin() { return Actions.begin(); }
725   action_iterator actions_end() { return Actions.end(); }
726   iterator_range<action_iterator> actions() {
727     return make_range(actions_begin(), actions_end());
728   }
729 
730   void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
731 
732   void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
733                                unsigned RendererID, unsigned SubOperandID) {
734     assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
735     ComplexSubOperands[SymbolicName] =
736         std::make_tuple(ComplexPattern, RendererID, SubOperandID);
737   }
738   Optional<DefinedComplexPatternSubOperand>
739   getComplexSubOperand(StringRef SymbolicName) const {
740     const auto &I = ComplexSubOperands.find(SymbolicName);
741     if (I == ComplexSubOperands.end())
742       return None;
743     return I->second;
744   }
745 
746   const InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
747   const OperandMatcher &getOperandMatcher(StringRef Name) const;
748 
749   void emitCaptureOpcodes(MatchTable &Table);
750 
751   void emit(MatchTable &Table) override;
752 
753   /// Compare the priority of this object and B.
754   ///
755   /// Returns true if this object is more important than B.
756   bool isHigherPriorityThan(const RuleMatcher &B) const;
757 
758   /// Report the maximum number of temporary operands needed by the rule
759   /// matcher.
760   unsigned countRendererFns() const;
761 
762   std::unique_ptr<PredicateMatcher> forgetFirstCondition() override;
763 
764   // FIXME: Remove this as soon as possible
765   InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
766 
767   unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
768   unsigned allocateTempRegID() { return NextTempRegID++; }
769 
770   bool insnmatchers_empty() const { return Matchers.empty(); }
771   void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
772 };
773 
774 uint64_t RuleMatcher::NextRuleID = 0;
775 
776 using action_iterator = RuleMatcher::action_iterator;
777 
778 template <class PredicateTy> class PredicateListMatcher {
779 private:
780   typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
781   PredicateVec Predicates;
782 
783   /// Template instantiations should specialize this to return a string to use
784   /// for the comment emitted when there are no predicates.
785   std::string getNoPredicateComment() const;
786 
787 public:
788   /// Construct a new operand predicate and add it to the matcher.
789   template <class Kind, class... Args>
790   Optional<Kind *> addPredicate(Args&&... args) {
791     Predicates.emplace_back(
792         llvm::make_unique<Kind>(std::forward<Args>(args)...));
793     return static_cast<Kind *>(Predicates.back().get());
794   }
795 
796   typename PredicateVec::const_iterator predicates_begin() const {
797     return Predicates.begin();
798   }
799   typename PredicateVec::const_iterator predicates_end() const {
800     return Predicates.end();
801   }
802   iterator_range<typename PredicateVec::const_iterator> predicates() const {
803     return make_range(predicates_begin(), predicates_end());
804   }
805   typename PredicateVec::size_type predicates_size() const {
806     return Predicates.size();
807   }
808   bool predicates_empty() const { return Predicates.empty(); }
809 
810   std::unique_ptr<PredicateTy> predicates_pop_front() {
811     std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
812     Predicates.erase(Predicates.begin());
813     return Front;
814   }
815 
816   /// Emit MatchTable opcodes that tests whether all the predicates are met.
817   template <class... Args>
818   void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) const {
819     if (Predicates.empty()) {
820       Table << MatchTable::Comment(getNoPredicateComment())
821             << MatchTable::LineBreak;
822       return;
823     }
824 
825     unsigned OpIdx = (*predicates_begin())->getOpIdx();
826     (void)OpIdx;
827     for (const auto &Predicate : predicates()) {
828       assert(Predicate->getOpIdx() == OpIdx &&
829              "Checks touch different operands?");
830       Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
831     }
832   }
833 };
834 
835 class PredicateMatcher {
836 public:
837   /// This enum is used for RTTI and also defines the priority that is given to
838   /// the predicate when generating the matcher code. Kinds with higher priority
839   /// must be tested first.
840   ///
841   /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
842   /// but OPM_Int must have priority over OPM_RegBank since constant integers
843   /// are represented by a virtual register defined by a G_CONSTANT instruction.
844   ///
845   /// Note: The relative priority between IPM_ and OPM_ does not matter, they
846   /// are currently not compared between each other.
847   enum PredicateKind {
848     IPM_Opcode,
849     IPM_ImmPredicate,
850     IPM_AtomicOrderingMMO,
851     OPM_SameOperand,
852     OPM_ComplexPattern,
853     OPM_IntrinsicID,
854     OPM_Instruction,
855     OPM_Int,
856     OPM_LiteralInt,
857     OPM_LLT,
858     OPM_PointerToAny,
859     OPM_RegBank,
860     OPM_MBB,
861   };
862 
863 protected:
864   PredicateKind Kind;
865   unsigned InsnVarID;
866   unsigned OpIdx;
867 
868 public:
869   PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
870       : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
871 
872   unsigned getOpIdx() const { return OpIdx; }
873   virtual ~PredicateMatcher() = default;
874   /// Emit MatchTable opcodes that check the predicate for the given operand.
875   virtual void emitPredicateOpcodes(MatchTable &Table,
876                                     RuleMatcher &Rule) const = 0;
877 
878   PredicateKind getKind() const { return Kind; }
879 
880   virtual bool isIdentical(const PredicateMatcher &B) const {
881     if (InsnVarID != 0 || OpIdx != (unsigned)~0) {
882       // We currently don't hoist the record of instruction properly.
883       // Therefore we can only work on the orig instruction (InsnVarID
884       // == 0).
885       DEBUG(dbgs() << "Non-zero instr ID not supported yet\n");
886       return false;
887     }
888     return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
889            OpIdx == B.OpIdx;
890   }
891 };
892 
893 /// Generates code to check a predicate of an operand.
894 ///
895 /// Typical predicates include:
896 /// * Operand is a particular register.
897 /// * Operand is assigned a particular register bank.
898 /// * Operand is an MBB.
899 class OperandPredicateMatcher : public PredicateMatcher {
900 public:
901   OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
902                           unsigned OpIdx)
903       : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
904   virtual ~OperandPredicateMatcher() {}
905 
906   /// Emit MatchTable opcodes to capture instructions into the MIs table.
907   ///
908   /// Only InstructionOperandMatcher needs to do anything for this method the
909   /// rest just walk the tree.
910   virtual void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {}
911 
912   /// Compare the priority of this object and B.
913   ///
914   /// Returns true if this object is more important than B.
915   virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
916 
917   /// Report the maximum number of temporary operands needed by the predicate
918   /// matcher.
919   virtual unsigned countRendererFns() const { return 0; }
920 };
921 
922 template <>
923 std::string
924 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
925   return "No operand predicates";
926 }
927 
928 /// Generates code to check that a register operand is defined by the same exact
929 /// one as another.
930 class SameOperandMatcher : public OperandPredicateMatcher {
931   std::string MatchingName;
932 
933 public:
934   SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
935       : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
936         MatchingName(MatchingName) {}
937 
938   static bool classof(const OperandPredicateMatcher *P) {
939     return P->getKind() == OPM_SameOperand;
940   }
941 
942   void emitPredicateOpcodes(MatchTable &Table,
943                             RuleMatcher &Rule) const override;
944 };
945 
946 /// Generates code to check that an operand is a particular LLT.
947 class LLTOperandMatcher : public OperandPredicateMatcher {
948 protected:
949   LLTCodeGen Ty;
950 
951 public:
952   static std::set<LLTCodeGen> KnownTypes;
953 
954   LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
955       : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
956     KnownTypes.insert(Ty);
957   }
958 
959   static bool classof(const PredicateMatcher *P) {
960     return P->getKind() == OPM_LLT;
961   }
962   bool isIdentical(const PredicateMatcher &B) const override {
963     return OperandPredicateMatcher::isIdentical(B) &&
964            Ty == cast<LLTOperandMatcher>(&B)->Ty;
965   }
966 
967   void emitPredicateOpcodes(MatchTable &Table,
968                             RuleMatcher &Rule) const override {
969     Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
970           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
971           << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
972           << MatchTable::NamedValue(Ty.getCxxEnumValue())
973           << MatchTable::LineBreak;
974   }
975 };
976 
977 std::set<LLTCodeGen> LLTOperandMatcher::KnownTypes;
978 
979 /// Generates code to check that an operand is a pointer to any address space.
980 ///
981 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
982 /// result, iN is used to describe a pointer of N bits to any address space and
983 /// PatFrag predicates are typically used to constrain the address space. There's
984 /// no reliable means to derive the missing type information from the pattern so
985 /// imported rules must test the components of a pointer separately.
986 ///
987 /// If SizeInBits is zero, then the pointer size will be obtained from the
988 /// subtarget.
989 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
990 protected:
991   unsigned SizeInBits;
992 
993 public:
994   PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
995                              unsigned SizeInBits)
996       : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
997         SizeInBits(SizeInBits) {}
998 
999   static bool classof(const OperandPredicateMatcher *P) {
1000     return P->getKind() == OPM_PointerToAny;
1001   }
1002 
1003   void emitPredicateOpcodes(MatchTable &Table,
1004                             RuleMatcher &Rule) const override {
1005     Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1006           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1007           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1008           << MatchTable::Comment("SizeInBits")
1009           << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1010   }
1011 };
1012 
1013 /// Generates code to check that an operand is a particular target constant.
1014 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1015 protected:
1016   const OperandMatcher &Operand;
1017   const Record &TheDef;
1018 
1019   unsigned getAllocatedTemporariesBaseID() const;
1020 
1021 public:
1022   bool isIdentical(const PredicateMatcher &B) const override { return false; }
1023 
1024   ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1025                                const OperandMatcher &Operand,
1026                                const Record &TheDef)
1027       : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1028         Operand(Operand), TheDef(TheDef) {}
1029 
1030   static bool classof(const PredicateMatcher *P) {
1031     return P->getKind() == OPM_ComplexPattern;
1032   }
1033 
1034   void emitPredicateOpcodes(MatchTable &Table,
1035                             RuleMatcher &Rule) const override {
1036     unsigned ID = getAllocatedTemporariesBaseID();
1037     Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1038           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1039           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1040           << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1041           << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1042           << MatchTable::LineBreak;
1043   }
1044 
1045   unsigned countRendererFns() const override {
1046     return 1;
1047   }
1048 };
1049 
1050 /// Generates code to check that an operand is in a particular register bank.
1051 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1052 protected:
1053   const CodeGenRegisterClass &RC;
1054 
1055 public:
1056   RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1057                              const CodeGenRegisterClass &RC)
1058       : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1059 
1060   bool isIdentical(const PredicateMatcher &B) const override {
1061     return OperandPredicateMatcher::isIdentical(B) &&
1062            RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1063   }
1064 
1065   static bool classof(const PredicateMatcher *P) {
1066     return P->getKind() == OPM_RegBank;
1067   }
1068 
1069   void emitPredicateOpcodes(MatchTable &Table,
1070                             RuleMatcher &Rule) const override {
1071     Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1072           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1073           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1074           << MatchTable::Comment("RC")
1075           << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1076           << MatchTable::LineBreak;
1077   }
1078 };
1079 
1080 /// Generates code to check that an operand is a basic block.
1081 class MBBOperandMatcher : public OperandPredicateMatcher {
1082 public:
1083   MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1084       : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1085 
1086   static bool classof(const PredicateMatcher *P) {
1087     return P->getKind() == OPM_MBB;
1088   }
1089 
1090   void emitPredicateOpcodes(MatchTable &Table,
1091                             RuleMatcher &Rule) const override {
1092     Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1093           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1094           << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1095   }
1096 };
1097 
1098 /// Generates code to check that an operand is a G_CONSTANT with a particular
1099 /// int.
1100 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1101 protected:
1102   int64_t Value;
1103 
1104 public:
1105   ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1106       : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1107 
1108   bool isIdentical(const PredicateMatcher &B) const override {
1109     return OperandPredicateMatcher::isIdentical(B) &&
1110            Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1111   }
1112 
1113   static bool classof(const PredicateMatcher *P) {
1114     return P->getKind() == OPM_Int;
1115   }
1116 
1117   void emitPredicateOpcodes(MatchTable &Table,
1118                             RuleMatcher &Rule) const override {
1119     Table << MatchTable::Opcode("GIM_CheckConstantInt")
1120           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1121           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1122           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1123   }
1124 };
1125 
1126 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1127 /// MO.isCImm() is true).
1128 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1129 protected:
1130   int64_t Value;
1131 
1132 public:
1133   LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1134       : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1135         Value(Value) {}
1136 
1137   bool isIdentical(const PredicateMatcher &B) const override {
1138     return OperandPredicateMatcher::isIdentical(B) &&
1139            Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1140   }
1141 
1142   static bool classof(const PredicateMatcher *P) {
1143     return P->getKind() == OPM_LiteralInt;
1144   }
1145 
1146   void emitPredicateOpcodes(MatchTable &Table,
1147                             RuleMatcher &Rule) const override {
1148     Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1149           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1150           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1151           << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1152   }
1153 };
1154 
1155 /// Generates code to check that an operand is an intrinsic ID.
1156 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1157 protected:
1158   const CodeGenIntrinsic *II;
1159 
1160 public:
1161   IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1162                             const CodeGenIntrinsic *II)
1163       : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1164 
1165   bool isIdentical(const PredicateMatcher &B) const override {
1166     return OperandPredicateMatcher::isIdentical(B) &&
1167            II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1168   }
1169 
1170   static bool classof(const PredicateMatcher *P) {
1171     return P->getKind() == OPM_IntrinsicID;
1172   }
1173 
1174   void emitPredicateOpcodes(MatchTable &Table,
1175                             RuleMatcher &Rule) const override {
1176     Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1177           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1178           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1179           << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1180           << MatchTable::LineBreak;
1181   }
1182 };
1183 
1184 /// Generates code to check that a set of predicates match for a particular
1185 /// operand.
1186 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1187 protected:
1188   InstructionMatcher &Insn;
1189   unsigned OpIdx;
1190   std::string SymbolicName;
1191 
1192   /// The index of the first temporary variable allocated to this operand. The
1193   /// number of allocated temporaries can be found with
1194   /// countRendererFns().
1195   unsigned AllocatedTemporariesBaseID;
1196 
1197 public:
1198   OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1199                  const std::string &SymbolicName,
1200                  unsigned AllocatedTemporariesBaseID)
1201       : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1202         AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1203 
1204   bool hasSymbolicName() const { return !SymbolicName.empty(); }
1205   const StringRef getSymbolicName() const { return SymbolicName; }
1206   void setSymbolicName(StringRef Name) {
1207     assert(SymbolicName.empty() && "Operand already has a symbolic name");
1208     SymbolicName = Name;
1209   }
1210   unsigned getOperandIndex() const { return OpIdx; }
1211   unsigned getInsnVarID() const;
1212 
1213   std::string getOperandExpr(unsigned InsnVarID) const {
1214     return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1215            llvm::to_string(OpIdx) + ")";
1216   }
1217 
1218   InstructionMatcher &getInstructionMatcher() const { return Insn; }
1219 
1220   Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1221                               bool OperandIsAPointer);
1222 
1223   /// Emit MatchTable opcodes to capture instructions into the MIs table.
1224   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
1225     for (const auto &Predicate : predicates())
1226       Predicate->emitCaptureOpcodes(Table, Rule);
1227   }
1228 
1229   /// Emit MatchTable opcodes that test whether the instruction named in
1230   /// InsnVarID matches all the predicates and all the operands.
1231   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
1232     std::string Comment;
1233     raw_string_ostream CommentOS(Comment);
1234     CommentOS << "MIs[" << getInsnVarID() << "] ";
1235     if (SymbolicName.empty())
1236       CommentOS << "Operand " << OpIdx;
1237     else
1238       CommentOS << SymbolicName;
1239     Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1240 
1241     emitPredicateListOpcodes(Table, Rule);
1242   }
1243 
1244   /// Compare the priority of this object and B.
1245   ///
1246   /// Returns true if this object is more important than B.
1247   bool isHigherPriorityThan(const OperandMatcher &B) const {
1248     // Operand matchers involving more predicates have higher priority.
1249     if (predicates_size() > B.predicates_size())
1250       return true;
1251     if (predicates_size() < B.predicates_size())
1252       return false;
1253 
1254     // This assumes that predicates are added in a consistent order.
1255     for (const auto &Predicate : zip(predicates(), B.predicates())) {
1256       if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1257         return true;
1258       if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1259         return false;
1260     }
1261 
1262     return false;
1263   };
1264 
1265   /// Report the maximum number of temporary operands needed by the operand
1266   /// matcher.
1267   unsigned countRendererFns() const {
1268     return std::accumulate(
1269         predicates().begin(), predicates().end(), 0,
1270         [](unsigned A,
1271            const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1272           return A + Predicate->countRendererFns();
1273         });
1274   }
1275 
1276   unsigned getAllocatedTemporariesBaseID() const {
1277     return AllocatedTemporariesBaseID;
1278   }
1279 
1280   bool isSameAsAnotherOperand() const {
1281     for (const auto &Predicate : predicates())
1282       if (isa<SameOperandMatcher>(Predicate))
1283         return true;
1284     return false;
1285   }
1286 };
1287 
1288 // Specialize OperandMatcher::addPredicate() to refrain from adding redundant
1289 // predicates.
1290 template <>
1291 template <class Kind, class... Args>
1292 Optional<Kind *>
1293 PredicateListMatcher<OperandPredicateMatcher>::addPredicate(Args &&... args) {
1294   auto *OpMatcher = static_cast<OperandMatcher *>(this);
1295   if (static_cast<OperandMatcher *>(this)->isSameAsAnotherOperand())
1296     return None;
1297   Predicates.emplace_back(llvm::make_unique<Kind>(OpMatcher->getInsnVarID(),
1298                                                   OpMatcher->getOperandIndex(),
1299                                                   std::forward<Args>(args)...));
1300   return static_cast<Kind *>(Predicates.back().get());
1301 }
1302 
1303 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1304                                             bool OperandIsAPointer) {
1305   if (!VTy.isMachineValueType())
1306     return failedImport("unsupported typeset");
1307 
1308   if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1309     addPredicate<PointerToAnyOperandMatcher>(0);
1310     return Error::success();
1311   }
1312 
1313   auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1314   if (!OpTyOrNone)
1315     return failedImport("unsupported type");
1316 
1317   if (OperandIsAPointer)
1318     addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1319   else
1320     addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1321   return Error::success();
1322 }
1323 
1324 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1325   return Operand.getAllocatedTemporariesBaseID();
1326 }
1327 
1328 /// Generates code to check a predicate on an instruction.
1329 ///
1330 /// Typical predicates include:
1331 /// * The opcode of the instruction is a particular value.
1332 /// * The nsw/nuw flag is/isn't set.
1333 class InstructionPredicateMatcher : public PredicateMatcher {
1334 public:
1335   InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1336       : PredicateMatcher(Kind, InsnVarID) {}
1337   virtual ~InstructionPredicateMatcher() {}
1338 
1339   /// Compare the priority of this object and B.
1340   ///
1341   /// Returns true if this object is more important than B.
1342   virtual bool
1343   isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1344     return Kind < B.Kind;
1345   };
1346 
1347   /// Report the maximum number of temporary operands needed by the predicate
1348   /// matcher.
1349   virtual unsigned countRendererFns() const { return 0; }
1350 };
1351 
1352 template <>
1353 std::string
1354 PredicateListMatcher<InstructionPredicateMatcher>::getNoPredicateComment() const {
1355   return "No instruction predicates";
1356 }
1357 
1358 /// Generates code to check the opcode of an instruction.
1359 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1360 protected:
1361   const CodeGenInstruction *I;
1362 
1363 public:
1364   InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
1365       : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
1366 
1367   static bool classof(const PredicateMatcher *P) {
1368     return P->getKind() == IPM_Opcode;
1369   }
1370 
1371   bool isIdentical(const PredicateMatcher &B) const override {
1372     return InstructionPredicateMatcher::isIdentical(B) &&
1373            I == cast<InstructionOpcodeMatcher>(&B)->I;
1374   }
1375 
1376   void emitPredicateOpcodes(MatchTable &Table,
1377                             RuleMatcher &Rule) const override {
1378     Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1379           << MatchTable::IntValue(InsnVarID)
1380           << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
1381           << MatchTable::LineBreak;
1382   }
1383 
1384   /// Compare the priority of this object and B.
1385   ///
1386   /// Returns true if this object is more important than B.
1387   bool
1388   isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1389     if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1390       return true;
1391     if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1392       return false;
1393 
1394     // Prioritize opcodes for cosmetic reasons in the generated source. Although
1395     // this is cosmetic at the moment, we may want to drive a similar ordering
1396     // using instruction frequency information to improve compile time.
1397     if (const InstructionOpcodeMatcher *BO =
1398             dyn_cast<InstructionOpcodeMatcher>(&B))
1399       return I->TheDef->getName() < BO->I->TheDef->getName();
1400 
1401     return false;
1402   };
1403 
1404   bool isConstantInstruction() const {
1405     return I->TheDef->getName() == "G_CONSTANT";
1406   }
1407 };
1408 
1409 /// Generates code to check that this instruction is a constant whose value
1410 /// meets an immediate predicate.
1411 ///
1412 /// Immediates are slightly odd since they are typically used like an operand
1413 /// but are represented as an operator internally. We typically write simm8:$src
1414 /// in a tablegen pattern, but this is just syntactic sugar for
1415 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1416 /// that will be matched and the predicate (which is attached to the imm
1417 /// operator) that will be tested. In SelectionDAG this describes a
1418 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1419 ///
1420 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1421 /// this representation, the immediate could be tested with an
1422 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1423 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1424 /// there are two implementation issues with producing that matcher
1425 /// configuration from the SelectionDAG pattern:
1426 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1427 ///   were we to sink the immediate predicate to the operand we would have to
1428 ///   have two partial implementations of PatFrag support, one for immediates
1429 ///   and one for non-immediates.
1430 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1431 ///   created yet. If we were to sink the predicate to the OperandMatcher we
1432 ///   would also have to complicate (or duplicate) the code that descends and
1433 ///   creates matchers for the subtree.
1434 /// Overall, it's simpler to handle it in the place it was found.
1435 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1436 protected:
1437   TreePredicateFn Predicate;
1438 
1439 public:
1440   InstructionImmPredicateMatcher(unsigned InsnVarID,
1441                                  const TreePredicateFn &Predicate)
1442       : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1443         Predicate(Predicate) {}
1444 
1445   bool isIdentical(const PredicateMatcher &B) const override {
1446     return InstructionPredicateMatcher::isIdentical(B) &&
1447            Predicate.getOrigPatFragRecord() ==
1448                cast<InstructionImmPredicateMatcher>(&B)
1449                    ->Predicate.getOrigPatFragRecord();
1450   }
1451 
1452   static bool classof(const PredicateMatcher *P) {
1453     return P->getKind() == IPM_ImmPredicate;
1454   }
1455 
1456   void emitPredicateOpcodes(MatchTable &Table,
1457                             RuleMatcher &Rule) const override {
1458     Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
1459           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1460           << MatchTable::Comment("Predicate")
1461           << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1462           << MatchTable::LineBreak;
1463   }
1464 };
1465 
1466 /// Generates code to check that a memory instruction has a atomic ordering
1467 /// MachineMemoryOperand.
1468 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1469 public:
1470   enum AOComparator {
1471     AO_Exactly,
1472     AO_OrStronger,
1473     AO_WeakerThan,
1474   };
1475 
1476 protected:
1477   StringRef Order;
1478   AOComparator Comparator;
1479 
1480 public:
1481   AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1482                                     AOComparator Comparator = AO_Exactly)
1483       : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1484         Order(Order), Comparator(Comparator) {}
1485 
1486   static bool classof(const InstructionPredicateMatcher *P) {
1487     return P->getKind() == IPM_AtomicOrderingMMO;
1488   }
1489 
1490   void emitPredicateOpcodes(MatchTable &Table,
1491                             RuleMatcher &Rule) const override {
1492     StringRef Opcode = "GIM_CheckAtomicOrdering";
1493 
1494     if (Comparator == AO_OrStronger)
1495       Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
1496     if (Comparator == AO_WeakerThan)
1497       Opcode = "GIM_CheckAtomicOrderingWeakerThan";
1498 
1499     Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
1500           << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
1501           << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
1502           << MatchTable::LineBreak;
1503   }
1504 };
1505 
1506 /// Generates code to check that a set of predicates and operands match for a
1507 /// particular instruction.
1508 ///
1509 /// Typical predicates include:
1510 /// * Has a specific opcode.
1511 /// * Has an nsw/nuw flag or doesn't.
1512 class InstructionMatcher
1513     : public PredicateListMatcher<InstructionPredicateMatcher> {
1514 protected:
1515   typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
1516 
1517   RuleMatcher &Rule;
1518 
1519   /// The operands to match. All rendered operands must be present even if the
1520   /// condition is always true.
1521   OperandVec Operands;
1522 
1523   std::string SymbolicName;
1524   unsigned InsnVarID;
1525 
1526 public:
1527   InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
1528       : Rule(Rule), SymbolicName(SymbolicName) {
1529     // We create a new instruction matcher.
1530     // Get a new ID for that instruction.
1531     InsnVarID = Rule.implicitlyDefineInsnVar(*this);
1532   }
1533 
1534   RuleMatcher &getRuleMatcher() const { return Rule; }
1535 
1536   unsigned getVarID() const { return InsnVarID; }
1537 
1538   /// Add an operand to the matcher.
1539   OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
1540                              unsigned AllocatedTemporariesBaseID) {
1541     Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
1542                                              AllocatedTemporariesBaseID));
1543     if (!SymbolicName.empty())
1544       Rule.defineOperand(SymbolicName, *Operands.back());
1545 
1546     return *Operands.back();
1547   }
1548 
1549   OperandMatcher &getOperand(unsigned OpIdx) {
1550     auto I = std::find_if(Operands.begin(), Operands.end(),
1551                           [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
1552                             return X->getOperandIndex() == OpIdx;
1553                           });
1554     if (I != Operands.end())
1555       return **I;
1556     llvm_unreachable("Failed to lookup operand");
1557   }
1558 
1559   StringRef getSymbolicName() const { return SymbolicName; }
1560   unsigned getNumOperands() const { return Operands.size(); }
1561   OperandVec::iterator operands_begin() { return Operands.begin(); }
1562   OperandVec::iterator operands_end() { return Operands.end(); }
1563   iterator_range<OperandVec::iterator> operands() {
1564     return make_range(operands_begin(), operands_end());
1565   }
1566   OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
1567   OperandVec::const_iterator operands_end() const { return Operands.end(); }
1568   iterator_range<OperandVec::const_iterator> operands() const {
1569     return make_range(operands_begin(), operands_end());
1570   }
1571   bool operands_empty() const { return Operands.empty(); }
1572 
1573   void pop_front() { Operands.erase(Operands.begin()); }
1574 
1575   /// Emit MatchTable opcodes to check the shape of the match and capture
1576   /// instructions into the MIs table.
1577   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1578     Table << MatchTable::Opcode("GIM_CheckNumOperands")
1579           << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1580           << MatchTable::Comment("Expected")
1581           << MatchTable::IntValue(getNumOperands()) << MatchTable::LineBreak;
1582     for (const auto &Operand : Operands)
1583       Operand->emitCaptureOpcodes(Table, Rule);
1584   }
1585 
1586   /// Emit MatchTable opcodes that test whether the instruction named in
1587   /// InsnVarName matches all the predicates and all the operands.
1588   void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
1589     emitPredicateListOpcodes(Table, Rule);
1590     for (const auto &Operand : Operands)
1591       Operand->emitPredicateOpcodes(Table, Rule);
1592   }
1593 
1594   /// Compare the priority of this object and B.
1595   ///
1596   /// Returns true if this object is more important than B.
1597   bool isHigherPriorityThan(const InstructionMatcher &B) const {
1598     // Instruction matchers involving more operands have higher priority.
1599     if (Operands.size() > B.Operands.size())
1600       return true;
1601     if (Operands.size() < B.Operands.size())
1602       return false;
1603 
1604     for (const auto &Predicate : zip(predicates(), B.predicates())) {
1605       if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1606         return true;
1607       if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1608         return false;
1609     }
1610 
1611     for (const auto &Operand : zip(Operands, B.Operands)) {
1612       if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
1613         return true;
1614       if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
1615         return false;
1616     }
1617 
1618     return false;
1619   };
1620 
1621   /// Report the maximum number of temporary operands needed by the instruction
1622   /// matcher.
1623   unsigned countRendererFns() const {
1624     return std::accumulate(predicates().begin(), predicates().end(), 0,
1625                            [](unsigned A,
1626                               const std::unique_ptr<InstructionPredicateMatcher>
1627                                   &Predicate) {
1628                              return A + Predicate->countRendererFns();
1629                            }) +
1630            std::accumulate(
1631                Operands.begin(), Operands.end(), 0,
1632                [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
1633                  return A + Operand->countRendererFns();
1634                });
1635   }
1636 
1637   bool isConstantInstruction() const {
1638     for (const auto &P : predicates())
1639       if (const InstructionOpcodeMatcher *Opcode =
1640               dyn_cast<InstructionOpcodeMatcher>(P.get()))
1641         return Opcode->isConstantInstruction();
1642     return false;
1643   }
1644 };
1645 
1646 template <>
1647 template <class Kind, class... Args>
1648 Optional<Kind *>
1649 PredicateListMatcher<InstructionPredicateMatcher>::addPredicate(
1650     Args &&... args) {
1651   InstructionMatcher *InstMatcher = static_cast<InstructionMatcher *>(this);
1652   Predicates.emplace_back(llvm::make_unique<Kind>(InstMatcher->getVarID(),
1653                                                   std::forward<Args>(args)...));
1654   return static_cast<Kind *>(Predicates.back().get());
1655 }
1656 
1657 /// Generates code to check that the operand is a register defined by an
1658 /// instruction that matches the given instruction matcher.
1659 ///
1660 /// For example, the pattern:
1661 ///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
1662 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
1663 /// the:
1664 ///   (G_ADD $src1, $src2)
1665 /// subpattern.
1666 class InstructionOperandMatcher : public OperandPredicateMatcher {
1667 protected:
1668   std::unique_ptr<InstructionMatcher> InsnMatcher;
1669 
1670 public:
1671   InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1672                             RuleMatcher &Rule, StringRef SymbolicName)
1673       : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
1674         InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
1675 
1676   static bool classof(const PredicateMatcher *P) {
1677     return P->getKind() == OPM_Instruction;
1678   }
1679 
1680   InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
1681 
1682   void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1683     unsigned InsnID =
1684         Rule.defineInsnVar(Table, *InsnMatcher, InsnVarID, getOpIdx());
1685     (void)InsnID;
1686     assert(InsnMatcher->getVarID() == InsnID &&
1687            "Mismatch between build and emit");
1688     InsnMatcher->emitCaptureOpcodes(Table, Rule);
1689   }
1690 
1691   void emitPredicateOpcodes(MatchTable &Table,
1692                             RuleMatcher &Rule) const override {
1693     InsnMatcher->emitPredicateOpcodes(Table, Rule);
1694   }
1695 
1696   bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
1697     if (OperandPredicateMatcher::isHigherPriorityThan(B))
1698       return true;
1699     if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
1700       return false;
1701 
1702     if (const InstructionOperandMatcher *BP =
1703             dyn_cast<InstructionOperandMatcher>(&B))
1704       if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
1705         return true;
1706     return false;
1707   }
1708 };
1709 
1710 //===- Actions ------------------------------------------------------------===//
1711 class OperandRenderer {
1712 public:
1713   enum RendererKind {
1714     OR_Copy,
1715     OR_CopyOrAddZeroReg,
1716     OR_CopySubReg,
1717     OR_CopyConstantAsImm,
1718     OR_CopyFConstantAsFPImm,
1719     OR_Imm,
1720     OR_Register,
1721     OR_TempRegister,
1722     OR_ComplexPattern,
1723     OR_Custom
1724   };
1725 
1726 protected:
1727   RendererKind Kind;
1728 
1729 public:
1730   OperandRenderer(RendererKind Kind) : Kind(Kind) {}
1731   virtual ~OperandRenderer() {}
1732 
1733   RendererKind getKind() const { return Kind; }
1734 
1735   virtual void emitRenderOpcodes(MatchTable &Table,
1736                                  RuleMatcher &Rule) const = 0;
1737 };
1738 
1739 /// A CopyRenderer emits code to copy a single operand from an existing
1740 /// instruction to the one being built.
1741 class CopyRenderer : public OperandRenderer {
1742 protected:
1743   unsigned NewInsnID;
1744   /// The name of the operand.
1745   const StringRef SymbolicName;
1746 
1747 public:
1748   CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
1749       : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
1750         SymbolicName(SymbolicName) {
1751     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
1752   }
1753 
1754   static bool classof(const OperandRenderer *R) {
1755     return R->getKind() == OR_Copy;
1756   }
1757 
1758   const StringRef getSymbolicName() const { return SymbolicName; }
1759 
1760   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1761     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
1762     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
1763     Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
1764           << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
1765           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
1766           << MatchTable::IntValue(Operand.getOperandIndex())
1767           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
1768   }
1769 };
1770 
1771 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
1772 /// existing instruction to the one being built. If the operand turns out to be
1773 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
1774 class CopyOrAddZeroRegRenderer : public OperandRenderer {
1775 protected:
1776   unsigned NewInsnID;
1777   /// The name of the operand.
1778   const StringRef SymbolicName;
1779   const Record *ZeroRegisterDef;
1780 
1781 public:
1782   CopyOrAddZeroRegRenderer(unsigned NewInsnID,
1783                            StringRef SymbolicName, Record *ZeroRegisterDef)
1784       : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
1785         SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
1786     assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
1787   }
1788 
1789   static bool classof(const OperandRenderer *R) {
1790     return R->getKind() == OR_CopyOrAddZeroReg;
1791   }
1792 
1793   const StringRef getSymbolicName() const { return SymbolicName; }
1794 
1795   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1796     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
1797     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
1798     Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
1799           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
1800           << MatchTable::Comment("OldInsnID")
1801           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
1802           << MatchTable::IntValue(Operand.getOperandIndex())
1803           << MatchTable::NamedValue(
1804                  (ZeroRegisterDef->getValue("Namespace")
1805                       ? ZeroRegisterDef->getValueAsString("Namespace")
1806                       : ""),
1807                  ZeroRegisterDef->getName())
1808           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
1809   }
1810 };
1811 
1812 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
1813 /// an extended immediate operand.
1814 class CopyConstantAsImmRenderer : public OperandRenderer {
1815 protected:
1816   unsigned NewInsnID;
1817   /// The name of the operand.
1818   const std::string SymbolicName;
1819   bool Signed;
1820 
1821 public:
1822   CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
1823       : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
1824         SymbolicName(SymbolicName), Signed(true) {}
1825 
1826   static bool classof(const OperandRenderer *R) {
1827     return R->getKind() == OR_CopyConstantAsImm;
1828   }
1829 
1830   const StringRef getSymbolicName() const { return SymbolicName; }
1831 
1832   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1833     const InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
1834     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
1835     Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
1836                                        : "GIR_CopyConstantAsUImm")
1837           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
1838           << MatchTable::Comment("OldInsnID")
1839           << MatchTable::IntValue(OldInsnVarID)
1840           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
1841   }
1842 };
1843 
1844 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
1845 /// instruction to an extended immediate operand.
1846 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
1847 protected:
1848   unsigned NewInsnID;
1849   /// The name of the operand.
1850   const std::string SymbolicName;
1851 
1852 public:
1853   CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
1854       : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
1855         SymbolicName(SymbolicName) {}
1856 
1857   static bool classof(const OperandRenderer *R) {
1858     return R->getKind() == OR_CopyFConstantAsFPImm;
1859   }
1860 
1861   const StringRef getSymbolicName() const { return SymbolicName; }
1862 
1863   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1864     const InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
1865     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
1866     Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
1867           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
1868           << MatchTable::Comment("OldInsnID")
1869           << MatchTable::IntValue(OldInsnVarID)
1870           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
1871   }
1872 };
1873 
1874 /// A CopySubRegRenderer emits code to copy a single register operand from an
1875 /// existing instruction to the one being built and indicate that only a
1876 /// subregister should be copied.
1877 class CopySubRegRenderer : public OperandRenderer {
1878 protected:
1879   unsigned NewInsnID;
1880   /// The name of the operand.
1881   const StringRef SymbolicName;
1882   /// The subregister to extract.
1883   const CodeGenSubRegIndex *SubReg;
1884 
1885 public:
1886   CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
1887                      const CodeGenSubRegIndex *SubReg)
1888       : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
1889         SymbolicName(SymbolicName), SubReg(SubReg) {}
1890 
1891   static bool classof(const OperandRenderer *R) {
1892     return R->getKind() == OR_CopySubReg;
1893   }
1894 
1895   const StringRef getSymbolicName() const { return SymbolicName; }
1896 
1897   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1898     const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
1899     unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
1900     Table << MatchTable::Opcode("GIR_CopySubReg")
1901           << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
1902           << MatchTable::Comment("OldInsnID")
1903           << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
1904           << MatchTable::IntValue(Operand.getOperandIndex())
1905           << MatchTable::Comment("SubRegIdx")
1906           << MatchTable::IntValue(SubReg->EnumValue)
1907           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
1908   }
1909 };
1910 
1911 /// Adds a specific physical register to the instruction being built.
1912 /// This is typically useful for WZR/XZR on AArch64.
1913 class AddRegisterRenderer : public OperandRenderer {
1914 protected:
1915   unsigned InsnID;
1916   const Record *RegisterDef;
1917 
1918 public:
1919   AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
1920       : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
1921   }
1922 
1923   static bool classof(const OperandRenderer *R) {
1924     return R->getKind() == OR_Register;
1925   }
1926 
1927   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1928     Table << MatchTable::Opcode("GIR_AddRegister")
1929           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
1930           << MatchTable::NamedValue(
1931                  (RegisterDef->getValue("Namespace")
1932                       ? RegisterDef->getValueAsString("Namespace")
1933                       : ""),
1934                  RegisterDef->getName())
1935           << MatchTable::LineBreak;
1936   }
1937 };
1938 
1939 /// Adds a specific temporary virtual register to the instruction being built.
1940 /// This is used to chain instructions together when emitting multiple
1941 /// instructions.
1942 class TempRegRenderer : public OperandRenderer {
1943 protected:
1944   unsigned InsnID;
1945   unsigned TempRegID;
1946   bool IsDef;
1947 
1948 public:
1949   TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
1950       : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
1951         IsDef(IsDef) {}
1952 
1953   static bool classof(const OperandRenderer *R) {
1954     return R->getKind() == OR_TempRegister;
1955   }
1956 
1957   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1958     Table << MatchTable::Opcode("GIR_AddTempRegister")
1959           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
1960           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
1961           << MatchTable::Comment("TempRegFlags");
1962     if (IsDef)
1963       Table << MatchTable::NamedValue("RegState::Define");
1964     else
1965       Table << MatchTable::IntValue(0);
1966     Table << MatchTable::LineBreak;
1967   }
1968 };
1969 
1970 /// Adds a specific immediate to the instruction being built.
1971 class ImmRenderer : public OperandRenderer {
1972 protected:
1973   unsigned InsnID;
1974   int64_t Imm;
1975 
1976 public:
1977   ImmRenderer(unsigned InsnID, int64_t Imm)
1978       : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
1979 
1980   static bool classof(const OperandRenderer *R) {
1981     return R->getKind() == OR_Imm;
1982   }
1983 
1984   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
1985     Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
1986           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
1987           << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
1988   }
1989 };
1990 
1991 /// Adds operands by calling a renderer function supplied by the ComplexPattern
1992 /// matcher function.
1993 class RenderComplexPatternOperand : public OperandRenderer {
1994 private:
1995   unsigned InsnID;
1996   const Record &TheDef;
1997   /// The name of the operand.
1998   const StringRef SymbolicName;
1999   /// The renderer number. This must be unique within a rule since it's used to
2000   /// identify a temporary variable to hold the renderer function.
2001   unsigned RendererID;
2002   /// When provided, this is the suboperand of the ComplexPattern operand to
2003   /// render. Otherwise all the suboperands will be rendered.
2004   Optional<unsigned> SubOperand;
2005 
2006   unsigned getNumOperands() const {
2007     return TheDef.getValueAsDag("Operands")->getNumArgs();
2008   }
2009 
2010 public:
2011   RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2012                               StringRef SymbolicName, unsigned RendererID,
2013                               Optional<unsigned> SubOperand = None)
2014       : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2015         SymbolicName(SymbolicName), RendererID(RendererID),
2016         SubOperand(SubOperand) {}
2017 
2018   static bool classof(const OperandRenderer *R) {
2019     return R->getKind() == OR_ComplexPattern;
2020   }
2021 
2022   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2023     Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2024                                                       : "GIR_ComplexRenderer")
2025           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2026           << MatchTable::Comment("RendererID")
2027           << MatchTable::IntValue(RendererID);
2028     if (SubOperand.hasValue())
2029       Table << MatchTable::Comment("SubOperand")
2030             << MatchTable::IntValue(SubOperand.getValue());
2031     Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2032   }
2033 };
2034 
2035 class CustomRenderer : public OperandRenderer {
2036 protected:
2037   unsigned InsnID;
2038   const Record &Renderer;
2039   /// The name of the operand.
2040   const std::string SymbolicName;
2041 
2042 public:
2043   CustomRenderer(unsigned InsnID, const Record &Renderer,
2044                  StringRef SymbolicName)
2045       : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2046         SymbolicName(SymbolicName) {}
2047 
2048   static bool classof(const OperandRenderer *R) {
2049     return R->getKind() == OR_Custom;
2050   }
2051 
2052   void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2053     const InstructionMatcher &InsnMatcher =
2054         Rule.getInstructionMatcher(SymbolicName);
2055     unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2056     Table << MatchTable::Opcode("GIR_CustomRenderer")
2057           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2058           << MatchTable::Comment("OldInsnID")
2059           << MatchTable::IntValue(OldInsnVarID)
2060           << MatchTable::Comment("Renderer")
2061           << MatchTable::NamedValue(
2062                  "GICR_" + Renderer.getValueAsString("RendererFn").str())
2063           << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2064   }
2065 };
2066 
2067 /// An action taken when all Matcher predicates succeeded for a parent rule.
2068 ///
2069 /// Typical actions include:
2070 /// * Changing the opcode of an instruction.
2071 /// * Adding an operand to an instruction.
2072 class MatchAction {
2073 public:
2074   virtual ~MatchAction() {}
2075 
2076   /// Emit the MatchTable opcodes to implement the action.
2077   virtual void emitActionOpcodes(MatchTable &Table,
2078                                  RuleMatcher &Rule) const = 0;
2079 };
2080 
2081 /// Generates a comment describing the matched rule being acted upon.
2082 class DebugCommentAction : public MatchAction {
2083 private:
2084   std::string S;
2085 
2086 public:
2087   DebugCommentAction(StringRef S) : S(S) {}
2088 
2089   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2090     Table << MatchTable::Comment(S) << MatchTable::LineBreak;
2091   }
2092 };
2093 
2094 /// Generates code to build an instruction or mutate an existing instruction
2095 /// into the desired instruction when this is possible.
2096 class BuildMIAction : public MatchAction {
2097 private:
2098   unsigned InsnID;
2099   const CodeGenInstruction *I;
2100   const InstructionMatcher *Matched;
2101   std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
2102 
2103   /// True if the instruction can be built solely by mutating the opcode.
2104   bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
2105     if (!Insn)
2106       return false;
2107 
2108     if (OperandRenderers.size() != Insn->getNumOperands())
2109       return false;
2110 
2111     for (const auto &Renderer : enumerate(OperandRenderers)) {
2112       if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
2113         const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
2114         if (Insn != &OM.getInstructionMatcher() ||
2115             OM.getOperandIndex() != Renderer.index())
2116           return false;
2117       } else
2118         return false;
2119     }
2120 
2121     return true;
2122   }
2123 
2124 public:
2125   BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
2126       : InsnID(InsnID), I(I), Matched(nullptr) {}
2127 
2128   unsigned getInsnID() const { return InsnID; }
2129   const CodeGenInstruction *getCGI() const { return I; }
2130 
2131   void chooseInsnToMutate(RuleMatcher &Rule) {
2132     for (const auto *MutateCandidate : Rule.mutatable_insns()) {
2133       if (canMutate(Rule, MutateCandidate)) {
2134         // Take the first one we're offered that we're able to mutate.
2135         Rule.reserveInsnMatcherForMutation(MutateCandidate);
2136         Matched = MutateCandidate;
2137         return;
2138       }
2139     }
2140   }
2141 
2142   template <class Kind, class... Args>
2143   Kind &addRenderer(Args&&... args) {
2144     OperandRenderers.emplace_back(
2145         llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
2146     return *static_cast<Kind *>(OperandRenderers.back().get());
2147   }
2148 
2149   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2150     if (Matched) {
2151       assert(canMutate(Rule, Matched) &&
2152              "Arranged to mutate an insn that isn't mutatable");
2153 
2154       unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
2155       Table << MatchTable::Opcode("GIR_MutateOpcode")
2156             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2157             << MatchTable::Comment("RecycleInsnID")
2158             << MatchTable::IntValue(RecycleInsnID)
2159             << MatchTable::Comment("Opcode")
2160             << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2161             << MatchTable::LineBreak;
2162 
2163       if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
2164         for (auto Def : I->ImplicitDefs) {
2165           auto Namespace = Def->getValue("Namespace")
2166                                ? Def->getValueAsString("Namespace")
2167                                : "";
2168           Table << MatchTable::Opcode("GIR_AddImplicitDef")
2169                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2170                 << MatchTable::NamedValue(Namespace, Def->getName())
2171                 << MatchTable::LineBreak;
2172         }
2173         for (auto Use : I->ImplicitUses) {
2174           auto Namespace = Use->getValue("Namespace")
2175                                ? Use->getValueAsString("Namespace")
2176                                : "";
2177           Table << MatchTable::Opcode("GIR_AddImplicitUse")
2178                 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2179                 << MatchTable::NamedValue(Namespace, Use->getName())
2180                 << MatchTable::LineBreak;
2181         }
2182       }
2183       return;
2184     }
2185 
2186     // TODO: Simple permutation looks like it could be almost as common as
2187     //       mutation due to commutative operations.
2188 
2189     Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2190           << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
2191           << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2192           << MatchTable::LineBreak;
2193     for (const auto &Renderer : OperandRenderers)
2194       Renderer->emitRenderOpcodes(Table, Rule);
2195 
2196     if (I->mayLoad || I->mayStore) {
2197       Table << MatchTable::Opcode("GIR_MergeMemOperands")
2198             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2199             << MatchTable::Comment("MergeInsnID's");
2200       // Emit the ID's for all the instructions that are matched by this rule.
2201       // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2202       //       some other means of having a memoperand. Also limit this to
2203       //       emitted instructions that expect to have a memoperand too. For
2204       //       example, (G_SEXT (G_LOAD x)) that results in separate load and
2205       //       sign-extend instructions shouldn't put the memoperand on the
2206       //       sign-extend since it has no effect there.
2207       std::vector<unsigned> MergeInsnIDs;
2208       for (const auto &IDMatcherPair : Rule.defined_insn_vars())
2209         MergeInsnIDs.push_back(IDMatcherPair.second);
2210       llvm::sort(MergeInsnIDs.begin(), MergeInsnIDs.end());
2211       for (const auto &MergeInsnID : MergeInsnIDs)
2212         Table << MatchTable::IntValue(MergeInsnID);
2213       Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2214             << MatchTable::LineBreak;
2215     }
2216 
2217     // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2218     //        better for combines. Particularly when there are multiple match
2219     //        roots.
2220     if (InsnID == 0)
2221       Table << MatchTable::Opcode("GIR_EraseFromParent")
2222             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2223             << MatchTable::LineBreak;
2224   }
2225 };
2226 
2227 /// Generates code to constrain the operands of an output instruction to the
2228 /// register classes specified by the definition of that instruction.
2229 class ConstrainOperandsToDefinitionAction : public MatchAction {
2230   unsigned InsnID;
2231 
2232 public:
2233   ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
2234 
2235   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2236     Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2237           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2238           << MatchTable::LineBreak;
2239   }
2240 };
2241 
2242 /// Generates code to constrain the specified operand of an output instruction
2243 /// to the specified register class.
2244 class ConstrainOperandToRegClassAction : public MatchAction {
2245   unsigned InsnID;
2246   unsigned OpIdx;
2247   const CodeGenRegisterClass &RC;
2248 
2249 public:
2250   ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
2251                                    const CodeGenRegisterClass &RC)
2252       : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
2253 
2254   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2255     Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
2256           << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2257           << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
2258           << MatchTable::Comment("RC " + RC.getName())
2259           << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
2260   }
2261 };
2262 
2263 /// Generates code to create a temporary register which can be used to chain
2264 /// instructions together.
2265 class MakeTempRegisterAction : public MatchAction {
2266 private:
2267   LLTCodeGen Ty;
2268   unsigned TempRegID;
2269 
2270 public:
2271   MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
2272       : Ty(Ty), TempRegID(TempRegID) {}
2273 
2274   void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2275     Table << MatchTable::Opcode("GIR_MakeTempReg")
2276           << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2277           << MatchTable::Comment("TypeID")
2278           << MatchTable::NamedValue(Ty.getCxxEnumValue())
2279           << MatchTable::LineBreak;
2280   }
2281 };
2282 
2283 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
2284   Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
2285   MutatableInsns.insert(Matchers.back().get());
2286   return *Matchers.back();
2287 }
2288 
2289 void RuleMatcher::addRequiredFeature(Record *Feature) {
2290   RequiredFeatures.push_back(Feature);
2291 }
2292 
2293 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
2294   return RequiredFeatures;
2295 }
2296 
2297 // Emplaces an action of the specified Kind at the end of the action list.
2298 //
2299 // Returns a reference to the newly created action.
2300 //
2301 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2302 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2303 // iterator.
2304 template <class Kind, class... Args>
2305 Kind &RuleMatcher::addAction(Args &&... args) {
2306   Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
2307   return *static_cast<Kind *>(Actions.back().get());
2308 }
2309 
2310 // Emplaces an action of the specified Kind before the given insertion point.
2311 //
2312 // Returns an iterator pointing at the newly created instruction.
2313 //
2314 // Like std::vector::insert(), may invalidate all iterators if the new size
2315 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2316 // insertion point onwards.
2317 template <class Kind, class... Args>
2318 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
2319                                           Args &&... args) {
2320   return Actions.emplace(InsertPt,
2321                          llvm::make_unique<Kind>(std::forward<Args>(args)...));
2322 }
2323 
2324 unsigned
2325 RuleMatcher::implicitlyDefineInsnVar(const InstructionMatcher &Matcher) {
2326   unsigned NewInsnVarID = NextInsnVarID++;
2327   InsnVariableIDs[&Matcher] = NewInsnVarID;
2328   return NewInsnVarID;
2329 }
2330 
2331 unsigned RuleMatcher::defineInsnVar(MatchTable &Table,
2332                                     const InstructionMatcher &Matcher,
2333                                     unsigned InsnID, unsigned OpIdx) {
2334   unsigned NewInsnVarID = implicitlyDefineInsnVar(Matcher);
2335   Table << MatchTable::Opcode("GIM_RecordInsn")
2336         << MatchTable::Comment("DefineMI") << MatchTable::IntValue(NewInsnVarID)
2337         << MatchTable::Comment("MI") << MatchTable::IntValue(InsnID)
2338         << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2339         << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2340         << MatchTable::LineBreak;
2341   return NewInsnVarID;
2342 }
2343 
2344 unsigned RuleMatcher::getInsnVarID(const InstructionMatcher &InsnMatcher) const {
2345   const auto &I = InsnVariableIDs.find(&InsnMatcher);
2346   if (I != InsnVariableIDs.end())
2347     return I->second;
2348   llvm_unreachable("Matched Insn was not captured in a local variable");
2349 }
2350 
2351 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
2352   if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
2353     DefinedOperands[SymbolicName] = &OM;
2354     return;
2355   }
2356 
2357   // If the operand is already defined, then we must ensure both references in
2358   // the matcher have the exact same node.
2359   OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
2360 }
2361 
2362 const InstructionMatcher &
2363 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
2364   for (const auto &I : InsnVariableIDs)
2365     if (I.first->getSymbolicName() == SymbolicName)
2366       return *I.first;
2367   llvm_unreachable(
2368       ("Failed to lookup instruction " + SymbolicName).str().c_str());
2369 }
2370 
2371 const OperandMatcher &
2372 RuleMatcher::getOperandMatcher(StringRef Name) const {
2373   const auto &I = DefinedOperands.find(Name);
2374 
2375   if (I == DefinedOperands.end())
2376     PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
2377 
2378   return *I->second;
2379 }
2380 
2381 /// Emit MatchTable opcodes to check the shape of the match and capture
2382 /// instructions into local variables.
2383 void RuleMatcher::emitCaptureOpcodes(MatchTable &Table) {
2384   assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
2385   unsigned InsnVarID = implicitlyDefineInsnVar(*Matchers.front());
2386   (void)InsnVarID;
2387   assert(Matchers.front()->getVarID() == InsnVarID &&
2388          "IDs differ between build and emit");
2389   Matchers.front()->emitCaptureOpcodes(Table, *this);
2390 }
2391 
2392 void RuleMatcher::emit(MatchTable &Table) {
2393   if (Matchers.empty())
2394     llvm_unreachable("Unexpected empty matcher!");
2395 
2396   // Reset the ID generation so that the emitted IDs match the ones
2397   // we set while building the InstructionMatcher and such.
2398   clearImplicitMap();
2399 
2400   // The representation supports rules that require multiple roots such as:
2401   //    %ptr(p0) = ...
2402   //    %elt0(s32) = G_LOAD %ptr
2403   //    %1(p0) = G_ADD %ptr, 4
2404   //    %elt1(s32) = G_LOAD p0 %1
2405   // which could be usefully folded into:
2406   //    %ptr(p0) = ...
2407   //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2408   // on some targets but we don't need to make use of that yet.
2409   assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
2410 
2411   unsigned LabelID = Table.allocateLabelID();
2412   Table << MatchTable::Opcode("GIM_Try", +1)
2413         << MatchTable::Comment("On fail goto") << MatchTable::JumpTarget(LabelID)
2414         << MatchTable::LineBreak;
2415 
2416   if (!RequiredFeatures.empty()) {
2417     Table << MatchTable::Opcode("GIM_CheckFeatures")
2418           << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
2419           << MatchTable::LineBreak;
2420   }
2421 
2422   emitCaptureOpcodes(Table);
2423 
2424   Matchers.front()->emitPredicateOpcodes(Table, *this);
2425 
2426   // We must also check if it's safe to fold the matched instructions.
2427   if (InsnVariableIDs.size() >= 2) {
2428     // Invert the map to create stable ordering (by var names)
2429     SmallVector<unsigned, 2> InsnIDs;
2430     for (const auto &Pair : InsnVariableIDs) {
2431       // Skip the root node since it isn't moving anywhere. Everything else is
2432       // sinking to meet it.
2433       if (Pair.first == Matchers.front().get())
2434         continue;
2435 
2436       InsnIDs.push_back(Pair.second);
2437     }
2438     llvm::sort(InsnIDs.begin(), InsnIDs.end());
2439 
2440     for (const auto &InsnID : InsnIDs) {
2441       // Reject the difficult cases until we have a more accurate check.
2442       Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
2443             << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2444             << MatchTable::LineBreak;
2445 
2446       // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2447       //        account for unsafe cases.
2448       //
2449       //        Example:
2450       //          MI1--> %0 = ...
2451       //                 %1 = ... %0
2452       //          MI0--> %2 = ... %0
2453       //          It's not safe to erase MI1. We currently handle this by not
2454       //          erasing %0 (even when it's dead).
2455       //
2456       //        Example:
2457       //          MI1--> %0 = load volatile @a
2458       //                 %1 = load volatile @a
2459       //          MI0--> %2 = ... %0
2460       //          It's not safe to sink %0's def past %1. We currently handle
2461       //          this by rejecting all loads.
2462       //
2463       //        Example:
2464       //          MI1--> %0 = load @a
2465       //                 %1 = store @a
2466       //          MI0--> %2 = ... %0
2467       //          It's not safe to sink %0's def past %1. We currently handle
2468       //          this by rejecting all loads.
2469       //
2470       //        Example:
2471       //                   G_CONDBR %cond, @BB1
2472       //                 BB0:
2473       //          MI1-->   %0 = load @a
2474       //                   G_BR @BB1
2475       //                 BB1:
2476       //          MI0-->   %2 = ... %0
2477       //          It's not always safe to sink %0 across control flow. In this
2478       //          case it may introduce a memory fault. We currentl handle this
2479       //          by rejecting all loads.
2480     }
2481   }
2482 
2483   for (const auto &MA : Actions)
2484     MA->emitActionOpcodes(Table, *this);
2485 
2486   if (GenerateCoverage)
2487     Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
2488           << MatchTable::LineBreak;
2489 
2490   Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
2491         << MatchTable::Label(LabelID);
2492   ++NumPatternEmitted;
2493 }
2494 
2495 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
2496   // Rules involving more match roots have higher priority.
2497   if (Matchers.size() > B.Matchers.size())
2498     return true;
2499   if (Matchers.size() < B.Matchers.size())
2500     return false;
2501 
2502   for (const auto &Matcher : zip(Matchers, B.Matchers)) {
2503     if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
2504       return true;
2505     if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
2506       return false;
2507   }
2508 
2509   return false;
2510 }
2511 
2512 unsigned RuleMatcher::countRendererFns() const {
2513   return std::accumulate(
2514       Matchers.begin(), Matchers.end(), 0,
2515       [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
2516         return A + Matcher->countRendererFns();
2517       });
2518 }
2519 
2520 bool OperandPredicateMatcher::isHigherPriorityThan(
2521     const OperandPredicateMatcher &B) const {
2522   // Generally speaking, an instruction is more important than an Int or a
2523   // LiteralInt because it can cover more nodes but theres an exception to
2524   // this. G_CONSTANT's are less important than either of those two because they
2525   // are more permissive.
2526 
2527   const InstructionOperandMatcher *AOM =
2528       dyn_cast<InstructionOperandMatcher>(this);
2529   const InstructionOperandMatcher *BOM =
2530       dyn_cast<InstructionOperandMatcher>(&B);
2531   bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
2532   bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
2533 
2534   if (AOM && BOM) {
2535     // The relative priorities between a G_CONSTANT and any other instruction
2536     // don't actually matter but this code is needed to ensure a strict weak
2537     // ordering. This is particularly important on Windows where the rules will
2538     // be incorrectly sorted without it.
2539     if (AIsConstantInsn != BIsConstantInsn)
2540       return AIsConstantInsn < BIsConstantInsn;
2541     return false;
2542   }
2543 
2544   if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
2545     return false;
2546   if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
2547     return true;
2548 
2549   return Kind < B.Kind;
2550 }
2551 
2552 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
2553                                               RuleMatcher &Rule) const {
2554   const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
2555   unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
2556   assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getVarID());
2557 
2558   Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
2559         << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2560         << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2561         << MatchTable::Comment("OtherMI")
2562         << MatchTable::IntValue(OtherInsnVarID)
2563         << MatchTable::Comment("OtherOpIdx")
2564         << MatchTable::IntValue(OtherOM.getOperandIndex())
2565         << MatchTable::LineBreak;
2566 }
2567 
2568 //===- GlobalISelEmitter class --------------------------------------------===//
2569 
2570 class GlobalISelEmitter {
2571 public:
2572   explicit GlobalISelEmitter(RecordKeeper &RK);
2573   void run(raw_ostream &OS);
2574 
2575 private:
2576   const RecordKeeper &RK;
2577   const CodeGenDAGPatterns CGP;
2578   const CodeGenTarget &Target;
2579   CodeGenRegBank CGRegs;
2580 
2581   /// Keep track of the equivalence between SDNodes and Instruction by mapping
2582   /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
2583   /// check for attributes on the relation such as CheckMMOIsNonAtomic.
2584   /// This is defined using 'GINodeEquiv' in the target description.
2585   DenseMap<Record *, Record *> NodeEquivs;
2586 
2587   /// Keep track of the equivalence between ComplexPattern's and
2588   /// GIComplexOperandMatcher. Map entries are specified by subclassing
2589   /// GIComplexPatternEquiv.
2590   DenseMap<const Record *, const Record *> ComplexPatternEquivs;
2591 
2592   /// Keep track of the equivalence between SDNodeXForm's and
2593   /// GICustomOperandRenderer. Map entries are specified by subclassing
2594   /// GISDNodeXFormEquiv.
2595   DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
2596 
2597   /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
2598   /// This adds compatibility for RuleMatchers to use this for ordering rules.
2599   DenseMap<uint64_t, int> RuleMatcherScores;
2600 
2601   // Map of predicates to their subtarget features.
2602   SubtargetFeatureInfoMap SubtargetFeatures;
2603 
2604   // Rule coverage information.
2605   Optional<CodeGenCoverage> RuleCoverage;
2606 
2607   void gatherNodeEquivs();
2608   Record *findNodeEquiv(Record *N) const;
2609 
2610   Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
2611   Expected<InstructionMatcher &> createAndImportSelDAGMatcher(
2612       RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
2613       const TreePatternNode *Src, unsigned &TempOpIdx) const;
2614   Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
2615                                            unsigned &TempOpIdx) const;
2616   Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
2617                            const TreePatternNode *SrcChild,
2618                            bool OperandIsAPointer, unsigned OpIdx,
2619                            unsigned &TempOpIdx) const;
2620 
2621   Expected<BuildMIAction &>
2622   createAndImportInstructionRenderer(RuleMatcher &M,
2623                                      const TreePatternNode *Dst);
2624   Expected<action_iterator> createAndImportSubInstructionRenderer(
2625       action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
2626       unsigned TempReg);
2627   Expected<action_iterator>
2628   createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
2629                             const TreePatternNode *Dst);
2630   void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
2631   Expected<action_iterator>
2632   importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
2633                              BuildMIAction &DstMIBuilder,
2634                              const llvm::TreePatternNode *Dst);
2635   Expected<action_iterator>
2636   importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
2637                             BuildMIAction &DstMIBuilder,
2638                             TreePatternNode *DstChild);
2639   Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
2640                                       DagInit *DefaultOps) const;
2641   Error
2642   importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
2643                              const std::vector<Record *> &ImplicitDefs) const;
2644 
2645   void emitImmPredicates(raw_ostream &OS, StringRef TypeIdentifier,
2646                          StringRef Type,
2647                          std::function<bool(const Record *R)> Filter);
2648 
2649   /// Analyze pattern \p P, returning a matcher for it if possible.
2650   /// Otherwise, return an Error explaining why we don't support it.
2651   Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
2652 
2653   void declareSubtargetFeature(Record *Predicate);
2654 
2655   TreePatternNode *fixupPatternNode(TreePatternNode *N);
2656   void fixupPatternTrees(TreePattern *P);
2657 
2658   /// Takes a sequence of \p Rules and group them based on the predicates
2659   /// they share. \p StorageGroupMatcher is used as a memory container
2660   /// for the group that are created as part of this process.
2661   /// The optimization process does not change the relative order of
2662   /// the rules. In particular, we don't try to share predicates if
2663   /// that means reordering the rules (e.g., we won't group R1 and R3
2664   /// in the following example as it would imply reordering R2 and R3
2665   /// => R1 p1, R2 p2, R3 p1).
2666   ///
2667   /// What this optimization does looks like:
2668   /// Output without optimization:
2669   /// \verbatim
2670   /// # R1
2671   ///  # predicate A
2672   ///  # predicate B
2673   ///  ...
2674   /// # R2
2675   ///  # predicate A // <-- effectively this is going to be checked twice.
2676   ///                //     Once in R1 and once in R2.
2677   ///  # predicate C
2678   /// \endverbatim
2679   /// Output with optimization:
2680   /// \verbatim
2681   /// # Group1_2
2682   ///  # predicate A // <-- Check is now shared.
2683   ///  # R1
2684   ///   # predicate B
2685   ///  # R2
2686   ///   # predicate C
2687   /// \endverbatim
2688   std::vector<Matcher *> optimizeRules(
2689       const std::vector<Matcher *> &Rules,
2690       std::vector<std::unique_ptr<GroupMatcher>> &StorageGroupMatcher);
2691 };
2692 
2693 void GlobalISelEmitter::gatherNodeEquivs() {
2694   assert(NodeEquivs.empty());
2695   for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
2696     NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
2697 
2698   assert(ComplexPatternEquivs.empty());
2699   for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
2700     Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
2701     if (!SelDAGEquiv)
2702       continue;
2703     ComplexPatternEquivs[SelDAGEquiv] = Equiv;
2704  }
2705 
2706  assert(SDNodeXFormEquivs.empty());
2707  for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
2708    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
2709    if (!SelDAGEquiv)
2710      continue;
2711    SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
2712  }
2713 }
2714 
2715 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
2716   return NodeEquivs.lookup(N);
2717 }
2718 
2719 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
2720     : RK(RK), CGP(RK, [&](TreePattern *P) { fixupPatternTrees(P); }),
2721       Target(CGP.getTargetInfo()), CGRegs(RK, Target.getHwModes()) {}
2722 
2723 //===- Emitter ------------------------------------------------------------===//
2724 
2725 Error
2726 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
2727                                         ArrayRef<Predicate> Predicates) {
2728   for (const Predicate &P : Predicates) {
2729     if (!P.Def)
2730       continue;
2731     declareSubtargetFeature(P.Def);
2732     M.addRequiredFeature(P.Def);
2733   }
2734 
2735   return Error::success();
2736 }
2737 
2738 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
2739     RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
2740     const TreePatternNode *Src, unsigned &TempOpIdx) const {
2741   Record *SrcGIEquivOrNull = nullptr;
2742   const CodeGenInstruction *SrcGIOrNull = nullptr;
2743 
2744   // Start with the defined operands (i.e., the results of the root operator).
2745   if (Src->getExtTypes().size() > 1)
2746     return failedImport("Src pattern has multiple results");
2747 
2748   if (Src->isLeaf()) {
2749     Init *SrcInit = Src->getLeafValue();
2750     if (isa<IntInit>(SrcInit)) {
2751       InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
2752           &Target.getInstruction(RK.getDef("G_CONSTANT")));
2753     } else
2754       return failedImport(
2755           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
2756   } else {
2757     SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
2758     if (!SrcGIEquivOrNull)
2759       return failedImport("Pattern operator lacks an equivalent Instruction" +
2760                           explainOperator(Src->getOperator()));
2761     SrcGIOrNull = &Target.getInstruction(SrcGIEquivOrNull->getValueAsDef("I"));
2762 
2763     // The operators look good: match the opcode
2764     InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
2765   }
2766 
2767   unsigned OpIdx = 0;
2768   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
2769     // Results don't have a name unless they are the root node. The caller will
2770     // set the name if appropriate.
2771     OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
2772     if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
2773       return failedImport(toString(std::move(Error)) +
2774                           " for result of Src pattern operator");
2775   }
2776 
2777   for (const auto &Predicate : Src->getPredicateFns()) {
2778     if (Predicate.isAlwaysTrue())
2779       continue;
2780 
2781     if (Predicate.isImmediatePattern()) {
2782       InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
2783       continue;
2784     }
2785 
2786     // No check required. G_LOAD by itself is a non-extending load.
2787     if (Predicate.isNonExtLoad())
2788       continue;
2789 
2790     // No check required. G_STORE by itself is a non-extending store.
2791     if (Predicate.isNonTruncStore())
2792       continue;
2793 
2794     if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
2795       if (Predicate.getMemoryVT() != nullptr) {
2796         Optional<LLTCodeGen> MemTyOrNone =
2797             MVTToLLT(getValueType(Predicate.getMemoryVT()));
2798 
2799         if (!MemTyOrNone)
2800           return failedImport("MemVT could not be converted to LLT");
2801 
2802         OperandMatcher &OM = InsnMatcher.getOperand(0);
2803         OM.addPredicate<LLTOperandMatcher>(MemTyOrNone.getValue());
2804         continue;
2805       }
2806     }
2807 
2808     if (Predicate.isLoad() || Predicate.isStore()) {
2809       // No check required. A G_LOAD/G_STORE is an unindexed load.
2810       if (Predicate.isUnindexed())
2811         continue;
2812     }
2813 
2814     if (Predicate.isAtomic()) {
2815       if (Predicate.isAtomicOrderingMonotonic()) {
2816         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2817             "Monotonic");
2818         continue;
2819       }
2820       if (Predicate.isAtomicOrderingAcquire()) {
2821         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
2822         continue;
2823       }
2824       if (Predicate.isAtomicOrderingRelease()) {
2825         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
2826         continue;
2827       }
2828       if (Predicate.isAtomicOrderingAcquireRelease()) {
2829         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2830             "AcquireRelease");
2831         continue;
2832       }
2833       if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
2834         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2835             "SequentiallyConsistent");
2836         continue;
2837       }
2838 
2839       if (Predicate.isAtomicOrderingAcquireOrStronger()) {
2840         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2841             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
2842         continue;
2843       }
2844       if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
2845         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2846             "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
2847         continue;
2848       }
2849 
2850       if (Predicate.isAtomicOrderingReleaseOrStronger()) {
2851         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2852             "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
2853         continue;
2854       }
2855       if (Predicate.isAtomicOrderingWeakerThanRelease()) {
2856         InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
2857             "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
2858         continue;
2859       }
2860     }
2861 
2862     return failedImport("Src pattern child has predicate (" +
2863                         explainPredicates(Src) + ")");
2864   }
2865   if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
2866     InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
2867 
2868   if (Src->isLeaf()) {
2869     Init *SrcInit = Src->getLeafValue();
2870     if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
2871       OperandMatcher &OM =
2872           InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
2873       OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
2874     } else
2875       return failedImport(
2876           "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
2877   } else {
2878     assert(SrcGIOrNull &&
2879            "Expected to have already found an equivalent Instruction");
2880     if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
2881         SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
2882       // imm/fpimm still have operands but we don't need to do anything with it
2883       // here since we don't support ImmLeaf predicates yet. However, we still
2884       // need to note the hidden operand to get GIM_CheckNumOperands correct.
2885       InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
2886       return InsnMatcher;
2887     }
2888 
2889     // Match the used operands (i.e. the children of the operator).
2890     for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
2891       TreePatternNode *SrcChild = Src->getChild(i);
2892 
2893       // SelectionDAG allows pointers to be represented with iN since it doesn't
2894       // distinguish between pointers and integers but they are different types in GlobalISel.
2895       // Coerce integers to pointers to address space 0 if the context indicates a pointer.
2896       bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
2897 
2898       // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
2899       // following the defs is an intrinsic ID.
2900       if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
2901            SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
2902           i == 0) {
2903         if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
2904           OperandMatcher &OM =
2905               InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
2906           OM.addPredicate<IntrinsicIDOperandMatcher>(II);
2907           continue;
2908         }
2909 
2910         return failedImport("Expected IntInit containing instrinsic ID)");
2911       }
2912 
2913       if (auto Error =
2914               importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
2915                                  OpIdx++, TempOpIdx))
2916         return std::move(Error);
2917     }
2918   }
2919 
2920   return InsnMatcher;
2921 }
2922 
2923 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
2924     OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
2925   const auto &ComplexPattern = ComplexPatternEquivs.find(R);
2926   if (ComplexPattern == ComplexPatternEquivs.end())
2927     return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
2928                         ") not mapped to GlobalISel");
2929 
2930   OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
2931   TempOpIdx++;
2932   return Error::success();
2933 }
2934 
2935 Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
2936                                             InstructionMatcher &InsnMatcher,
2937                                             const TreePatternNode *SrcChild,
2938                                             bool OperandIsAPointer,
2939                                             unsigned OpIdx,
2940                                             unsigned &TempOpIdx) const {
2941   OperandMatcher &OM =
2942       InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
2943   if (OM.isSameAsAnotherOperand())
2944     return Error::success();
2945 
2946   ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
2947   if (ChildTypes.size() != 1)
2948     return failedImport("Src pattern child has multiple results");
2949 
2950   // Check MBB's before the type check since they are not a known type.
2951   if (!SrcChild->isLeaf()) {
2952     if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
2953       auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
2954       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
2955         OM.addPredicate<MBBOperandMatcher>();
2956         return Error::success();
2957       }
2958     }
2959   }
2960 
2961   if (auto Error =
2962           OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
2963     return failedImport(toString(std::move(Error)) + " for Src operand (" +
2964                         to_string(*SrcChild) + ")");
2965 
2966   // Check for nested instructions.
2967   if (!SrcChild->isLeaf()) {
2968     if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
2969       // When a ComplexPattern is used as an operator, it should do the same
2970       // thing as when used as a leaf. However, the children of the operator
2971       // name the sub-operands that make up the complex operand and we must
2972       // prepare to reference them in the renderer too.
2973       unsigned RendererID = TempOpIdx;
2974       if (auto Error = importComplexPatternOperandMatcher(
2975               OM, SrcChild->getOperator(), TempOpIdx))
2976         return Error;
2977 
2978       for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
2979         auto *SubOperand = SrcChild->getChild(i);
2980         if (!SubOperand->getName().empty())
2981           Rule.defineComplexSubOperand(SubOperand->getName(),
2982                                        SrcChild->getOperator(), RendererID, i);
2983       }
2984 
2985       return Error::success();
2986     }
2987 
2988     auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
2989         InsnMatcher.getRuleMatcher(), SrcChild->getName());
2990     if (!MaybeInsnOperand.hasValue()) {
2991       // This isn't strictly true. If the user were to provide exactly the same
2992       // matchers as the original operand then we could allow it. However, it's
2993       // simpler to not permit the redundant specification.
2994       return failedImport("Nested instruction cannot be the same as another operand");
2995     }
2996 
2997     // Map the node to a gMIR instruction.
2998     InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
2999     auto InsnMatcherOrError = createAndImportSelDAGMatcher(
3000         Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
3001     if (auto Error = InsnMatcherOrError.takeError())
3002       return Error;
3003 
3004     return Error::success();
3005   }
3006 
3007   if (SrcChild->hasAnyPredicate())
3008     return failedImport("Src pattern child has unsupported predicate");
3009 
3010   // Check for constant immediates.
3011   if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
3012     OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
3013     return Error::success();
3014   }
3015 
3016   // Check for def's like register classes or ComplexPattern's.
3017   if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3018     auto *ChildRec = ChildDefInit->getDef();
3019 
3020     // Check for register classes.
3021     if (ChildRec->isSubClassOf("RegisterClass") ||
3022         ChildRec->isSubClassOf("RegisterOperand")) {
3023       OM.addPredicate<RegisterBankOperandMatcher>(
3024           Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
3025       return Error::success();
3026     }
3027 
3028     // Check for ValueType.
3029     if (ChildRec->isSubClassOf("ValueType")) {
3030       // We already added a type check as standard practice so this doesn't need
3031       // to do anything.
3032       return Error::success();
3033     }
3034 
3035     // Check for ComplexPattern's.
3036     if (ChildRec->isSubClassOf("ComplexPattern"))
3037       return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
3038 
3039     if (ChildRec->isSubClassOf("ImmLeaf")) {
3040       return failedImport(
3041           "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3042     }
3043 
3044     return failedImport(
3045         "Src pattern child def is an unsupported tablegen class");
3046   }
3047 
3048   return failedImport("Src pattern child is an unsupported kind");
3049 }
3050 
3051 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
3052     action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
3053     TreePatternNode *DstChild) {
3054 
3055   const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
3056   if (SubOperand.hasValue()) {
3057     DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3058         *std::get<0>(*SubOperand), DstChild->getName(),
3059         std::get<1>(*SubOperand), std::get<2>(*SubOperand));
3060     return InsertPt;
3061   }
3062 
3063   if (!DstChild->isLeaf()) {
3064 
3065     if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
3066       auto Child = DstChild->getChild(0);
3067       auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
3068       if (I != SDNodeXFormEquivs.end()) {
3069         DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
3070         return InsertPt;
3071       }
3072       return failedImport("SDNodeXForm " + Child->getName() +
3073                           " has no custom renderer");
3074     }
3075 
3076     // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3077     // inline, but in MI it's just another operand.
3078     if (DstChild->getOperator()->isSubClassOf("SDNode")) {
3079       auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
3080       if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3081         DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3082         return InsertPt;
3083       }
3084     }
3085 
3086     // Similarly, imm is an operator in TreePatternNode's view but must be
3087     // rendered as operands.
3088     // FIXME: The target should be able to choose sign-extended when appropriate
3089     //        (e.g. on Mips).
3090     if (DstChild->getOperator()->getName() == "imm") {
3091       DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
3092       return InsertPt;
3093     } else if (DstChild->getOperator()->getName() == "fpimm") {
3094       DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
3095           DstChild->getName());
3096       return InsertPt;
3097     }
3098 
3099     if (DstChild->getOperator()->isSubClassOf("Instruction")) {
3100       ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3101       if (ChildTypes.size() != 1)
3102         return failedImport("Dst pattern child has multiple results");
3103 
3104       Optional<LLTCodeGen> OpTyOrNone = None;
3105       if (ChildTypes.front().isMachineValueType())
3106         OpTyOrNone =
3107             MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3108       if (!OpTyOrNone)
3109         return failedImport("Dst operand has an unsupported type");
3110 
3111       unsigned TempRegID = Rule.allocateTempRegID();
3112       InsertPt = Rule.insertAction<MakeTempRegisterAction>(
3113           InsertPt, OpTyOrNone.getValue(), TempRegID);
3114       DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3115 
3116       auto InsertPtOrError = createAndImportSubInstructionRenderer(
3117           ++InsertPt, Rule, DstChild, TempRegID);
3118       if (auto Error = InsertPtOrError.takeError())
3119         return std::move(Error);
3120       return InsertPtOrError.get();
3121     }
3122 
3123     return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
3124   }
3125 
3126   // It could be a specific immediate in which case we should just check for
3127   // that immediate.
3128   if (const IntInit *ChildIntInit =
3129           dyn_cast<IntInit>(DstChild->getLeafValue())) {
3130     DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
3131     return InsertPt;
3132   }
3133 
3134   // Otherwise, we're looking for a bog-standard RegisterClass operand.
3135   if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
3136     auto *ChildRec = ChildDefInit->getDef();
3137 
3138     ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3139     if (ChildTypes.size() != 1)
3140       return failedImport("Dst pattern child has multiple results");
3141 
3142     Optional<LLTCodeGen> OpTyOrNone = None;
3143     if (ChildTypes.front().isMachineValueType())
3144       OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3145     if (!OpTyOrNone)
3146       return failedImport("Dst operand has an unsupported type");
3147 
3148     if (ChildRec->isSubClassOf("Register")) {
3149       DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
3150       return InsertPt;
3151     }
3152 
3153     if (ChildRec->isSubClassOf("RegisterClass") ||
3154         ChildRec->isSubClassOf("RegisterOperand") ||
3155         ChildRec->isSubClassOf("ValueType")) {
3156       if (ChildRec->isSubClassOf("RegisterOperand") &&
3157           !ChildRec->isValueUnset("GIZeroRegister")) {
3158         DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
3159             DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
3160         return InsertPt;
3161       }
3162 
3163       DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3164       return InsertPt;
3165     }
3166 
3167     if (ChildRec->isSubClassOf("ComplexPattern")) {
3168       const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
3169       if (ComplexPattern == ComplexPatternEquivs.end())
3170         return failedImport(
3171             "SelectionDAG ComplexPattern not mapped to GlobalISel");
3172 
3173       const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
3174       DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3175           *ComplexPattern->second, DstChild->getName(),
3176           OM.getAllocatedTemporariesBaseID());
3177       return InsertPt;
3178     }
3179 
3180     return failedImport(
3181         "Dst pattern child def is an unsupported tablegen class");
3182   }
3183 
3184   return failedImport("Dst pattern child is an unsupported kind");
3185 }
3186 
3187 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
3188     RuleMatcher &M, const TreePatternNode *Dst) {
3189   auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
3190   if (auto Error = InsertPtOrError.takeError())
3191     return std::move(Error);
3192 
3193   action_iterator InsertPt = InsertPtOrError.get();
3194   BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
3195 
3196   importExplicitDefRenderers(DstMIBuilder);
3197 
3198   if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
3199                        .takeError())
3200     return std::move(Error);
3201 
3202   return DstMIBuilder;
3203 }
3204 
3205 Expected<action_iterator>
3206 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3207     const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3208     unsigned TempRegID) {
3209   auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
3210 
3211   // TODO: Assert there's exactly one result.
3212 
3213   if (auto Error = InsertPtOrError.takeError())
3214     return std::move(Error);
3215 
3216   BuildMIAction &DstMIBuilder =
3217       *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
3218 
3219   // Assign the result to TempReg.
3220   DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
3221 
3222   InsertPtOrError =
3223       importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
3224   if (auto Error = InsertPtOrError.takeError())
3225     return std::move(Error);
3226 
3227   M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
3228                                                       DstMIBuilder.getInsnID());
3229   return InsertPtOrError.get();
3230 }
3231 
3232 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
3233     action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
3234   Record *DstOp = Dst->getOperator();
3235   if (!DstOp->isSubClassOf("Instruction")) {
3236     if (DstOp->isSubClassOf("ValueType"))
3237       return failedImport(
3238           "Pattern operator isn't an instruction (it's a ValueType)");
3239     return failedImport("Pattern operator isn't an instruction");
3240   }
3241   CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
3242 
3243   // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3244   // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3245   if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
3246     DstI = &Target.getInstruction(RK.getDef("COPY"));
3247   else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
3248     DstI = &Target.getInstruction(RK.getDef("COPY"));
3249   else if (DstI->TheDef->getName() == "REG_SEQUENCE")
3250     return failedImport("Unable to emit REG_SEQUENCE");
3251 
3252   return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
3253                                        DstI);
3254 }
3255 
3256 void GlobalISelEmitter::importExplicitDefRenderers(
3257     BuildMIAction &DstMIBuilder) {
3258   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3259   for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
3260     const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
3261     DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3262   }
3263 }
3264 
3265 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
3266     action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
3267     const llvm::TreePatternNode *Dst) {
3268   const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3269   CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
3270 
3271   // EXTRACT_SUBREG needs to use a subregister COPY.
3272   if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
3273     if (!Dst->getChild(0)->isLeaf())
3274       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3275 
3276     if (DefInit *SubRegInit =
3277             dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
3278       Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3279       if (!RCDef)
3280         return failedImport("EXTRACT_SUBREG child #0 could not "
3281                             "be coerced to a register class");
3282 
3283       CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
3284       CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
3285 
3286       const auto &SrcRCDstRCPair =
3287           RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
3288       if (SrcRCDstRCPair.hasValue()) {
3289         assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
3290         if (SrcRCDstRCPair->first != RC)
3291           return failedImport("EXTRACT_SUBREG requires an additional COPY");
3292       }
3293 
3294       DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
3295                                                    SubIdx);
3296       return InsertPt;
3297     }
3298 
3299     return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3300   }
3301 
3302   // Render the explicit uses.
3303   unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
3304   unsigned ExpectedDstINumUses = Dst->getNumChildren();
3305   if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
3306     DstINumUses--; // Ignore the class constraint.
3307     ExpectedDstINumUses--;
3308   }
3309 
3310   unsigned Child = 0;
3311   unsigned NumDefaultOps = 0;
3312   for (unsigned I = 0; I != DstINumUses; ++I) {
3313     const CGIOperandList::OperandInfo &DstIOperand =
3314         DstI->Operands[DstI->Operands.NumDefs + I];
3315 
3316     // If the operand has default values, introduce them now.
3317     // FIXME: Until we have a decent test case that dictates we should do
3318     // otherwise, we're going to assume that operands with default values cannot
3319     // be specified in the patterns. Therefore, adding them will not cause us to
3320     // end up with too many rendered operands.
3321     if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
3322       DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
3323       if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
3324         return std::move(Error);
3325       ++NumDefaultOps;
3326       continue;
3327     }
3328 
3329     auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
3330                                                      Dst->getChild(Child));
3331     if (auto Error = InsertPtOrError.takeError())
3332       return std::move(Error);
3333     InsertPt = InsertPtOrError.get();
3334     ++Child;
3335   }
3336 
3337   if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
3338     return failedImport("Expected " + llvm::to_string(DstINumUses) +
3339                         " used operands but found " +
3340                         llvm::to_string(ExpectedDstINumUses) +
3341                         " explicit ones and " + llvm::to_string(NumDefaultOps) +
3342                         " default ones");
3343 
3344   return InsertPt;
3345 }
3346 
3347 Error GlobalISelEmitter::importDefaultOperandRenderers(
3348     BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
3349   for (const auto *DefaultOp : DefaultOps->getArgs()) {
3350     // Look through ValueType operators.
3351     if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
3352       if (const DefInit *DefaultDagOperator =
3353               dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
3354         if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
3355           DefaultOp = DefaultDagOp->getArg(0);
3356       }
3357     }
3358 
3359     if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
3360       DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
3361       continue;
3362     }
3363 
3364     if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
3365       DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
3366       continue;
3367     }
3368 
3369     return failedImport("Could not add default op");
3370   }
3371 
3372   return Error::success();
3373 }
3374 
3375 Error GlobalISelEmitter::importImplicitDefRenderers(
3376     BuildMIAction &DstMIBuilder,
3377     const std::vector<Record *> &ImplicitDefs) const {
3378   if (!ImplicitDefs.empty())
3379     return failedImport("Pattern defines a physical register");
3380   return Error::success();
3381 }
3382 
3383 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
3384   // Keep track of the matchers and actions to emit.
3385   int Score = P.getPatternComplexity(CGP);
3386   RuleMatcher M(P.getSrcRecord()->getLoc());
3387   RuleMatcherScores[M.getRuleID()] = Score;
3388   M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
3389                                   "  =>  " +
3390                                   llvm::to_string(*P.getDstPattern()));
3391 
3392   if (auto Error = importRulePredicates(M, P.getPredicates()))
3393     return std::move(Error);
3394 
3395   // Next, analyze the pattern operators.
3396   TreePatternNode *Src = P.getSrcPattern();
3397   TreePatternNode *Dst = P.getDstPattern();
3398 
3399   // If the root of either pattern isn't a simple operator, ignore it.
3400   if (auto Err = isTrivialOperatorNode(Dst))
3401     return failedImport("Dst pattern root isn't a trivial operator (" +
3402                         toString(std::move(Err)) + ")");
3403   if (auto Err = isTrivialOperatorNode(Src))
3404     return failedImport("Src pattern root isn't a trivial operator (" +
3405                         toString(std::move(Err)) + ")");
3406 
3407   // The different predicates and matchers created during
3408   // addInstructionMatcher use the RuleMatcher M to set up their
3409   // instruction ID (InsnVarID) that are going to be used when
3410   // M is going to be emitted.
3411   // However, the code doing the emission still relies on the IDs
3412   // returned during that process by the RuleMatcher when issuing
3413   // the recordInsn opcodes.
3414   // Because of that:
3415   // 1. The order in which we created the predicates
3416   //    and such must be the same as the order in which we emit them,
3417   //    and
3418   // 2. We need to reset the generation of the IDs in M somewhere between
3419   //    addInstructionMatcher and emit
3420   //
3421   // FIXME: Long term, we don't want to have to rely on this implicit
3422   // naming being the same. One possible solution would be to have
3423   // explicit operator for operation capture and reference those.
3424   // The plus side is that it would expose opportunities to share
3425   // the capture accross rules. The downside is that it would
3426   // introduce a dependency between predicates (captures must happen
3427   // before their first use.)
3428   InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
3429   unsigned TempOpIdx = 0;
3430   auto InsnMatcherOrError =
3431       createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
3432   if (auto Error = InsnMatcherOrError.takeError())
3433     return std::move(Error);
3434   InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
3435 
3436   if (Dst->isLeaf()) {
3437     Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
3438 
3439     const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
3440     if (RCDef) {
3441       // We need to replace the def and all its uses with the specified
3442       // operand. However, we must also insert COPY's wherever needed.
3443       // For now, emit a copy and let the register allocator clean up.
3444       auto &DstI = Target.getInstruction(RK.getDef("COPY"));
3445       const auto &DstIOperand = DstI.Operands[0];
3446 
3447       OperandMatcher &OM0 = InsnMatcher.getOperand(0);
3448       OM0.setSymbolicName(DstIOperand.Name);
3449       M.defineOperand(OM0.getSymbolicName(), OM0);
3450       OM0.addPredicate<RegisterBankOperandMatcher>(RC);
3451 
3452       auto &DstMIBuilder =
3453           M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
3454       DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3455       DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
3456       M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
3457 
3458       // We're done with this pattern!  It's eligible for GISel emission; return
3459       // it.
3460       ++NumPatternImported;
3461       return std::move(M);
3462     }
3463 
3464     return failedImport("Dst pattern root isn't a known leaf");
3465   }
3466 
3467   // Start with the defined operands (i.e., the results of the root operator).
3468   Record *DstOp = Dst->getOperator();
3469   if (!DstOp->isSubClassOf("Instruction"))
3470     return failedImport("Pattern operator isn't an instruction");
3471 
3472   auto &DstI = Target.getInstruction(DstOp);
3473   if (DstI.Operands.NumDefs != Src->getExtTypes().size())
3474     return failedImport("Src pattern results and dst MI defs are different (" +
3475                         to_string(Src->getExtTypes().size()) + " def(s) vs " +
3476                         to_string(DstI.Operands.NumDefs) + " def(s))");
3477 
3478   // The root of the match also has constraints on the register bank so that it
3479   // matches the result instruction.
3480   unsigned OpIdx = 0;
3481   for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3482     (void)VTy;
3483 
3484     const auto &DstIOperand = DstI.Operands[OpIdx];
3485     Record *DstIOpRec = DstIOperand.Rec;
3486     if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
3487       DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
3488 
3489       if (DstIOpRec == nullptr)
3490         return failedImport(
3491             "COPY_TO_REGCLASS operand #1 isn't a register class");
3492     } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
3493       if (!Dst->getChild(0)->isLeaf())
3494         return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
3495 
3496       // We can assume that a subregister is in the same bank as it's super
3497       // register.
3498       DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3499 
3500       if (DstIOpRec == nullptr)
3501         return failedImport(
3502             "EXTRACT_SUBREG operand #0 isn't a register class");
3503     } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
3504       DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
3505     else if (!DstIOpRec->isSubClassOf("RegisterClass"))
3506       return failedImport("Dst MI def isn't a register class" +
3507                           to_string(*Dst));
3508 
3509     OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
3510     OM.setSymbolicName(DstIOperand.Name);
3511     M.defineOperand(OM.getSymbolicName(), OM);
3512     OM.addPredicate<RegisterBankOperandMatcher>(
3513         Target.getRegisterClass(DstIOpRec));
3514     ++OpIdx;
3515   }
3516 
3517   auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
3518   if (auto Error = DstMIBuilderOrError.takeError())
3519     return std::move(Error);
3520   BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
3521 
3522   // Render the implicit defs.
3523   // These are only added to the root of the result.
3524   if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
3525     return std::move(Error);
3526 
3527   DstMIBuilder.chooseInsnToMutate(M);
3528 
3529   // Constrain the registers to classes. This is normally derived from the
3530   // emitted instruction but a few instructions require special handling.
3531   if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
3532     // COPY_TO_REGCLASS does not provide operand constraints itself but the
3533     // result is constrained to the class given by the second child.
3534     Record *DstIOpRec =
3535         getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
3536 
3537     if (DstIOpRec == nullptr)
3538       return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
3539 
3540     M.addAction<ConstrainOperandToRegClassAction>(
3541         0, 0, Target.getRegisterClass(DstIOpRec));
3542 
3543     // We're done with this pattern!  It's eligible for GISel emission; return
3544     // it.
3545     ++NumPatternImported;
3546     return std::move(M);
3547   }
3548 
3549   if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
3550     // EXTRACT_SUBREG selects into a subregister COPY but unlike most
3551     // instructions, the result register class is controlled by the
3552     // subregisters of the operand. As a result, we must constrain the result
3553     // class rather than check that it's already the right one.
3554     if (!Dst->getChild(0)->isLeaf())
3555       return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3556 
3557     DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
3558     if (!SubRegInit)
3559       return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3560 
3561     // Constrain the result to the same register bank as the operand.
3562     Record *DstIOpRec =
3563         getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3564 
3565     if (DstIOpRec == nullptr)
3566       return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
3567 
3568     CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
3569     CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
3570 
3571     // It would be nice to leave this constraint implicit but we're required
3572     // to pick a register class so constrain the result to a register class
3573     // that can hold the correct MVT.
3574     //
3575     // FIXME: This may introduce an extra copy if the chosen class doesn't
3576     //        actually contain the subregisters.
3577     assert(Src->getExtTypes().size() == 1 &&
3578              "Expected Src of EXTRACT_SUBREG to have one result type");
3579 
3580     const auto &SrcRCDstRCPair =
3581         SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
3582     assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
3583     M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
3584     M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
3585 
3586     // We're done with this pattern!  It's eligible for GISel emission; return
3587     // it.
3588     ++NumPatternImported;
3589     return std::move(M);
3590   }
3591 
3592   M.addAction<ConstrainOperandsToDefinitionAction>(0);
3593 
3594   // We're done with this pattern!  It's eligible for GISel emission; return it.
3595   ++NumPatternImported;
3596   return std::move(M);
3597 }
3598 
3599 // Emit imm predicate table and an enum to reference them with.
3600 // The 'Predicate_' part of the name is redundant but eliminating it is more
3601 // trouble than it's worth.
3602 void GlobalISelEmitter::emitImmPredicates(
3603     raw_ostream &OS, StringRef TypeIdentifier, StringRef Type,
3604     std::function<bool(const Record *R)> Filter) {
3605   std::vector<const Record *> MatchedRecords;
3606   const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
3607   std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
3608                [&](Record *Record) {
3609                  return !Record->getValueAsString("ImmediateCode").empty() &&
3610                         Filter(Record);
3611                });
3612 
3613   if (!MatchedRecords.empty()) {
3614     OS << "// PatFrag predicates.\n"
3615        << "enum {\n";
3616     std::string EnumeratorSeparator =
3617         (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
3618     for (const auto *Record : MatchedRecords) {
3619       OS << "  GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
3620          << EnumeratorSeparator;
3621       EnumeratorSeparator = ",\n";
3622     }
3623     OS << "};\n";
3624   }
3625 
3626   OS << "bool " << Target.getName() << "InstructionSelector::testImmPredicate_"
3627      << TypeIdentifier << "(unsigned PredicateID, " << Type
3628      << " Imm) const {\n";
3629   if (!MatchedRecords.empty())
3630     OS << "  switch (PredicateID) {\n";
3631   for (const auto *Record : MatchedRecords) {
3632     OS << "  case GIPFP_" << TypeIdentifier << "_Predicate_"
3633        << Record->getName() << ": {\n"
3634        << "    " << Record->getValueAsString("ImmediateCode") << "\n"
3635        << "    llvm_unreachable(\"ImmediateCode should have returned\");\n"
3636        << "    return false;\n"
3637        << "  }\n";
3638   }
3639   if (!MatchedRecords.empty())
3640     OS << "  }\n";
3641   OS << "  llvm_unreachable(\"Unknown predicate\");\n"
3642      << "  return false;\n"
3643      << "}\n";
3644 }
3645 
3646 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
3647     const std::vector<Matcher *> &Rules,
3648     std::vector<std::unique_ptr<GroupMatcher>> &StorageGroupMatcher) {
3649   std::vector<Matcher *> OptRules;
3650   // Start with a stupid grouping for now.
3651   std::unique_ptr<GroupMatcher> CurrentGroup = make_unique<GroupMatcher>();
3652   assert(CurrentGroup->conditions_empty());
3653   unsigned NbGroup = 0;
3654   for (Matcher *Rule : Rules) {
3655     std::unique_ptr<PredicateMatcher> Predicate = Rule->forgetFirstCondition();
3656     if (!CurrentGroup->conditions_empty() &&
3657         !CurrentGroup->lastConditionMatches(*Predicate)) {
3658       // Start a new group.
3659       ++NbGroup;
3660       OptRules.push_back(CurrentGroup.get());
3661       StorageGroupMatcher.emplace_back(std::move(CurrentGroup));
3662       CurrentGroup = make_unique<GroupMatcher>();
3663       assert(CurrentGroup->conditions_empty());
3664     }
3665     if (CurrentGroup->conditions_empty())
3666       CurrentGroup->addCondition(std::move(Predicate));
3667     CurrentGroup->addRule(*Rule);
3668   }
3669   if (!CurrentGroup->conditions_empty()) {
3670     ++NbGroup;
3671     OptRules.push_back(CurrentGroup.get());
3672     StorageGroupMatcher.emplace_back(std::move(CurrentGroup));
3673   }
3674   DEBUG(dbgs() << "NbGroup: " << NbGroup << "\n");
3675   return OptRules;
3676 }
3677 
3678 void GlobalISelEmitter::run(raw_ostream &OS) {
3679   if (!UseCoverageFile.empty()) {
3680     RuleCoverage = CodeGenCoverage();
3681     auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
3682     if (!RuleCoverageBufOrErr) {
3683       PrintWarning(SMLoc(), "Missing rule coverage data");
3684       RuleCoverage = None;
3685     } else {
3686       if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
3687         PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
3688         RuleCoverage = None;
3689       }
3690     }
3691   }
3692 
3693   // Track the GINodeEquiv definitions.
3694   gatherNodeEquivs();
3695 
3696   emitSourceFileHeader(("Global Instruction Selector for the " +
3697                        Target.getName() + " target").str(), OS);
3698   std::vector<RuleMatcher> Rules;
3699   // Look through the SelectionDAG patterns we found, possibly emitting some.
3700   for (const PatternToMatch &Pat : CGP.ptms()) {
3701     ++NumPatternTotal;
3702 
3703     auto MatcherOrErr = runOnPattern(Pat);
3704 
3705     // The pattern analysis can fail, indicating an unsupported pattern.
3706     // Report that if we've been asked to do so.
3707     if (auto Err = MatcherOrErr.takeError()) {
3708       if (WarnOnSkippedPatterns) {
3709         PrintWarning(Pat.getSrcRecord()->getLoc(),
3710                      "Skipped pattern: " + toString(std::move(Err)));
3711       } else {
3712         consumeError(std::move(Err));
3713       }
3714       ++NumPatternImportsSkipped;
3715       continue;
3716     }
3717 
3718     if (RuleCoverage) {
3719       if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
3720         ++NumPatternsTested;
3721       else
3722         PrintWarning(Pat.getSrcRecord()->getLoc(),
3723                      "Pattern is not covered by a test");
3724     }
3725     Rules.push_back(std::move(MatcherOrErr.get()));
3726   }
3727 
3728   // Comparison function to order records by name.
3729   auto orderByName = [](const Record *A, const Record *B) {
3730     return A->getName() < B->getName();
3731   };
3732 
3733   std::vector<Record *> ComplexPredicates =
3734       RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
3735   llvm::sort(ComplexPredicates.begin(), ComplexPredicates.end(), orderByName);
3736 
3737   std::vector<Record *> CustomRendererFns =
3738       RK.getAllDerivedDefinitions("GICustomOperandRenderer");
3739   llvm::sort(CustomRendererFns.begin(), CustomRendererFns.end(), orderByName);
3740 
3741   unsigned MaxTemporaries = 0;
3742   for (const auto &Rule : Rules)
3743     MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
3744 
3745   OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
3746      << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
3747      << ";\n"
3748      << "using PredicateBitset = "
3749         "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
3750      << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
3751 
3752   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
3753      << "  mutable MatcherState State;\n"
3754      << "  typedef "
3755         "ComplexRendererFns("
3756      << Target.getName()
3757      << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
3758 
3759      << "  typedef void(" << Target.getName()
3760      << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
3761         "MachineInstr&) "
3762         "const;\n"
3763      << "  const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
3764         "CustomRendererFn> "
3765         "ISelInfo;\n";
3766   OS << "  static " << Target.getName()
3767      << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
3768      << "  static " << Target.getName()
3769      << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
3770      << "bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
3771         "override;\n"
3772      << "bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
3773         "const override;\n"
3774      << "bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
3775         "&Imm) const override;\n"
3776      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
3777 
3778   OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
3779      << ", State(" << MaxTemporaries << "),\n"
3780      << "ISelInfo({TypeObjects, FeatureBitsets, ComplexPredicateFns, "
3781         "CustomRenderers})\n"
3782      << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
3783 
3784   OS << "#ifdef GET_GLOBALISEL_IMPL\n";
3785   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
3786                                                            OS);
3787 
3788   // Separate subtarget features by how often they must be recomputed.
3789   SubtargetFeatureInfoMap ModuleFeatures;
3790   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
3791                std::inserter(ModuleFeatures, ModuleFeatures.end()),
3792                [](const SubtargetFeatureInfoMap::value_type &X) {
3793                  return !X.second.mustRecomputePerFunction();
3794                });
3795   SubtargetFeatureInfoMap FunctionFeatures;
3796   std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
3797                std::inserter(FunctionFeatures, FunctionFeatures.end()),
3798                [](const SubtargetFeatureInfoMap::value_type &X) {
3799                  return X.second.mustRecomputePerFunction();
3800                });
3801 
3802   SubtargetFeatureInfo::emitComputeAvailableFeatures(
3803       Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
3804       ModuleFeatures, OS);
3805   SubtargetFeatureInfo::emitComputeAvailableFeatures(
3806       Target.getName(), "InstructionSelector",
3807       "computeAvailableFunctionFeatures", FunctionFeatures, OS,
3808       "const MachineFunction *MF");
3809 
3810   // Emit a table containing the LLT objects needed by the matcher and an enum
3811   // for the matcher to reference them with.
3812   std::vector<LLTCodeGen> TypeObjects;
3813   for (const auto &Ty : LLTOperandMatcher::KnownTypes)
3814     TypeObjects.push_back(Ty);
3815   llvm::sort(TypeObjects.begin(), TypeObjects.end());
3816   OS << "// LLT Objects.\n"
3817      << "enum {\n";
3818   for (const auto &TypeObject : TypeObjects) {
3819     OS << "  ";
3820     TypeObject.emitCxxEnumValue(OS);
3821     OS << ",\n";
3822   }
3823   OS << "};\n"
3824      << "const static LLT TypeObjects[] = {\n";
3825   for (const auto &TypeObject : TypeObjects) {
3826     OS << "  ";
3827     TypeObject.emitCxxConstructorCall(OS);
3828     OS << ",\n";
3829   }
3830   OS << "};\n\n";
3831 
3832   // Emit a table containing the PredicateBitsets objects needed by the matcher
3833   // and an enum for the matcher to reference them with.
3834   std::vector<std::vector<Record *>> FeatureBitsets;
3835   for (auto &Rule : Rules)
3836     FeatureBitsets.push_back(Rule.getRequiredFeatures());
3837   llvm::sort(
3838       FeatureBitsets.begin(), FeatureBitsets.end(),
3839       [&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
3840         if (A.size() < B.size())
3841           return true;
3842         if (A.size() > B.size())
3843           return false;
3844         for (const auto &Pair : zip(A, B)) {
3845           if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3846             return true;
3847           if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3848             return false;
3849         }
3850         return false;
3851       });
3852   FeatureBitsets.erase(
3853       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3854       FeatureBitsets.end());
3855   OS << "// Feature bitsets.\n"
3856      << "enum {\n"
3857      << "  GIFBS_Invalid,\n";
3858   for (const auto &FeatureBitset : FeatureBitsets) {
3859     if (FeatureBitset.empty())
3860       continue;
3861     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3862   }
3863   OS << "};\n"
3864      << "const static PredicateBitset FeatureBitsets[] {\n"
3865      << "  {}, // GIFBS_Invalid\n";
3866   for (const auto &FeatureBitset : FeatureBitsets) {
3867     if (FeatureBitset.empty())
3868       continue;
3869     OS << "  {";
3870     for (const auto &Feature : FeatureBitset) {
3871       const auto &I = SubtargetFeatures.find(Feature);
3872       assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
3873       OS << I->second.getEnumBitName() << ", ";
3874     }
3875     OS << "},\n";
3876   }
3877   OS << "};\n\n";
3878 
3879   // Emit complex predicate table and an enum to reference them with.
3880   OS << "// ComplexPattern predicates.\n"
3881      << "enum {\n"
3882      << "  GICP_Invalid,\n";
3883   for (const auto &Record : ComplexPredicates)
3884     OS << "  GICP_" << Record->getName() << ",\n";
3885   OS << "};\n"
3886      << "// See constructor for table contents\n\n";
3887 
3888   emitImmPredicates(OS, "I64", "int64_t", [](const Record *R) {
3889     bool Unset;
3890     return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
3891            !R->getValueAsBit("IsAPInt");
3892   });
3893   emitImmPredicates(OS, "APFloat", "const APFloat &", [](const Record *R) {
3894     bool Unset;
3895     return R->getValueAsBitOrUnset("IsAPFloat", Unset);
3896   });
3897   emitImmPredicates(OS, "APInt", "const APInt &", [](const Record *R) {
3898     return R->getValueAsBit("IsAPInt");
3899   });
3900   OS << "\n";
3901 
3902   OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
3903      << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
3904      << "  nullptr, // GICP_Invalid\n";
3905   for (const auto &Record : ComplexPredicates)
3906     OS << "  &" << Target.getName()
3907        << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
3908        << ", // " << Record->getName() << "\n";
3909   OS << "};\n\n";
3910 
3911   OS << "// Custom renderers.\n"
3912      << "enum {\n"
3913      << "  GICR_Invalid,\n";
3914   for (const auto &Record : CustomRendererFns)
3915     OS << "  GICR_" << Record->getValueAsString("RendererFn") << ", \n";
3916   OS << "};\n";
3917 
3918   OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
3919      << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
3920      << "  nullptr, // GICP_Invalid\n";
3921   for (const auto &Record : CustomRendererFns)
3922     OS << "  &" << Target.getName()
3923        << "InstructionSelector::" << Record->getValueAsString("RendererFn")
3924        << ", // " << Record->getName() << "\n";
3925   OS << "};\n\n";
3926 
3927   OS << "bool " << Target.getName()
3928      << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
3929         "&CoverageInfo) const {\n"
3930      << "  MachineFunction &MF = *I.getParent()->getParent();\n"
3931      << "  MachineRegisterInfo &MRI = MF.getRegInfo();\n"
3932      << "  // FIXME: This should be computed on a per-function basis rather "
3933         "than per-insn.\n"
3934      << "  AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
3935         "&MF);\n"
3936      << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
3937      << "  NewMIVector OutMIs;\n"
3938      << "  State.MIs.clear();\n"
3939      << "  State.MIs.push_back(&I);\n\n";
3940 
3941   std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
3942                                                    const RuleMatcher &B) {
3943     int ScoreA = RuleMatcherScores[A.getRuleID()];
3944     int ScoreB = RuleMatcherScores[B.getRuleID()];
3945     if (ScoreA > ScoreB)
3946       return true;
3947     if (ScoreB > ScoreA)
3948       return false;
3949     if (A.isHigherPriorityThan(B)) {
3950       assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
3951                                            "and less important at "
3952                                            "the same time");
3953       return true;
3954     }
3955     return false;
3956   });
3957   std::vector<std::unique_ptr<GroupMatcher>> StorageGroupMatcher;
3958 
3959   std::vector<Matcher *> InputRules;
3960   for (Matcher &Rule : Rules)
3961     InputRules.push_back(&Rule);
3962 
3963   std::vector<Matcher *> OptRules =
3964       OptimizeMatchTable ? optimizeRules(InputRules, StorageGroupMatcher)
3965                          : InputRules;
3966 
3967   MatchTable Table(0);
3968   for (Matcher *Rule : OptRules)
3969     Rule->emit(Table);
3970 
3971   Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
3972   Table.emitDeclaration(OS);
3973   OS << "  if (executeMatchTable(*this, OutMIs, State, ISelInfo, ";
3974   Table.emitUse(OS);
3975   OS << ", TII, MRI, TRI, RBI, AvailableFeatures, CoverageInfo)) {\n"
3976      << "    return true;\n"
3977      << "  }\n\n";
3978 
3979   OS << "  return false;\n"
3980      << "}\n"
3981      << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
3982 
3983   OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
3984      << "PredicateBitset AvailableModuleFeatures;\n"
3985      << "mutable PredicateBitset AvailableFunctionFeatures;\n"
3986      << "PredicateBitset getAvailableFeatures() const {\n"
3987      << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
3988      << "}\n"
3989      << "PredicateBitset\n"
3990      << "computeAvailableModuleFeatures(const " << Target.getName()
3991      << "Subtarget *Subtarget) const;\n"
3992      << "PredicateBitset\n"
3993      << "computeAvailableFunctionFeatures(const " << Target.getName()
3994      << "Subtarget *Subtarget,\n"
3995      << "                                 const MachineFunction *MF) const;\n"
3996      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
3997 
3998   OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
3999      << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
4000      << "AvailableFunctionFeatures()\n"
4001      << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
4002 }
4003 
4004 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
4005   if (SubtargetFeatures.count(Predicate) == 0)
4006     SubtargetFeatures.emplace(
4007         Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
4008 }
4009 
4010 TreePatternNode *GlobalISelEmitter::fixupPatternNode(TreePatternNode *N) {
4011   if (!N->isLeaf()) {
4012     for (unsigned I = 0, E = N->getNumChildren(); I < E; ++I) {
4013       TreePatternNode *OrigChild = N->getChild(I);
4014       TreePatternNode *NewChild = fixupPatternNode(OrigChild);
4015       if (OrigChild != NewChild)
4016         N->setChild(I, NewChild);
4017     }
4018 
4019     if (N->getOperator()->getName() == "ld") {
4020       // If it's a signext-load we need to adapt the pattern slightly. We need
4021       // to split the node into (sext (ld ...)), remove the <<signext>> predicate,
4022       // and then apply the <<signextTY>> predicate by updating the result type
4023       // of the load.
4024       //
4025       // For example:
4026       //   (ld:[i32] [iPTR])<<unindexed>><<signext>><<signexti16>>
4027       // must be transformed into:
4028       //   (sext:[i32] (ld:[i16] [iPTR])<<unindexed>>)
4029       //
4030       // Likewise for zeroext-load and anyext-load.
4031 
4032       std::vector<TreePredicateFn> Predicates;
4033       bool IsSignExtLoad = false;
4034       bool IsZeroExtLoad = false;
4035       bool IsAnyExtLoad = false;
4036       Record *MemVT = nullptr;
4037       for (const auto &P : N->getPredicateFns()) {
4038         if (P.isLoad() && P.isSignExtLoad()) {
4039           IsSignExtLoad = true;
4040           continue;
4041         }
4042         if (P.isLoad() && P.isZeroExtLoad()) {
4043           IsZeroExtLoad = true;
4044           continue;
4045         }
4046         if (P.isLoad() && P.isAnyExtLoad()) {
4047           IsAnyExtLoad = true;
4048           continue;
4049         }
4050         if (P.isLoad() && P.getMemoryVT()) {
4051           MemVT = P.getMemoryVT();
4052           continue;
4053         }
4054         Predicates.push_back(P);
4055       }
4056 
4057       if ((IsSignExtLoad || IsZeroExtLoad || IsAnyExtLoad) && MemVT) {
4058         assert((IsSignExtLoad + IsZeroExtLoad + IsAnyExtLoad) == 1 &&
4059                "IsSignExtLoad, IsZeroExtLoad, IsAnyExtLoad are mutually exclusive");
4060         TreePatternNode *Ext = new TreePatternNode(
4061             RK.getDef(IsSignExtLoad ? "sext"
4062                                     : IsZeroExtLoad ? "zext" : "anyext"),
4063             {N}, 1);
4064         Ext->setType(0, N->getType(0));
4065         N->clearPredicateFns();
4066         N->setPredicateFns(Predicates);
4067         N->setType(0, getValueType(MemVT));
4068         return Ext;
4069       }
4070     }
4071   }
4072 
4073   return N;
4074 }
4075 
4076 void GlobalISelEmitter::fixupPatternTrees(TreePattern *P) {
4077   for (unsigned I = 0, E = P->getNumTrees(); I < E; ++I) {
4078     TreePatternNode *OrigTree = P->getTree(I);
4079     TreePatternNode *NewTree = fixupPatternNode(OrigTree);
4080     if (OrigTree != NewTree)
4081       P->setTree(I, NewTree);
4082   }
4083 }
4084 
4085 std::unique_ptr<PredicateMatcher> RuleMatcher::forgetFirstCondition() {
4086   assert(!insnmatchers_empty() &&
4087          "Trying to forget something that does not exist");
4088 
4089   InstructionMatcher &Matcher = insnmatchers_front();
4090   std::unique_ptr<PredicateMatcher> Condition;
4091   if (!Matcher.predicates_empty())
4092     Condition = Matcher.predicates_pop_front();
4093   if (!Condition) {
4094     // If there is no more predicate on the instruction itself, look at its
4095     // operands.
4096     assert(!Matcher.operands_empty() &&
4097            "Empty instruction should have been discarded");
4098     OperandMatcher &OpMatcher = **Matcher.operands_begin();
4099     assert(!OpMatcher.predicates_empty() && "no operand constraint");
4100     Condition = OpMatcher.predicates_pop_front();
4101     // If this operand is free of constraints, rip it off.
4102     if (OpMatcher.predicates_empty())
4103       Matcher.pop_front();
4104   }
4105   // Rip the instruction off when it is empty.
4106   if (Matcher.operands_empty() && Matcher.predicates_empty())
4107     insnmatchers_pop_front();
4108   return Condition;
4109 }
4110 
4111 bool GroupMatcher::lastConditionMatches(
4112     const PredicateMatcher &Predicate) const {
4113   const auto &LastCondition = conditions_back();
4114   return Predicate.isIdentical(*LastCondition);
4115 }
4116 
4117 void GroupMatcher::emit(MatchTable &Table) {
4118   unsigned LabelID = Table.allocateLabelID();
4119   if (!conditions_empty()) {
4120     Table << MatchTable::Opcode("GIM_Try", +1)
4121           << MatchTable::Comment("On fail goto")
4122           << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
4123     for (auto &Condition : Conditions)
4124       Condition->emitPredicateOpcodes(
4125           Table, *static_cast<RuleMatcher *>(*Rules.begin()));
4126   }
4127   // Emit the conditions.
4128   // Then checks apply the rules.
4129   for (const auto &Rule : Rules)
4130     Rule->emit(Table);
4131   // If we don't succeeded for that block, that means we are not going to select
4132   // this instruction.
4133   if (!conditions_empty()) {
4134     Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
4135     Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
4136           << MatchTable::Label(LabelID);
4137   }
4138 }
4139 
4140 unsigned OperandMatcher::getInsnVarID() const { return Insn.getVarID(); }
4141 
4142 } // end anonymous namespace
4143 
4144 //===----------------------------------------------------------------------===//
4145 
4146 namespace llvm {
4147 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
4148   GlobalISelEmitter(RK).run(OS);
4149 }
4150 } // End llvm namespace
4151