1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12 ///
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
17 ///
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20 /// as well as why.
21 ///
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
26 ///
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
29 ///
30 //===----------------------------------------------------------------------===//
31
32 #include "CodeGenDAGPatterns.h"
33 #include "CodeGenInstruction.h"
34 #include "SubtargetFeatureInfo.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
46 #include <numeric>
47 #include <string>
48 using namespace llvm;
49
50 #define DEBUG_TYPE "gisel-emitter"
51
52 STATISTIC(NumPatternTotal, "Total number of patterns");
53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
57
58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
59
60 static cl::opt<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat));
65
66 static cl::opt<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat));
70
71 static cl::opt<std::string> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat));
75
76 static cl::opt<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat));
80
81 namespace {
82 //===- Helper functions ---------------------------------------------------===//
83
84 /// Get the name of the enum value used to number the predicate function.
getEnumNameForPredicate(const TreePredicateFn & Predicate)85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86 if (Predicate.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate.getFnName();
88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89 Predicate.getFnName();
90 }
91
92 /// Get the opcode used to check this predicate.
getMatchOpcodeForImmPredicate(const TreePredicateFn & Predicate)93 std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) {
94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
95 }
96
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
99 class LLTCodeGen {
100 private:
101 LLT Ty;
102
103 public:
104 LLTCodeGen() = default;
LLTCodeGen(const LLT & Ty)105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
106
getCxxEnumValue() const107 std::string getCxxEnumValue() const {
108 std::string Str;
109 raw_string_ostream OS(Str);
110
111 emitCxxEnumValue(OS);
112 return Str;
113 }
114
emitCxxEnumValue(raw_ostream & OS) const115 void emitCxxEnumValue(raw_ostream &OS) const {
116 if (Ty.isScalar()) {
117 OS << "GILLT_s" << Ty.getSizeInBits();
118 return;
119 }
120 if (Ty.isVector()) {
121 OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v")
122 << Ty.getElementCount().getKnownMinValue() << "s"
123 << Ty.getScalarSizeInBits();
124 return;
125 }
126 if (Ty.isPointer()) {
127 OS << "GILLT_p" << Ty.getAddressSpace();
128 if (Ty.getSizeInBits() > 0)
129 OS << "s" << Ty.getSizeInBits();
130 return;
131 }
132 llvm_unreachable("Unhandled LLT");
133 }
134
emitCxxConstructorCall(raw_ostream & OS) const135 void emitCxxConstructorCall(raw_ostream &OS) const {
136 if (Ty.isScalar()) {
137 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
138 return;
139 }
140 if (Ty.isVector()) {
141 OS << "LLT::vector("
142 << (Ty.isScalable() ? "ElementCount::getScalable("
143 : "ElementCount::getFixed(")
144 << Ty.getElementCount().getKnownMinValue() << "), "
145 << Ty.getScalarSizeInBits() << ")";
146 return;
147 }
148 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
149 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
150 << Ty.getSizeInBits() << ")";
151 return;
152 }
153 llvm_unreachable("Unhandled LLT");
154 }
155
get() const156 const LLT &get() const { return Ty; }
157
158 /// This ordering is used for std::unique() and llvm::sort(). There's no
159 /// particular logic behind the order but either A < B or B < A must be
160 /// true if A != B.
operator <(const LLTCodeGen & Other) const161 bool operator<(const LLTCodeGen &Other) const {
162 if (Ty.isValid() != Other.Ty.isValid())
163 return Ty.isValid() < Other.Ty.isValid();
164 if (!Ty.isValid())
165 return false;
166
167 if (Ty.isVector() != Other.Ty.isVector())
168 return Ty.isVector() < Other.Ty.isVector();
169 if (Ty.isScalar() != Other.Ty.isScalar())
170 return Ty.isScalar() < Other.Ty.isScalar();
171 if (Ty.isPointer() != Other.Ty.isPointer())
172 return Ty.isPointer() < Other.Ty.isPointer();
173
174 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
175 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
176
177 if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount())
178 return std::make_tuple(Ty.isScalable(),
179 Ty.getElementCount().getKnownMinValue()) <
180 std::make_tuple(Other.Ty.isScalable(),
181 Other.Ty.getElementCount().getKnownMinValue());
182
183 assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) &&
184 "Unexpected mismatch of scalable property");
185 return Ty.isVector()
186 ? std::make_tuple(Ty.isScalable(),
187 Ty.getSizeInBits().getKnownMinSize()) <
188 std::make_tuple(Other.Ty.isScalable(),
189 Other.Ty.getSizeInBits().getKnownMinSize())
190 : Ty.getSizeInBits().getFixedSize() <
191 Other.Ty.getSizeInBits().getFixedSize();
192 }
193
operator ==(const LLTCodeGen & B) const194 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
195 };
196
197 // Track all types that are used so we can emit the corresponding enum.
198 std::set<LLTCodeGen> KnownTypes;
199
200 class InstructionMatcher;
201 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
202 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
MVTToLLT(MVT::SimpleValueType SVT)203 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
204 MVT VT(SVT);
205
206 if (VT.isVector() && !VT.getVectorElementCount().isScalar())
207 return LLTCodeGen(
208 LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits()));
209
210 if (VT.isInteger() || VT.isFloatingPoint())
211 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
212
213 return None;
214 }
215
explainPredicates(const TreePatternNode * N)216 static std::string explainPredicates(const TreePatternNode *N) {
217 std::string Explanation;
218 StringRef Separator = "";
219 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
220 const TreePredicateFn &P = Call.Fn;
221 Explanation +=
222 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
223 Separator = ", ";
224
225 if (P.isAlwaysTrue())
226 Explanation += " always-true";
227 if (P.isImmediatePattern())
228 Explanation += " immediate";
229
230 if (P.isUnindexed())
231 Explanation += " unindexed";
232
233 if (P.isNonExtLoad())
234 Explanation += " non-extload";
235 if (P.isAnyExtLoad())
236 Explanation += " extload";
237 if (P.isSignExtLoad())
238 Explanation += " sextload";
239 if (P.isZeroExtLoad())
240 Explanation += " zextload";
241
242 if (P.isNonTruncStore())
243 Explanation += " non-truncstore";
244 if (P.isTruncStore())
245 Explanation += " truncstore";
246
247 if (Record *VT = P.getMemoryVT())
248 Explanation += (" MemVT=" + VT->getName()).str();
249 if (Record *VT = P.getScalarMemoryVT())
250 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
251
252 if (ListInit *AddrSpaces = P.getAddressSpaces()) {
253 raw_string_ostream OS(Explanation);
254 OS << " AddressSpaces=[";
255
256 StringRef AddrSpaceSeparator;
257 for (Init *Val : AddrSpaces->getValues()) {
258 IntInit *IntVal = dyn_cast<IntInit>(Val);
259 if (!IntVal)
260 continue;
261
262 OS << AddrSpaceSeparator << IntVal->getValue();
263 AddrSpaceSeparator = ", ";
264 }
265
266 OS << ']';
267 }
268
269 int64_t MinAlign = P.getMinAlignment();
270 if (MinAlign > 0)
271 Explanation += " MinAlign=" + utostr(MinAlign);
272
273 if (P.isAtomicOrderingMonotonic())
274 Explanation += " monotonic";
275 if (P.isAtomicOrderingAcquire())
276 Explanation += " acquire";
277 if (P.isAtomicOrderingRelease())
278 Explanation += " release";
279 if (P.isAtomicOrderingAcquireRelease())
280 Explanation += " acq_rel";
281 if (P.isAtomicOrderingSequentiallyConsistent())
282 Explanation += " seq_cst";
283 if (P.isAtomicOrderingAcquireOrStronger())
284 Explanation += " >=acquire";
285 if (P.isAtomicOrderingWeakerThanAcquire())
286 Explanation += " <acquire";
287 if (P.isAtomicOrderingReleaseOrStronger())
288 Explanation += " >=release";
289 if (P.isAtomicOrderingWeakerThanRelease())
290 Explanation += " <release";
291 }
292 return Explanation;
293 }
294
explainOperator(Record * Operator)295 std::string explainOperator(Record *Operator) {
296 if (Operator->isSubClassOf("SDNode"))
297 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
298
299 if (Operator->isSubClassOf("Intrinsic"))
300 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
301
302 if (Operator->isSubClassOf("ComplexPattern"))
303 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
304 ")")
305 .str();
306
307 if (Operator->isSubClassOf("SDNodeXForm"))
308 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
309 ")")
310 .str();
311
312 return (" (Operator " + Operator->getName() + " not understood)").str();
313 }
314
315 /// Helper function to let the emitter report skip reason error messages.
failedImport(const Twine & Reason)316 static Error failedImport(const Twine &Reason) {
317 return make_error<StringError>(Reason, inconvertibleErrorCode());
318 }
319
isTrivialOperatorNode(const TreePatternNode * N)320 static Error isTrivialOperatorNode(const TreePatternNode *N) {
321 std::string Explanation;
322 std::string Separator;
323
324 bool HasUnsupportedPredicate = false;
325 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
326 const TreePredicateFn &Predicate = Call.Fn;
327
328 if (Predicate.isAlwaysTrue())
329 continue;
330
331 if (Predicate.isImmediatePattern())
332 continue;
333
334 if (Predicate.hasNoUse())
335 continue;
336
337 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
338 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
339 continue;
340
341 if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
342 continue;
343
344 if (Predicate.isLoad() && Predicate.getMemoryVT())
345 continue;
346
347 if (Predicate.isLoad() || Predicate.isStore()) {
348 if (Predicate.isUnindexed())
349 continue;
350 }
351
352 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
353 const ListInit *AddrSpaces = Predicate.getAddressSpaces();
354 if (AddrSpaces && !AddrSpaces->empty())
355 continue;
356
357 if (Predicate.getMinAlignment() > 0)
358 continue;
359 }
360
361 if (Predicate.isAtomic() && Predicate.getMemoryVT())
362 continue;
363
364 if (Predicate.isAtomic() &&
365 (Predicate.isAtomicOrderingMonotonic() ||
366 Predicate.isAtomicOrderingAcquire() ||
367 Predicate.isAtomicOrderingRelease() ||
368 Predicate.isAtomicOrderingAcquireRelease() ||
369 Predicate.isAtomicOrderingSequentiallyConsistent() ||
370 Predicate.isAtomicOrderingAcquireOrStronger() ||
371 Predicate.isAtomicOrderingWeakerThanAcquire() ||
372 Predicate.isAtomicOrderingReleaseOrStronger() ||
373 Predicate.isAtomicOrderingWeakerThanRelease()))
374 continue;
375
376 if (Predicate.hasGISelPredicateCode())
377 continue;
378
379 HasUnsupportedPredicate = true;
380 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
381 Separator = ", ";
382 Explanation += (Separator + "first-failing:" +
383 Predicate.getOrigPatFragRecord()->getRecord()->getName())
384 .str();
385 break;
386 }
387
388 if (!HasUnsupportedPredicate)
389 return Error::success();
390
391 return failedImport(Explanation);
392 }
393
getInitValueAsRegClass(Init * V)394 static Record *getInitValueAsRegClass(Init *V) {
395 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
396 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
397 return VDefInit->getDef()->getValueAsDef("RegClass");
398 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
399 return VDefInit->getDef();
400 }
401 return nullptr;
402 }
403
404 std::string
getNameForFeatureBitset(const std::vector<Record * > & FeatureBitset)405 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
406 std::string Name = "GIFBS";
407 for (const auto &Feature : FeatureBitset)
408 Name += ("_" + Feature->getName()).str();
409 return Name;
410 }
411
getScopedName(unsigned Scope,const std::string & Name)412 static std::string getScopedName(unsigned Scope, const std::string &Name) {
413 return ("pred:" + Twine(Scope) + ":" + Name).str();
414 }
415
416 //===- MatchTable Helpers -------------------------------------------------===//
417
418 class MatchTable;
419
420 /// A record to be stored in a MatchTable.
421 ///
422 /// This class represents any and all output that may be required to emit the
423 /// MatchTable. Instances are most often configured to represent an opcode or
424 /// value that will be emitted to the table with some formatting but it can also
425 /// represent commas, comments, and other formatting instructions.
426 struct MatchTableRecord {
427 enum RecordFlagsBits {
428 MTRF_None = 0x0,
429 /// Causes EmitStr to be formatted as comment when emitted.
430 MTRF_Comment = 0x1,
431 /// Causes the record value to be followed by a comma when emitted.
432 MTRF_CommaFollows = 0x2,
433 /// Causes the record value to be followed by a line break when emitted.
434 MTRF_LineBreakFollows = 0x4,
435 /// Indicates that the record defines a label and causes an additional
436 /// comment to be emitted containing the index of the label.
437 MTRF_Label = 0x8,
438 /// Causes the record to be emitted as the index of the label specified by
439 /// LabelID along with a comment indicating where that label is.
440 MTRF_JumpTarget = 0x10,
441 /// Causes the formatter to add a level of indentation before emitting the
442 /// record.
443 MTRF_Indent = 0x20,
444 /// Causes the formatter to remove a level of indentation after emitting the
445 /// record.
446 MTRF_Outdent = 0x40,
447 };
448
449 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
450 /// reference or define.
451 unsigned LabelID;
452 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
453 /// value, a label name.
454 std::string EmitStr;
455
456 private:
457 /// The number of MatchTable elements described by this record. Comments are 0
458 /// while values are typically 1. Values >1 may occur when we need to emit
459 /// values that exceed the size of a MatchTable element.
460 unsigned NumElements;
461
462 public:
463 /// A bitfield of RecordFlagsBits flags.
464 unsigned Flags;
465
466 /// The actual run-time value, if known
467 int64_t RawValue;
468
MatchTableRecord__anoncee47b830111::MatchTableRecord469 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
470 unsigned NumElements, unsigned Flags,
471 int64_t RawValue = std::numeric_limits<int64_t>::min())
472 : LabelID(LabelID_.value_or(~0u)), EmitStr(EmitStr),
473 NumElements(NumElements), Flags(Flags), RawValue(RawValue) {
474 assert((!LabelID_ || LabelID != ~0u) &&
475 "This value is reserved for non-labels");
476 }
477 MatchTableRecord(const MatchTableRecord &Other) = default;
478 MatchTableRecord(MatchTableRecord &&Other) = default;
479
480 /// Useful if a Match Table Record gets optimized out
turnIntoComment__anoncee47b830111::MatchTableRecord481 void turnIntoComment() {
482 Flags |= MTRF_Comment;
483 Flags &= ~MTRF_CommaFollows;
484 NumElements = 0;
485 }
486
487 /// For Jump Table generation purposes
operator <__anoncee47b830111::MatchTableRecord488 bool operator<(const MatchTableRecord &Other) const {
489 return RawValue < Other.RawValue;
490 }
getRawValue__anoncee47b830111::MatchTableRecord491 int64_t getRawValue() const { return RawValue; }
492
493 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
494 const MatchTable &Table) const;
size__anoncee47b830111::MatchTableRecord495 unsigned size() const { return NumElements; }
496 };
497
498 class Matcher;
499
500 /// Holds the contents of a generated MatchTable to enable formatting and the
501 /// necessary index tracking needed to support GIM_Try.
502 class MatchTable {
503 /// An unique identifier for the table. The generated table will be named
504 /// MatchTable${ID}.
505 unsigned ID;
506 /// The records that make up the table. Also includes comments describing the
507 /// values being emitted and line breaks to format it.
508 std::vector<MatchTableRecord> Contents;
509 /// The currently defined labels.
510 DenseMap<unsigned, unsigned> LabelMap;
511 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
512 unsigned CurrentSize = 0;
513 /// A unique identifier for a MatchTable label.
514 unsigned CurrentLabelID = 0;
515 /// Determines if the table should be instrumented for rule coverage tracking.
516 bool IsWithCoverage;
517
518 public:
519 static MatchTableRecord LineBreak;
Comment(StringRef Comment)520 static MatchTableRecord Comment(StringRef Comment) {
521 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
522 }
Opcode(StringRef Opcode,int IndentAdjust=0)523 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
524 unsigned ExtraFlags = 0;
525 if (IndentAdjust > 0)
526 ExtraFlags |= MatchTableRecord::MTRF_Indent;
527 if (IndentAdjust < 0)
528 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
529
530 return MatchTableRecord(None, Opcode, 1,
531 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
532 }
NamedValue(StringRef NamedValue)533 static MatchTableRecord NamedValue(StringRef NamedValue) {
534 return MatchTableRecord(None, NamedValue, 1,
535 MatchTableRecord::MTRF_CommaFollows);
536 }
NamedValue(StringRef NamedValue,int64_t RawValue)537 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
538 return MatchTableRecord(None, NamedValue, 1,
539 MatchTableRecord::MTRF_CommaFollows, RawValue);
540 }
NamedValue(StringRef Namespace,StringRef NamedValue)541 static MatchTableRecord NamedValue(StringRef Namespace,
542 StringRef NamedValue) {
543 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
544 MatchTableRecord::MTRF_CommaFollows);
545 }
NamedValue(StringRef Namespace,StringRef NamedValue,int64_t RawValue)546 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
547 int64_t RawValue) {
548 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
549 MatchTableRecord::MTRF_CommaFollows, RawValue);
550 }
IntValue(int64_t IntValue)551 static MatchTableRecord IntValue(int64_t IntValue) {
552 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
553 MatchTableRecord::MTRF_CommaFollows);
554 }
Label(unsigned LabelID)555 static MatchTableRecord Label(unsigned LabelID) {
556 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
557 MatchTableRecord::MTRF_Label |
558 MatchTableRecord::MTRF_Comment |
559 MatchTableRecord::MTRF_LineBreakFollows);
560 }
JumpTarget(unsigned LabelID)561 static MatchTableRecord JumpTarget(unsigned LabelID) {
562 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
563 MatchTableRecord::MTRF_JumpTarget |
564 MatchTableRecord::MTRF_Comment |
565 MatchTableRecord::MTRF_CommaFollows);
566 }
567
568 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
569
MatchTable(bool WithCoverage,unsigned ID=0)570 MatchTable(bool WithCoverage, unsigned ID = 0)
571 : ID(ID), IsWithCoverage(WithCoverage) {}
572
isWithCoverage() const573 bool isWithCoverage() const { return IsWithCoverage; }
574
push_back(const MatchTableRecord & Value)575 void push_back(const MatchTableRecord &Value) {
576 if (Value.Flags & MatchTableRecord::MTRF_Label)
577 defineLabel(Value.LabelID);
578 Contents.push_back(Value);
579 CurrentSize += Value.size();
580 }
581
allocateLabelID()582 unsigned allocateLabelID() { return CurrentLabelID++; }
583
defineLabel(unsigned LabelID)584 void defineLabel(unsigned LabelID) {
585 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
586 }
587
getLabelIndex(unsigned LabelID) const588 unsigned getLabelIndex(unsigned LabelID) const {
589 const auto I = LabelMap.find(LabelID);
590 assert(I != LabelMap.end() && "Use of undeclared label");
591 return I->second;
592 }
593
emitUse(raw_ostream & OS) const594 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
595
emitDeclaration(raw_ostream & OS) const596 void emitDeclaration(raw_ostream &OS) const {
597 unsigned Indentation = 4;
598 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
599 LineBreak.emit(OS, true, *this);
600 OS << std::string(Indentation, ' ');
601
602 for (auto I = Contents.begin(), E = Contents.end(); I != E;
603 ++I) {
604 bool LineBreakIsNext = false;
605 const auto &NextI = std::next(I);
606
607 if (NextI != E) {
608 if (NextI->EmitStr == "" &&
609 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
610 LineBreakIsNext = true;
611 }
612
613 if (I->Flags & MatchTableRecord::MTRF_Indent)
614 Indentation += 2;
615
616 I->emit(OS, LineBreakIsNext, *this);
617 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
618 OS << std::string(Indentation, ' ');
619
620 if (I->Flags & MatchTableRecord::MTRF_Outdent)
621 Indentation -= 2;
622 }
623 OS << "};\n";
624 }
625 };
626
627 MatchTableRecord MatchTable::LineBreak = {
628 None, "" /* Emit String */, 0 /* Elements */,
629 MatchTableRecord::MTRF_LineBreakFollows};
630
emit(raw_ostream & OS,bool LineBreakIsNextAfterThis,const MatchTable & Table) const631 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
632 const MatchTable &Table) const {
633 bool UseLineComment =
634 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows);
635 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
636 UseLineComment = false;
637
638 if (Flags & MTRF_Comment)
639 OS << (UseLineComment ? "// " : "/*");
640
641 OS << EmitStr;
642 if (Flags & MTRF_Label)
643 OS << ": @" << Table.getLabelIndex(LabelID);
644
645 if ((Flags & MTRF_Comment) && !UseLineComment)
646 OS << "*/";
647
648 if (Flags & MTRF_JumpTarget) {
649 if (Flags & MTRF_Comment)
650 OS << " ";
651 OS << Table.getLabelIndex(LabelID);
652 }
653
654 if (Flags & MTRF_CommaFollows) {
655 OS << ",";
656 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
657 OS << " ";
658 }
659
660 if (Flags & MTRF_LineBreakFollows)
661 OS << "\n";
662 }
663
operator <<(MatchTable & Table,const MatchTableRecord & Value)664 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
665 Table.push_back(Value);
666 return Table;
667 }
668
669 //===- Matchers -----------------------------------------------------------===//
670
671 class OperandMatcher;
672 class MatchAction;
673 class PredicateMatcher;
674
675 class Matcher {
676 public:
677 virtual ~Matcher() = default;
optimize()678 virtual void optimize() {}
679 virtual void emit(MatchTable &Table) = 0;
680
681 virtual bool hasFirstCondition() const = 0;
682 virtual const PredicateMatcher &getFirstCondition() const = 0;
683 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
684 };
685
buildTable(ArrayRef<Matcher * > Rules,bool WithCoverage)686 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
687 bool WithCoverage) {
688 MatchTable Table(WithCoverage);
689 for (Matcher *Rule : Rules)
690 Rule->emit(Table);
691
692 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
693 }
694
695 class GroupMatcher final : public Matcher {
696 /// Conditions that form a common prefix of all the matchers contained.
697 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
698
699 /// All the nested matchers, sharing a common prefix.
700 std::vector<Matcher *> Matchers;
701
702 /// An owning collection for any auxiliary matchers created while optimizing
703 /// nested matchers contained.
704 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
705
706 public:
707 /// Add a matcher to the collection of nested matchers if it meets the
708 /// requirements, and return true. If it doesn't, do nothing and return false.
709 ///
710 /// Expected to preserve its argument, so it could be moved out later on.
711 bool addMatcher(Matcher &Candidate);
712
713 /// Mark the matcher as fully-built and ensure any invariants expected by both
714 /// optimize() and emit(...) methods. Generally, both sequences of calls
715 /// are expected to lead to a sensible result:
716 ///
717 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
718 /// addMatcher(...)*; finalize(); emit(...);
719 ///
720 /// or generally
721 ///
722 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
723 ///
724 /// Multiple calls to optimize() are expected to be handled gracefully, though
725 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
726 /// aren't generally supported. emit(...) is expected to be non-mutating and
727 /// producing the exact same results upon repeated calls.
728 ///
729 /// addMatcher() calls after the finalize() call are not supported.
730 ///
731 /// finalize() and optimize() are both allowed to mutate the contained
732 /// matchers, so moving them out after finalize() is not supported.
733 void finalize();
734 void optimize() override;
735 void emit(MatchTable &Table) override;
736
737 /// Could be used to move out the matchers added previously, unless finalize()
738 /// has been already called. If any of the matchers are moved out, the group
739 /// becomes safe to destroy, but not safe to re-use for anything else.
matchers()740 iterator_range<std::vector<Matcher *>::iterator> matchers() {
741 return make_range(Matchers.begin(), Matchers.end());
742 }
size() const743 size_t size() const { return Matchers.size(); }
empty() const744 bool empty() const { return Matchers.empty(); }
745
popFirstCondition()746 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
747 assert(!Conditions.empty() &&
748 "Trying to pop a condition from a condition-less group");
749 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
750 Conditions.erase(Conditions.begin());
751 return P;
752 }
getFirstCondition() const753 const PredicateMatcher &getFirstCondition() const override {
754 assert(!Conditions.empty() &&
755 "Trying to get a condition from a condition-less group");
756 return *Conditions.front();
757 }
hasFirstCondition() const758 bool hasFirstCondition() const override { return !Conditions.empty(); }
759
760 private:
761 /// See if a candidate matcher could be added to this group solely by
762 /// analyzing its first condition.
763 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
764 };
765
766 class SwitchMatcher : public Matcher {
767 /// All the nested matchers, representing distinct switch-cases. The first
768 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
769 /// matchers must share the same type and path to a value they check, in other
770 /// words, be isIdenticalDownToValue, but have different values they check
771 /// against.
772 std::vector<Matcher *> Matchers;
773
774 /// The representative condition, with a type and a path (InsnVarID and OpIdx
775 /// in most cases) shared by all the matchers contained.
776 std::unique_ptr<PredicateMatcher> Condition = nullptr;
777
778 /// Temporary set used to check that the case values don't repeat within the
779 /// same switch.
780 std::set<MatchTableRecord> Values;
781
782 /// An owning collection for any auxiliary matchers created while optimizing
783 /// nested matchers contained.
784 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
785
786 public:
787 bool addMatcher(Matcher &Candidate);
788
789 void finalize();
790 void emit(MatchTable &Table) override;
791
matchers()792 iterator_range<std::vector<Matcher *>::iterator> matchers() {
793 return make_range(Matchers.begin(), Matchers.end());
794 }
size() const795 size_t size() const { return Matchers.size(); }
empty() const796 bool empty() const { return Matchers.empty(); }
797
popFirstCondition()798 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
799 // SwitchMatcher doesn't have a common first condition for its cases, as all
800 // the cases only share a kind of a value (a type and a path to it) they
801 // match, but deliberately differ in the actual value they match.
802 llvm_unreachable("Trying to pop a condition from a condition-less group");
803 }
getFirstCondition() const804 const PredicateMatcher &getFirstCondition() const override {
805 llvm_unreachable("Trying to pop a condition from a condition-less group");
806 }
hasFirstCondition() const807 bool hasFirstCondition() const override { return false; }
808
809 private:
810 /// See if the predicate type has a Switch-implementation for it.
811 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
812
813 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
814
815 /// emit()-helper
816 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
817 MatchTable &Table);
818 };
819
820 /// Generates code to check that a match rule matches.
821 class RuleMatcher : public Matcher {
822 public:
823 using ActionList = std::list<std::unique_ptr<MatchAction>>;
824 using action_iterator = ActionList::iterator;
825
826 protected:
827 /// A list of matchers that all need to succeed for the current rule to match.
828 /// FIXME: This currently supports a single match position but could be
829 /// extended to support multiple positions to support div/rem fusion or
830 /// load-multiple instructions.
831 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
832 MatchersTy Matchers;
833
834 /// A list of actions that need to be taken when all predicates in this rule
835 /// have succeeded.
836 ActionList Actions;
837
838 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
839
840 /// A map of instruction matchers to the local variables
841 DefinedInsnVariablesMap InsnVariableIDs;
842
843 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
844
845 // The set of instruction matchers that have not yet been claimed for mutation
846 // by a BuildMI.
847 MutatableInsnSet MutatableInsns;
848
849 /// A map of named operands defined by the matchers that may be referenced by
850 /// the renderers.
851 StringMap<OperandMatcher *> DefinedOperands;
852
853 /// A map of anonymous physical register operands defined by the matchers that
854 /// may be referenced by the renderers.
855 DenseMap<Record *, OperandMatcher *> PhysRegOperands;
856
857 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
858 unsigned NextInsnVarID;
859
860 /// ID for the next output instruction allocated with allocateOutputInsnID()
861 unsigned NextOutputInsnID;
862
863 /// ID for the next temporary register ID allocated with allocateTempRegID()
864 unsigned NextTempRegID;
865
866 std::vector<Record *> RequiredFeatures;
867 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
868
869 ArrayRef<SMLoc> SrcLoc;
870
871 typedef std::tuple<Record *, unsigned, unsigned>
872 DefinedComplexPatternSubOperand;
873 typedef StringMap<DefinedComplexPatternSubOperand>
874 DefinedComplexPatternSubOperandMap;
875 /// A map of Symbolic Names to ComplexPattern sub-operands.
876 DefinedComplexPatternSubOperandMap ComplexSubOperands;
877 /// A map used to for multiple referenced error check of ComplexSubOperand.
878 /// ComplexSubOperand can't be referenced multiple from different operands,
879 /// however multiple references from same operand are allowed since that is
880 /// how 'same operand checks' are generated.
881 StringMap<std::string> ComplexSubOperandsParentName;
882
883 uint64_t RuleID;
884 static uint64_t NextRuleID;
885
886 public:
RuleMatcher(ArrayRef<SMLoc> SrcLoc)887 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
888 : NextInsnVarID(0), NextOutputInsnID(0), NextTempRegID(0), SrcLoc(SrcLoc),
889 RuleID(NextRuleID++) {}
890 RuleMatcher(RuleMatcher &&Other) = default;
891 RuleMatcher &operator=(RuleMatcher &&Other) = default;
892
getRuleID() const893 uint64_t getRuleID() const { return RuleID; }
894
895 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
896 void addRequiredFeature(Record *Feature);
897 const std::vector<Record *> &getRequiredFeatures() const;
898
899 template <class Kind, class... Args> Kind &addAction(Args &&... args);
900 template <class Kind, class... Args>
901 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
902
903 /// Define an instruction without emitting any code to do so.
904 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
905
906 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
defined_insn_vars_begin() const907 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
908 return InsnVariableIDs.begin();
909 }
defined_insn_vars_end() const910 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
911 return InsnVariableIDs.end();
912 }
913 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
defined_insn_vars() const914 defined_insn_vars() const {
915 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
916 }
917
mutatable_insns_begin() const918 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
919 return MutatableInsns.begin();
920 }
mutatable_insns_end() const921 MutatableInsnSet::const_iterator mutatable_insns_end() const {
922 return MutatableInsns.end();
923 }
924 iterator_range<typename MutatableInsnSet::const_iterator>
mutatable_insns() const925 mutatable_insns() const {
926 return make_range(mutatable_insns_begin(), mutatable_insns_end());
927 }
reserveInsnMatcherForMutation(InstructionMatcher * InsnMatcher)928 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
929 bool R = MutatableInsns.erase(InsnMatcher);
930 assert(R && "Reserving a mutatable insn that isn't available");
931 (void)R;
932 }
933
actions_begin()934 action_iterator actions_begin() { return Actions.begin(); }
actions_end()935 action_iterator actions_end() { return Actions.end(); }
actions()936 iterator_range<action_iterator> actions() {
937 return make_range(actions_begin(), actions_end());
938 }
939
940 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
941
942 void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
943
defineComplexSubOperand(StringRef SymbolicName,Record * ComplexPattern,unsigned RendererID,unsigned SubOperandID,StringRef ParentSymbolicName)944 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
945 unsigned RendererID, unsigned SubOperandID,
946 StringRef ParentSymbolicName) {
947 std::string ParentName(ParentSymbolicName);
948 if (ComplexSubOperands.count(SymbolicName)) {
949 const std::string &RecordedParentName =
950 ComplexSubOperandsParentName[SymbolicName];
951 if (RecordedParentName != ParentName)
952 return failedImport("Error: Complex suboperand " + SymbolicName +
953 " referenced by different operands: " +
954 RecordedParentName + " and " + ParentName + ".");
955 // Complex suboperand referenced more than once from same the operand is
956 // used to generate 'same operand check'. Emitting of
957 // GIR_ComplexSubOperandRenderer for them is already handled.
958 return Error::success();
959 }
960
961 ComplexSubOperands[SymbolicName] =
962 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
963 ComplexSubOperandsParentName[SymbolicName] = ParentName;
964
965 return Error::success();
966 }
967
968 Optional<DefinedComplexPatternSubOperand>
getComplexSubOperand(StringRef SymbolicName) const969 getComplexSubOperand(StringRef SymbolicName) const {
970 const auto &I = ComplexSubOperands.find(SymbolicName);
971 if (I == ComplexSubOperands.end())
972 return None;
973 return I->second;
974 }
975
976 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
977 const OperandMatcher &getOperandMatcher(StringRef Name) const;
978 const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
979
980 void optimize() override;
981 void emit(MatchTable &Table) override;
982
983 /// Compare the priority of this object and B.
984 ///
985 /// Returns true if this object is more important than B.
986 bool isHigherPriorityThan(const RuleMatcher &B) const;
987
988 /// Report the maximum number of temporary operands needed by the rule
989 /// matcher.
990 unsigned countRendererFns() const;
991
992 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
993 const PredicateMatcher &getFirstCondition() const override;
994 LLTCodeGen getFirstConditionAsRootType();
995 bool hasFirstCondition() const override;
996 unsigned getNumOperands() const;
997 StringRef getOpcode() const;
998
999 // FIXME: Remove this as soon as possible
insnmatchers_front() const1000 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
1001
allocateOutputInsnID()1002 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
allocateTempRegID()1003 unsigned allocateTempRegID() { return NextTempRegID++; }
1004
insnmatchers()1005 iterator_range<MatchersTy::iterator> insnmatchers() {
1006 return make_range(Matchers.begin(), Matchers.end());
1007 }
insnmatchers_empty() const1008 bool insnmatchers_empty() const { return Matchers.empty(); }
insnmatchers_pop_front()1009 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
1010 };
1011
1012 uint64_t RuleMatcher::NextRuleID = 0;
1013
1014 using action_iterator = RuleMatcher::action_iterator;
1015
1016 template <class PredicateTy> class PredicateListMatcher {
1017 private:
1018 /// Template instantiations should specialize this to return a string to use
1019 /// for the comment emitted when there are no predicates.
1020 std::string getNoPredicateComment() const;
1021
1022 protected:
1023 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
1024 PredicatesTy Predicates;
1025
1026 /// Track if the list of predicates was manipulated by one of the optimization
1027 /// methods.
1028 bool Optimized = false;
1029
1030 public:
predicates_begin()1031 typename PredicatesTy::iterator predicates_begin() {
1032 return Predicates.begin();
1033 }
predicates_end()1034 typename PredicatesTy::iterator predicates_end() {
1035 return Predicates.end();
1036 }
predicates()1037 iterator_range<typename PredicatesTy::iterator> predicates() {
1038 return make_range(predicates_begin(), predicates_end());
1039 }
predicates_size() const1040 typename PredicatesTy::size_type predicates_size() const {
1041 return Predicates.size();
1042 }
predicates_empty() const1043 bool predicates_empty() const { return Predicates.empty(); }
1044
predicates_pop_front()1045 std::unique_ptr<PredicateTy> predicates_pop_front() {
1046 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
1047 Predicates.pop_front();
1048 Optimized = true;
1049 return Front;
1050 }
1051
prependPredicate(std::unique_ptr<PredicateTy> && Predicate)1052 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
1053 Predicates.push_front(std::move(Predicate));
1054 }
1055
eraseNullPredicates()1056 void eraseNullPredicates() {
1057 const auto NewEnd =
1058 std::stable_partition(Predicates.begin(), Predicates.end(),
1059 std::logical_not<std::unique_ptr<PredicateTy>>());
1060 if (NewEnd != Predicates.begin()) {
1061 Predicates.erase(Predicates.begin(), NewEnd);
1062 Optimized = true;
1063 }
1064 }
1065
1066 /// Emit MatchTable opcodes that tests whether all the predicates are met.
1067 template <class... Args>
emitPredicateListOpcodes(MatchTable & Table,Args &&...args)1068 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1069 if (Predicates.empty() && !Optimized) {
1070 Table << MatchTable::Comment(getNoPredicateComment())
1071 << MatchTable::LineBreak;
1072 return;
1073 }
1074
1075 for (const auto &Predicate : predicates())
1076 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1077 }
1078
1079 /// Provide a function to avoid emitting certain predicates. This is used to
1080 /// defer some predicate checks until after others
1081 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>;
1082
1083 /// Emit MatchTable opcodes for predicates which satisfy \p
1084 /// ShouldEmitPredicate. This should be called multiple times to ensure all
1085 /// predicates are eventually added to the match table.
1086 template <class... Args>
emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate,MatchTable & Table,Args &&...args)1087 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate,
1088 MatchTable &Table, Args &&... args) {
1089 if (Predicates.empty() && !Optimized) {
1090 Table << MatchTable::Comment(getNoPredicateComment())
1091 << MatchTable::LineBreak;
1092 return;
1093 }
1094
1095 for (const auto &Predicate : predicates()) {
1096 if (ShouldEmitPredicate(*Predicate))
1097 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1098 }
1099 }
1100 };
1101
1102 class PredicateMatcher {
1103 public:
1104 /// This enum is used for RTTI and also defines the priority that is given to
1105 /// the predicate when generating the matcher code. Kinds with higher priority
1106 /// must be tested first.
1107 ///
1108 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1109 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1110 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1111 ///
1112 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1113 /// are currently not compared between each other.
1114 enum PredicateKind {
1115 IPM_Opcode,
1116 IPM_NumOperands,
1117 IPM_ImmPredicate,
1118 IPM_Imm,
1119 IPM_AtomicOrderingMMO,
1120 IPM_MemoryLLTSize,
1121 IPM_MemoryVsLLTSize,
1122 IPM_MemoryAddressSpace,
1123 IPM_MemoryAlignment,
1124 IPM_VectorSplatImm,
1125 IPM_NoUse,
1126 IPM_GenericPredicate,
1127 OPM_SameOperand,
1128 OPM_ComplexPattern,
1129 OPM_IntrinsicID,
1130 OPM_CmpPredicate,
1131 OPM_Instruction,
1132 OPM_Int,
1133 OPM_LiteralInt,
1134 OPM_LLT,
1135 OPM_PointerToAny,
1136 OPM_RegBank,
1137 OPM_MBB,
1138 OPM_RecordNamedOperand,
1139 };
1140
1141 protected:
1142 PredicateKind Kind;
1143 unsigned InsnVarID;
1144 unsigned OpIdx;
1145
1146 public:
PredicateMatcher(PredicateKind Kind,unsigned InsnVarID,unsigned OpIdx=~0)1147 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1148 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1149
getInsnVarID() const1150 unsigned getInsnVarID() const { return InsnVarID; }
getOpIdx() const1151 unsigned getOpIdx() const { return OpIdx; }
1152
1153 virtual ~PredicateMatcher() = default;
1154 /// Emit MatchTable opcodes that check the predicate for the given operand.
1155 virtual void emitPredicateOpcodes(MatchTable &Table,
1156 RuleMatcher &Rule) const = 0;
1157
getKind() const1158 PredicateKind getKind() const { return Kind; }
1159
dependsOnOperands() const1160 bool dependsOnOperands() const {
1161 // Custom predicates really depend on the context pattern of the
1162 // instruction, not just the individual instruction. This therefore
1163 // implicitly depends on all other pattern constraints.
1164 return Kind == IPM_GenericPredicate;
1165 }
1166
isIdentical(const PredicateMatcher & B) const1167 virtual bool isIdentical(const PredicateMatcher &B) const {
1168 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1169 OpIdx == B.OpIdx;
1170 }
1171
isIdenticalDownToValue(const PredicateMatcher & B) const1172 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1173 return hasValue() && PredicateMatcher::isIdentical(B);
1174 }
1175
getValue() const1176 virtual MatchTableRecord getValue() const {
1177 assert(hasValue() && "Can not get a value of a value-less predicate!");
1178 llvm_unreachable("Not implemented yet");
1179 }
hasValue() const1180 virtual bool hasValue() const { return false; }
1181
1182 /// Report the maximum number of temporary operands needed by the predicate
1183 /// matcher.
countRendererFns() const1184 virtual unsigned countRendererFns() const { return 0; }
1185 };
1186
1187 /// Generates code to check a predicate of an operand.
1188 ///
1189 /// Typical predicates include:
1190 /// * Operand is a particular register.
1191 /// * Operand is assigned a particular register bank.
1192 /// * Operand is an MBB.
1193 class OperandPredicateMatcher : public PredicateMatcher {
1194 public:
OperandPredicateMatcher(PredicateKind Kind,unsigned InsnVarID,unsigned OpIdx)1195 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1196 unsigned OpIdx)
1197 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
~OperandPredicateMatcher()1198 virtual ~OperandPredicateMatcher() {}
1199
1200 /// Compare the priority of this object and B.
1201 ///
1202 /// Returns true if this object is more important than B.
1203 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1204 };
1205
1206 template <>
1207 std::string
getNoPredicateComment() const1208 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1209 return "No operand predicates";
1210 }
1211
1212 /// Generates code to check that a register operand is defined by the same exact
1213 /// one as another.
1214 class SameOperandMatcher : public OperandPredicateMatcher {
1215 std::string MatchingName;
1216 unsigned OrigOpIdx;
1217
1218 public:
SameOperandMatcher(unsigned InsnVarID,unsigned OpIdx,StringRef MatchingName,unsigned OrigOpIdx)1219 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName,
1220 unsigned OrigOpIdx)
1221 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1222 MatchingName(MatchingName), OrigOpIdx(OrigOpIdx) {}
1223
classof(const PredicateMatcher * P)1224 static bool classof(const PredicateMatcher *P) {
1225 return P->getKind() == OPM_SameOperand;
1226 }
1227
1228 void emitPredicateOpcodes(MatchTable &Table,
1229 RuleMatcher &Rule) const override;
1230
isIdentical(const PredicateMatcher & B) const1231 bool isIdentical(const PredicateMatcher &B) const override {
1232 return OperandPredicateMatcher::isIdentical(B) &&
1233 OrigOpIdx == cast<SameOperandMatcher>(&B)->OrigOpIdx &&
1234 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1235 }
1236 };
1237
1238 /// Generates code to check that an operand is a particular LLT.
1239 class LLTOperandMatcher : public OperandPredicateMatcher {
1240 protected:
1241 LLTCodeGen Ty;
1242
1243 public:
1244 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1245
initTypeIDValuesMap()1246 static void initTypeIDValuesMap() {
1247 TypeIDValues.clear();
1248
1249 unsigned ID = 0;
1250 for (const LLTCodeGen &LLTy : KnownTypes)
1251 TypeIDValues[LLTy] = ID++;
1252 }
1253
LLTOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const LLTCodeGen & Ty)1254 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1255 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1256 KnownTypes.insert(Ty);
1257 }
1258
classof(const PredicateMatcher * P)1259 static bool classof(const PredicateMatcher *P) {
1260 return P->getKind() == OPM_LLT;
1261 }
isIdentical(const PredicateMatcher & B) const1262 bool isIdentical(const PredicateMatcher &B) const override {
1263 return OperandPredicateMatcher::isIdentical(B) &&
1264 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1265 }
getValue() const1266 MatchTableRecord getValue() const override {
1267 const auto VI = TypeIDValues.find(Ty);
1268 if (VI == TypeIDValues.end())
1269 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1270 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1271 }
hasValue() const1272 bool hasValue() const override {
1273 if (TypeIDValues.size() != KnownTypes.size())
1274 initTypeIDValuesMap();
1275 return TypeIDValues.count(Ty);
1276 }
1277
getTy() const1278 LLTCodeGen getTy() const { return Ty; }
1279
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1280 void emitPredicateOpcodes(MatchTable &Table,
1281 RuleMatcher &Rule) const override {
1282 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1283 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1284 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1285 << getValue() << MatchTable::LineBreak;
1286 }
1287 };
1288
1289 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1290
1291 /// Generates code to check that an operand is a pointer to any address space.
1292 ///
1293 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1294 /// result, iN is used to describe a pointer of N bits to any address space and
1295 /// PatFrag predicates are typically used to constrain the address space. There's
1296 /// no reliable means to derive the missing type information from the pattern so
1297 /// imported rules must test the components of a pointer separately.
1298 ///
1299 /// If SizeInBits is zero, then the pointer size will be obtained from the
1300 /// subtarget.
1301 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1302 protected:
1303 unsigned SizeInBits;
1304
1305 public:
PointerToAnyOperandMatcher(unsigned InsnVarID,unsigned OpIdx,unsigned SizeInBits)1306 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1307 unsigned SizeInBits)
1308 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1309 SizeInBits(SizeInBits) {}
1310
classof(const PredicateMatcher * P)1311 static bool classof(const PredicateMatcher *P) {
1312 return P->getKind() == OPM_PointerToAny;
1313 }
1314
isIdentical(const PredicateMatcher & B) const1315 bool isIdentical(const PredicateMatcher &B) const override {
1316 return OperandPredicateMatcher::isIdentical(B) &&
1317 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits;
1318 }
1319
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1320 void emitPredicateOpcodes(MatchTable &Table,
1321 RuleMatcher &Rule) const override {
1322 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1323 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1324 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1325 << MatchTable::Comment("SizeInBits")
1326 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1327 }
1328 };
1329
1330 /// Generates code to record named operand in RecordedOperands list at StoreIdx.
1331 /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as
1332 /// an argument to predicate's c++ code once all operands have been matched.
1333 class RecordNamedOperandMatcher : public OperandPredicateMatcher {
1334 protected:
1335 unsigned StoreIdx;
1336 std::string Name;
1337
1338 public:
RecordNamedOperandMatcher(unsigned InsnVarID,unsigned OpIdx,unsigned StoreIdx,StringRef Name)1339 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1340 unsigned StoreIdx, StringRef Name)
1341 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx),
1342 StoreIdx(StoreIdx), Name(Name) {}
1343
classof(const PredicateMatcher * P)1344 static bool classof(const PredicateMatcher *P) {
1345 return P->getKind() == OPM_RecordNamedOperand;
1346 }
1347
isIdentical(const PredicateMatcher & B) const1348 bool isIdentical(const PredicateMatcher &B) const override {
1349 return OperandPredicateMatcher::isIdentical(B) &&
1350 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx &&
1351 Name == cast<RecordNamedOperandMatcher>(&B)->Name;
1352 }
1353
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1354 void emitPredicateOpcodes(MatchTable &Table,
1355 RuleMatcher &Rule) const override {
1356 Table << MatchTable::Opcode("GIM_RecordNamedOperand")
1357 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1358 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1359 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx)
1360 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak;
1361 }
1362 };
1363
1364 /// Generates code to check that an operand is a particular target constant.
1365 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1366 protected:
1367 const OperandMatcher &Operand;
1368 const Record &TheDef;
1369
1370 unsigned getAllocatedTemporariesBaseID() const;
1371
1372 public:
isIdentical(const PredicateMatcher & B) const1373 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1374
ComplexPatternOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const OperandMatcher & Operand,const Record & TheDef)1375 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1376 const OperandMatcher &Operand,
1377 const Record &TheDef)
1378 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1379 Operand(Operand), TheDef(TheDef) {}
1380
classof(const PredicateMatcher * P)1381 static bool classof(const PredicateMatcher *P) {
1382 return P->getKind() == OPM_ComplexPattern;
1383 }
1384
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1385 void emitPredicateOpcodes(MatchTable &Table,
1386 RuleMatcher &Rule) const override {
1387 unsigned ID = getAllocatedTemporariesBaseID();
1388 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1389 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1390 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1391 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1392 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1393 << MatchTable::LineBreak;
1394 }
1395
countRendererFns() const1396 unsigned countRendererFns() const override {
1397 return 1;
1398 }
1399 };
1400
1401 /// Generates code to check that an operand is in a particular register bank.
1402 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1403 protected:
1404 const CodeGenRegisterClass &RC;
1405
1406 public:
RegisterBankOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const CodeGenRegisterClass & RC)1407 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1408 const CodeGenRegisterClass &RC)
1409 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1410
isIdentical(const PredicateMatcher & B) const1411 bool isIdentical(const PredicateMatcher &B) const override {
1412 return OperandPredicateMatcher::isIdentical(B) &&
1413 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1414 }
1415
classof(const PredicateMatcher * P)1416 static bool classof(const PredicateMatcher *P) {
1417 return P->getKind() == OPM_RegBank;
1418 }
1419
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1420 void emitPredicateOpcodes(MatchTable &Table,
1421 RuleMatcher &Rule) const override {
1422 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1423 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1424 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1425 << MatchTable::Comment("RC")
1426 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1427 << MatchTable::LineBreak;
1428 }
1429 };
1430
1431 /// Generates code to check that an operand is a basic block.
1432 class MBBOperandMatcher : public OperandPredicateMatcher {
1433 public:
MBBOperandMatcher(unsigned InsnVarID,unsigned OpIdx)1434 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1435 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1436
classof(const PredicateMatcher * P)1437 static bool classof(const PredicateMatcher *P) {
1438 return P->getKind() == OPM_MBB;
1439 }
1440
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1441 void emitPredicateOpcodes(MatchTable &Table,
1442 RuleMatcher &Rule) const override {
1443 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1444 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1445 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1446 }
1447 };
1448
1449 class ImmOperandMatcher : public OperandPredicateMatcher {
1450 public:
ImmOperandMatcher(unsigned InsnVarID,unsigned OpIdx)1451 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1452 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
1453
classof(const PredicateMatcher * P)1454 static bool classof(const PredicateMatcher *P) {
1455 return P->getKind() == IPM_Imm;
1456 }
1457
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1458 void emitPredicateOpcodes(MatchTable &Table,
1459 RuleMatcher &Rule) const override {
1460 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
1461 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1462 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1463 }
1464 };
1465
1466 /// Generates code to check that an operand is a G_CONSTANT with a particular
1467 /// int.
1468 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1469 protected:
1470 int64_t Value;
1471
1472 public:
ConstantIntOperandMatcher(unsigned InsnVarID,unsigned OpIdx,int64_t Value)1473 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1474 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1475
isIdentical(const PredicateMatcher & B) const1476 bool isIdentical(const PredicateMatcher &B) const override {
1477 return OperandPredicateMatcher::isIdentical(B) &&
1478 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1479 }
1480
classof(const PredicateMatcher * P)1481 static bool classof(const PredicateMatcher *P) {
1482 return P->getKind() == OPM_Int;
1483 }
1484
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1485 void emitPredicateOpcodes(MatchTable &Table,
1486 RuleMatcher &Rule) const override {
1487 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1488 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1489 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1490 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1491 }
1492 };
1493
1494 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1495 /// MO.isCImm() is true).
1496 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1497 protected:
1498 int64_t Value;
1499
1500 public:
LiteralIntOperandMatcher(unsigned InsnVarID,unsigned OpIdx,int64_t Value)1501 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1502 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1503 Value(Value) {}
1504
isIdentical(const PredicateMatcher & B) const1505 bool isIdentical(const PredicateMatcher &B) const override {
1506 return OperandPredicateMatcher::isIdentical(B) &&
1507 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1508 }
1509
classof(const PredicateMatcher * P)1510 static bool classof(const PredicateMatcher *P) {
1511 return P->getKind() == OPM_LiteralInt;
1512 }
1513
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1514 void emitPredicateOpcodes(MatchTable &Table,
1515 RuleMatcher &Rule) const override {
1516 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1517 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1518 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1519 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1520 }
1521 };
1522
1523 /// Generates code to check that an operand is an CmpInst predicate
1524 class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
1525 protected:
1526 std::string PredName;
1527
1528 public:
CmpPredicateOperandMatcher(unsigned InsnVarID,unsigned OpIdx,std::string P)1529 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1530 std::string P)
1531 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
1532
isIdentical(const PredicateMatcher & B) const1533 bool isIdentical(const PredicateMatcher &B) const override {
1534 return OperandPredicateMatcher::isIdentical(B) &&
1535 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
1536 }
1537
classof(const PredicateMatcher * P)1538 static bool classof(const PredicateMatcher *P) {
1539 return P->getKind() == OPM_CmpPredicate;
1540 }
1541
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1542 void emitPredicateOpcodes(MatchTable &Table,
1543 RuleMatcher &Rule) const override {
1544 Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
1545 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1546 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1547 << MatchTable::Comment("Predicate")
1548 << MatchTable::NamedValue("CmpInst", PredName)
1549 << MatchTable::LineBreak;
1550 }
1551 };
1552
1553 /// Generates code to check that an operand is an intrinsic ID.
1554 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1555 protected:
1556 const CodeGenIntrinsic *II;
1557
1558 public:
IntrinsicIDOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const CodeGenIntrinsic * II)1559 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1560 const CodeGenIntrinsic *II)
1561 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1562
isIdentical(const PredicateMatcher & B) const1563 bool isIdentical(const PredicateMatcher &B) const override {
1564 return OperandPredicateMatcher::isIdentical(B) &&
1565 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1566 }
1567
classof(const PredicateMatcher * P)1568 static bool classof(const PredicateMatcher *P) {
1569 return P->getKind() == OPM_IntrinsicID;
1570 }
1571
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1572 void emitPredicateOpcodes(MatchTable &Table,
1573 RuleMatcher &Rule) const override {
1574 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1575 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1576 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1577 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1578 << MatchTable::LineBreak;
1579 }
1580 };
1581
1582 /// Generates code to check that this operand is an immediate whose value meets
1583 /// an immediate predicate.
1584 class OperandImmPredicateMatcher : public OperandPredicateMatcher {
1585 protected:
1586 TreePredicateFn Predicate;
1587
1588 public:
OperandImmPredicateMatcher(unsigned InsnVarID,unsigned OpIdx,const TreePredicateFn & Predicate)1589 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx,
1590 const TreePredicateFn &Predicate)
1591 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx),
1592 Predicate(Predicate) {}
1593
isIdentical(const PredicateMatcher & B) const1594 bool isIdentical(const PredicateMatcher &B) const override {
1595 return OperandPredicateMatcher::isIdentical(B) &&
1596 Predicate.getOrigPatFragRecord() ==
1597 cast<OperandImmPredicateMatcher>(&B)
1598 ->Predicate.getOrigPatFragRecord();
1599 }
1600
classof(const PredicateMatcher * P)1601 static bool classof(const PredicateMatcher *P) {
1602 return P->getKind() == IPM_ImmPredicate;
1603 }
1604
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1605 void emitPredicateOpcodes(MatchTable &Table,
1606 RuleMatcher &Rule) const override {
1607 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate")
1608 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1609 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx)
1610 << MatchTable::Comment("Predicate")
1611 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1612 << MatchTable::LineBreak;
1613 }
1614 };
1615
1616 /// Generates code to check that a set of predicates match for a particular
1617 /// operand.
1618 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1619 protected:
1620 InstructionMatcher &Insn;
1621 unsigned OpIdx;
1622 std::string SymbolicName;
1623
1624 /// The index of the first temporary variable allocated to this operand. The
1625 /// number of allocated temporaries can be found with
1626 /// countRendererFns().
1627 unsigned AllocatedTemporariesBaseID;
1628
1629 public:
OperandMatcher(InstructionMatcher & Insn,unsigned OpIdx,const std::string & SymbolicName,unsigned AllocatedTemporariesBaseID)1630 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1631 const std::string &SymbolicName,
1632 unsigned AllocatedTemporariesBaseID)
1633 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1634 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1635
hasSymbolicName() const1636 bool hasSymbolicName() const { return !SymbolicName.empty(); }
getSymbolicName() const1637 StringRef getSymbolicName() const { return SymbolicName; }
setSymbolicName(StringRef Name)1638 void setSymbolicName(StringRef Name) {
1639 assert(SymbolicName.empty() && "Operand already has a symbolic name");
1640 SymbolicName = std::string(Name);
1641 }
1642
1643 /// Construct a new operand predicate and add it to the matcher.
1644 template <class Kind, class... Args>
addPredicate(Args &&...args)1645 Optional<Kind *> addPredicate(Args &&... args) {
1646 if (isSameAsAnotherOperand())
1647 return None;
1648 Predicates.emplace_back(std::make_unique<Kind>(
1649 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1650 return static_cast<Kind *>(Predicates.back().get());
1651 }
1652
getOpIdx() const1653 unsigned getOpIdx() const { return OpIdx; }
1654 unsigned getInsnVarID() const;
1655
getOperandExpr(unsigned InsnVarID) const1656 std::string getOperandExpr(unsigned InsnVarID) const {
1657 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1658 llvm::to_string(OpIdx) + ")";
1659 }
1660
getInstructionMatcher() const1661 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1662
1663 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1664 bool OperandIsAPointer);
1665
1666 /// Emit MatchTable opcodes that test whether the instruction named in
1667 /// InsnVarID matches all the predicates and all the operands.
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule)1668 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1669 if (!Optimized) {
1670 std::string Comment;
1671 raw_string_ostream CommentOS(Comment);
1672 CommentOS << "MIs[" << getInsnVarID() << "] ";
1673 if (SymbolicName.empty())
1674 CommentOS << "Operand " << OpIdx;
1675 else
1676 CommentOS << SymbolicName;
1677 Table << MatchTable::Comment(Comment) << MatchTable::LineBreak;
1678 }
1679
1680 emitPredicateListOpcodes(Table, Rule);
1681 }
1682
1683 /// Compare the priority of this object and B.
1684 ///
1685 /// Returns true if this object is more important than B.
isHigherPriorityThan(OperandMatcher & B)1686 bool isHigherPriorityThan(OperandMatcher &B) {
1687 // Operand matchers involving more predicates have higher priority.
1688 if (predicates_size() > B.predicates_size())
1689 return true;
1690 if (predicates_size() < B.predicates_size())
1691 return false;
1692
1693 // This assumes that predicates are added in a consistent order.
1694 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1695 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1696 return true;
1697 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1698 return false;
1699 }
1700
1701 return false;
1702 };
1703
1704 /// Report the maximum number of temporary operands needed by the operand
1705 /// matcher.
countRendererFns()1706 unsigned countRendererFns() {
1707 return std::accumulate(
1708 predicates().begin(), predicates().end(), 0,
1709 [](unsigned A,
1710 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1711 return A + Predicate->countRendererFns();
1712 });
1713 }
1714
getAllocatedTemporariesBaseID() const1715 unsigned getAllocatedTemporariesBaseID() const {
1716 return AllocatedTemporariesBaseID;
1717 }
1718
isSameAsAnotherOperand()1719 bool isSameAsAnotherOperand() {
1720 for (const auto &Predicate : predicates())
1721 if (isa<SameOperandMatcher>(Predicate))
1722 return true;
1723 return false;
1724 }
1725 };
1726
addTypeCheckPredicate(const TypeSetByHwMode & VTy,bool OperandIsAPointer)1727 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1728 bool OperandIsAPointer) {
1729 if (!VTy.isMachineValueType())
1730 return failedImport("unsupported typeset");
1731
1732 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1733 addPredicate<PointerToAnyOperandMatcher>(0);
1734 return Error::success();
1735 }
1736
1737 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1738 if (!OpTyOrNone)
1739 return failedImport("unsupported type");
1740
1741 if (OperandIsAPointer)
1742 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1743 else if (VTy.isPointer())
1744 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1745 OpTyOrNone->get().getSizeInBits()));
1746 else
1747 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1748 return Error::success();
1749 }
1750
getAllocatedTemporariesBaseID() const1751 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1752 return Operand.getAllocatedTemporariesBaseID();
1753 }
1754
1755 /// Generates code to check a predicate on an instruction.
1756 ///
1757 /// Typical predicates include:
1758 /// * The opcode of the instruction is a particular value.
1759 /// * The nsw/nuw flag is/isn't set.
1760 class InstructionPredicateMatcher : public PredicateMatcher {
1761 public:
InstructionPredicateMatcher(PredicateKind Kind,unsigned InsnVarID)1762 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1763 : PredicateMatcher(Kind, InsnVarID) {}
~InstructionPredicateMatcher()1764 virtual ~InstructionPredicateMatcher() {}
1765
1766 /// Compare the priority of this object and B.
1767 ///
1768 /// Returns true if this object is more important than B.
1769 virtual bool
isHigherPriorityThan(const InstructionPredicateMatcher & B) const1770 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1771 return Kind < B.Kind;
1772 };
1773 };
1774
1775 template <>
1776 std::string
getNoPredicateComment() const1777 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1778 return "No instruction predicates";
1779 }
1780
1781 /// Generates code to check the opcode of an instruction.
1782 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1783 protected:
1784 // Allow matching one to several, similar opcodes that share properties. This
1785 // is to handle patterns where one SelectionDAG operation maps to multiple
1786 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first
1787 // is treated as the canonical opcode.
1788 SmallVector<const CodeGenInstruction *, 2> Insts;
1789
1790 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1791
1792
getInstValue(const CodeGenInstruction * I) const1793 MatchTableRecord getInstValue(const CodeGenInstruction *I) const {
1794 const auto VI = OpcodeValues.find(I);
1795 if (VI != OpcodeValues.end())
1796 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1797 VI->second);
1798 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1799 }
1800
1801 public:
initOpcodeValuesMap(const CodeGenTarget & Target)1802 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1803 OpcodeValues.clear();
1804
1805 unsigned OpcodeValue = 0;
1806 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1807 OpcodeValues[I] = OpcodeValue++;
1808 }
1809
InstructionOpcodeMatcher(unsigned InsnVarID,ArrayRef<const CodeGenInstruction * > I)1810 InstructionOpcodeMatcher(unsigned InsnVarID,
1811 ArrayRef<const CodeGenInstruction *> I)
1812 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID),
1813 Insts(I.begin(), I.end()) {
1814 assert((Insts.size() == 1 || Insts.size() == 2) &&
1815 "unexpected number of opcode alternatives");
1816 }
1817
classof(const PredicateMatcher * P)1818 static bool classof(const PredicateMatcher *P) {
1819 return P->getKind() == IPM_Opcode;
1820 }
1821
isIdentical(const PredicateMatcher & B) const1822 bool isIdentical(const PredicateMatcher &B) const override {
1823 return InstructionPredicateMatcher::isIdentical(B) &&
1824 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts;
1825 }
1826
hasValue() const1827 bool hasValue() const override {
1828 return Insts.size() == 1 && OpcodeValues.count(Insts[0]);
1829 }
1830
1831 // TODO: This is used for the SwitchMatcher optimization. We should be able to
1832 // return a list of the opcodes to match.
getValue() const1833 MatchTableRecord getValue() const override {
1834 assert(Insts.size() == 1);
1835
1836 const CodeGenInstruction *I = Insts[0];
1837 const auto VI = OpcodeValues.find(I);
1838 if (VI != OpcodeValues.end())
1839 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1840 VI->second);
1841 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1842 }
1843
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1844 void emitPredicateOpcodes(MatchTable &Table,
1845 RuleMatcher &Rule) const override {
1846 StringRef CheckType = Insts.size() == 1 ?
1847 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither";
1848 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI")
1849 << MatchTable::IntValue(InsnVarID);
1850
1851 for (const CodeGenInstruction *I : Insts)
1852 Table << getInstValue(I);
1853 Table << MatchTable::LineBreak;
1854 }
1855
1856 /// Compare the priority of this object and B.
1857 ///
1858 /// Returns true if this object is more important than B.
1859 bool
isHigherPriorityThan(const InstructionPredicateMatcher & B) const1860 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1861 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1862 return true;
1863 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1864 return false;
1865
1866 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1867 // this is cosmetic at the moment, we may want to drive a similar ordering
1868 // using instruction frequency information to improve compile time.
1869 if (const InstructionOpcodeMatcher *BO =
1870 dyn_cast<InstructionOpcodeMatcher>(&B))
1871 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName();
1872
1873 return false;
1874 };
1875
isConstantInstruction() const1876 bool isConstantInstruction() const {
1877 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT";
1878 }
1879
1880 // The first opcode is the canonical opcode, and later are alternatives.
getOpcode() const1881 StringRef getOpcode() const {
1882 return Insts[0]->TheDef->getName();
1883 }
1884
getAlternativeOpcodes()1885 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() {
1886 return Insts;
1887 }
1888
isVariadicNumOperands() const1889 bool isVariadicNumOperands() const {
1890 // If one is variadic, they all should be.
1891 return Insts[0]->Operands.isVariadic;
1892 }
1893
getOperandType(unsigned OpIdx) const1894 StringRef getOperandType(unsigned OpIdx) const {
1895 // Types expected to be uniform for all alternatives.
1896 return Insts[0]->Operands[OpIdx].OperandType;
1897 }
1898 };
1899
1900 DenseMap<const CodeGenInstruction *, unsigned>
1901 InstructionOpcodeMatcher::OpcodeValues;
1902
1903 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1904 unsigned NumOperands = 0;
1905
1906 public:
InstructionNumOperandsMatcher(unsigned InsnVarID,unsigned NumOperands)1907 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1908 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1909 NumOperands(NumOperands) {}
1910
classof(const PredicateMatcher * P)1911 static bool classof(const PredicateMatcher *P) {
1912 return P->getKind() == IPM_NumOperands;
1913 }
1914
isIdentical(const PredicateMatcher & B) const1915 bool isIdentical(const PredicateMatcher &B) const override {
1916 return InstructionPredicateMatcher::isIdentical(B) &&
1917 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1918 }
1919
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1920 void emitPredicateOpcodes(MatchTable &Table,
1921 RuleMatcher &Rule) const override {
1922 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1923 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1924 << MatchTable::Comment("Expected")
1925 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1926 }
1927 };
1928
1929 /// Generates code to check that this instruction is a constant whose value
1930 /// meets an immediate predicate.
1931 ///
1932 /// Immediates are slightly odd since they are typically used like an operand
1933 /// but are represented as an operator internally. We typically write simm8:$src
1934 /// in a tablegen pattern, but this is just syntactic sugar for
1935 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1936 /// that will be matched and the predicate (which is attached to the imm
1937 /// operator) that will be tested. In SelectionDAG this describes a
1938 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1939 ///
1940 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1941 /// this representation, the immediate could be tested with an
1942 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1943 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1944 /// there are two implementation issues with producing that matcher
1945 /// configuration from the SelectionDAG pattern:
1946 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1947 /// were we to sink the immediate predicate to the operand we would have to
1948 /// have two partial implementations of PatFrag support, one for immediates
1949 /// and one for non-immediates.
1950 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1951 /// created yet. If we were to sink the predicate to the OperandMatcher we
1952 /// would also have to complicate (or duplicate) the code that descends and
1953 /// creates matchers for the subtree.
1954 /// Overall, it's simpler to handle it in the place it was found.
1955 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1956 protected:
1957 TreePredicateFn Predicate;
1958
1959 public:
InstructionImmPredicateMatcher(unsigned InsnVarID,const TreePredicateFn & Predicate)1960 InstructionImmPredicateMatcher(unsigned InsnVarID,
1961 const TreePredicateFn &Predicate)
1962 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1963 Predicate(Predicate) {}
1964
isIdentical(const PredicateMatcher & B) const1965 bool isIdentical(const PredicateMatcher &B) const override {
1966 return InstructionPredicateMatcher::isIdentical(B) &&
1967 Predicate.getOrigPatFragRecord() ==
1968 cast<InstructionImmPredicateMatcher>(&B)
1969 ->Predicate.getOrigPatFragRecord();
1970 }
1971
classof(const PredicateMatcher * P)1972 static bool classof(const PredicateMatcher *P) {
1973 return P->getKind() == IPM_ImmPredicate;
1974 }
1975
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1976 void emitPredicateOpcodes(MatchTable &Table,
1977 RuleMatcher &Rule) const override {
1978 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate))
1979 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1980 << MatchTable::Comment("Predicate")
1981 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1982 << MatchTable::LineBreak;
1983 }
1984 };
1985
1986 /// Generates code to check that a memory instruction has a atomic ordering
1987 /// MachineMemoryOperand.
1988 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1989 public:
1990 enum AOComparator {
1991 AO_Exactly,
1992 AO_OrStronger,
1993 AO_WeakerThan,
1994 };
1995
1996 protected:
1997 StringRef Order;
1998 AOComparator Comparator;
1999
2000 public:
AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID,StringRef Order,AOComparator Comparator=AO_Exactly)2001 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
2002 AOComparator Comparator = AO_Exactly)
2003 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
2004 Order(Order), Comparator(Comparator) {}
2005
classof(const PredicateMatcher * P)2006 static bool classof(const PredicateMatcher *P) {
2007 return P->getKind() == IPM_AtomicOrderingMMO;
2008 }
2009
isIdentical(const PredicateMatcher & B) const2010 bool isIdentical(const PredicateMatcher &B) const override {
2011 if (!InstructionPredicateMatcher::isIdentical(B))
2012 return false;
2013 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
2014 return Order == R.Order && Comparator == R.Comparator;
2015 }
2016
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2017 void emitPredicateOpcodes(MatchTable &Table,
2018 RuleMatcher &Rule) const override {
2019 StringRef Opcode = "GIM_CheckAtomicOrdering";
2020
2021 if (Comparator == AO_OrStronger)
2022 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
2023 if (Comparator == AO_WeakerThan)
2024 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
2025
2026 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
2027 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
2028 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
2029 << MatchTable::LineBreak;
2030 }
2031 };
2032
2033 /// Generates code to check that the size of an MMO is exactly N bytes.
2034 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
2035 protected:
2036 unsigned MMOIdx;
2037 uint64_t Size;
2038
2039 public:
MemorySizePredicateMatcher(unsigned InsnVarID,unsigned MMOIdx,unsigned Size)2040 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
2041 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
2042 MMOIdx(MMOIdx), Size(Size) {}
2043
classof(const PredicateMatcher * P)2044 static bool classof(const PredicateMatcher *P) {
2045 return P->getKind() == IPM_MemoryLLTSize;
2046 }
isIdentical(const PredicateMatcher & B) const2047 bool isIdentical(const PredicateMatcher &B) const override {
2048 return InstructionPredicateMatcher::isIdentical(B) &&
2049 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
2050 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
2051 }
2052
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2053 void emitPredicateOpcodes(MatchTable &Table,
2054 RuleMatcher &Rule) const override {
2055 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
2056 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2057 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2058 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
2059 << MatchTable::LineBreak;
2060 }
2061 };
2062
2063 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
2064 protected:
2065 unsigned MMOIdx;
2066 SmallVector<unsigned, 4> AddrSpaces;
2067
2068 public:
MemoryAddressSpacePredicateMatcher(unsigned InsnVarID,unsigned MMOIdx,ArrayRef<unsigned> AddrSpaces)2069 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2070 ArrayRef<unsigned> AddrSpaces)
2071 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
2072 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
2073
classof(const PredicateMatcher * P)2074 static bool classof(const PredicateMatcher *P) {
2075 return P->getKind() == IPM_MemoryAddressSpace;
2076 }
isIdentical(const PredicateMatcher & B) const2077 bool isIdentical(const PredicateMatcher &B) const override {
2078 if (!InstructionPredicateMatcher::isIdentical(B))
2079 return false;
2080 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
2081 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
2082 }
2083
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2084 void emitPredicateOpcodes(MatchTable &Table,
2085 RuleMatcher &Rule) const override {
2086 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
2087 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2088 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2089 // Encode number of address spaces to expect.
2090 << MatchTable::Comment("NumAddrSpace")
2091 << MatchTable::IntValue(AddrSpaces.size());
2092 for (unsigned AS : AddrSpaces)
2093 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
2094
2095 Table << MatchTable::LineBreak;
2096 }
2097 };
2098
2099 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
2100 protected:
2101 unsigned MMOIdx;
2102 int MinAlign;
2103
2104 public:
MemoryAlignmentPredicateMatcher(unsigned InsnVarID,unsigned MMOIdx,int MinAlign)2105 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2106 int MinAlign)
2107 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
2108 MMOIdx(MMOIdx), MinAlign(MinAlign) {
2109 assert(MinAlign > 0);
2110 }
2111
classof(const PredicateMatcher * P)2112 static bool classof(const PredicateMatcher *P) {
2113 return P->getKind() == IPM_MemoryAlignment;
2114 }
2115
isIdentical(const PredicateMatcher & B) const2116 bool isIdentical(const PredicateMatcher &B) const override {
2117 if (!InstructionPredicateMatcher::isIdentical(B))
2118 return false;
2119 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
2120 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
2121 }
2122
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2123 void emitPredicateOpcodes(MatchTable &Table,
2124 RuleMatcher &Rule) const override {
2125 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
2126 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2127 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2128 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
2129 << MatchTable::LineBreak;
2130 }
2131 };
2132
2133 /// Generates code to check that the size of an MMO is less-than, equal-to, or
2134 /// greater than a given LLT.
2135 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
2136 public:
2137 enum RelationKind {
2138 GreaterThan,
2139 EqualTo,
2140 LessThan,
2141 };
2142
2143 protected:
2144 unsigned MMOIdx;
2145 RelationKind Relation;
2146 unsigned OpIdx;
2147
2148 public:
MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID,unsigned MMOIdx,enum RelationKind Relation,unsigned OpIdx)2149 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2150 enum RelationKind Relation,
2151 unsigned OpIdx)
2152 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
2153 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
2154
classof(const PredicateMatcher * P)2155 static bool classof(const PredicateMatcher *P) {
2156 return P->getKind() == IPM_MemoryVsLLTSize;
2157 }
isIdentical(const PredicateMatcher & B) const2158 bool isIdentical(const PredicateMatcher &B) const override {
2159 return InstructionPredicateMatcher::isIdentical(B) &&
2160 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
2161 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
2162 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
2163 }
2164
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2165 void emitPredicateOpcodes(MatchTable &Table,
2166 RuleMatcher &Rule) const override {
2167 Table << MatchTable::Opcode(Relation == EqualTo
2168 ? "GIM_CheckMemorySizeEqualToLLT"
2169 : Relation == GreaterThan
2170 ? "GIM_CheckMemorySizeGreaterThanLLT"
2171 : "GIM_CheckMemorySizeLessThanLLT")
2172 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2173 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2174 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2175 << MatchTable::LineBreak;
2176 }
2177 };
2178
2179 // Matcher for immAllOnesV/immAllZerosV
2180 class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher {
2181 public:
2182 enum SplatKind {
2183 AllZeros,
2184 AllOnes
2185 };
2186
2187 private:
2188 SplatKind Kind;
2189
2190 public:
VectorSplatImmPredicateMatcher(unsigned InsnVarID,SplatKind K)2191 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K)
2192 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {}
2193
classof(const PredicateMatcher * P)2194 static bool classof(const PredicateMatcher *P) {
2195 return P->getKind() == IPM_VectorSplatImm;
2196 }
2197
isIdentical(const PredicateMatcher & B) const2198 bool isIdentical(const PredicateMatcher &B) const override {
2199 return InstructionPredicateMatcher::isIdentical(B) &&
2200 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind;
2201 }
2202
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2203 void emitPredicateOpcodes(MatchTable &Table,
2204 RuleMatcher &Rule) const override {
2205 if (Kind == AllOnes)
2206 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes");
2207 else
2208 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros");
2209
2210 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID);
2211 Table << MatchTable::LineBreak;
2212 }
2213 };
2214
2215 /// Generates code to check an arbitrary C++ instruction predicate.
2216 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
2217 protected:
2218 TreePredicateFn Predicate;
2219
2220 public:
GenericInstructionPredicateMatcher(unsigned InsnVarID,TreePredicateFn Predicate)2221 GenericInstructionPredicateMatcher(unsigned InsnVarID,
2222 TreePredicateFn Predicate)
2223 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
2224 Predicate(Predicate) {}
2225
classof(const InstructionPredicateMatcher * P)2226 static bool classof(const InstructionPredicateMatcher *P) {
2227 return P->getKind() == IPM_GenericPredicate;
2228 }
isIdentical(const PredicateMatcher & B) const2229 bool isIdentical(const PredicateMatcher &B) const override {
2230 return InstructionPredicateMatcher::isIdentical(B) &&
2231 Predicate ==
2232 static_cast<const GenericInstructionPredicateMatcher &>(B)
2233 .Predicate;
2234 }
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2235 void emitPredicateOpcodes(MatchTable &Table,
2236 RuleMatcher &Rule) const override {
2237 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
2238 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2239 << MatchTable::Comment("FnId")
2240 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
2241 << MatchTable::LineBreak;
2242 }
2243 };
2244
2245 /// Generates code to check for the absence of use of the result.
2246 // TODO? Generalize this to support checking for one use.
2247 class NoUsePredicateMatcher : public InstructionPredicateMatcher {
2248 public:
NoUsePredicateMatcher(unsigned InsnVarID)2249 NoUsePredicateMatcher(unsigned InsnVarID)
2250 : InstructionPredicateMatcher(IPM_NoUse, InsnVarID) {}
2251
classof(const PredicateMatcher * P)2252 static bool classof(const PredicateMatcher *P) {
2253 return P->getKind() == IPM_NoUse;
2254 }
2255
isIdentical(const PredicateMatcher & B) const2256 bool isIdentical(const PredicateMatcher &B) const override {
2257 return InstructionPredicateMatcher::isIdentical(B);
2258 }
2259
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2260 void emitPredicateOpcodes(MatchTable &Table,
2261 RuleMatcher &Rule) const override {
2262 Table << MatchTable::Opcode("GIM_CheckHasNoUse")
2263 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2264 << MatchTable::LineBreak;
2265 }
2266 };
2267
2268 /// Generates code to check that a set of predicates and operands match for a
2269 /// particular instruction.
2270 ///
2271 /// Typical predicates include:
2272 /// * Has a specific opcode.
2273 /// * Has an nsw/nuw flag or doesn't.
2274 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
2275 protected:
2276 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
2277
2278 RuleMatcher &Rule;
2279
2280 /// The operands to match. All rendered operands must be present even if the
2281 /// condition is always true.
2282 OperandVec Operands;
2283 bool NumOperandsCheck = true;
2284
2285 std::string SymbolicName;
2286 unsigned InsnVarID;
2287
2288 /// PhysRegInputs - List list has an entry for each explicitly specified
2289 /// physreg input to the pattern. The first elt is the Register node, the
2290 /// second is the recorded slot number the input pattern match saved it in.
2291 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
2292
2293 public:
InstructionMatcher(RuleMatcher & Rule,StringRef SymbolicName,bool NumOpsCheck=true)2294 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName,
2295 bool NumOpsCheck = true)
2296 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) {
2297 // We create a new instruction matcher.
2298 // Get a new ID for that instruction.
2299 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
2300 }
2301
2302 /// Construct a new instruction predicate and add it to the matcher.
2303 template <class Kind, class... Args>
addPredicate(Args &&...args)2304 Optional<Kind *> addPredicate(Args &&... args) {
2305 Predicates.emplace_back(
2306 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
2307 return static_cast<Kind *>(Predicates.back().get());
2308 }
2309
getRuleMatcher() const2310 RuleMatcher &getRuleMatcher() const { return Rule; }
2311
getInsnVarID() const2312 unsigned getInsnVarID() const { return InsnVarID; }
2313
2314 /// Add an operand to the matcher.
addOperand(unsigned OpIdx,const std::string & SymbolicName,unsigned AllocatedTemporariesBaseID)2315 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
2316 unsigned AllocatedTemporariesBaseID) {
2317 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
2318 AllocatedTemporariesBaseID));
2319 if (!SymbolicName.empty())
2320 Rule.defineOperand(SymbolicName, *Operands.back());
2321
2322 return *Operands.back();
2323 }
2324
getOperand(unsigned OpIdx)2325 OperandMatcher &getOperand(unsigned OpIdx) {
2326 auto I = llvm::find_if(Operands,
2327 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
2328 return X->getOpIdx() == OpIdx;
2329 });
2330 if (I != Operands.end())
2331 return **I;
2332 llvm_unreachable("Failed to lookup operand");
2333 }
2334
addPhysRegInput(Record * Reg,unsigned OpIdx,unsigned TempOpIdx)2335 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
2336 unsigned TempOpIdx) {
2337 assert(SymbolicName.empty());
2338 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
2339 Operands.emplace_back(OM);
2340 Rule.definePhysRegOperand(Reg, *OM);
2341 PhysRegInputs.emplace_back(Reg, OpIdx);
2342 return *OM;
2343 }
2344
getPhysRegInputs() const2345 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
2346 return PhysRegInputs;
2347 }
2348
getSymbolicName() const2349 StringRef getSymbolicName() const { return SymbolicName; }
getNumOperands() const2350 unsigned getNumOperands() const { return Operands.size(); }
operands_begin()2351 OperandVec::iterator operands_begin() { return Operands.begin(); }
operands_end()2352 OperandVec::iterator operands_end() { return Operands.end(); }
operands()2353 iterator_range<OperandVec::iterator> operands() {
2354 return make_range(operands_begin(), operands_end());
2355 }
operands_begin() const2356 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
operands_end() const2357 OperandVec::const_iterator operands_end() const { return Operands.end(); }
operands() const2358 iterator_range<OperandVec::const_iterator> operands() const {
2359 return make_range(operands_begin(), operands_end());
2360 }
operands_empty() const2361 bool operands_empty() const { return Operands.empty(); }
2362
pop_front()2363 void pop_front() { Operands.erase(Operands.begin()); }
2364
2365 void optimize();
2366
2367 /// Emit MatchTable opcodes that test whether the instruction named in
2368 /// InsnVarName matches all the predicates and all the operands.
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule)2369 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
2370 if (NumOperandsCheck)
2371 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
2372 .emitPredicateOpcodes(Table, Rule);
2373
2374 // First emit all instruction level predicates need to be verified before we
2375 // can verify operands.
2376 emitFilteredPredicateListOpcodes(
2377 [](const PredicateMatcher &P) {
2378 return !P.dependsOnOperands();
2379 }, Table, Rule);
2380
2381 // Emit all operand constraints.
2382 for (const auto &Operand : Operands)
2383 Operand->emitPredicateOpcodes(Table, Rule);
2384
2385 // All of the tablegen defined predicates should now be matched. Now emit
2386 // any custom predicates that rely on all generated checks.
2387 emitFilteredPredicateListOpcodes(
2388 [](const PredicateMatcher &P) {
2389 return P.dependsOnOperands();
2390 }, Table, Rule);
2391 }
2392
2393 /// Compare the priority of this object and B.
2394 ///
2395 /// Returns true if this object is more important than B.
isHigherPriorityThan(InstructionMatcher & B)2396 bool isHigherPriorityThan(InstructionMatcher &B) {
2397 // Instruction matchers involving more operands have higher priority.
2398 if (Operands.size() > B.Operands.size())
2399 return true;
2400 if (Operands.size() < B.Operands.size())
2401 return false;
2402
2403 for (auto &&P : zip(predicates(), B.predicates())) {
2404 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
2405 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
2406 if (L->isHigherPriorityThan(*R))
2407 return true;
2408 if (R->isHigherPriorityThan(*L))
2409 return false;
2410 }
2411
2412 for (auto Operand : zip(Operands, B.Operands)) {
2413 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
2414 return true;
2415 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
2416 return false;
2417 }
2418
2419 return false;
2420 };
2421
2422 /// Report the maximum number of temporary operands needed by the instruction
2423 /// matcher.
countRendererFns()2424 unsigned countRendererFns() {
2425 return std::accumulate(
2426 predicates().begin(), predicates().end(), 0,
2427 [](unsigned A,
2428 const std::unique_ptr<PredicateMatcher> &Predicate) {
2429 return A + Predicate->countRendererFns();
2430 }) +
2431 std::accumulate(
2432 Operands.begin(), Operands.end(), 0,
2433 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2434 return A + Operand->countRendererFns();
2435 });
2436 }
2437
getOpcodeMatcher()2438 InstructionOpcodeMatcher &getOpcodeMatcher() {
2439 for (auto &P : predicates())
2440 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2441 return *OpMatcher;
2442 llvm_unreachable("Didn't find an opcode matcher");
2443 }
2444
isConstantInstruction()2445 bool isConstantInstruction() {
2446 return getOpcodeMatcher().isConstantInstruction();
2447 }
2448
getOpcode()2449 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2450 };
2451
getOpcode() const2452 StringRef RuleMatcher::getOpcode() const {
2453 return Matchers.front()->getOpcode();
2454 }
2455
getNumOperands() const2456 unsigned RuleMatcher::getNumOperands() const {
2457 return Matchers.front()->getNumOperands();
2458 }
2459
getFirstConditionAsRootType()2460 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2461 InstructionMatcher &InsnMatcher = *Matchers.front();
2462 if (!InsnMatcher.predicates_empty())
2463 if (const auto *TM =
2464 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2465 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2466 return TM->getTy();
2467 return {};
2468 }
2469
2470 /// Generates code to check that the operand is a register defined by an
2471 /// instruction that matches the given instruction matcher.
2472 ///
2473 /// For example, the pattern:
2474 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2475 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2476 /// the:
2477 /// (G_ADD $src1, $src2)
2478 /// subpattern.
2479 class InstructionOperandMatcher : public OperandPredicateMatcher {
2480 protected:
2481 std::unique_ptr<InstructionMatcher> InsnMatcher;
2482
2483 public:
InstructionOperandMatcher(unsigned InsnVarID,unsigned OpIdx,RuleMatcher & Rule,StringRef SymbolicName,bool NumOpsCheck=true)2484 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2485 RuleMatcher &Rule, StringRef SymbolicName,
2486 bool NumOpsCheck = true)
2487 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2488 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {}
2489
classof(const PredicateMatcher * P)2490 static bool classof(const PredicateMatcher *P) {
2491 return P->getKind() == OPM_Instruction;
2492 }
2493
getInsnMatcher() const2494 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2495
emitCaptureOpcodes(MatchTable & Table,RuleMatcher & Rule) const2496 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2497 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2498 Table << MatchTable::Opcode("GIM_RecordInsn")
2499 << MatchTable::Comment("DefineMI")
2500 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2501 << MatchTable::IntValue(getInsnVarID())
2502 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2503 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2504 << MatchTable::LineBreak;
2505 }
2506
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2507 void emitPredicateOpcodes(MatchTable &Table,
2508 RuleMatcher &Rule) const override {
2509 emitCaptureOpcodes(Table, Rule);
2510 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2511 }
2512
isHigherPriorityThan(const OperandPredicateMatcher & B) const2513 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2514 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2515 return true;
2516 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2517 return false;
2518
2519 if (const InstructionOperandMatcher *BP =
2520 dyn_cast<InstructionOperandMatcher>(&B))
2521 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2522 return true;
2523 return false;
2524 }
2525 };
2526
optimize()2527 void InstructionMatcher::optimize() {
2528 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2529 const auto &OpcMatcher = getOpcodeMatcher();
2530
2531 Stash.push_back(predicates_pop_front());
2532 if (Stash.back().get() == &OpcMatcher) {
2533 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands())
2534 Stash.emplace_back(
2535 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2536 NumOperandsCheck = false;
2537
2538 for (auto &OM : Operands)
2539 for (auto &OP : OM->predicates())
2540 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2541 Stash.push_back(std::move(OP));
2542 OM->eraseNullPredicates();
2543 break;
2544 }
2545 }
2546
2547 if (InsnVarID > 0) {
2548 assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2549 for (auto &OP : Operands[0]->predicates())
2550 OP.reset();
2551 Operands[0]->eraseNullPredicates();
2552 }
2553 for (auto &OM : Operands) {
2554 for (auto &OP : OM->predicates())
2555 if (isa<LLTOperandMatcher>(OP))
2556 Stash.push_back(std::move(OP));
2557 OM->eraseNullPredicates();
2558 }
2559 while (!Stash.empty())
2560 prependPredicate(Stash.pop_back_val());
2561 }
2562
2563 //===- Actions ------------------------------------------------------------===//
2564 class OperandRenderer {
2565 public:
2566 enum RendererKind {
2567 OR_Copy,
2568 OR_CopyOrAddZeroReg,
2569 OR_CopySubReg,
2570 OR_CopyPhysReg,
2571 OR_CopyConstantAsImm,
2572 OR_CopyFConstantAsFPImm,
2573 OR_Imm,
2574 OR_SubRegIndex,
2575 OR_Register,
2576 OR_TempRegister,
2577 OR_ComplexPattern,
2578 OR_Custom,
2579 OR_CustomOperand
2580 };
2581
2582 protected:
2583 RendererKind Kind;
2584
2585 public:
OperandRenderer(RendererKind Kind)2586 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
~OperandRenderer()2587 virtual ~OperandRenderer() {}
2588
getKind() const2589 RendererKind getKind() const { return Kind; }
2590
2591 virtual void emitRenderOpcodes(MatchTable &Table,
2592 RuleMatcher &Rule) const = 0;
2593 };
2594
2595 /// A CopyRenderer emits code to copy a single operand from an existing
2596 /// instruction to the one being built.
2597 class CopyRenderer : public OperandRenderer {
2598 protected:
2599 unsigned NewInsnID;
2600 /// The name of the operand.
2601 const StringRef SymbolicName;
2602
2603 public:
CopyRenderer(unsigned NewInsnID,StringRef SymbolicName)2604 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2605 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2606 SymbolicName(SymbolicName) {
2607 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2608 }
2609
classof(const OperandRenderer * R)2610 static bool classof(const OperandRenderer *R) {
2611 return R->getKind() == OR_Copy;
2612 }
2613
getSymbolicName() const2614 StringRef getSymbolicName() const { return SymbolicName; }
2615
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2616 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2617 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2618 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2619 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2620 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2621 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2622 << MatchTable::IntValue(Operand.getOpIdx())
2623 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2624 }
2625 };
2626
2627 /// A CopyRenderer emits code to copy a virtual register to a specific physical
2628 /// register.
2629 class CopyPhysRegRenderer : public OperandRenderer {
2630 protected:
2631 unsigned NewInsnID;
2632 Record *PhysReg;
2633
2634 public:
CopyPhysRegRenderer(unsigned NewInsnID,Record * Reg)2635 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
2636 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
2637 PhysReg(Reg) {
2638 assert(PhysReg);
2639 }
2640
classof(const OperandRenderer * R)2641 static bool classof(const OperandRenderer *R) {
2642 return R->getKind() == OR_CopyPhysReg;
2643 }
2644
getPhysReg() const2645 Record *getPhysReg() const { return PhysReg; }
2646
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2647 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2648 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
2649 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2650 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2651 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2652 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2653 << MatchTable::IntValue(Operand.getOpIdx())
2654 << MatchTable::Comment(PhysReg->getName())
2655 << MatchTable::LineBreak;
2656 }
2657 };
2658
2659 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2660 /// existing instruction to the one being built. If the operand turns out to be
2661 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2662 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2663 protected:
2664 unsigned NewInsnID;
2665 /// The name of the operand.
2666 const StringRef SymbolicName;
2667 const Record *ZeroRegisterDef;
2668
2669 public:
CopyOrAddZeroRegRenderer(unsigned NewInsnID,StringRef SymbolicName,Record * ZeroRegisterDef)2670 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2671 StringRef SymbolicName, Record *ZeroRegisterDef)
2672 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2673 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2674 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2675 }
2676
classof(const OperandRenderer * R)2677 static bool classof(const OperandRenderer *R) {
2678 return R->getKind() == OR_CopyOrAddZeroReg;
2679 }
2680
getSymbolicName() const2681 StringRef getSymbolicName() const { return SymbolicName; }
2682
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2683 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2684 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2685 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2686 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2687 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2688 << MatchTable::Comment("OldInsnID")
2689 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2690 << MatchTable::IntValue(Operand.getOpIdx())
2691 << MatchTable::NamedValue(
2692 (ZeroRegisterDef->getValue("Namespace")
2693 ? ZeroRegisterDef->getValueAsString("Namespace")
2694 : ""),
2695 ZeroRegisterDef->getName())
2696 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2697 }
2698 };
2699
2700 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2701 /// an extended immediate operand.
2702 class CopyConstantAsImmRenderer : public OperandRenderer {
2703 protected:
2704 unsigned NewInsnID;
2705 /// The name of the operand.
2706 const std::string SymbolicName;
2707 bool Signed;
2708
2709 public:
CopyConstantAsImmRenderer(unsigned NewInsnID,StringRef SymbolicName)2710 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2711 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2712 SymbolicName(SymbolicName), Signed(true) {}
2713
classof(const OperandRenderer * R)2714 static bool classof(const OperandRenderer *R) {
2715 return R->getKind() == OR_CopyConstantAsImm;
2716 }
2717
getSymbolicName() const2718 StringRef getSymbolicName() const { return SymbolicName; }
2719
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2720 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2721 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2722 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2723 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2724 : "GIR_CopyConstantAsUImm")
2725 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2726 << MatchTable::Comment("OldInsnID")
2727 << MatchTable::IntValue(OldInsnVarID)
2728 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2729 }
2730 };
2731
2732 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2733 /// instruction to an extended immediate operand.
2734 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2735 protected:
2736 unsigned NewInsnID;
2737 /// The name of the operand.
2738 const std::string SymbolicName;
2739
2740 public:
CopyFConstantAsFPImmRenderer(unsigned NewInsnID,StringRef SymbolicName)2741 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2742 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2743 SymbolicName(SymbolicName) {}
2744
classof(const OperandRenderer * R)2745 static bool classof(const OperandRenderer *R) {
2746 return R->getKind() == OR_CopyFConstantAsFPImm;
2747 }
2748
getSymbolicName() const2749 StringRef getSymbolicName() const { return SymbolicName; }
2750
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2751 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2752 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2753 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2754 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2755 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2756 << MatchTable::Comment("OldInsnID")
2757 << MatchTable::IntValue(OldInsnVarID)
2758 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2759 }
2760 };
2761
2762 /// A CopySubRegRenderer emits code to copy a single register operand from an
2763 /// existing instruction to the one being built and indicate that only a
2764 /// subregister should be copied.
2765 class CopySubRegRenderer : public OperandRenderer {
2766 protected:
2767 unsigned NewInsnID;
2768 /// The name of the operand.
2769 const StringRef SymbolicName;
2770 /// The subregister to extract.
2771 const CodeGenSubRegIndex *SubReg;
2772
2773 public:
CopySubRegRenderer(unsigned NewInsnID,StringRef SymbolicName,const CodeGenSubRegIndex * SubReg)2774 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2775 const CodeGenSubRegIndex *SubReg)
2776 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2777 SymbolicName(SymbolicName), SubReg(SubReg) {}
2778
classof(const OperandRenderer * R)2779 static bool classof(const OperandRenderer *R) {
2780 return R->getKind() == OR_CopySubReg;
2781 }
2782
getSymbolicName() const2783 StringRef getSymbolicName() const { return SymbolicName; }
2784
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2785 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2786 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2787 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2788 Table << MatchTable::Opcode("GIR_CopySubReg")
2789 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2790 << MatchTable::Comment("OldInsnID")
2791 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2792 << MatchTable::IntValue(Operand.getOpIdx())
2793 << MatchTable::Comment("SubRegIdx")
2794 << MatchTable::IntValue(SubReg->EnumValue)
2795 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2796 }
2797 };
2798
2799 /// Adds a specific physical register to the instruction being built.
2800 /// This is typically useful for WZR/XZR on AArch64.
2801 class AddRegisterRenderer : public OperandRenderer {
2802 protected:
2803 unsigned InsnID;
2804 const Record *RegisterDef;
2805 bool IsDef;
2806 const CodeGenTarget &Target;
2807
2808 public:
AddRegisterRenderer(unsigned InsnID,const CodeGenTarget & Target,const Record * RegisterDef,bool IsDef=false)2809 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target,
2810 const Record *RegisterDef, bool IsDef = false)
2811 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
2812 IsDef(IsDef), Target(Target) {}
2813
classof(const OperandRenderer * R)2814 static bool classof(const OperandRenderer *R) {
2815 return R->getKind() == OR_Register;
2816 }
2817
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2818 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2819 Table << MatchTable::Opcode("GIR_AddRegister")
2820 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID);
2821 if (RegisterDef->getName() != "zero_reg") {
2822 Table << MatchTable::NamedValue(
2823 (RegisterDef->getValue("Namespace")
2824 ? RegisterDef->getValueAsString("Namespace")
2825 : ""),
2826 RegisterDef->getName());
2827 } else {
2828 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister");
2829 }
2830 Table << MatchTable::Comment("AddRegisterRegFlags");
2831
2832 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are
2833 // really needed for a physical register reference. We can pack the
2834 // register and flags in a single field.
2835 if (IsDef)
2836 Table << MatchTable::NamedValue("RegState::Define");
2837 else
2838 Table << MatchTable::IntValue(0);
2839 Table << MatchTable::LineBreak;
2840 }
2841 };
2842
2843 /// Adds a specific temporary virtual register to the instruction being built.
2844 /// This is used to chain instructions together when emitting multiple
2845 /// instructions.
2846 class TempRegRenderer : public OperandRenderer {
2847 protected:
2848 unsigned InsnID;
2849 unsigned TempRegID;
2850 const CodeGenSubRegIndex *SubRegIdx;
2851 bool IsDef;
2852 bool IsDead;
2853
2854 public:
TempRegRenderer(unsigned InsnID,unsigned TempRegID,bool IsDef=false,const CodeGenSubRegIndex * SubReg=nullptr,bool IsDead=false)2855 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false,
2856 const CodeGenSubRegIndex *SubReg = nullptr,
2857 bool IsDead = false)
2858 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2859 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {}
2860
classof(const OperandRenderer * R)2861 static bool classof(const OperandRenderer *R) {
2862 return R->getKind() == OR_TempRegister;
2863 }
2864
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2865 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2866 if (SubRegIdx) {
2867 assert(!IsDef);
2868 Table << MatchTable::Opcode("GIR_AddTempSubRegister");
2869 } else
2870 Table << MatchTable::Opcode("GIR_AddTempRegister");
2871
2872 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2873 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2874 << MatchTable::Comment("TempRegFlags");
2875
2876 if (IsDef) {
2877 SmallString<32> RegFlags;
2878 RegFlags += "RegState::Define";
2879 if (IsDead)
2880 RegFlags += "|RegState::Dead";
2881 Table << MatchTable::NamedValue(RegFlags);
2882 } else
2883 Table << MatchTable::IntValue(0);
2884
2885 if (SubRegIdx)
2886 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName());
2887 Table << MatchTable::LineBreak;
2888 }
2889 };
2890
2891 /// Adds a specific immediate to the instruction being built.
2892 class ImmRenderer : public OperandRenderer {
2893 protected:
2894 unsigned InsnID;
2895 int64_t Imm;
2896
2897 public:
ImmRenderer(unsigned InsnID,int64_t Imm)2898 ImmRenderer(unsigned InsnID, int64_t Imm)
2899 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2900
classof(const OperandRenderer * R)2901 static bool classof(const OperandRenderer *R) {
2902 return R->getKind() == OR_Imm;
2903 }
2904
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2905 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2906 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2907 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2908 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2909 }
2910 };
2911
2912 /// Adds an enum value for a subreg index to the instruction being built.
2913 class SubRegIndexRenderer : public OperandRenderer {
2914 protected:
2915 unsigned InsnID;
2916 const CodeGenSubRegIndex *SubRegIdx;
2917
2918 public:
SubRegIndexRenderer(unsigned InsnID,const CodeGenSubRegIndex * SRI)2919 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
2920 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
2921
classof(const OperandRenderer * R)2922 static bool classof(const OperandRenderer *R) {
2923 return R->getKind() == OR_SubRegIndex;
2924 }
2925
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2926 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2927 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2928 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
2929 << MatchTable::IntValue(SubRegIdx->EnumValue)
2930 << MatchTable::LineBreak;
2931 }
2932 };
2933
2934 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2935 /// matcher function.
2936 class RenderComplexPatternOperand : public OperandRenderer {
2937 private:
2938 unsigned InsnID;
2939 const Record &TheDef;
2940 /// The name of the operand.
2941 const StringRef SymbolicName;
2942 /// The renderer number. This must be unique within a rule since it's used to
2943 /// identify a temporary variable to hold the renderer function.
2944 unsigned RendererID;
2945 /// When provided, this is the suboperand of the ComplexPattern operand to
2946 /// render. Otherwise all the suboperands will be rendered.
2947 Optional<unsigned> SubOperand;
2948
getNumOperands() const2949 unsigned getNumOperands() const {
2950 return TheDef.getValueAsDag("Operands")->getNumArgs();
2951 }
2952
2953 public:
RenderComplexPatternOperand(unsigned InsnID,const Record & TheDef,StringRef SymbolicName,unsigned RendererID,Optional<unsigned> SubOperand=None)2954 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2955 StringRef SymbolicName, unsigned RendererID,
2956 Optional<unsigned> SubOperand = None)
2957 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2958 SymbolicName(SymbolicName), RendererID(RendererID),
2959 SubOperand(SubOperand) {}
2960
classof(const OperandRenderer * R)2961 static bool classof(const OperandRenderer *R) {
2962 return R->getKind() == OR_ComplexPattern;
2963 }
2964
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2965 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2966 Table << MatchTable::Opcode(SubOperand ? "GIR_ComplexSubOperandRenderer"
2967 : "GIR_ComplexRenderer")
2968 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2969 << MatchTable::Comment("RendererID")
2970 << MatchTable::IntValue(RendererID);
2971 if (SubOperand)
2972 Table << MatchTable::Comment("SubOperand")
2973 << MatchTable::IntValue(SubOperand.value());
2974 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2975 }
2976 };
2977
2978 class CustomRenderer : public OperandRenderer {
2979 protected:
2980 unsigned InsnID;
2981 const Record &Renderer;
2982 /// The name of the operand.
2983 const std::string SymbolicName;
2984
2985 public:
CustomRenderer(unsigned InsnID,const Record & Renderer,StringRef SymbolicName)2986 CustomRenderer(unsigned InsnID, const Record &Renderer,
2987 StringRef SymbolicName)
2988 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2989 SymbolicName(SymbolicName) {}
2990
classof(const OperandRenderer * R)2991 static bool classof(const OperandRenderer *R) {
2992 return R->getKind() == OR_Custom;
2993 }
2994
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2995 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2996 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2997 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2998 Table << MatchTable::Opcode("GIR_CustomRenderer")
2999 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3000 << MatchTable::Comment("OldInsnID")
3001 << MatchTable::IntValue(OldInsnVarID)
3002 << MatchTable::Comment("Renderer")
3003 << MatchTable::NamedValue(
3004 "GICR_" + Renderer.getValueAsString("RendererFn").str())
3005 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
3006 }
3007 };
3008
3009 class CustomOperandRenderer : public OperandRenderer {
3010 protected:
3011 unsigned InsnID;
3012 const Record &Renderer;
3013 /// The name of the operand.
3014 const std::string SymbolicName;
3015
3016 public:
CustomOperandRenderer(unsigned InsnID,const Record & Renderer,StringRef SymbolicName)3017 CustomOperandRenderer(unsigned InsnID, const Record &Renderer,
3018 StringRef SymbolicName)
3019 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer),
3020 SymbolicName(SymbolicName) {}
3021
classof(const OperandRenderer * R)3022 static bool classof(const OperandRenderer *R) {
3023 return R->getKind() == OR_CustomOperand;
3024 }
3025
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const3026 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3027 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName);
3028 Table << MatchTable::Opcode("GIR_CustomOperandRenderer")
3029 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3030 << MatchTable::Comment("OldInsnID")
3031 << MatchTable::IntValue(OpdMatcher.getInsnVarID())
3032 << MatchTable::Comment("OpIdx")
3033 << MatchTable::IntValue(OpdMatcher.getOpIdx())
3034 << MatchTable::Comment("OperandRenderer")
3035 << MatchTable::NamedValue(
3036 "GICR_" + Renderer.getValueAsString("RendererFn").str())
3037 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
3038 }
3039 };
3040
3041 /// An action taken when all Matcher predicates succeeded for a parent rule.
3042 ///
3043 /// Typical actions include:
3044 /// * Changing the opcode of an instruction.
3045 /// * Adding an operand to an instruction.
3046 class MatchAction {
3047 public:
~MatchAction()3048 virtual ~MatchAction() {}
3049
3050 /// Emit the MatchTable opcodes to implement the action.
3051 virtual void emitActionOpcodes(MatchTable &Table,
3052 RuleMatcher &Rule) const = 0;
3053 };
3054
3055 /// Generates a comment describing the matched rule being acted upon.
3056 class DebugCommentAction : public MatchAction {
3057 private:
3058 std::string S;
3059
3060 public:
DebugCommentAction(StringRef S)3061 DebugCommentAction(StringRef S) : S(std::string(S)) {}
3062
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const3063 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3064 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
3065 }
3066 };
3067
3068 /// Generates code to build an instruction or mutate an existing instruction
3069 /// into the desired instruction when this is possible.
3070 class BuildMIAction : public MatchAction {
3071 private:
3072 unsigned InsnID;
3073 const CodeGenInstruction *I;
3074 InstructionMatcher *Matched;
3075 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
3076
3077 /// True if the instruction can be built solely by mutating the opcode.
canMutate(RuleMatcher & Rule,const InstructionMatcher * Insn) const3078 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
3079 if (!Insn)
3080 return false;
3081
3082 if (OperandRenderers.size() != Insn->getNumOperands())
3083 return false;
3084
3085 for (const auto &Renderer : enumerate(OperandRenderers)) {
3086 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
3087 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
3088 if (Insn != &OM.getInstructionMatcher() ||
3089 OM.getOpIdx() != Renderer.index())
3090 return false;
3091 } else
3092 return false;
3093 }
3094
3095 return true;
3096 }
3097
3098 public:
BuildMIAction(unsigned InsnID,const CodeGenInstruction * I)3099 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
3100 : InsnID(InsnID), I(I), Matched(nullptr) {}
3101
getInsnID() const3102 unsigned getInsnID() const { return InsnID; }
getCGI() const3103 const CodeGenInstruction *getCGI() const { return I; }
3104
chooseInsnToMutate(RuleMatcher & Rule)3105 void chooseInsnToMutate(RuleMatcher &Rule) {
3106 for (auto *MutateCandidate : Rule.mutatable_insns()) {
3107 if (canMutate(Rule, MutateCandidate)) {
3108 // Take the first one we're offered that we're able to mutate.
3109 Rule.reserveInsnMatcherForMutation(MutateCandidate);
3110 Matched = MutateCandidate;
3111 return;
3112 }
3113 }
3114 }
3115
3116 template <class Kind, class... Args>
addRenderer(Args &&...args)3117 Kind &addRenderer(Args&&... args) {
3118 OperandRenderers.emplace_back(
3119 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
3120 return *static_cast<Kind *>(OperandRenderers.back().get());
3121 }
3122
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const3123 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3124 if (Matched) {
3125 assert(canMutate(Rule, Matched) &&
3126 "Arranged to mutate an insn that isn't mutatable");
3127
3128 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
3129 Table << MatchTable::Opcode("GIR_MutateOpcode")
3130 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3131 << MatchTable::Comment("RecycleInsnID")
3132 << MatchTable::IntValue(RecycleInsnID)
3133 << MatchTable::Comment("Opcode")
3134 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
3135 << MatchTable::LineBreak;
3136
3137 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
3138 for (auto Def : I->ImplicitDefs) {
3139 auto Namespace = Def->getValue("Namespace")
3140 ? Def->getValueAsString("Namespace")
3141 : "";
3142 Table << MatchTable::Opcode("GIR_AddImplicitDef")
3143 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3144 << MatchTable::NamedValue(Namespace, Def->getName())
3145 << MatchTable::LineBreak;
3146 }
3147 for (auto Use : I->ImplicitUses) {
3148 auto Namespace = Use->getValue("Namespace")
3149 ? Use->getValueAsString("Namespace")
3150 : "";
3151 Table << MatchTable::Opcode("GIR_AddImplicitUse")
3152 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3153 << MatchTable::NamedValue(Namespace, Use->getName())
3154 << MatchTable::LineBreak;
3155 }
3156 }
3157 return;
3158 }
3159
3160 // TODO: Simple permutation looks like it could be almost as common as
3161 // mutation due to commutative operations.
3162
3163 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
3164 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
3165 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
3166 << MatchTable::LineBreak;
3167 for (const auto &Renderer : OperandRenderers)
3168 Renderer->emitRenderOpcodes(Table, Rule);
3169
3170 if (I->mayLoad || I->mayStore) {
3171 Table << MatchTable::Opcode("GIR_MergeMemOperands")
3172 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3173 << MatchTable::Comment("MergeInsnID's");
3174 // Emit the ID's for all the instructions that are matched by this rule.
3175 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
3176 // some other means of having a memoperand. Also limit this to
3177 // emitted instructions that expect to have a memoperand too. For
3178 // example, (G_SEXT (G_LOAD x)) that results in separate load and
3179 // sign-extend instructions shouldn't put the memoperand on the
3180 // sign-extend since it has no effect there.
3181 std::vector<unsigned> MergeInsnIDs;
3182 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
3183 MergeInsnIDs.push_back(IDMatcherPair.second);
3184 llvm::sort(MergeInsnIDs);
3185 for (const auto &MergeInsnID : MergeInsnIDs)
3186 Table << MatchTable::IntValue(MergeInsnID);
3187 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
3188 << MatchTable::LineBreak;
3189 }
3190
3191 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
3192 // better for combines. Particularly when there are multiple match
3193 // roots.
3194 if (InsnID == 0)
3195 Table << MatchTable::Opcode("GIR_EraseFromParent")
3196 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3197 << MatchTable::LineBreak;
3198 }
3199 };
3200
3201 /// Generates code to constrain the operands of an output instruction to the
3202 /// register classes specified by the definition of that instruction.
3203 class ConstrainOperandsToDefinitionAction : public MatchAction {
3204 unsigned InsnID;
3205
3206 public:
ConstrainOperandsToDefinitionAction(unsigned InsnID)3207 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
3208
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const3209 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3210 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
3211 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3212 << MatchTable::LineBreak;
3213 }
3214 };
3215
3216 /// Generates code to constrain the specified operand of an output instruction
3217 /// to the specified register class.
3218 class ConstrainOperandToRegClassAction : public MatchAction {
3219 unsigned InsnID;
3220 unsigned OpIdx;
3221 const CodeGenRegisterClass &RC;
3222
3223 public:
ConstrainOperandToRegClassAction(unsigned InsnID,unsigned OpIdx,const CodeGenRegisterClass & RC)3224 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
3225 const CodeGenRegisterClass &RC)
3226 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
3227
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const3228 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3229 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
3230 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3231 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
3232 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
3233 << MatchTable::LineBreak;
3234 }
3235 };
3236
3237 /// Generates code to create a temporary register which can be used to chain
3238 /// instructions together.
3239 class MakeTempRegisterAction : public MatchAction {
3240 private:
3241 LLTCodeGen Ty;
3242 unsigned TempRegID;
3243
3244 public:
MakeTempRegisterAction(const LLTCodeGen & Ty,unsigned TempRegID)3245 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
3246 : Ty(Ty), TempRegID(TempRegID) {
3247 KnownTypes.insert(Ty);
3248 }
3249
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const3250 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3251 Table << MatchTable::Opcode("GIR_MakeTempReg")
3252 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
3253 << MatchTable::Comment("TypeID")
3254 << MatchTable::NamedValue(Ty.getCxxEnumValue())
3255 << MatchTable::LineBreak;
3256 }
3257 };
3258
addInstructionMatcher(StringRef SymbolicName)3259 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
3260 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
3261 MutatableInsns.insert(Matchers.back().get());
3262 return *Matchers.back();
3263 }
3264
addRequiredFeature(Record * Feature)3265 void RuleMatcher::addRequiredFeature(Record *Feature) {
3266 RequiredFeatures.push_back(Feature);
3267 }
3268
getRequiredFeatures() const3269 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
3270 return RequiredFeatures;
3271 }
3272
3273 // Emplaces an action of the specified Kind at the end of the action list.
3274 //
3275 // Returns a reference to the newly created action.
3276 //
3277 // Like std::vector::emplace_back(), may invalidate all iterators if the new
3278 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
3279 // iterator.
3280 template <class Kind, class... Args>
addAction(Args &&...args)3281 Kind &RuleMatcher::addAction(Args &&... args) {
3282 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
3283 return *static_cast<Kind *>(Actions.back().get());
3284 }
3285
3286 // Emplaces an action of the specified Kind before the given insertion point.
3287 //
3288 // Returns an iterator pointing at the newly created instruction.
3289 //
3290 // Like std::vector::insert(), may invalidate all iterators if the new size
3291 // exceeds the capacity. Otherwise, only invalidates the iterators from the
3292 // insertion point onwards.
3293 template <class Kind, class... Args>
insertAction(action_iterator InsertPt,Args &&...args)3294 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
3295 Args &&... args) {
3296 return Actions.emplace(InsertPt,
3297 std::make_unique<Kind>(std::forward<Args>(args)...));
3298 }
3299
implicitlyDefineInsnVar(InstructionMatcher & Matcher)3300 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
3301 unsigned NewInsnVarID = NextInsnVarID++;
3302 InsnVariableIDs[&Matcher] = NewInsnVarID;
3303 return NewInsnVarID;
3304 }
3305
getInsnVarID(InstructionMatcher & InsnMatcher) const3306 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
3307 const auto &I = InsnVariableIDs.find(&InsnMatcher);
3308 if (I != InsnVariableIDs.end())
3309 return I->second;
3310 llvm_unreachable("Matched Insn was not captured in a local variable");
3311 }
3312
defineOperand(StringRef SymbolicName,OperandMatcher & OM)3313 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
3314 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
3315 DefinedOperands[SymbolicName] = &OM;
3316 return;
3317 }
3318
3319 // If the operand is already defined, then we must ensure both references in
3320 // the matcher have the exact same node.
3321 OM.addPredicate<SameOperandMatcher>(
3322 OM.getSymbolicName(), getOperandMatcher(OM.getSymbolicName()).getOpIdx());
3323 }
3324
definePhysRegOperand(Record * Reg,OperandMatcher & OM)3325 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
3326 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
3327 PhysRegOperands[Reg] = &OM;
3328 return;
3329 }
3330 }
3331
3332 InstructionMatcher &
getInstructionMatcher(StringRef SymbolicName) const3333 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
3334 for (const auto &I : InsnVariableIDs)
3335 if (I.first->getSymbolicName() == SymbolicName)
3336 return *I.first;
3337 llvm_unreachable(
3338 ("Failed to lookup instruction " + SymbolicName).str().c_str());
3339 }
3340
3341 const OperandMatcher &
getPhysRegOperandMatcher(Record * Reg) const3342 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
3343 const auto &I = PhysRegOperands.find(Reg);
3344
3345 if (I == PhysRegOperands.end()) {
3346 PrintFatalError(SrcLoc, "Register " + Reg->getName() +
3347 " was not declared in matcher");
3348 }
3349
3350 return *I->second;
3351 }
3352
3353 const OperandMatcher &
getOperandMatcher(StringRef Name) const3354 RuleMatcher::getOperandMatcher(StringRef Name) const {
3355 const auto &I = DefinedOperands.find(Name);
3356
3357 if (I == DefinedOperands.end())
3358 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
3359
3360 return *I->second;
3361 }
3362
emit(MatchTable & Table)3363 void RuleMatcher::emit(MatchTable &Table) {
3364 if (Matchers.empty())
3365 llvm_unreachable("Unexpected empty matcher!");
3366
3367 // The representation supports rules that require multiple roots such as:
3368 // %ptr(p0) = ...
3369 // %elt0(s32) = G_LOAD %ptr
3370 // %1(p0) = G_ADD %ptr, 4
3371 // %elt1(s32) = G_LOAD p0 %1
3372 // which could be usefully folded into:
3373 // %ptr(p0) = ...
3374 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
3375 // on some targets but we don't need to make use of that yet.
3376 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
3377
3378 unsigned LabelID = Table.allocateLabelID();
3379 Table << MatchTable::Opcode("GIM_Try", +1)
3380 << MatchTable::Comment("On fail goto")
3381 << MatchTable::JumpTarget(LabelID)
3382 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
3383 << MatchTable::LineBreak;
3384
3385 if (!RequiredFeatures.empty()) {
3386 Table << MatchTable::Opcode("GIM_CheckFeatures")
3387 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
3388 << MatchTable::LineBreak;
3389 }
3390
3391 Matchers.front()->emitPredicateOpcodes(Table, *this);
3392
3393 // We must also check if it's safe to fold the matched instructions.
3394 if (InsnVariableIDs.size() >= 2) {
3395 // Invert the map to create stable ordering (by var names)
3396 SmallVector<unsigned, 2> InsnIDs;
3397 for (const auto &Pair : InsnVariableIDs) {
3398 // Skip the root node since it isn't moving anywhere. Everything else is
3399 // sinking to meet it.
3400 if (Pair.first == Matchers.front().get())
3401 continue;
3402
3403 InsnIDs.push_back(Pair.second);
3404 }
3405 llvm::sort(InsnIDs);
3406
3407 for (const auto &InsnID : InsnIDs) {
3408 // Reject the difficult cases until we have a more accurate check.
3409 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
3410 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3411 << MatchTable::LineBreak;
3412
3413 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
3414 // account for unsafe cases.
3415 //
3416 // Example:
3417 // MI1--> %0 = ...
3418 // %1 = ... %0
3419 // MI0--> %2 = ... %0
3420 // It's not safe to erase MI1. We currently handle this by not
3421 // erasing %0 (even when it's dead).
3422 //
3423 // Example:
3424 // MI1--> %0 = load volatile @a
3425 // %1 = load volatile @a
3426 // MI0--> %2 = ... %0
3427 // It's not safe to sink %0's def past %1. We currently handle
3428 // this by rejecting all loads.
3429 //
3430 // Example:
3431 // MI1--> %0 = load @a
3432 // %1 = store @a
3433 // MI0--> %2 = ... %0
3434 // It's not safe to sink %0's def past %1. We currently handle
3435 // this by rejecting all loads.
3436 //
3437 // Example:
3438 // G_CONDBR %cond, @BB1
3439 // BB0:
3440 // MI1--> %0 = load @a
3441 // G_BR @BB1
3442 // BB1:
3443 // MI0--> %2 = ... %0
3444 // It's not always safe to sink %0 across control flow. In this
3445 // case it may introduce a memory fault. We currentl handle this
3446 // by rejecting all loads.
3447 }
3448 }
3449
3450 for (const auto &PM : EpilogueMatchers)
3451 PM->emitPredicateOpcodes(Table, *this);
3452
3453 for (const auto &MA : Actions)
3454 MA->emitActionOpcodes(Table, *this);
3455
3456 if (Table.isWithCoverage())
3457 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
3458 << MatchTable::LineBreak;
3459 else
3460 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
3461 << MatchTable::LineBreak;
3462
3463 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
3464 << MatchTable::Label(LabelID);
3465 ++NumPatternEmitted;
3466 }
3467
isHigherPriorityThan(const RuleMatcher & B) const3468 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
3469 // Rules involving more match roots have higher priority.
3470 if (Matchers.size() > B.Matchers.size())
3471 return true;
3472 if (Matchers.size() < B.Matchers.size())
3473 return false;
3474
3475 for (auto Matcher : zip(Matchers, B.Matchers)) {
3476 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
3477 return true;
3478 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
3479 return false;
3480 }
3481
3482 return false;
3483 }
3484
countRendererFns() const3485 unsigned RuleMatcher::countRendererFns() const {
3486 return std::accumulate(
3487 Matchers.begin(), Matchers.end(), 0,
3488 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
3489 return A + Matcher->countRendererFns();
3490 });
3491 }
3492
isHigherPriorityThan(const OperandPredicateMatcher & B) const3493 bool OperandPredicateMatcher::isHigherPriorityThan(
3494 const OperandPredicateMatcher &B) const {
3495 // Generally speaking, an instruction is more important than an Int or a
3496 // LiteralInt because it can cover more nodes but theres an exception to
3497 // this. G_CONSTANT's are less important than either of those two because they
3498 // are more permissive.
3499
3500 const InstructionOperandMatcher *AOM =
3501 dyn_cast<InstructionOperandMatcher>(this);
3502 const InstructionOperandMatcher *BOM =
3503 dyn_cast<InstructionOperandMatcher>(&B);
3504 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
3505 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
3506
3507 if (AOM && BOM) {
3508 // The relative priorities between a G_CONSTANT and any other instruction
3509 // don't actually matter but this code is needed to ensure a strict weak
3510 // ordering. This is particularly important on Windows where the rules will
3511 // be incorrectly sorted without it.
3512 if (AIsConstantInsn != BIsConstantInsn)
3513 return AIsConstantInsn < BIsConstantInsn;
3514 return false;
3515 }
3516
3517 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
3518 return false;
3519 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
3520 return true;
3521
3522 return Kind < B.Kind;
3523 }
3524
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const3525 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
3526 RuleMatcher &Rule) const {
3527 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
3528 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
3529 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
3530
3531 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
3532 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
3533 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
3534 << MatchTable::Comment("OtherMI")
3535 << MatchTable::IntValue(OtherInsnVarID)
3536 << MatchTable::Comment("OtherOpIdx")
3537 << MatchTable::IntValue(OtherOM.getOpIdx())
3538 << MatchTable::LineBreak;
3539 }
3540
3541 //===- GlobalISelEmitter class --------------------------------------------===//
3542
getInstResultType(const TreePatternNode * Dst)3543 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) {
3544 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes();
3545 if (ChildTypes.size() != 1)
3546 return failedImport("Dst pattern child has multiple results");
3547
3548 Optional<LLTCodeGen> MaybeOpTy;
3549 if (ChildTypes.front().isMachineValueType()) {
3550 MaybeOpTy =
3551 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3552 }
3553
3554 if (!MaybeOpTy)
3555 return failedImport("Dst operand has an unsupported type");
3556 return *MaybeOpTy;
3557 }
3558
3559 class GlobalISelEmitter {
3560 public:
3561 explicit GlobalISelEmitter(RecordKeeper &RK);
3562 void run(raw_ostream &OS);
3563
3564 private:
3565 const RecordKeeper &RK;
3566 const CodeGenDAGPatterns CGP;
3567 const CodeGenTarget &Target;
3568 CodeGenRegBank &CGRegs;
3569
3570 /// Keep track of the equivalence between SDNodes and Instruction by mapping
3571 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3572 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3573 /// This is defined using 'GINodeEquiv' in the target description.
3574 DenseMap<Record *, Record *> NodeEquivs;
3575
3576 /// Keep track of the equivalence between ComplexPattern's and
3577 /// GIComplexOperandMatcher. Map entries are specified by subclassing
3578 /// GIComplexPatternEquiv.
3579 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
3580
3581 /// Keep track of the equivalence between SDNodeXForm's and
3582 /// GICustomOperandRenderer. Map entries are specified by subclassing
3583 /// GISDNodeXFormEquiv.
3584 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
3585
3586 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3587 /// This adds compatibility for RuleMatchers to use this for ordering rules.
3588 DenseMap<uint64_t, int> RuleMatcherScores;
3589
3590 // Map of predicates to their subtarget features.
3591 SubtargetFeatureInfoMap SubtargetFeatures;
3592
3593 // Rule coverage information.
3594 Optional<CodeGenCoverage> RuleCoverage;
3595
3596 /// Variables used to help with collecting of named operands for predicates
3597 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set
3598 /// to the number of named operands that predicate expects. Store locations in
3599 /// StoreIdxForName correspond to the order in which operand names appear in
3600 /// predicate's argument list.
3601 /// When we visit named leaf operand and WaitingForNamedOperands is not zero,
3602 /// add matcher that will record operand and decrease counter.
3603 unsigned WaitingForNamedOperands = 0;
3604 StringMap<unsigned> StoreIdxForName;
3605
3606 void gatherOpcodeValues();
3607 void gatherTypeIDValues();
3608 void gatherNodeEquivs();
3609
3610 Record *findNodeEquiv(Record *N) const;
3611 const CodeGenInstruction *getEquivNode(Record &Equiv,
3612 const TreePatternNode *N) const;
3613
3614 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates);
3615 Expected<InstructionMatcher &>
3616 createAndImportSelDAGMatcher(RuleMatcher &Rule,
3617 InstructionMatcher &InsnMatcher,
3618 const TreePatternNode *Src, unsigned &TempOpIdx);
3619 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3620 unsigned &TempOpIdx) const;
3621 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3622 const TreePatternNode *SrcChild,
3623 bool OperandIsAPointer, bool OperandIsImmArg,
3624 unsigned OpIdx, unsigned &TempOpIdx);
3625
3626 Expected<BuildMIAction &> createAndImportInstructionRenderer(
3627 RuleMatcher &M, InstructionMatcher &InsnMatcher,
3628 const TreePatternNode *Src, const TreePatternNode *Dst);
3629 Expected<action_iterator> createAndImportSubInstructionRenderer(
3630 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3631 unsigned TempReg);
3632 Expected<action_iterator>
3633 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3634 const TreePatternNode *Dst);
3635
3636 Expected<action_iterator>
3637 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M,
3638 BuildMIAction &DstMIBuilder,
3639 const TreePatternNode *Dst);
3640
3641 Expected<action_iterator>
3642 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3643 BuildMIAction &DstMIBuilder,
3644 const llvm::TreePatternNode *Dst);
3645 Expected<action_iterator>
3646 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3647 BuildMIAction &DstMIBuilder,
3648 TreePatternNode *DstChild);
3649 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3650 BuildMIAction &DstMIBuilder,
3651 DagInit *DefaultOps) const;
3652 Error
3653 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3654 const std::vector<Record *> &ImplicitDefs) const;
3655
3656 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3657 StringRef TypeIdentifier, StringRef ArgType,
3658 StringRef ArgName, StringRef AdditionalArgs,
3659 StringRef AdditionalDeclarations,
3660 std::function<bool(const Record *R)> Filter);
3661 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3662 StringRef ArgType,
3663 std::function<bool(const Record *R)> Filter);
3664 void emitMIPredicateFns(raw_ostream &OS);
3665
3666 /// Analyze pattern \p P, returning a matcher for it if possible.
3667 /// Otherwise, return an Error explaining why we don't support it.
3668 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3669
3670 void declareSubtargetFeature(Record *Predicate);
3671
3672 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3673 bool WithCoverage);
3674
3675 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
3676 /// CodeGenRegisterClass will support the CodeGenRegisterClass of
3677 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
3678 /// If no register class is found, return None.
3679 Optional<const CodeGenRegisterClass *>
3680 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
3681 TreePatternNode *SuperRegNode,
3682 TreePatternNode *SubRegIdxNode);
3683 Optional<CodeGenSubRegIndex *>
3684 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
3685
3686 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
3687 /// Return None if no such class exists.
3688 Optional<const CodeGenRegisterClass *>
3689 inferSuperRegisterClass(const TypeSetByHwMode &Ty,
3690 TreePatternNode *SubRegIdxNode);
3691
3692 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
3693 Optional<const CodeGenRegisterClass *>
3694 getRegClassFromLeaf(TreePatternNode *Leaf);
3695
3696 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
3697 /// otherwise.
3698 Optional<const CodeGenRegisterClass *>
3699 inferRegClassFromPattern(TreePatternNode *N);
3700
3701 /// Return the size of the MemoryVT in this predicate, if possible.
3702 Optional<unsigned>
3703 getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate);
3704
3705 // Add builtin predicates.
3706 Expected<InstructionMatcher &>
3707 addBuiltinPredicates(const Record *SrcGIEquivOrNull,
3708 const TreePredicateFn &Predicate,
3709 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher);
3710
3711 public:
3712 /// Takes a sequence of \p Rules and group them based on the predicates
3713 /// they share. \p MatcherStorage is used as a memory container
3714 /// for the group that are created as part of this process.
3715 ///
3716 /// What this optimization does looks like if GroupT = GroupMatcher:
3717 /// Output without optimization:
3718 /// \verbatim
3719 /// # R1
3720 /// # predicate A
3721 /// # predicate B
3722 /// ...
3723 /// # R2
3724 /// # predicate A // <-- effectively this is going to be checked twice.
3725 /// // Once in R1 and once in R2.
3726 /// # predicate C
3727 /// \endverbatim
3728 /// Output with optimization:
3729 /// \verbatim
3730 /// # Group1_2
3731 /// # predicate A // <-- Check is now shared.
3732 /// # R1
3733 /// # predicate B
3734 /// # R2
3735 /// # predicate C
3736 /// \endverbatim
3737 template <class GroupT>
3738 static std::vector<Matcher *> optimizeRules(
3739 ArrayRef<Matcher *> Rules,
3740 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3741 };
3742
gatherOpcodeValues()3743 void GlobalISelEmitter::gatherOpcodeValues() {
3744 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3745 }
3746
gatherTypeIDValues()3747 void GlobalISelEmitter::gatherTypeIDValues() {
3748 LLTOperandMatcher::initTypeIDValuesMap();
3749 }
3750
gatherNodeEquivs()3751 void GlobalISelEmitter::gatherNodeEquivs() {
3752 assert(NodeEquivs.empty());
3753 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3754 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3755
3756 assert(ComplexPatternEquivs.empty());
3757 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3758 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3759 if (!SelDAGEquiv)
3760 continue;
3761 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3762 }
3763
3764 assert(SDNodeXFormEquivs.empty());
3765 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3766 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3767 if (!SelDAGEquiv)
3768 continue;
3769 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3770 }
3771 }
3772
findNodeEquiv(Record * N) const3773 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3774 return NodeEquivs.lookup(N);
3775 }
3776
3777 const CodeGenInstruction *
getEquivNode(Record & Equiv,const TreePatternNode * N) const3778 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3779 if (N->getNumChildren() >= 1) {
3780 // setcc operation maps to two different G_* instructions based on the type.
3781 if (!Equiv.isValueUnset("IfFloatingPoint") &&
3782 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
3783 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
3784 }
3785
3786 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3787 const TreePredicateFn &Predicate = Call.Fn;
3788 if (!Equiv.isValueUnset("IfSignExtend") &&
3789 (Predicate.isLoad() || Predicate.isAtomic()) &&
3790 Predicate.isSignExtLoad())
3791 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3792 if (!Equiv.isValueUnset("IfZeroExtend") &&
3793 (Predicate.isLoad() || Predicate.isAtomic()) &&
3794 Predicate.isZeroExtLoad())
3795 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3796 }
3797
3798 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3799 }
3800
GlobalISelEmitter(RecordKeeper & RK)3801 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3802 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3803 CGRegs(Target.getRegBank()) {}
3804
3805 //===- Emitter ------------------------------------------------------------===//
3806
importRulePredicates(RuleMatcher & M,ArrayRef<Record * > Predicates)3807 Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3808 ArrayRef<Record *> Predicates) {
3809 for (Record *Pred : Predicates) {
3810 if (Pred->getValueAsString("CondString").empty())
3811 continue;
3812 declareSubtargetFeature(Pred);
3813 M.addRequiredFeature(Pred);
3814 }
3815
3816 return Error::success();
3817 }
3818
getMemSizeBitsFromPredicate(const TreePredicateFn & Predicate)3819 Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) {
3820 Optional<LLTCodeGen> MemTyOrNone =
3821 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3822
3823 if (!MemTyOrNone)
3824 return None;
3825
3826 // Align so unusual types like i1 don't get rounded down.
3827 return llvm::alignTo(
3828 static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8);
3829 }
3830
addBuiltinPredicates(const Record * SrcGIEquivOrNull,const TreePredicateFn & Predicate,InstructionMatcher & InsnMatcher,bool & HasAddedMatcher)3831 Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates(
3832 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate,
3833 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) {
3834 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3835 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
3836 SmallVector<unsigned, 4> ParsedAddrSpaces;
3837
3838 for (Init *Val : AddrSpaces->getValues()) {
3839 IntInit *IntVal = dyn_cast<IntInit>(Val);
3840 if (!IntVal)
3841 return failedImport("Address space is not an integer");
3842 ParsedAddrSpaces.push_back(IntVal->getValue());
3843 }
3844
3845 if (!ParsedAddrSpaces.empty()) {
3846 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
3847 0, ParsedAddrSpaces);
3848 return InsnMatcher;
3849 }
3850 }
3851
3852 int64_t MinAlign = Predicate.getMinAlignment();
3853 if (MinAlign > 0) {
3854 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
3855 return InsnMatcher;
3856 }
3857 }
3858
3859 // G_LOAD is used for both non-extending and any-extending loads.
3860 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3861 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3862 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3863 return InsnMatcher;
3864 }
3865 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3866 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3867 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3868 return InsnMatcher;
3869 }
3870
3871 if (Predicate.isStore()) {
3872 if (Predicate.isTruncStore()) {
3873 if (Predicate.getMemoryVT() != nullptr) {
3874 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3875 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
3876 if (!MemSizeInBits)
3877 return failedImport("MemVT could not be converted to LLT");
3878
3879 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits /
3880 8);
3881 } else {
3882 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3883 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3884 }
3885 return InsnMatcher;
3886 }
3887 if (Predicate.isNonTruncStore()) {
3888 // We need to check the sizes match here otherwise we could incorrectly
3889 // match truncating stores with non-truncating ones.
3890 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3891 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3892 }
3893 }
3894
3895 // No check required. We already did it by swapping the opcode.
3896 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3897 Predicate.isSignExtLoad())
3898 return InsnMatcher;
3899
3900 // No check required. We already did it by swapping the opcode.
3901 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3902 Predicate.isZeroExtLoad())
3903 return InsnMatcher;
3904
3905 // No check required. G_STORE by itself is a non-extending store.
3906 if (Predicate.isNonTruncStore())
3907 return InsnMatcher;
3908
3909 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3910 if (Predicate.getMemoryVT() != nullptr) {
3911 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
3912 if (!MemSizeInBits)
3913 return failedImport("MemVT could not be converted to LLT");
3914
3915 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0,
3916 *MemSizeInBits / 8);
3917 return InsnMatcher;
3918 }
3919 }
3920
3921 if (Predicate.isLoad() || Predicate.isStore()) {
3922 // No check required. A G_LOAD/G_STORE is an unindexed load.
3923 if (Predicate.isUnindexed())
3924 return InsnMatcher;
3925 }
3926
3927 if (Predicate.isAtomic()) {
3928 if (Predicate.isAtomicOrderingMonotonic()) {
3929 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic");
3930 return InsnMatcher;
3931 }
3932 if (Predicate.isAtomicOrderingAcquire()) {
3933 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3934 return InsnMatcher;
3935 }
3936 if (Predicate.isAtomicOrderingRelease()) {
3937 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3938 return InsnMatcher;
3939 }
3940 if (Predicate.isAtomicOrderingAcquireRelease()) {
3941 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3942 "AcquireRelease");
3943 return InsnMatcher;
3944 }
3945 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3946 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3947 "SequentiallyConsistent");
3948 return InsnMatcher;
3949 }
3950 }
3951
3952 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3953 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3954 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3955 return InsnMatcher;
3956 }
3957 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3958 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3959 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3960 return InsnMatcher;
3961 }
3962
3963 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3964 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3965 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3966 return InsnMatcher;
3967 }
3968 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3969 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3970 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3971 return InsnMatcher;
3972 }
3973 HasAddedMatcher = false;
3974 return InsnMatcher;
3975 }
3976
createAndImportSelDAGMatcher(RuleMatcher & Rule,InstructionMatcher & InsnMatcher,const TreePatternNode * Src,unsigned & TempOpIdx)3977 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3978 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3979 const TreePatternNode *Src, unsigned &TempOpIdx) {
3980 Record *SrcGIEquivOrNull = nullptr;
3981 const CodeGenInstruction *SrcGIOrNull = nullptr;
3982
3983 // Start with the defined operands (i.e., the results of the root operator).
3984 if (Src->getExtTypes().size() > 1)
3985 return failedImport("Src pattern has multiple results");
3986
3987 if (Src->isLeaf()) {
3988 Init *SrcInit = Src->getLeafValue();
3989 if (isa<IntInit>(SrcInit)) {
3990 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3991 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3992 } else
3993 return failedImport(
3994 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3995 } else {
3996 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3997 if (!SrcGIEquivOrNull)
3998 return failedImport("Pattern operator lacks an equivalent Instruction" +
3999 explainOperator(Src->getOperator()));
4000 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
4001
4002 // The operators look good: match the opcode
4003 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
4004 }
4005
4006 unsigned OpIdx = 0;
4007 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
4008 // Results don't have a name unless they are the root node. The caller will
4009 // set the name if appropriate.
4010 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
4011 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
4012 return failedImport(toString(std::move(Error)) +
4013 " for result of Src pattern operator");
4014 }
4015
4016 for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
4017 const TreePredicateFn &Predicate = Call.Fn;
4018 bool HasAddedBuiltinMatcher = true;
4019 if (Predicate.isAlwaysTrue())
4020 continue;
4021
4022 if (Predicate.isImmediatePattern()) {
4023 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
4024 continue;
4025 }
4026
4027 auto InsnMatcherOrError = addBuiltinPredicates(
4028 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher);
4029 if (auto Error = InsnMatcherOrError.takeError())
4030 return std::move(Error);
4031
4032 // FIXME: This should be part of addBuiltinPredicates(). If we add this at
4033 // the start of addBuiltinPredicates() without returning, then there might
4034 // be cases where we hit the last return before which the
4035 // HasAddedBuiltinMatcher will be set to false. The predicate could be
4036 // missed if we add it in the middle or at the end due to return statements
4037 // after the addPredicate<>() calls.
4038 if (Predicate.hasNoUse()) {
4039 InsnMatcher.addPredicate<NoUsePredicateMatcher>();
4040 HasAddedBuiltinMatcher = true;
4041 }
4042
4043 if (Predicate.hasGISelPredicateCode()) {
4044 if (Predicate.usesOperands()) {
4045 assert(WaitingForNamedOperands == 0 &&
4046 "previous predicate didn't find all operands or "
4047 "nested predicate that uses operands");
4048 TreePattern *TP = Predicate.getOrigPatFragRecord();
4049 WaitingForNamedOperands = TP->getNumArgs();
4050 for (unsigned i = 0; i < WaitingForNamedOperands; ++i)
4051 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i;
4052 }
4053 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
4054 continue;
4055 }
4056 if (!HasAddedBuiltinMatcher) {
4057 return failedImport("Src pattern child has predicate (" +
4058 explainPredicates(Src) + ")");
4059 }
4060 }
4061
4062 bool IsAtomic = false;
4063 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
4064 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
4065 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
4066 IsAtomic = true;
4067 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
4068 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
4069 }
4070
4071 if (Src->isLeaf()) {
4072 Init *SrcInit = Src->getLeafValue();
4073 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
4074 OperandMatcher &OM =
4075 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
4076 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
4077 } else
4078 return failedImport(
4079 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
4080 } else {
4081 assert(SrcGIOrNull &&
4082 "Expected to have already found an equivalent Instruction");
4083 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
4084 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
4085 // imm/fpimm still have operands but we don't need to do anything with it
4086 // here since we don't support ImmLeaf predicates yet. However, we still
4087 // need to note the hidden operand to get GIM_CheckNumOperands correct.
4088 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
4089 return InsnMatcher;
4090 }
4091
4092 // Special case because the operand order is changed from setcc. The
4093 // predicate operand needs to be swapped from the last operand to the first
4094 // source.
4095
4096 unsigned NumChildren = Src->getNumChildren();
4097 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
4098
4099 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
4100 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
4101 if (SrcChild->isLeaf()) {
4102 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
4103 Record *CCDef = DI ? DI->getDef() : nullptr;
4104 if (!CCDef || !CCDef->isSubClassOf("CondCode"))
4105 return failedImport("Unable to handle CondCode");
4106
4107 OperandMatcher &OM =
4108 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
4109 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
4110 CCDef->getValueAsString("ICmpPredicate");
4111
4112 if (!PredType.empty()) {
4113 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType));
4114 // Process the other 2 operands normally.
4115 --NumChildren;
4116 }
4117 }
4118 }
4119
4120 // Hack around an unfortunate mistake in how atomic store (and really
4121 // atomicrmw in general) operands were ordered. A ISD::STORE used the order
4122 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite,
4123 // <pointer>, <stored value>. In GlobalISel there's just the one store
4124 // opcode, so we need to swap the operands here to get the right type check.
4125 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") {
4126 assert(NumChildren == 2 && "wrong operands for atomic store");
4127
4128 TreePatternNode *PtrChild = Src->getChild(0);
4129 TreePatternNode *ValueChild = Src->getChild(1);
4130
4131 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true,
4132 false, 1, TempOpIdx))
4133 return std::move(Error);
4134
4135 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false,
4136 false, 0, TempOpIdx))
4137 return std::move(Error);
4138 return InsnMatcher;
4139 }
4140
4141 // Match the used operands (i.e. the children of the operator).
4142 bool IsIntrinsic =
4143 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
4144 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
4145 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
4146 if (IsIntrinsic && !II)
4147 return failedImport("Expected IntInit containing intrinsic ID)");
4148
4149 for (unsigned i = 0; i != NumChildren; ++i) {
4150 TreePatternNode *SrcChild = Src->getChild(i);
4151
4152 // We need to determine the meaning of a literal integer based on the
4153 // context. If this is a field required to be an immediate (such as an
4154 // immarg intrinsic argument), the required predicates are different than
4155 // a constant which may be materialized in a register. If we have an
4156 // argument that is required to be an immediate, we should not emit an LLT
4157 // type check, and should not be looking for a G_CONSTANT defined
4158 // register.
4159 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i);
4160
4161 // SelectionDAG allows pointers to be represented with iN since it doesn't
4162 // distinguish between pointers and integers but they are different types in GlobalISel.
4163 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
4164 //
4165 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
4166
4167 if (IsIntrinsic) {
4168 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
4169 // following the defs is an intrinsic ID.
4170 if (i == 0) {
4171 OperandMatcher &OM =
4172 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
4173 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
4174 continue;
4175 }
4176
4177 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters.
4178 //
4179 // Note that we have to look at the i-1th parameter, because we don't
4180 // have the intrinsic ID in the intrinsic's parameter list.
4181 OperandIsAPointer |= II->isParamAPointer(i - 1);
4182 OperandIsImmArg |= II->isParamImmArg(i - 1);
4183 }
4184
4185 if (auto Error =
4186 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
4187 OperandIsImmArg, OpIdx++, TempOpIdx))
4188 return std::move(Error);
4189 }
4190 }
4191
4192 return InsnMatcher;
4193 }
4194
importComplexPatternOperandMatcher(OperandMatcher & OM,Record * R,unsigned & TempOpIdx) const4195 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
4196 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
4197 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
4198 if (ComplexPattern == ComplexPatternEquivs.end())
4199 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
4200 ") not mapped to GlobalISel");
4201
4202 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
4203 TempOpIdx++;
4204 return Error::success();
4205 }
4206
4207 // Get the name to use for a pattern operand. For an anonymous physical register
4208 // input, this should use the register name.
getSrcChildName(const TreePatternNode * SrcChild,Record * & PhysReg)4209 static StringRef getSrcChildName(const TreePatternNode *SrcChild,
4210 Record *&PhysReg) {
4211 StringRef SrcChildName = SrcChild->getName();
4212 if (SrcChildName.empty() && SrcChild->isLeaf()) {
4213 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
4214 auto *ChildRec = ChildDefInit->getDef();
4215 if (ChildRec->isSubClassOf("Register")) {
4216 SrcChildName = ChildRec->getName();
4217 PhysReg = ChildRec;
4218 }
4219 }
4220 }
4221
4222 return SrcChildName;
4223 }
4224
importChildMatcher(RuleMatcher & Rule,InstructionMatcher & InsnMatcher,const TreePatternNode * SrcChild,bool OperandIsAPointer,bool OperandIsImmArg,unsigned OpIdx,unsigned & TempOpIdx)4225 Error GlobalISelEmitter::importChildMatcher(
4226 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
4227 const TreePatternNode *SrcChild, bool OperandIsAPointer,
4228 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) {
4229
4230 Record *PhysReg = nullptr;
4231 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg));
4232 if (!SrcChild->isLeaf() &&
4233 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
4234 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
4235 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand.
4236 std::string PatternName = std::string(SrcChild->getOperator()->getName());
4237 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) {
4238 PatternName += ":";
4239 PatternName += SrcChild->getChild(i)->getName();
4240 }
4241 SrcChildName = PatternName;
4242 }
4243
4244 OperandMatcher &OM =
4245 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx)
4246 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
4247 if (OM.isSameAsAnotherOperand())
4248 return Error::success();
4249
4250 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
4251 if (ChildTypes.size() != 1)
4252 return failedImport("Src pattern child has multiple results");
4253
4254 // Check MBB's before the type check since they are not a known type.
4255 if (!SrcChild->isLeaf()) {
4256 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
4257 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
4258 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4259 OM.addPredicate<MBBOperandMatcher>();
4260 return Error::success();
4261 }
4262 if (SrcChild->getOperator()->getName() == "timm") {
4263 OM.addPredicate<ImmOperandMatcher>();
4264
4265 // Add predicates, if any
4266 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) {
4267 const TreePredicateFn &Predicate = Call.Fn;
4268
4269 // Only handle immediate patterns for now
4270 if (Predicate.isImmediatePattern()) {
4271 OM.addPredicate<OperandImmPredicateMatcher>(Predicate);
4272 }
4273 }
4274
4275 return Error::success();
4276 }
4277 }
4278 }
4279
4280 // Immediate arguments have no meaningful type to check as they don't have
4281 // registers.
4282 if (!OperandIsImmArg) {
4283 if (auto Error =
4284 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
4285 return failedImport(toString(std::move(Error)) + " for Src operand (" +
4286 to_string(*SrcChild) + ")");
4287 }
4288
4289 // Check for nested instructions.
4290 if (!SrcChild->isLeaf()) {
4291 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
4292 // When a ComplexPattern is used as an operator, it should do the same
4293 // thing as when used as a leaf. However, the children of the operator
4294 // name the sub-operands that make up the complex operand and we must
4295 // prepare to reference them in the renderer too.
4296 unsigned RendererID = TempOpIdx;
4297 if (auto Error = importComplexPatternOperandMatcher(
4298 OM, SrcChild->getOperator(), TempOpIdx))
4299 return Error;
4300
4301 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
4302 auto *SubOperand = SrcChild->getChild(i);
4303 if (!SubOperand->getName().empty()) {
4304 if (auto Error = Rule.defineComplexSubOperand(
4305 SubOperand->getName(), SrcChild->getOperator(), RendererID, i,
4306 SrcChildName))
4307 return Error;
4308 }
4309 }
4310
4311 return Error::success();
4312 }
4313
4314 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
4315 InsnMatcher.getRuleMatcher(), SrcChild->getName());
4316 if (!MaybeInsnOperand) {
4317 // This isn't strictly true. If the user were to provide exactly the same
4318 // matchers as the original operand then we could allow it. However, it's
4319 // simpler to not permit the redundant specification.
4320 return failedImport("Nested instruction cannot be the same as another operand");
4321 }
4322
4323 // Map the node to a gMIR instruction.
4324 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
4325 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
4326 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
4327 if (auto Error = InsnMatcherOrError.takeError())
4328 return Error;
4329
4330 return Error::success();
4331 }
4332
4333 if (SrcChild->hasAnyPredicate())
4334 return failedImport("Src pattern child has unsupported predicate");
4335
4336 // Check for constant immediates.
4337 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
4338 if (OperandIsImmArg) {
4339 // Checks for argument directly in operand list
4340 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue());
4341 } else {
4342 // Checks for materialized constant
4343 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
4344 }
4345 return Error::success();
4346 }
4347
4348 // Check for def's like register classes or ComplexPattern's.
4349 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
4350 auto *ChildRec = ChildDefInit->getDef();
4351
4352 if (WaitingForNamedOperands) {
4353 auto PA = SrcChild->getNamesAsPredicateArg().begin();
4354 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier());
4355 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name);
4356 --WaitingForNamedOperands;
4357 }
4358
4359 // Check for register classes.
4360 if (ChildRec->isSubClassOf("RegisterClass") ||
4361 ChildRec->isSubClassOf("RegisterOperand")) {
4362 OM.addPredicate<RegisterBankOperandMatcher>(
4363 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
4364 return Error::success();
4365 }
4366
4367 if (ChildRec->isSubClassOf("Register")) {
4368 // This just be emitted as a copy to the specific register.
4369 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
4370 const CodeGenRegisterClass *RC
4371 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
4372 if (!RC) {
4373 return failedImport(
4374 "Could not determine physical register class of pattern source");
4375 }
4376
4377 OM.addPredicate<RegisterBankOperandMatcher>(*RC);
4378 return Error::success();
4379 }
4380
4381 // Check for ValueType.
4382 if (ChildRec->isSubClassOf("ValueType")) {
4383 // We already added a type check as standard practice so this doesn't need
4384 // to do anything.
4385 return Error::success();
4386 }
4387
4388 // Check for ComplexPattern's.
4389 if (ChildRec->isSubClassOf("ComplexPattern"))
4390 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
4391
4392 if (ChildRec->isSubClassOf("ImmLeaf")) {
4393 return failedImport(
4394 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
4395 }
4396
4397 // Place holder for SRCVALUE nodes. Nothing to do here.
4398 if (ChildRec->getName() == "srcvalue")
4399 return Error::success();
4400
4401 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV";
4402 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") {
4403 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
4404 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false);
4405 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
4406
4407 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode();
4408
4409 const CodeGenInstruction &BuildVector
4410 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR"));
4411 const CodeGenInstruction &BuildVectorTrunc
4412 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC"));
4413
4414 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC
4415 // as an alternative.
4416 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>(
4417 makeArrayRef({&BuildVector, &BuildVectorTrunc}));
4418
4419 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could
4420 // theoretically not emit any opcode check, but getOpcodeMatcher currently
4421 // has to succeed.
4422 OperandMatcher &OM =
4423 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx);
4424 if (auto Error =
4425 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
4426 return failedImport(toString(std::move(Error)) +
4427 " for result of Src pattern operator");
4428
4429 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>(
4430 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes
4431 : VectorSplatImmPredicateMatcher::AllZeros);
4432 return Error::success();
4433 }
4434
4435 return failedImport(
4436 "Src pattern child def is an unsupported tablegen class");
4437 }
4438
4439 return failedImport("Src pattern child is an unsupported kind");
4440 }
4441
importExplicitUseRenderer(action_iterator InsertPt,RuleMatcher & Rule,BuildMIAction & DstMIBuilder,TreePatternNode * DstChild)4442 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
4443 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
4444 TreePatternNode *DstChild) {
4445
4446 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
4447 if (SubOperand) {
4448 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4449 *std::get<0>(*SubOperand), DstChild->getName(),
4450 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
4451 return InsertPt;
4452 }
4453
4454 if (!DstChild->isLeaf()) {
4455 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
4456 auto Child = DstChild->getChild(0);
4457 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
4458 if (I != SDNodeXFormEquivs.end()) {
4459 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode");
4460 if (XFormOpc->getName() == "timm") {
4461 // If this is a TargetConstant, there won't be a corresponding
4462 // instruction to transform. Instead, this will refer directly to an
4463 // operand in an instruction's operand list.
4464 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second,
4465 Child->getName());
4466 } else {
4467 DstMIBuilder.addRenderer<CustomRenderer>(*I->second,
4468 Child->getName());
4469 }
4470
4471 return InsertPt;
4472 }
4473 return failedImport("SDNodeXForm " + Child->getName() +
4474 " has no custom renderer");
4475 }
4476
4477 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
4478 // inline, but in MI it's just another operand.
4479 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
4480 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
4481 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4482 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4483 return InsertPt;
4484 }
4485 }
4486
4487 // Similarly, imm is an operator in TreePatternNode's view but must be
4488 // rendered as operands.
4489 // FIXME: The target should be able to choose sign-extended when appropriate
4490 // (e.g. on Mips).
4491 if (DstChild->getOperator()->getName() == "timm") {
4492 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4493 return InsertPt;
4494 } else if (DstChild->getOperator()->getName() == "imm") {
4495 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
4496 return InsertPt;
4497 } else if (DstChild->getOperator()->getName() == "fpimm") {
4498 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
4499 DstChild->getName());
4500 return InsertPt;
4501 }
4502
4503 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
4504 auto OpTy = getInstResultType(DstChild);
4505 if (!OpTy)
4506 return OpTy.takeError();
4507
4508 unsigned TempRegID = Rule.allocateTempRegID();
4509 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
4510 InsertPt, *OpTy, TempRegID);
4511 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4512
4513 auto InsertPtOrError = createAndImportSubInstructionRenderer(
4514 ++InsertPt, Rule, DstChild, TempRegID);
4515 if (auto Error = InsertPtOrError.takeError())
4516 return std::move(Error);
4517 return InsertPtOrError.get();
4518 }
4519
4520 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
4521 }
4522
4523 // It could be a specific immediate in which case we should just check for
4524 // that immediate.
4525 if (const IntInit *ChildIntInit =
4526 dyn_cast<IntInit>(DstChild->getLeafValue())) {
4527 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
4528 return InsertPt;
4529 }
4530
4531 // Otherwise, we're looking for a bog-standard RegisterClass operand.
4532 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
4533 auto *ChildRec = ChildDefInit->getDef();
4534
4535 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
4536 if (ChildTypes.size() != 1)
4537 return failedImport("Dst pattern child has multiple results");
4538
4539 Optional<LLTCodeGen> OpTyOrNone = None;
4540 if (ChildTypes.front().isMachineValueType())
4541 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
4542 if (!OpTyOrNone)
4543 return failedImport("Dst operand has an unsupported type");
4544
4545 if (ChildRec->isSubClassOf("Register")) {
4546 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec);
4547 return InsertPt;
4548 }
4549
4550 if (ChildRec->isSubClassOf("RegisterClass") ||
4551 ChildRec->isSubClassOf("RegisterOperand") ||
4552 ChildRec->isSubClassOf("ValueType")) {
4553 if (ChildRec->isSubClassOf("RegisterOperand") &&
4554 !ChildRec->isValueUnset("GIZeroRegister")) {
4555 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
4556 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
4557 return InsertPt;
4558 }
4559
4560 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4561 return InsertPt;
4562 }
4563
4564 if (ChildRec->isSubClassOf("SubRegIndex")) {
4565 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
4566 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
4567 return InsertPt;
4568 }
4569
4570 if (ChildRec->isSubClassOf("ComplexPattern")) {
4571 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
4572 if (ComplexPattern == ComplexPatternEquivs.end())
4573 return failedImport(
4574 "SelectionDAG ComplexPattern not mapped to GlobalISel");
4575
4576 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
4577 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4578 *ComplexPattern->second, DstChild->getName(),
4579 OM.getAllocatedTemporariesBaseID());
4580 return InsertPt;
4581 }
4582
4583 return failedImport(
4584 "Dst pattern child def is an unsupported tablegen class");
4585 }
4586 return failedImport("Dst pattern child is an unsupported kind");
4587 }
4588
createAndImportInstructionRenderer(RuleMatcher & M,InstructionMatcher & InsnMatcher,const TreePatternNode * Src,const TreePatternNode * Dst)4589 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
4590 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
4591 const TreePatternNode *Dst) {
4592 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
4593 if (auto Error = InsertPtOrError.takeError())
4594 return std::move(Error);
4595
4596 action_iterator InsertPt = InsertPtOrError.get();
4597 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
4598
4599 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
4600 InsertPt = M.insertAction<BuildMIAction>(
4601 InsertPt, M.allocateOutputInsnID(),
4602 &Target.getInstruction(RK.getDef("COPY")));
4603 BuildMIAction &CopyToPhysRegMIBuilder =
4604 *static_cast<BuildMIAction *>(InsertPt->get());
4605 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target,
4606 PhysInput.first,
4607 true);
4608 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
4609 }
4610
4611 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst)
4612 .takeError())
4613 return std::move(Error);
4614
4615 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
4616 .takeError())
4617 return std::move(Error);
4618
4619 return DstMIBuilder;
4620 }
4621
4622 Expected<action_iterator>
createAndImportSubInstructionRenderer(const action_iterator InsertPt,RuleMatcher & M,const TreePatternNode * Dst,unsigned TempRegID)4623 GlobalISelEmitter::createAndImportSubInstructionRenderer(
4624 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
4625 unsigned TempRegID) {
4626 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
4627
4628 // TODO: Assert there's exactly one result.
4629
4630 if (auto Error = InsertPtOrError.takeError())
4631 return std::move(Error);
4632
4633 BuildMIAction &DstMIBuilder =
4634 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
4635
4636 // Assign the result to TempReg.
4637 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
4638
4639 InsertPtOrError =
4640 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
4641 if (auto Error = InsertPtOrError.takeError())
4642 return std::move(Error);
4643
4644 // We need to make sure that when we import an INSERT_SUBREG as a
4645 // subinstruction that it ends up being constrained to the correct super
4646 // register and subregister classes.
4647 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
4648 if (OpName == "INSERT_SUBREG") {
4649 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4650 if (!SubClass)
4651 return failedImport(
4652 "Cannot infer register class from INSERT_SUBREG operand #1");
4653 Optional<const CodeGenRegisterClass *> SuperClass =
4654 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
4655 Dst->getChild(2));
4656 if (!SuperClass)
4657 return failedImport(
4658 "Cannot infer register class for INSERT_SUBREG operand #0");
4659 // The destination and the super register source of an INSERT_SUBREG must
4660 // be the same register class.
4661 M.insertAction<ConstrainOperandToRegClassAction>(
4662 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4663 M.insertAction<ConstrainOperandToRegClassAction>(
4664 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
4665 M.insertAction<ConstrainOperandToRegClassAction>(
4666 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4667 return InsertPtOrError.get();
4668 }
4669
4670 if (OpName == "EXTRACT_SUBREG") {
4671 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4672 // instructions, the result register class is controlled by the
4673 // subregisters of the operand. As a result, we must constrain the result
4674 // class rather than check that it's already the right one.
4675 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4676 if (!SuperClass)
4677 return failedImport(
4678 "Cannot infer register class from EXTRACT_SUBREG operand #0");
4679
4680 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
4681 if (!SubIdx)
4682 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4683
4684 const auto SrcRCDstRCPair =
4685 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4686 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4687 M.insertAction<ConstrainOperandToRegClassAction>(
4688 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
4689 M.insertAction<ConstrainOperandToRegClassAction>(
4690 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
4691
4692 // We're done with this pattern! It's eligible for GISel emission; return
4693 // it.
4694 return InsertPtOrError.get();
4695 }
4696
4697 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
4698 // subinstruction.
4699 if (OpName == "SUBREG_TO_REG") {
4700 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4701 if (!SubClass)
4702 return failedImport(
4703 "Cannot infer register class from SUBREG_TO_REG child #1");
4704 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
4705 Dst->getChild(2));
4706 if (!SuperClass)
4707 return failedImport(
4708 "Cannot infer register class for SUBREG_TO_REG operand #0");
4709 M.insertAction<ConstrainOperandToRegClassAction>(
4710 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4711 M.insertAction<ConstrainOperandToRegClassAction>(
4712 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4713 return InsertPtOrError.get();
4714 }
4715
4716 if (OpName == "REG_SEQUENCE") {
4717 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4718 M.insertAction<ConstrainOperandToRegClassAction>(
4719 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4720
4721 unsigned Num = Dst->getNumChildren();
4722 for (unsigned I = 1; I != Num; I += 2) {
4723 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4724
4725 auto SubIdx = inferSubRegIndexForNode(SubRegChild);
4726 if (!SubIdx)
4727 return failedImport("REG_SEQUENCE child is not a subreg index");
4728
4729 const auto SrcRCDstRCPair =
4730 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4731 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4732 M.insertAction<ConstrainOperandToRegClassAction>(
4733 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second);
4734 }
4735
4736 return InsertPtOrError.get();
4737 }
4738
4739 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
4740 DstMIBuilder.getInsnID());
4741 return InsertPtOrError.get();
4742 }
4743
createInstructionRenderer(action_iterator InsertPt,RuleMatcher & M,const TreePatternNode * Dst)4744 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
4745 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
4746 Record *DstOp = Dst->getOperator();
4747 if (!DstOp->isSubClassOf("Instruction")) {
4748 if (DstOp->isSubClassOf("ValueType"))
4749 return failedImport(
4750 "Pattern operator isn't an instruction (it's a ValueType)");
4751 return failedImport("Pattern operator isn't an instruction");
4752 }
4753 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
4754
4755 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
4756 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
4757 StringRef Name = DstI->TheDef->getName();
4758 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
4759 DstI = &Target.getInstruction(RK.getDef("COPY"));
4760
4761 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
4762 DstI);
4763 }
4764
importExplicitDefRenderers(action_iterator InsertPt,RuleMatcher & M,BuildMIAction & DstMIBuilder,const TreePatternNode * Dst)4765 Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers(
4766 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4767 const TreePatternNode *Dst) {
4768 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4769 const unsigned NumDefs = DstI->Operands.NumDefs;
4770 if (NumDefs == 0)
4771 return InsertPt;
4772
4773 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name);
4774
4775 // Some instructions have multiple defs, but are missing a type entry
4776 // (e.g. s_cc_out operands).
4777 if (Dst->getExtTypes().size() < NumDefs)
4778 return failedImport("unhandled discarded def");
4779
4780 // Patterns only handle a single result, so any result after the first is an
4781 // implicitly dead def.
4782 for (unsigned I = 1; I < NumDefs; ++I) {
4783 const TypeSetByHwMode &ExtTy = Dst->getExtType(I);
4784 if (!ExtTy.isMachineValueType())
4785 return failedImport("unsupported typeset");
4786
4787 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy);
4788 if (!OpTy)
4789 return failedImport("unsupported type");
4790
4791 unsigned TempRegID = M.allocateTempRegID();
4792 InsertPt =
4793 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID);
4794 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true);
4795 }
4796
4797 return InsertPt;
4798 }
4799
importExplicitUseRenderers(action_iterator InsertPt,RuleMatcher & M,BuildMIAction & DstMIBuilder,const llvm::TreePatternNode * Dst)4800 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
4801 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4802 const llvm::TreePatternNode *Dst) {
4803 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4804 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
4805
4806 StringRef Name = OrigDstI->TheDef->getName();
4807 unsigned ExpectedDstINumUses = Dst->getNumChildren();
4808
4809 // EXTRACT_SUBREG needs to use a subregister COPY.
4810 if (Name == "EXTRACT_SUBREG") {
4811 if (!Dst->getChild(1)->isLeaf())
4812 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4813 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4814 if (!SubRegInit)
4815 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4816
4817 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4818 TreePatternNode *ValChild = Dst->getChild(0);
4819 if (!ValChild->isLeaf()) {
4820 // We really have to handle the source instruction, and then insert a
4821 // copy from the subregister.
4822 auto ExtractSrcTy = getInstResultType(ValChild);
4823 if (!ExtractSrcTy)
4824 return ExtractSrcTy.takeError();
4825
4826 unsigned TempRegID = M.allocateTempRegID();
4827 InsertPt = M.insertAction<MakeTempRegisterAction>(
4828 InsertPt, *ExtractSrcTy, TempRegID);
4829
4830 auto InsertPtOrError = createAndImportSubInstructionRenderer(
4831 ++InsertPt, M, ValChild, TempRegID);
4832 if (auto Error = InsertPtOrError.takeError())
4833 return std::move(Error);
4834
4835 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx);
4836 return InsertPt;
4837 }
4838
4839 // If this is a source operand, this is just a subregister copy.
4840 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue());
4841 if (!RCDef)
4842 return failedImport("EXTRACT_SUBREG child #0 could not "
4843 "be coerced to a register class");
4844
4845 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
4846
4847 const auto SrcRCDstRCPair =
4848 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4849 if (SrcRCDstRCPair) {
4850 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4851 if (SrcRCDstRCPair->first != RC)
4852 return failedImport("EXTRACT_SUBREG requires an additional COPY");
4853 }
4854
4855 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
4856 SubIdx);
4857 return InsertPt;
4858 }
4859
4860 if (Name == "REG_SEQUENCE") {
4861 if (!Dst->getChild(0)->isLeaf())
4862 return failedImport("REG_SEQUENCE child #0 is not a leaf");
4863
4864 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4865 if (!RCDef)
4866 return failedImport("REG_SEQUENCE child #0 could not "
4867 "be coerced to a register class");
4868
4869 if ((ExpectedDstINumUses - 1) % 2 != 0)
4870 return failedImport("Malformed REG_SEQUENCE");
4871
4872 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
4873 TreePatternNode *ValChild = Dst->getChild(I);
4874 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4875
4876 if (DefInit *SubRegInit =
4877 dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
4878 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4879
4880 auto InsertPtOrError =
4881 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
4882 if (auto Error = InsertPtOrError.takeError())
4883 return std::move(Error);
4884 InsertPt = InsertPtOrError.get();
4885 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
4886 }
4887 }
4888
4889 return InsertPt;
4890 }
4891
4892 // Render the explicit uses.
4893 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
4894 if (Name == "COPY_TO_REGCLASS") {
4895 DstINumUses--; // Ignore the class constraint.
4896 ExpectedDstINumUses--;
4897 }
4898
4899 // NumResults - This is the number of results produced by the instruction in
4900 // the "outs" list.
4901 unsigned NumResults = OrigDstI->Operands.NumDefs;
4902
4903 // Number of operands we know the output instruction must have. If it is
4904 // variadic, we could have more operands.
4905 unsigned NumFixedOperands = DstI->Operands.size();
4906
4907 // Loop over all of the fixed operands of the instruction pattern, emitting
4908 // code to fill them all in. The node 'N' usually has number children equal to
4909 // the number of input operands of the instruction. However, in cases where
4910 // there are predicate operands for an instruction, we need to fill in the
4911 // 'execute always' values. Match up the node operands to the instruction
4912 // operands to do this.
4913 unsigned Child = 0;
4914
4915 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
4916 // number of operands at the end of the list which have default values.
4917 // Those can come from the pattern if it provides enough arguments, or be
4918 // filled in with the default if the pattern hasn't provided them. But any
4919 // operand with a default value _before_ the last mandatory one will be
4920 // filled in with their defaults unconditionally.
4921 unsigned NonOverridableOperands = NumFixedOperands;
4922 while (NonOverridableOperands > NumResults &&
4923 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec))
4924 --NonOverridableOperands;
4925
4926 unsigned NumDefaultOps = 0;
4927 for (unsigned I = 0; I != DstINumUses; ++I) {
4928 unsigned InstOpNo = DstI->Operands.NumDefs + I;
4929
4930 // Determine what to emit for this operand.
4931 Record *OperandNode = DstI->Operands[InstOpNo].Rec;
4932
4933 // If the operand has default values, introduce them now.
4934 if (CGP.operandHasDefault(OperandNode) &&
4935 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) {
4936 // This is a predicate or optional def operand which the pattern has not
4937 // overridden, or which we aren't letting it override; emit the 'default
4938 // ops' operands.
4939
4940 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo];
4941 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
4942 if (auto Error = importDefaultOperandRenderers(
4943 InsertPt, M, DstMIBuilder, DefaultOps))
4944 return std::move(Error);
4945 ++NumDefaultOps;
4946 continue;
4947 }
4948
4949 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
4950 Dst->getChild(Child));
4951 if (auto Error = InsertPtOrError.takeError())
4952 return std::move(Error);
4953 InsertPt = InsertPtOrError.get();
4954 ++Child;
4955 }
4956
4957 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
4958 return failedImport("Expected " + llvm::to_string(DstINumUses) +
4959 " used operands but found " +
4960 llvm::to_string(ExpectedDstINumUses) +
4961 " explicit ones and " + llvm::to_string(NumDefaultOps) +
4962 " default ones");
4963
4964 return InsertPt;
4965 }
4966
importDefaultOperandRenderers(action_iterator InsertPt,RuleMatcher & M,BuildMIAction & DstMIBuilder,DagInit * DefaultOps) const4967 Error GlobalISelEmitter::importDefaultOperandRenderers(
4968 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4969 DagInit *DefaultOps) const {
4970 for (const auto *DefaultOp : DefaultOps->getArgs()) {
4971 Optional<LLTCodeGen> OpTyOrNone = None;
4972
4973 // Look through ValueType operators.
4974 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
4975 if (const DefInit *DefaultDagOperator =
4976 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
4977 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
4978 OpTyOrNone = MVTToLLT(getValueType(
4979 DefaultDagOperator->getDef()));
4980 DefaultOp = DefaultDagOp->getArg(0);
4981 }
4982 }
4983 }
4984
4985 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
4986 auto Def = DefaultDefOp->getDef();
4987 if (Def->getName() == "undef_tied_input") {
4988 unsigned TempRegID = M.allocateTempRegID();
4989 M.insertAction<MakeTempRegisterAction>(InsertPt, OpTyOrNone.value(),
4990 TempRegID);
4991 InsertPt = M.insertAction<BuildMIAction>(
4992 InsertPt, M.allocateOutputInsnID(),
4993 &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
4994 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
4995 InsertPt->get());
4996 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4997 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4998 } else {
4999 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def);
5000 }
5001 continue;
5002 }
5003
5004 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
5005 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
5006 continue;
5007 }
5008
5009 return failedImport("Could not add default op");
5010 }
5011
5012 return Error::success();
5013 }
5014
importImplicitDefRenderers(BuildMIAction & DstMIBuilder,const std::vector<Record * > & ImplicitDefs) const5015 Error GlobalISelEmitter::importImplicitDefRenderers(
5016 BuildMIAction &DstMIBuilder,
5017 const std::vector<Record *> &ImplicitDefs) const {
5018 if (!ImplicitDefs.empty())
5019 return failedImport("Pattern defines a physical register");
5020 return Error::success();
5021 }
5022
5023 Optional<const CodeGenRegisterClass *>
getRegClassFromLeaf(TreePatternNode * Leaf)5024 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
5025 assert(Leaf && "Expected node?");
5026 assert(Leaf->isLeaf() && "Expected leaf?");
5027 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
5028 if (!RCRec)
5029 return None;
5030 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
5031 if (!RC)
5032 return None;
5033 return RC;
5034 }
5035
5036 Optional<const CodeGenRegisterClass *>
inferRegClassFromPattern(TreePatternNode * N)5037 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
5038 if (!N)
5039 return None;
5040
5041 if (N->isLeaf())
5042 return getRegClassFromLeaf(N);
5043
5044 // We don't have a leaf node, so we have to try and infer something. Check
5045 // that we have an instruction that we an infer something from.
5046
5047 // Only handle things that produce a single type.
5048 if (N->getNumTypes() != 1)
5049 return None;
5050 Record *OpRec = N->getOperator();
5051
5052 // We only want instructions.
5053 if (!OpRec->isSubClassOf("Instruction"))
5054 return None;
5055
5056 // Don't want to try and infer things when there could potentially be more
5057 // than one candidate register class.
5058 auto &Inst = Target.getInstruction(OpRec);
5059 if (Inst.Operands.NumDefs > 1)
5060 return None;
5061
5062 // Handle any special-case instructions which we can safely infer register
5063 // classes from.
5064 StringRef InstName = Inst.TheDef->getName();
5065 bool IsRegSequence = InstName == "REG_SEQUENCE";
5066 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
5067 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
5068 // has the desired register class as the first child.
5069 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
5070 if (!RCChild->isLeaf())
5071 return None;
5072 return getRegClassFromLeaf(RCChild);
5073 }
5074 if (InstName == "INSERT_SUBREG") {
5075 TreePatternNode *Child0 = N->getChild(0);
5076 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!");
5077 const TypeSetByHwMode &VTy = Child0->getExtType(0);
5078 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2));
5079 }
5080 if (InstName == "EXTRACT_SUBREG") {
5081 assert(N->getNumTypes() == 1 && "Unexpected number of types!");
5082 const TypeSetByHwMode &VTy = N->getExtType(0);
5083 return inferSuperRegisterClass(VTy, N->getChild(1));
5084 }
5085
5086 // Handle destination record types that we can safely infer a register class
5087 // from.
5088 const auto &DstIOperand = Inst.Operands[0];
5089 Record *DstIOpRec = DstIOperand.Rec;
5090 if (DstIOpRec->isSubClassOf("RegisterOperand")) {
5091 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
5092 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
5093 return &RC;
5094 }
5095
5096 if (DstIOpRec->isSubClassOf("RegisterClass")) {
5097 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
5098 return &RC;
5099 }
5100
5101 return None;
5102 }
5103
5104 Optional<const CodeGenRegisterClass *>
inferSuperRegisterClass(const TypeSetByHwMode & Ty,TreePatternNode * SubRegIdxNode)5105 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
5106 TreePatternNode *SubRegIdxNode) {
5107 assert(SubRegIdxNode && "Expected subregister index node!");
5108 // We need a ValueTypeByHwMode for getSuperRegForSubReg.
5109 if (!Ty.isValueTypeByHwMode(false))
5110 return None;
5111 if (!SubRegIdxNode->isLeaf())
5112 return None;
5113 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
5114 if (!SubRegInit)
5115 return None;
5116 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
5117
5118 // Use the information we found above to find a minimal register class which
5119 // supports the subregister and type we want.
5120 auto RC =
5121 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx,
5122 /* MustBeAllocatable */ true);
5123 if (!RC)
5124 return None;
5125 return *RC;
5126 }
5127
5128 Optional<const CodeGenRegisterClass *>
inferSuperRegisterClassForNode(const TypeSetByHwMode & Ty,TreePatternNode * SuperRegNode,TreePatternNode * SubRegIdxNode)5129 GlobalISelEmitter::inferSuperRegisterClassForNode(
5130 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
5131 TreePatternNode *SubRegIdxNode) {
5132 assert(SuperRegNode && "Expected super register node!");
5133 // Check if we already have a defined register class for the super register
5134 // node. If we do, then we should preserve that rather than inferring anything
5135 // from the subregister index node. We can assume that whoever wrote the
5136 // pattern in the first place made sure that the super register and
5137 // subregister are compatible.
5138 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
5139 inferRegClassFromPattern(SuperRegNode))
5140 return *SuperRegisterClass;
5141 return inferSuperRegisterClass(Ty, SubRegIdxNode);
5142 }
5143
5144 Optional<CodeGenSubRegIndex *>
inferSubRegIndexForNode(TreePatternNode * SubRegIdxNode)5145 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
5146 if (!SubRegIdxNode->isLeaf())
5147 return None;
5148
5149 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
5150 if (!SubRegInit)
5151 return None;
5152 return CGRegs.getSubRegIdx(SubRegInit->getDef());
5153 }
5154
runOnPattern(const PatternToMatch & P)5155 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
5156 // Keep track of the matchers and actions to emit.
5157 int Score = P.getPatternComplexity(CGP);
5158 RuleMatcher M(P.getSrcRecord()->getLoc());
5159 RuleMatcherScores[M.getRuleID()] = Score;
5160 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
5161 " => " +
5162 llvm::to_string(*P.getDstPattern()));
5163
5164 SmallVector<Record *, 4> Predicates;
5165 P.getPredicateRecords(Predicates);
5166 if (auto Error = importRulePredicates(M, Predicates))
5167 return std::move(Error);
5168
5169 // Next, analyze the pattern operators.
5170 TreePatternNode *Src = P.getSrcPattern();
5171 TreePatternNode *Dst = P.getDstPattern();
5172
5173 // If the root of either pattern isn't a simple operator, ignore it.
5174 if (auto Err = isTrivialOperatorNode(Dst))
5175 return failedImport("Dst pattern root isn't a trivial operator (" +
5176 toString(std::move(Err)) + ")");
5177 if (auto Err = isTrivialOperatorNode(Src))
5178 return failedImport("Src pattern root isn't a trivial operator (" +
5179 toString(std::move(Err)) + ")");
5180
5181 // The different predicates and matchers created during
5182 // addInstructionMatcher use the RuleMatcher M to set up their
5183 // instruction ID (InsnVarID) that are going to be used when
5184 // M is going to be emitted.
5185 // However, the code doing the emission still relies on the IDs
5186 // returned during that process by the RuleMatcher when issuing
5187 // the recordInsn opcodes.
5188 // Because of that:
5189 // 1. The order in which we created the predicates
5190 // and such must be the same as the order in which we emit them,
5191 // and
5192 // 2. We need to reset the generation of the IDs in M somewhere between
5193 // addInstructionMatcher and emit
5194 //
5195 // FIXME: Long term, we don't want to have to rely on this implicit
5196 // naming being the same. One possible solution would be to have
5197 // explicit operator for operation capture and reference those.
5198 // The plus side is that it would expose opportunities to share
5199 // the capture accross rules. The downside is that it would
5200 // introduce a dependency between predicates (captures must happen
5201 // before their first use.)
5202 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
5203 unsigned TempOpIdx = 0;
5204 auto InsnMatcherOrError =
5205 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
5206 if (auto Error = InsnMatcherOrError.takeError())
5207 return std::move(Error);
5208 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
5209
5210 if (Dst->isLeaf()) {
5211 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
5212 if (RCDef) {
5213 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
5214
5215 // We need to replace the def and all its uses with the specified
5216 // operand. However, we must also insert COPY's wherever needed.
5217 // For now, emit a copy and let the register allocator clean up.
5218 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
5219 const auto &DstIOperand = DstI.Operands[0];
5220
5221 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
5222 OM0.setSymbolicName(DstIOperand.Name);
5223 M.defineOperand(OM0.getSymbolicName(), OM0);
5224 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
5225
5226 auto &DstMIBuilder =
5227 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
5228 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
5229 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
5230 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
5231
5232 // We're done with this pattern! It's eligible for GISel emission; return
5233 // it.
5234 ++NumPatternImported;
5235 return std::move(M);
5236 }
5237
5238 return failedImport("Dst pattern root isn't a known leaf");
5239 }
5240
5241 // Start with the defined operands (i.e., the results of the root operator).
5242 Record *DstOp = Dst->getOperator();
5243 if (!DstOp->isSubClassOf("Instruction"))
5244 return failedImport("Pattern operator isn't an instruction");
5245
5246 auto &DstI = Target.getInstruction(DstOp);
5247 StringRef DstIName = DstI.TheDef->getName();
5248
5249 unsigned DstNumDefs = DstI.Operands.NumDefs,
5250 SrcNumDefs = Src->getExtTypes().size();
5251 if (DstNumDefs < SrcNumDefs) {
5252 if (DstNumDefs != 0)
5253 return failedImport("Src pattern result has more defs than dst MI (" +
5254 to_string(SrcNumDefs) + " def(s) vs " +
5255 to_string(DstNumDefs) + " def(s))");
5256
5257 bool FoundNoUsePred = false;
5258 for (const auto &Pred : InsnMatcher.predicates()) {
5259 if ((FoundNoUsePred = isa<NoUsePredicateMatcher>(Pred.get())))
5260 break;
5261 }
5262 if (!FoundNoUsePred)
5263 return failedImport("Src pattern result has " + to_string(SrcNumDefs) +
5264 " def(s) without the HasNoUse predicate set to true "
5265 "but Dst MI has no def");
5266 }
5267
5268 // The root of the match also has constraints on the register bank so that it
5269 // matches the result instruction.
5270 unsigned OpIdx = 0;
5271 unsigned N = std::min(DstNumDefs, SrcNumDefs);
5272 for (unsigned I = 0; I < N; ++I) {
5273 const TypeSetByHwMode &VTy = Src->getExtType(I);
5274
5275 const auto &DstIOperand = DstI.Operands[OpIdx];
5276 Record *DstIOpRec = DstIOperand.Rec;
5277 if (DstIName == "COPY_TO_REGCLASS") {
5278 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
5279
5280 if (DstIOpRec == nullptr)
5281 return failedImport(
5282 "COPY_TO_REGCLASS operand #1 isn't a register class");
5283 } else if (DstIName == "REG_SEQUENCE") {
5284 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
5285 if (DstIOpRec == nullptr)
5286 return failedImport("REG_SEQUENCE operand #0 isn't a register class");
5287 } else if (DstIName == "EXTRACT_SUBREG") {
5288 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0));
5289 if (!InferredClass)
5290 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0");
5291
5292 // We can assume that a subregister is in the same bank as it's super
5293 // register.
5294 DstIOpRec = (*InferredClass)->getDef();
5295 } else if (DstIName == "INSERT_SUBREG") {
5296 auto MaybeSuperClass = inferSuperRegisterClassForNode(
5297 VTy, Dst->getChild(0), Dst->getChild(2));
5298 if (!MaybeSuperClass)
5299 return failedImport(
5300 "Cannot infer register class for INSERT_SUBREG operand #0");
5301 // Move to the next pattern here, because the register class we found
5302 // doesn't necessarily have a record associated with it. So, we can't
5303 // set DstIOpRec using this.
5304 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5305 OM.setSymbolicName(DstIOperand.Name);
5306 M.defineOperand(OM.getSymbolicName(), OM);
5307 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
5308 ++OpIdx;
5309 continue;
5310 } else if (DstIName == "SUBREG_TO_REG") {
5311 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
5312 if (!MaybeRegClass)
5313 return failedImport(
5314 "Cannot infer register class for SUBREG_TO_REG operand #0");
5315 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5316 OM.setSymbolicName(DstIOperand.Name);
5317 M.defineOperand(OM.getSymbolicName(), OM);
5318 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
5319 ++OpIdx;
5320 continue;
5321 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
5322 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
5323 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
5324 return failedImport("Dst MI def isn't a register class" +
5325 to_string(*Dst));
5326
5327 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5328 OM.setSymbolicName(DstIOperand.Name);
5329 M.defineOperand(OM.getSymbolicName(), OM);
5330 OM.addPredicate<RegisterBankOperandMatcher>(
5331 Target.getRegisterClass(DstIOpRec));
5332 ++OpIdx;
5333 }
5334
5335 auto DstMIBuilderOrError =
5336 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
5337 if (auto Error = DstMIBuilderOrError.takeError())
5338 return std::move(Error);
5339 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
5340
5341 // Render the implicit defs.
5342 // These are only added to the root of the result.
5343 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
5344 return std::move(Error);
5345
5346 DstMIBuilder.chooseInsnToMutate(M);
5347
5348 // Constrain the registers to classes. This is normally derived from the
5349 // emitted instruction but a few instructions require special handling.
5350 if (DstIName == "COPY_TO_REGCLASS") {
5351 // COPY_TO_REGCLASS does not provide operand constraints itself but the
5352 // result is constrained to the class given by the second child.
5353 Record *DstIOpRec =
5354 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
5355
5356 if (DstIOpRec == nullptr)
5357 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
5358
5359 M.addAction<ConstrainOperandToRegClassAction>(
5360 0, 0, Target.getRegisterClass(DstIOpRec));
5361
5362 // We're done with this pattern! It's eligible for GISel emission; return
5363 // it.
5364 ++NumPatternImported;
5365 return std::move(M);
5366 }
5367
5368 if (DstIName == "EXTRACT_SUBREG") {
5369 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
5370 if (!SuperClass)
5371 return failedImport(
5372 "Cannot infer register class from EXTRACT_SUBREG operand #0");
5373
5374 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
5375 if (!SubIdx)
5376 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
5377
5378 // It would be nice to leave this constraint implicit but we're required
5379 // to pick a register class so constrain the result to a register class
5380 // that can hold the correct MVT.
5381 //
5382 // FIXME: This may introduce an extra copy if the chosen class doesn't
5383 // actually contain the subregisters.
5384 assert(Src->getExtTypes().size() == 1 &&
5385 "Expected Src of EXTRACT_SUBREG to have one result type");
5386
5387 const auto SrcRCDstRCPair =
5388 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
5389 if (!SrcRCDstRCPair) {
5390 return failedImport("subreg index is incompatible "
5391 "with inferred reg class");
5392 }
5393
5394 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
5395 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
5396 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
5397
5398 // We're done with this pattern! It's eligible for GISel emission; return
5399 // it.
5400 ++NumPatternImported;
5401 return std::move(M);
5402 }
5403
5404 if (DstIName == "INSERT_SUBREG") {
5405 assert(Src->getExtTypes().size() == 1 &&
5406 "Expected Src of INSERT_SUBREG to have one result type");
5407 // We need to constrain the destination, a super regsister source, and a
5408 // subregister source.
5409 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
5410 if (!SubClass)
5411 return failedImport(
5412 "Cannot infer register class from INSERT_SUBREG operand #1");
5413 auto SuperClass = inferSuperRegisterClassForNode(
5414 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
5415 if (!SuperClass)
5416 return failedImport(
5417 "Cannot infer register class for INSERT_SUBREG operand #0");
5418 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5419 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
5420 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
5421 ++NumPatternImported;
5422 return std::move(M);
5423 }
5424
5425 if (DstIName == "SUBREG_TO_REG") {
5426 // We need to constrain the destination and subregister source.
5427 assert(Src->getExtTypes().size() == 1 &&
5428 "Expected Src of SUBREG_TO_REG to have one result type");
5429
5430 // Attempt to infer the subregister source from the first child. If it has
5431 // an explicitly given register class, we'll use that. Otherwise, we will
5432 // fail.
5433 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
5434 if (!SubClass)
5435 return failedImport(
5436 "Cannot infer register class from SUBREG_TO_REG child #1");
5437 // We don't have a child to look at that might have a super register node.
5438 auto SuperClass =
5439 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
5440 if (!SuperClass)
5441 return failedImport(
5442 "Cannot infer register class for SUBREG_TO_REG operand #0");
5443 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5444 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
5445 ++NumPatternImported;
5446 return std::move(M);
5447 }
5448
5449 if (DstIName == "REG_SEQUENCE") {
5450 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
5451
5452 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5453
5454 unsigned Num = Dst->getNumChildren();
5455 for (unsigned I = 1; I != Num; I += 2) {
5456 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
5457
5458 auto SubIdx = inferSubRegIndexForNode(SubRegChild);
5459 if (!SubIdx)
5460 return failedImport("REG_SEQUENCE child is not a subreg index");
5461
5462 const auto SrcRCDstRCPair =
5463 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
5464
5465 M.addAction<ConstrainOperandToRegClassAction>(0, I,
5466 *SrcRCDstRCPair->second);
5467 }
5468
5469 ++NumPatternImported;
5470 return std::move(M);
5471 }
5472
5473 M.addAction<ConstrainOperandsToDefinitionAction>(0);
5474
5475 // We're done with this pattern! It's eligible for GISel emission; return it.
5476 ++NumPatternImported;
5477 return std::move(M);
5478 }
5479
5480 // Emit imm predicate table and an enum to reference them with.
5481 // The 'Predicate_' part of the name is redundant but eliminating it is more
5482 // trouble than it's worth.
emitCxxPredicateFns(raw_ostream & OS,StringRef CodeFieldName,StringRef TypeIdentifier,StringRef ArgType,StringRef ArgName,StringRef AdditionalArgs,StringRef AdditionalDeclarations,std::function<bool (const Record * R)> Filter)5483 void GlobalISelEmitter::emitCxxPredicateFns(
5484 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
5485 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs,
5486 StringRef AdditionalDeclarations,
5487 std::function<bool(const Record *R)> Filter) {
5488 std::vector<const Record *> MatchedRecords;
5489 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags");
5490 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
5491 [&](Record *Record) {
5492 return !Record->getValueAsString(CodeFieldName).empty() &&
5493 Filter(Record);
5494 });
5495
5496 if (!MatchedRecords.empty()) {
5497 OS << "// PatFrag predicates.\n"
5498 << "enum {\n";
5499 std::string EnumeratorSeparator =
5500 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
5501 for (const auto *Record : MatchedRecords) {
5502 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
5503 << EnumeratorSeparator;
5504 EnumeratorSeparator = ",\n";
5505 }
5506 OS << "};\n";
5507 }
5508
5509 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
5510 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
5511 << ArgName << AdditionalArgs <<") const {\n"
5512 << AdditionalDeclarations;
5513 if (!AdditionalDeclarations.empty())
5514 OS << "\n";
5515 if (!MatchedRecords.empty())
5516 OS << " switch (PredicateID) {\n";
5517 for (const auto *Record : MatchedRecords) {
5518 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
5519 << Record->getName() << ": {\n"
5520 << " " << Record->getValueAsString(CodeFieldName) << "\n"
5521 << " llvm_unreachable(\"" << CodeFieldName
5522 << " should have returned\");\n"
5523 << " return false;\n"
5524 << " }\n";
5525 }
5526 if (!MatchedRecords.empty())
5527 OS << " }\n";
5528 OS << " llvm_unreachable(\"Unknown predicate\");\n"
5529 << " return false;\n"
5530 << "}\n";
5531 }
5532
emitImmPredicateFns(raw_ostream & OS,StringRef TypeIdentifier,StringRef ArgType,std::function<bool (const Record * R)> Filter)5533 void GlobalISelEmitter::emitImmPredicateFns(
5534 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
5535 std::function<bool(const Record *R)> Filter) {
5536 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
5537 "Imm", "", "", Filter);
5538 }
5539
emitMIPredicateFns(raw_ostream & OS)5540 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
5541 return emitCxxPredicateFns(
5542 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
5543 ", const std::array<const MachineOperand *, 3> &Operands",
5544 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
5545 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5546 " (void)MRI;",
5547 [](const Record *R) { return true; });
5548 }
5549
5550 template <class GroupT>
optimizeRules(ArrayRef<Matcher * > Rules,std::vector<std::unique_ptr<Matcher>> & MatcherStorage)5551 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
5552 ArrayRef<Matcher *> Rules,
5553 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
5554
5555 std::vector<Matcher *> OptRules;
5556 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
5557 assert(CurrentGroup->empty() && "Newly created group isn't empty!");
5558 unsigned NumGroups = 0;
5559
5560 auto ProcessCurrentGroup = [&]() {
5561 if (CurrentGroup->empty())
5562 // An empty group is good to be reused:
5563 return;
5564
5565 // If the group isn't large enough to provide any benefit, move all the
5566 // added rules out of it and make sure to re-create the group to properly
5567 // re-initialize it:
5568 if (CurrentGroup->size() < 2)
5569 append_range(OptRules, CurrentGroup->matchers());
5570 else {
5571 CurrentGroup->finalize();
5572 OptRules.push_back(CurrentGroup.get());
5573 MatcherStorage.emplace_back(std::move(CurrentGroup));
5574 ++NumGroups;
5575 }
5576 CurrentGroup = std::make_unique<GroupT>();
5577 };
5578 for (Matcher *Rule : Rules) {
5579 // Greedily add as many matchers as possible to the current group:
5580 if (CurrentGroup->addMatcher(*Rule))
5581 continue;
5582
5583 ProcessCurrentGroup();
5584 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
5585
5586 // Try to add the pending matcher to a newly created empty group:
5587 if (!CurrentGroup->addMatcher(*Rule))
5588 // If we couldn't add the matcher to an empty group, that group type
5589 // doesn't support that kind of matchers at all, so just skip it:
5590 OptRules.push_back(Rule);
5591 }
5592 ProcessCurrentGroup();
5593
5594 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
5595 (void) NumGroups;
5596 assert(CurrentGroup->empty() && "The last group wasn't properly processed");
5597 return OptRules;
5598 }
5599
5600 MatchTable
buildMatchTable(MutableArrayRef<RuleMatcher> Rules,bool Optimize,bool WithCoverage)5601 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
5602 bool Optimize, bool WithCoverage) {
5603 std::vector<Matcher *> InputRules;
5604 for (Matcher &Rule : Rules)
5605 InputRules.push_back(&Rule);
5606
5607 if (!Optimize)
5608 return MatchTable::buildTable(InputRules, WithCoverage);
5609
5610 unsigned CurrentOrdering = 0;
5611 StringMap<unsigned> OpcodeOrder;
5612 for (RuleMatcher &Rule : Rules) {
5613 const StringRef Opcode = Rule.getOpcode();
5614 assert(!Opcode.empty() && "Didn't expect an undefined opcode");
5615 if (OpcodeOrder.count(Opcode) == 0)
5616 OpcodeOrder[Opcode] = CurrentOrdering++;
5617 }
5618
5619 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A,
5620 const Matcher *B) {
5621 auto *L = static_cast<const RuleMatcher *>(A);
5622 auto *R = static_cast<const RuleMatcher *>(B);
5623 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) <
5624 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands());
5625 });
5626
5627 for (Matcher *Rule : InputRules)
5628 Rule->optimize();
5629
5630 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
5631 std::vector<Matcher *> OptRules =
5632 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
5633
5634 for (Matcher *Rule : OptRules)
5635 Rule->optimize();
5636
5637 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
5638
5639 return MatchTable::buildTable(OptRules, WithCoverage);
5640 }
5641
optimize()5642 void GroupMatcher::optimize() {
5643 // Make sure we only sort by a specific predicate within a range of rules that
5644 // all have that predicate checked against a specific value (not a wildcard):
5645 auto F = Matchers.begin();
5646 auto T = F;
5647 auto E = Matchers.end();
5648 while (T != E) {
5649 while (T != E) {
5650 auto *R = static_cast<RuleMatcher *>(*T);
5651 if (!R->getFirstConditionAsRootType().get().isValid())
5652 break;
5653 ++T;
5654 }
5655 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
5656 auto *L = static_cast<RuleMatcher *>(A);
5657 auto *R = static_cast<RuleMatcher *>(B);
5658 return L->getFirstConditionAsRootType() <
5659 R->getFirstConditionAsRootType();
5660 });
5661 if (T != E)
5662 F = ++T;
5663 }
5664 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
5665 .swap(Matchers);
5666 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
5667 .swap(Matchers);
5668 }
5669
run(raw_ostream & OS)5670 void GlobalISelEmitter::run(raw_ostream &OS) {
5671 if (!UseCoverageFile.empty()) {
5672 RuleCoverage = CodeGenCoverage();
5673 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
5674 if (!RuleCoverageBufOrErr) {
5675 PrintWarning(SMLoc(), "Missing rule coverage data");
5676 RuleCoverage = None;
5677 } else {
5678 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
5679 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
5680 RuleCoverage = None;
5681 }
5682 }
5683 }
5684
5685 // Track the run-time opcode values
5686 gatherOpcodeValues();
5687 // Track the run-time LLT ID values
5688 gatherTypeIDValues();
5689
5690 // Track the GINodeEquiv definitions.
5691 gatherNodeEquivs();
5692
5693 emitSourceFileHeader(("Global Instruction Selector for the " +
5694 Target.getName() + " target").str(), OS);
5695 std::vector<RuleMatcher> Rules;
5696 // Look through the SelectionDAG patterns we found, possibly emitting some.
5697 for (const PatternToMatch &Pat : CGP.ptms()) {
5698 ++NumPatternTotal;
5699
5700 auto MatcherOrErr = runOnPattern(Pat);
5701
5702 // The pattern analysis can fail, indicating an unsupported pattern.
5703 // Report that if we've been asked to do so.
5704 if (auto Err = MatcherOrErr.takeError()) {
5705 if (WarnOnSkippedPatterns) {
5706 PrintWarning(Pat.getSrcRecord()->getLoc(),
5707 "Skipped pattern: " + toString(std::move(Err)));
5708 } else {
5709 consumeError(std::move(Err));
5710 }
5711 ++NumPatternImportsSkipped;
5712 continue;
5713 }
5714
5715 if (RuleCoverage) {
5716 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
5717 ++NumPatternsTested;
5718 else
5719 PrintWarning(Pat.getSrcRecord()->getLoc(),
5720 "Pattern is not covered by a test");
5721 }
5722 Rules.push_back(std::move(MatcherOrErr.get()));
5723 }
5724
5725 // Comparison function to order records by name.
5726 auto orderByName = [](const Record *A, const Record *B) {
5727 return A->getName() < B->getName();
5728 };
5729
5730 std::vector<Record *> ComplexPredicates =
5731 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
5732 llvm::sort(ComplexPredicates, orderByName);
5733
5734 std::vector<StringRef> CustomRendererFns;
5735 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"),
5736 std::back_inserter(CustomRendererFns), [](const auto &Record) {
5737 return Record->getValueAsString("RendererFn");
5738 });
5739 // Sort and remove duplicates to get a list of unique renderer functions, in
5740 // case some were mentioned more than once.
5741 llvm::sort(CustomRendererFns);
5742 CustomRendererFns.erase(
5743 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()),
5744 CustomRendererFns.end());
5745
5746 unsigned MaxTemporaries = 0;
5747 for (const auto &Rule : Rules)
5748 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
5749
5750 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
5751 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
5752 << ";\n"
5753 << "using PredicateBitset = "
5754 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
5755 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
5756
5757 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
5758 << " mutable MatcherState State;\n"
5759 << " typedef "
5760 "ComplexRendererFns("
5761 << Target.getName()
5762 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
5763
5764 << " typedef void(" << Target.getName()
5765 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
5766 "MachineInstr &, int) "
5767 "const;\n"
5768 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
5769 "CustomRendererFn> "
5770 "ISelInfo;\n";
5771 OS << " static " << Target.getName()
5772 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
5773 << " static " << Target.getName()
5774 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
5775 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
5776 "override;\n"
5777 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
5778 "const override;\n"
5779 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
5780 "&Imm) const override;\n"
5781 << " const int64_t *getMatchTable() const override;\n"
5782 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI"
5783 ", const std::array<const MachineOperand *, 3> &Operands) "
5784 "const override;\n"
5785 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
5786
5787 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
5788 << ", State(" << MaxTemporaries << "),\n"
5789 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
5790 << ", ComplexPredicateFns, CustomRenderers)\n"
5791 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
5792
5793 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
5794 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
5795 OS);
5796
5797 // Separate subtarget features by how often they must be recomputed.
5798 SubtargetFeatureInfoMap ModuleFeatures;
5799 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5800 std::inserter(ModuleFeatures, ModuleFeatures.end()),
5801 [](const SubtargetFeatureInfoMap::value_type &X) {
5802 return !X.second.mustRecomputePerFunction();
5803 });
5804 SubtargetFeatureInfoMap FunctionFeatures;
5805 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5806 std::inserter(FunctionFeatures, FunctionFeatures.end()),
5807 [](const SubtargetFeatureInfoMap::value_type &X) {
5808 return X.second.mustRecomputePerFunction();
5809 });
5810
5811 SubtargetFeatureInfo::emitComputeAvailableFeatures(
5812 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
5813 ModuleFeatures, OS);
5814
5815
5816 OS << "void " << Target.getName() << "InstructionSelector"
5817 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n"
5818 " AvailableFunctionFeatures = computeAvailableFunctionFeatures("
5819 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n"
5820 "}\n";
5821
5822 SubtargetFeatureInfo::emitComputeAvailableFeatures(
5823 Target.getName(), "InstructionSelector",
5824 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
5825 "const MachineFunction *MF");
5826
5827 // Emit a table containing the LLT objects needed by the matcher and an enum
5828 // for the matcher to reference them with.
5829 std::vector<LLTCodeGen> TypeObjects;
5830 append_range(TypeObjects, KnownTypes);
5831 llvm::sort(TypeObjects);
5832 OS << "// LLT Objects.\n"
5833 << "enum {\n";
5834 for (const auto &TypeObject : TypeObjects) {
5835 OS << " ";
5836 TypeObject.emitCxxEnumValue(OS);
5837 OS << ",\n";
5838 }
5839 OS << "};\n";
5840 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
5841 << "const static LLT TypeObjects[] = {\n";
5842 for (const auto &TypeObject : TypeObjects) {
5843 OS << " ";
5844 TypeObject.emitCxxConstructorCall(OS);
5845 OS << ",\n";
5846 }
5847 OS << "};\n\n";
5848
5849 // Emit a table containing the PredicateBitsets objects needed by the matcher
5850 // and an enum for the matcher to reference them with.
5851 std::vector<std::vector<Record *>> FeatureBitsets;
5852 for (auto &Rule : Rules)
5853 FeatureBitsets.push_back(Rule.getRequiredFeatures());
5854 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
5855 const std::vector<Record *> &B) {
5856 if (A.size() < B.size())
5857 return true;
5858 if (A.size() > B.size())
5859 return false;
5860 for (auto Pair : zip(A, B)) {
5861 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
5862 return true;
5863 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
5864 return false;
5865 }
5866 return false;
5867 });
5868 FeatureBitsets.erase(
5869 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
5870 FeatureBitsets.end());
5871 OS << "// Feature bitsets.\n"
5872 << "enum {\n"
5873 << " GIFBS_Invalid,\n";
5874 for (const auto &FeatureBitset : FeatureBitsets) {
5875 if (FeatureBitset.empty())
5876 continue;
5877 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
5878 }
5879 OS << "};\n"
5880 << "const static PredicateBitset FeatureBitsets[] {\n"
5881 << " {}, // GIFBS_Invalid\n";
5882 for (const auto &FeatureBitset : FeatureBitsets) {
5883 if (FeatureBitset.empty())
5884 continue;
5885 OS << " {";
5886 for (const auto &Feature : FeatureBitset) {
5887 const auto &I = SubtargetFeatures.find(Feature);
5888 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
5889 OS << I->second.getEnumBitName() << ", ";
5890 }
5891 OS << "},\n";
5892 }
5893 OS << "};\n\n";
5894
5895 // Emit complex predicate table and an enum to reference them with.
5896 OS << "// ComplexPattern predicates.\n"
5897 << "enum {\n"
5898 << " GICP_Invalid,\n";
5899 for (const auto &Record : ComplexPredicates)
5900 OS << " GICP_" << Record->getName() << ",\n";
5901 OS << "};\n"
5902 << "// See constructor for table contents\n\n";
5903
5904 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
5905 bool Unset;
5906 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
5907 !R->getValueAsBit("IsAPInt");
5908 });
5909 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
5910 bool Unset;
5911 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
5912 });
5913 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
5914 return R->getValueAsBit("IsAPInt");
5915 });
5916 emitMIPredicateFns(OS);
5917 OS << "\n";
5918
5919 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
5920 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
5921 << " nullptr, // GICP_Invalid\n";
5922 for (const auto &Record : ComplexPredicates)
5923 OS << " &" << Target.getName()
5924 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
5925 << ", // " << Record->getName() << "\n";
5926 OS << "};\n\n";
5927
5928 OS << "// Custom renderers.\n"
5929 << "enum {\n"
5930 << " GICR_Invalid,\n";
5931 for (const auto &Fn : CustomRendererFns)
5932 OS << " GICR_" << Fn << ",\n";
5933 OS << "};\n";
5934
5935 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
5936 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
5937 << " nullptr, // GICR_Invalid\n";
5938 for (const auto &Fn : CustomRendererFns)
5939 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n";
5940 OS << "};\n\n";
5941
5942 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
5943 int ScoreA = RuleMatcherScores[A.getRuleID()];
5944 int ScoreB = RuleMatcherScores[B.getRuleID()];
5945 if (ScoreA > ScoreB)
5946 return true;
5947 if (ScoreB > ScoreA)
5948 return false;
5949 if (A.isHigherPriorityThan(B)) {
5950 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
5951 "and less important at "
5952 "the same time");
5953 return true;
5954 }
5955 return false;
5956 });
5957
5958 OS << "bool " << Target.getName()
5959 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
5960 "&CoverageInfo) const {\n"
5961 << " MachineFunction &MF = *I.getParent()->getParent();\n"
5962 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5963 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
5964 << " NewMIVector OutMIs;\n"
5965 << " State.MIs.clear();\n"
5966 << " State.MIs.push_back(&I);\n\n"
5967 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
5968 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
5969 << ", CoverageInfo)) {\n"
5970 << " return true;\n"
5971 << " }\n\n"
5972 << " return false;\n"
5973 << "}\n\n";
5974
5975 const MatchTable Table =
5976 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
5977 OS << "const int64_t *" << Target.getName()
5978 << "InstructionSelector::getMatchTable() const {\n";
5979 Table.emitDeclaration(OS);
5980 OS << " return ";
5981 Table.emitUse(OS);
5982 OS << ";\n}\n";
5983 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
5984
5985 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
5986 << "PredicateBitset AvailableModuleFeatures;\n"
5987 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
5988 << "PredicateBitset getAvailableFeatures() const {\n"
5989 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
5990 << "}\n"
5991 << "PredicateBitset\n"
5992 << "computeAvailableModuleFeatures(const " << Target.getName()
5993 << "Subtarget *Subtarget) const;\n"
5994 << "PredicateBitset\n"
5995 << "computeAvailableFunctionFeatures(const " << Target.getName()
5996 << "Subtarget *Subtarget,\n"
5997 << " const MachineFunction *MF) const;\n"
5998 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n"
5999 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
6000
6001 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
6002 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
6003 << "AvailableFunctionFeatures()\n"
6004 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
6005 }
6006
declareSubtargetFeature(Record * Predicate)6007 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
6008 if (SubtargetFeatures.count(Predicate) == 0)
6009 SubtargetFeatures.emplace(
6010 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
6011 }
6012
optimize()6013 void RuleMatcher::optimize() {
6014 for (auto &Item : InsnVariableIDs) {
6015 InstructionMatcher &InsnMatcher = *Item.first;
6016 for (auto &OM : InsnMatcher.operands()) {
6017 // Complex Patterns are usually expensive and they relatively rarely fail
6018 // on their own: more often we end up throwing away all the work done by a
6019 // matching part of a complex pattern because some other part of the
6020 // enclosing pattern didn't match. All of this makes it beneficial to
6021 // delay complex patterns until the very end of the rule matching,
6022 // especially for targets having lots of complex patterns.
6023 for (auto &OP : OM->predicates())
6024 if (isa<ComplexPatternOperandMatcher>(OP))
6025 EpilogueMatchers.emplace_back(std::move(OP));
6026 OM->eraseNullPredicates();
6027 }
6028 InsnMatcher.optimize();
6029 }
6030 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
6031 const std::unique_ptr<PredicateMatcher> &R) {
6032 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
6033 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
6034 });
6035 }
6036
hasFirstCondition() const6037 bool RuleMatcher::hasFirstCondition() const {
6038 if (insnmatchers_empty())
6039 return false;
6040 InstructionMatcher &Matcher = insnmatchers_front();
6041 if (!Matcher.predicates_empty())
6042 return true;
6043 for (auto &OM : Matcher.operands())
6044 for (auto &OP : OM->predicates())
6045 if (!isa<InstructionOperandMatcher>(OP))
6046 return true;
6047 return false;
6048 }
6049
getFirstCondition() const6050 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
6051 assert(!insnmatchers_empty() &&
6052 "Trying to get a condition from an empty RuleMatcher");
6053
6054 InstructionMatcher &Matcher = insnmatchers_front();
6055 if (!Matcher.predicates_empty())
6056 return **Matcher.predicates_begin();
6057 // If there is no more predicate on the instruction itself, look at its
6058 // operands.
6059 for (auto &OM : Matcher.operands())
6060 for (auto &OP : OM->predicates())
6061 if (!isa<InstructionOperandMatcher>(OP))
6062 return *OP;
6063
6064 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
6065 "no conditions");
6066 }
6067
popFirstCondition()6068 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
6069 assert(!insnmatchers_empty() &&
6070 "Trying to pop a condition from an empty RuleMatcher");
6071
6072 InstructionMatcher &Matcher = insnmatchers_front();
6073 if (!Matcher.predicates_empty())
6074 return Matcher.predicates_pop_front();
6075 // If there is no more predicate on the instruction itself, look at its
6076 // operands.
6077 for (auto &OM : Matcher.operands())
6078 for (auto &OP : OM->predicates())
6079 if (!isa<InstructionOperandMatcher>(OP)) {
6080 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
6081 OM->eraseNullPredicates();
6082 return Result;
6083 }
6084
6085 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
6086 "no conditions");
6087 }
6088
candidateConditionMatches(const PredicateMatcher & Predicate) const6089 bool GroupMatcher::candidateConditionMatches(
6090 const PredicateMatcher &Predicate) const {
6091
6092 if (empty()) {
6093 // Sharing predicates for nested instructions is not supported yet as we
6094 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
6095 // only work on the original root instruction (InsnVarID == 0):
6096 if (Predicate.getInsnVarID() != 0)
6097 return false;
6098 // ... otherwise an empty group can handle any predicate with no specific
6099 // requirements:
6100 return true;
6101 }
6102
6103 const Matcher &Representative = **Matchers.begin();
6104 const auto &RepresentativeCondition = Representative.getFirstCondition();
6105 // ... if not empty, the group can only accomodate matchers with the exact
6106 // same first condition:
6107 return Predicate.isIdentical(RepresentativeCondition);
6108 }
6109
addMatcher(Matcher & Candidate)6110 bool GroupMatcher::addMatcher(Matcher &Candidate) {
6111 if (!Candidate.hasFirstCondition())
6112 return false;
6113
6114 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
6115 if (!candidateConditionMatches(Predicate))
6116 return false;
6117
6118 Matchers.push_back(&Candidate);
6119 return true;
6120 }
6121
finalize()6122 void GroupMatcher::finalize() {
6123 assert(Conditions.empty() && "Already finalized?");
6124 if (empty())
6125 return;
6126
6127 Matcher &FirstRule = **Matchers.begin();
6128 for (;;) {
6129 // All the checks are expected to succeed during the first iteration:
6130 for (const auto &Rule : Matchers)
6131 if (!Rule->hasFirstCondition())
6132 return;
6133 const auto &FirstCondition = FirstRule.getFirstCondition();
6134 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
6135 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
6136 return;
6137
6138 Conditions.push_back(FirstRule.popFirstCondition());
6139 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
6140 Matchers[I]->popFirstCondition();
6141 }
6142 }
6143
emit(MatchTable & Table)6144 void GroupMatcher::emit(MatchTable &Table) {
6145 unsigned LabelID = ~0U;
6146 if (!Conditions.empty()) {
6147 LabelID = Table.allocateLabelID();
6148 Table << MatchTable::Opcode("GIM_Try", +1)
6149 << MatchTable::Comment("On fail goto")
6150 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
6151 }
6152 for (auto &Condition : Conditions)
6153 Condition->emitPredicateOpcodes(
6154 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
6155
6156 for (const auto &M : Matchers)
6157 M->emit(Table);
6158
6159 // Exit the group
6160 if (!Conditions.empty())
6161 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
6162 << MatchTable::Label(LabelID);
6163 }
6164
isSupportedPredicateType(const PredicateMatcher & P)6165 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
6166 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
6167 }
6168
candidateConditionMatches(const PredicateMatcher & Predicate) const6169 bool SwitchMatcher::candidateConditionMatches(
6170 const PredicateMatcher &Predicate) const {
6171
6172 if (empty()) {
6173 // Sharing predicates for nested instructions is not supported yet as we
6174 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
6175 // only work on the original root instruction (InsnVarID == 0):
6176 if (Predicate.getInsnVarID() != 0)
6177 return false;
6178 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
6179 // could fail as not all the types of conditions are supported:
6180 if (!isSupportedPredicateType(Predicate))
6181 return false;
6182 // ... or the condition might not have a proper implementation of
6183 // getValue() / isIdenticalDownToValue() yet:
6184 if (!Predicate.hasValue())
6185 return false;
6186 // ... otherwise an empty Switch can accomodate the condition with no
6187 // further requirements:
6188 return true;
6189 }
6190
6191 const Matcher &CaseRepresentative = **Matchers.begin();
6192 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
6193 // Switch-cases must share the same kind of condition and path to the value it
6194 // checks:
6195 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
6196 return false;
6197
6198 const auto Value = Predicate.getValue();
6199 // ... but be unique with respect to the actual value they check:
6200 return Values.count(Value) == 0;
6201 }
6202
addMatcher(Matcher & Candidate)6203 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
6204 if (!Candidate.hasFirstCondition())
6205 return false;
6206
6207 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
6208 if (!candidateConditionMatches(Predicate))
6209 return false;
6210 const auto Value = Predicate.getValue();
6211 Values.insert(Value);
6212
6213 Matchers.push_back(&Candidate);
6214 return true;
6215 }
6216
finalize()6217 void SwitchMatcher::finalize() {
6218 assert(Condition == nullptr && "Already finalized");
6219 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
6220 if (empty())
6221 return;
6222
6223 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) {
6224 return L->getFirstCondition().getValue() <
6225 R->getFirstCondition().getValue();
6226 });
6227 Condition = Matchers[0]->popFirstCondition();
6228 for (unsigned I = 1, E = Values.size(); I < E; ++I)
6229 Matchers[I]->popFirstCondition();
6230 }
6231
emitPredicateSpecificOpcodes(const PredicateMatcher & P,MatchTable & Table)6232 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
6233 MatchTable &Table) {
6234 assert(isSupportedPredicateType(P) && "Predicate type is not supported");
6235
6236 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
6237 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
6238 << MatchTable::IntValue(Condition->getInsnVarID());
6239 return;
6240 }
6241 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
6242 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
6243 << MatchTable::IntValue(Condition->getInsnVarID())
6244 << MatchTable::Comment("Op")
6245 << MatchTable::IntValue(Condition->getOpIdx());
6246 return;
6247 }
6248
6249 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
6250 "predicate type that is claimed to be supported");
6251 }
6252
emit(MatchTable & Table)6253 void SwitchMatcher::emit(MatchTable &Table) {
6254 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
6255 if (empty())
6256 return;
6257 assert(Condition != nullptr &&
6258 "Broken SwitchMatcher, hasn't been finalized?");
6259
6260 std::vector<unsigned> LabelIDs(Values.size());
6261 std::generate(LabelIDs.begin(), LabelIDs.end(),
6262 [&Table]() { return Table.allocateLabelID(); });
6263 const unsigned Default = Table.allocateLabelID();
6264
6265 const int64_t LowerBound = Values.begin()->getRawValue();
6266 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
6267
6268 emitPredicateSpecificOpcodes(*Condition, Table);
6269
6270 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
6271 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
6272 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
6273
6274 int64_t J = LowerBound;
6275 auto VI = Values.begin();
6276 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
6277 auto V = *VI++;
6278 while (J++ < V.getRawValue())
6279 Table << MatchTable::IntValue(0);
6280 V.turnIntoComment();
6281 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
6282 }
6283 Table << MatchTable::LineBreak;
6284
6285 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
6286 Table << MatchTable::Label(LabelIDs[I]);
6287 Matchers[I]->emit(Table);
6288 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
6289 }
6290 Table << MatchTable::Label(Default);
6291 }
6292
getInsnVarID() const6293 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
6294
6295 } // end anonymous namespace
6296
6297 //===----------------------------------------------------------------------===//
6298
6299 namespace llvm {
EmitGlobalISel(RecordKeeper & RK,raw_ostream & OS)6300 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
6301 GlobalISelEmitter(RK).run(OS);
6302 }
6303 } // End llvm namespace
6304