1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This tablegen backend emits code for use by the GlobalISel instruction 11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. 12 /// 13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen 14 /// backend, filters out the ones that are unsupported, maps 15 /// SelectionDAG-specific constructs to their GlobalISel counterpart 16 /// (when applicable: MVT to LLT; SDNode to generic Instruction). 17 /// 18 /// Not all patterns are supported: pass the tablegen invocation 19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, 20 /// as well as why. 21 /// 22 /// The generated file defines a single method: 23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; 24 /// intended to be used in InstructionSelector::select as the first-step 25 /// selector for the patterns that don't require complex C++. 26 /// 27 /// FIXME: We'll probably want to eventually define a base 28 /// "TargetGenInstructionSelector" class. 29 /// 30 //===----------------------------------------------------------------------===// 31 32 #include "CodeGenDAGPatterns.h" 33 #include "SubtargetFeatureInfo.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Support/CodeGenCoverage.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/LowLevelTypeImpl.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include "llvm/Support/ScopedPrinter.h" 43 #include "llvm/TableGen/Error.h" 44 #include "llvm/TableGen/Record.h" 45 #include "llvm/TableGen/TableGenBackend.h" 46 #include <numeric> 47 #include <string> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "gisel-emitter" 51 52 STATISTIC(NumPatternTotal, "Total number of patterns"); 53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); 54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); 55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); 56 STATISTIC(NumPatternEmitted, "Number of patterns emitted"); 57 58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); 59 60 static cl::opt<bool> WarnOnSkippedPatterns( 61 "warn-on-skipped-patterns", 62 cl::desc("Explain why a pattern was skipped for inclusion " 63 "in the GlobalISel selector"), 64 cl::init(false), cl::cat(GlobalISelEmitterCat)); 65 66 static cl::opt<bool> GenerateCoverage( 67 "instrument-gisel-coverage", 68 cl::desc("Generate coverage instrumentation for GlobalISel"), 69 cl::init(false), cl::cat(GlobalISelEmitterCat)); 70 71 static cl::opt<std::string> UseCoverageFile( 72 "gisel-coverage-file", cl::init(""), 73 cl::desc("Specify file to retrieve coverage information from"), 74 cl::cat(GlobalISelEmitterCat)); 75 76 static cl::opt<bool> OptimizeMatchTable( 77 "optimize-match-table", 78 cl::desc("Generate an optimized version of the match table"), 79 cl::init(true), cl::cat(GlobalISelEmitterCat)); 80 81 namespace { 82 //===- Helper functions ---------------------------------------------------===// 83 84 /// Get the name of the enum value used to number the predicate function. 85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { 86 if (Predicate.hasGISelPredicateCode()) 87 return "GIPFP_MI_" + Predicate.getFnName(); 88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + 89 Predicate.getFnName(); 90 } 91 92 /// Get the opcode used to check this predicate. 93 std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) { 94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; 95 } 96 97 /// This class stands in for LLT wherever we want to tablegen-erate an 98 /// equivalent at compiler run-time. 99 class LLTCodeGen { 100 private: 101 LLT Ty; 102 103 public: 104 LLTCodeGen() = default; 105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {} 106 107 std::string getCxxEnumValue() const { 108 std::string Str; 109 raw_string_ostream OS(Str); 110 111 emitCxxEnumValue(OS); 112 return OS.str(); 113 } 114 115 void emitCxxEnumValue(raw_ostream &OS) const { 116 if (Ty.isScalar()) { 117 OS << "GILLT_s" << Ty.getSizeInBits(); 118 return; 119 } 120 if (Ty.isVector()) { 121 OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v") 122 << Ty.getElementCount().getKnownMinValue() << "s" 123 << Ty.getScalarSizeInBits(); 124 return; 125 } 126 if (Ty.isPointer()) { 127 OS << "GILLT_p" << Ty.getAddressSpace(); 128 if (Ty.getSizeInBits() > 0) 129 OS << "s" << Ty.getSizeInBits(); 130 return; 131 } 132 llvm_unreachable("Unhandled LLT"); 133 } 134 135 void emitCxxConstructorCall(raw_ostream &OS) const { 136 if (Ty.isScalar()) { 137 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; 138 return; 139 } 140 if (Ty.isVector()) { 141 OS << "LLT::vector(" 142 << (Ty.isScalable() ? "ElementCount::getScalable(" 143 : "ElementCount::getFixed(") 144 << Ty.getElementCount().getKnownMinValue() << "), " 145 << Ty.getScalarSizeInBits() << ")"; 146 return; 147 } 148 if (Ty.isPointer() && Ty.getSizeInBits() > 0) { 149 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " 150 << Ty.getSizeInBits() << ")"; 151 return; 152 } 153 llvm_unreachable("Unhandled LLT"); 154 } 155 156 const LLT &get() const { return Ty; } 157 158 /// This ordering is used for std::unique() and llvm::sort(). There's no 159 /// particular logic behind the order but either A < B or B < A must be 160 /// true if A != B. 161 bool operator<(const LLTCodeGen &Other) const { 162 if (Ty.isValid() != Other.Ty.isValid()) 163 return Ty.isValid() < Other.Ty.isValid(); 164 if (!Ty.isValid()) 165 return false; 166 167 if (Ty.isVector() != Other.Ty.isVector()) 168 return Ty.isVector() < Other.Ty.isVector(); 169 if (Ty.isScalar() != Other.Ty.isScalar()) 170 return Ty.isScalar() < Other.Ty.isScalar(); 171 if (Ty.isPointer() != Other.Ty.isPointer()) 172 return Ty.isPointer() < Other.Ty.isPointer(); 173 174 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) 175 return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); 176 177 if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount()) 178 return std::make_tuple(Ty.isScalable(), 179 Ty.getElementCount().getKnownMinValue()) < 180 std::make_tuple(Other.Ty.isScalable(), 181 Other.Ty.getElementCount().getKnownMinValue()); 182 183 assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) && 184 "Unexpected mismatch of scalable property"); 185 return Ty.isVector() 186 ? std::make_tuple(Ty.isScalable(), 187 Ty.getSizeInBits().getKnownMinSize()) < 188 std::make_tuple(Other.Ty.isScalable(), 189 Other.Ty.getSizeInBits().getKnownMinSize()) 190 : Ty.getSizeInBits().getFixedSize() < 191 Other.Ty.getSizeInBits().getFixedSize(); 192 } 193 194 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } 195 }; 196 197 // Track all types that are used so we can emit the corresponding enum. 198 std::set<LLTCodeGen> KnownTypes; 199 200 class InstructionMatcher; 201 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for 202 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). 203 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) { 204 MVT VT(SVT); 205 206 if (VT.isVector() && !VT.getVectorElementCount().isScalar()) 207 return LLTCodeGen( 208 LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits())); 209 210 if (VT.isInteger() || VT.isFloatingPoint()) 211 return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); 212 213 return None; 214 } 215 216 static std::string explainPredicates(const TreePatternNode *N) { 217 std::string Explanation; 218 StringRef Separator = ""; 219 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 220 const TreePredicateFn &P = Call.Fn; 221 Explanation += 222 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); 223 Separator = ", "; 224 225 if (P.isAlwaysTrue()) 226 Explanation += " always-true"; 227 if (P.isImmediatePattern()) 228 Explanation += " immediate"; 229 230 if (P.isUnindexed()) 231 Explanation += " unindexed"; 232 233 if (P.isNonExtLoad()) 234 Explanation += " non-extload"; 235 if (P.isAnyExtLoad()) 236 Explanation += " extload"; 237 if (P.isSignExtLoad()) 238 Explanation += " sextload"; 239 if (P.isZeroExtLoad()) 240 Explanation += " zextload"; 241 242 if (P.isNonTruncStore()) 243 Explanation += " non-truncstore"; 244 if (P.isTruncStore()) 245 Explanation += " truncstore"; 246 247 if (Record *VT = P.getMemoryVT()) 248 Explanation += (" MemVT=" + VT->getName()).str(); 249 if (Record *VT = P.getScalarMemoryVT()) 250 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); 251 252 if (ListInit *AddrSpaces = P.getAddressSpaces()) { 253 raw_string_ostream OS(Explanation); 254 OS << " AddressSpaces=["; 255 256 StringRef AddrSpaceSeparator; 257 for (Init *Val : AddrSpaces->getValues()) { 258 IntInit *IntVal = dyn_cast<IntInit>(Val); 259 if (!IntVal) 260 continue; 261 262 OS << AddrSpaceSeparator << IntVal->getValue(); 263 AddrSpaceSeparator = ", "; 264 } 265 266 OS << ']'; 267 } 268 269 int64_t MinAlign = P.getMinAlignment(); 270 if (MinAlign > 0) 271 Explanation += " MinAlign=" + utostr(MinAlign); 272 273 if (P.isAtomicOrderingMonotonic()) 274 Explanation += " monotonic"; 275 if (P.isAtomicOrderingAcquire()) 276 Explanation += " acquire"; 277 if (P.isAtomicOrderingRelease()) 278 Explanation += " release"; 279 if (P.isAtomicOrderingAcquireRelease()) 280 Explanation += " acq_rel"; 281 if (P.isAtomicOrderingSequentiallyConsistent()) 282 Explanation += " seq_cst"; 283 if (P.isAtomicOrderingAcquireOrStronger()) 284 Explanation += " >=acquire"; 285 if (P.isAtomicOrderingWeakerThanAcquire()) 286 Explanation += " <acquire"; 287 if (P.isAtomicOrderingReleaseOrStronger()) 288 Explanation += " >=release"; 289 if (P.isAtomicOrderingWeakerThanRelease()) 290 Explanation += " <release"; 291 } 292 return Explanation; 293 } 294 295 std::string explainOperator(Record *Operator) { 296 if (Operator->isSubClassOf("SDNode")) 297 return (" (" + Operator->getValueAsString("Opcode") + ")").str(); 298 299 if (Operator->isSubClassOf("Intrinsic")) 300 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); 301 302 if (Operator->isSubClassOf("ComplexPattern")) 303 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + 304 ")") 305 .str(); 306 307 if (Operator->isSubClassOf("SDNodeXForm")) 308 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + 309 ")") 310 .str(); 311 312 return (" (Operator " + Operator->getName() + " not understood)").str(); 313 } 314 315 /// Helper function to let the emitter report skip reason error messages. 316 static Error failedImport(const Twine &Reason) { 317 return make_error<StringError>(Reason, inconvertibleErrorCode()); 318 } 319 320 static Error isTrivialOperatorNode(const TreePatternNode *N) { 321 std::string Explanation; 322 std::string Separator; 323 324 bool HasUnsupportedPredicate = false; 325 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 326 const TreePredicateFn &Predicate = Call.Fn; 327 328 if (Predicate.isAlwaysTrue()) 329 continue; 330 331 if (Predicate.isImmediatePattern()) 332 continue; 333 334 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || 335 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) 336 continue; 337 338 if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) 339 continue; 340 341 if (Predicate.isLoad() && Predicate.getMemoryVT()) 342 continue; 343 344 if (Predicate.isLoad() || Predicate.isStore()) { 345 if (Predicate.isUnindexed()) 346 continue; 347 } 348 349 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 350 const ListInit *AddrSpaces = Predicate.getAddressSpaces(); 351 if (AddrSpaces && !AddrSpaces->empty()) 352 continue; 353 354 if (Predicate.getMinAlignment() > 0) 355 continue; 356 } 357 358 if (Predicate.isAtomic() && Predicate.getMemoryVT()) 359 continue; 360 361 if (Predicate.isAtomic() && 362 (Predicate.isAtomicOrderingMonotonic() || 363 Predicate.isAtomicOrderingAcquire() || 364 Predicate.isAtomicOrderingRelease() || 365 Predicate.isAtomicOrderingAcquireRelease() || 366 Predicate.isAtomicOrderingSequentiallyConsistent() || 367 Predicate.isAtomicOrderingAcquireOrStronger() || 368 Predicate.isAtomicOrderingWeakerThanAcquire() || 369 Predicate.isAtomicOrderingReleaseOrStronger() || 370 Predicate.isAtomicOrderingWeakerThanRelease())) 371 continue; 372 373 if (Predicate.hasGISelPredicateCode()) 374 continue; 375 376 HasUnsupportedPredicate = true; 377 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; 378 Separator = ", "; 379 Explanation += (Separator + "first-failing:" + 380 Predicate.getOrigPatFragRecord()->getRecord()->getName()) 381 .str(); 382 break; 383 } 384 385 if (!HasUnsupportedPredicate) 386 return Error::success(); 387 388 return failedImport(Explanation); 389 } 390 391 static Record *getInitValueAsRegClass(Init *V) { 392 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) { 393 if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) 394 return VDefInit->getDef()->getValueAsDef("RegClass"); 395 if (VDefInit->getDef()->isSubClassOf("RegisterClass")) 396 return VDefInit->getDef(); 397 } 398 return nullptr; 399 } 400 401 std::string 402 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 403 std::string Name = "GIFBS"; 404 for (const auto &Feature : FeatureBitset) 405 Name += ("_" + Feature->getName()).str(); 406 return Name; 407 } 408 409 static std::string getScopedName(unsigned Scope, const std::string &Name) { 410 return ("pred:" + Twine(Scope) + ":" + Name).str(); 411 } 412 413 //===- MatchTable Helpers -------------------------------------------------===// 414 415 class MatchTable; 416 417 /// A record to be stored in a MatchTable. 418 /// 419 /// This class represents any and all output that may be required to emit the 420 /// MatchTable. Instances are most often configured to represent an opcode or 421 /// value that will be emitted to the table with some formatting but it can also 422 /// represent commas, comments, and other formatting instructions. 423 struct MatchTableRecord { 424 enum RecordFlagsBits { 425 MTRF_None = 0x0, 426 /// Causes EmitStr to be formatted as comment when emitted. 427 MTRF_Comment = 0x1, 428 /// Causes the record value to be followed by a comma when emitted. 429 MTRF_CommaFollows = 0x2, 430 /// Causes the record value to be followed by a line break when emitted. 431 MTRF_LineBreakFollows = 0x4, 432 /// Indicates that the record defines a label and causes an additional 433 /// comment to be emitted containing the index of the label. 434 MTRF_Label = 0x8, 435 /// Causes the record to be emitted as the index of the label specified by 436 /// LabelID along with a comment indicating where that label is. 437 MTRF_JumpTarget = 0x10, 438 /// Causes the formatter to add a level of indentation before emitting the 439 /// record. 440 MTRF_Indent = 0x20, 441 /// Causes the formatter to remove a level of indentation after emitting the 442 /// record. 443 MTRF_Outdent = 0x40, 444 }; 445 446 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to 447 /// reference or define. 448 unsigned LabelID; 449 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a 450 /// value, a label name. 451 std::string EmitStr; 452 453 private: 454 /// The number of MatchTable elements described by this record. Comments are 0 455 /// while values are typically 1. Values >1 may occur when we need to emit 456 /// values that exceed the size of a MatchTable element. 457 unsigned NumElements; 458 459 public: 460 /// A bitfield of RecordFlagsBits flags. 461 unsigned Flags; 462 463 /// The actual run-time value, if known 464 int64_t RawValue; 465 466 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr, 467 unsigned NumElements, unsigned Flags, 468 int64_t RawValue = std::numeric_limits<int64_t>::min()) 469 : LabelID(LabelID_.getValueOr(~0u)), EmitStr(EmitStr), 470 NumElements(NumElements), Flags(Flags), RawValue(RawValue) { 471 assert((!LabelID_.hasValue() || LabelID != ~0u) && 472 "This value is reserved for non-labels"); 473 } 474 MatchTableRecord(const MatchTableRecord &Other) = default; 475 MatchTableRecord(MatchTableRecord &&Other) = default; 476 477 /// Useful if a Match Table Record gets optimized out 478 void turnIntoComment() { 479 Flags |= MTRF_Comment; 480 Flags &= ~MTRF_CommaFollows; 481 NumElements = 0; 482 } 483 484 /// For Jump Table generation purposes 485 bool operator<(const MatchTableRecord &Other) const { 486 return RawValue < Other.RawValue; 487 } 488 int64_t getRawValue() const { return RawValue; } 489 490 void emit(raw_ostream &OS, bool LineBreakNextAfterThis, 491 const MatchTable &Table) const; 492 unsigned size() const { return NumElements; } 493 }; 494 495 class Matcher; 496 497 /// Holds the contents of a generated MatchTable to enable formatting and the 498 /// necessary index tracking needed to support GIM_Try. 499 class MatchTable { 500 /// An unique identifier for the table. The generated table will be named 501 /// MatchTable${ID}. 502 unsigned ID; 503 /// The records that make up the table. Also includes comments describing the 504 /// values being emitted and line breaks to format it. 505 std::vector<MatchTableRecord> Contents; 506 /// The currently defined labels. 507 DenseMap<unsigned, unsigned> LabelMap; 508 /// Tracks the sum of MatchTableRecord::NumElements as the table is built. 509 unsigned CurrentSize = 0; 510 /// A unique identifier for a MatchTable label. 511 unsigned CurrentLabelID = 0; 512 /// Determines if the table should be instrumented for rule coverage tracking. 513 bool IsWithCoverage; 514 515 public: 516 static MatchTableRecord LineBreak; 517 static MatchTableRecord Comment(StringRef Comment) { 518 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); 519 } 520 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { 521 unsigned ExtraFlags = 0; 522 if (IndentAdjust > 0) 523 ExtraFlags |= MatchTableRecord::MTRF_Indent; 524 if (IndentAdjust < 0) 525 ExtraFlags |= MatchTableRecord::MTRF_Outdent; 526 527 return MatchTableRecord(None, Opcode, 1, 528 MatchTableRecord::MTRF_CommaFollows | ExtraFlags); 529 } 530 static MatchTableRecord NamedValue(StringRef NamedValue) { 531 return MatchTableRecord(None, NamedValue, 1, 532 MatchTableRecord::MTRF_CommaFollows); 533 } 534 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { 535 return MatchTableRecord(None, NamedValue, 1, 536 MatchTableRecord::MTRF_CommaFollows, RawValue); 537 } 538 static MatchTableRecord NamedValue(StringRef Namespace, 539 StringRef NamedValue) { 540 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 541 MatchTableRecord::MTRF_CommaFollows); 542 } 543 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, 544 int64_t RawValue) { 545 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, 546 MatchTableRecord::MTRF_CommaFollows, RawValue); 547 } 548 static MatchTableRecord IntValue(int64_t IntValue) { 549 return MatchTableRecord(None, llvm::to_string(IntValue), 1, 550 MatchTableRecord::MTRF_CommaFollows); 551 } 552 static MatchTableRecord Label(unsigned LabelID) { 553 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, 554 MatchTableRecord::MTRF_Label | 555 MatchTableRecord::MTRF_Comment | 556 MatchTableRecord::MTRF_LineBreakFollows); 557 } 558 static MatchTableRecord JumpTarget(unsigned LabelID) { 559 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, 560 MatchTableRecord::MTRF_JumpTarget | 561 MatchTableRecord::MTRF_Comment | 562 MatchTableRecord::MTRF_CommaFollows); 563 } 564 565 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage); 566 567 MatchTable(bool WithCoverage, unsigned ID = 0) 568 : ID(ID), IsWithCoverage(WithCoverage) {} 569 570 bool isWithCoverage() const { return IsWithCoverage; } 571 572 void push_back(const MatchTableRecord &Value) { 573 if (Value.Flags & MatchTableRecord::MTRF_Label) 574 defineLabel(Value.LabelID); 575 Contents.push_back(Value); 576 CurrentSize += Value.size(); 577 } 578 579 unsigned allocateLabelID() { return CurrentLabelID++; } 580 581 void defineLabel(unsigned LabelID) { 582 LabelMap.insert(std::make_pair(LabelID, CurrentSize)); 583 } 584 585 unsigned getLabelIndex(unsigned LabelID) const { 586 const auto I = LabelMap.find(LabelID); 587 assert(I != LabelMap.end() && "Use of undeclared label"); 588 return I->second; 589 } 590 591 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } 592 593 void emitDeclaration(raw_ostream &OS) const { 594 unsigned Indentation = 4; 595 OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; 596 LineBreak.emit(OS, true, *this); 597 OS << std::string(Indentation, ' '); 598 599 for (auto I = Contents.begin(), E = Contents.end(); I != E; 600 ++I) { 601 bool LineBreakIsNext = false; 602 const auto &NextI = std::next(I); 603 604 if (NextI != E) { 605 if (NextI->EmitStr == "" && 606 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) 607 LineBreakIsNext = true; 608 } 609 610 if (I->Flags & MatchTableRecord::MTRF_Indent) 611 Indentation += 2; 612 613 I->emit(OS, LineBreakIsNext, *this); 614 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) 615 OS << std::string(Indentation, ' '); 616 617 if (I->Flags & MatchTableRecord::MTRF_Outdent) 618 Indentation -= 2; 619 } 620 OS << "};\n"; 621 } 622 }; 623 624 MatchTableRecord MatchTable::LineBreak = { 625 None, "" /* Emit String */, 0 /* Elements */, 626 MatchTableRecord::MTRF_LineBreakFollows}; 627 628 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, 629 const MatchTable &Table) const { 630 bool UseLineComment = 631 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); 632 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) 633 UseLineComment = false; 634 635 if (Flags & MTRF_Comment) 636 OS << (UseLineComment ? "// " : "/*"); 637 638 OS << EmitStr; 639 if (Flags & MTRF_Label) 640 OS << ": @" << Table.getLabelIndex(LabelID); 641 642 if ((Flags & MTRF_Comment) && !UseLineComment) 643 OS << "*/"; 644 645 if (Flags & MTRF_JumpTarget) { 646 if (Flags & MTRF_Comment) 647 OS << " "; 648 OS << Table.getLabelIndex(LabelID); 649 } 650 651 if (Flags & MTRF_CommaFollows) { 652 OS << ","; 653 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) 654 OS << " "; 655 } 656 657 if (Flags & MTRF_LineBreakFollows) 658 OS << "\n"; 659 } 660 661 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { 662 Table.push_back(Value); 663 return Table; 664 } 665 666 //===- Matchers -----------------------------------------------------------===// 667 668 class OperandMatcher; 669 class MatchAction; 670 class PredicateMatcher; 671 class RuleMatcher; 672 673 class Matcher { 674 public: 675 virtual ~Matcher() = default; 676 virtual void optimize() {} 677 virtual void emit(MatchTable &Table) = 0; 678 679 virtual bool hasFirstCondition() const = 0; 680 virtual const PredicateMatcher &getFirstCondition() const = 0; 681 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0; 682 }; 683 684 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules, 685 bool WithCoverage) { 686 MatchTable Table(WithCoverage); 687 for (Matcher *Rule : Rules) 688 Rule->emit(Table); 689 690 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 691 } 692 693 class GroupMatcher final : public Matcher { 694 /// Conditions that form a common prefix of all the matchers contained. 695 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions; 696 697 /// All the nested matchers, sharing a common prefix. 698 std::vector<Matcher *> Matchers; 699 700 /// An owning collection for any auxiliary matchers created while optimizing 701 /// nested matchers contained. 702 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 703 704 public: 705 /// Add a matcher to the collection of nested matchers if it meets the 706 /// requirements, and return true. If it doesn't, do nothing and return false. 707 /// 708 /// Expected to preserve its argument, so it could be moved out later on. 709 bool addMatcher(Matcher &Candidate); 710 711 /// Mark the matcher as fully-built and ensure any invariants expected by both 712 /// optimize() and emit(...) methods. Generally, both sequences of calls 713 /// are expected to lead to a sensible result: 714 /// 715 /// addMatcher(...)*; finalize(); optimize(); emit(...); and 716 /// addMatcher(...)*; finalize(); emit(...); 717 /// 718 /// or generally 719 /// 720 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* 721 /// 722 /// Multiple calls to optimize() are expected to be handled gracefully, though 723 /// optimize() is not expected to be idempotent. Multiple calls to finalize() 724 /// aren't generally supported. emit(...) is expected to be non-mutating and 725 /// producing the exact same results upon repeated calls. 726 /// 727 /// addMatcher() calls after the finalize() call are not supported. 728 /// 729 /// finalize() and optimize() are both allowed to mutate the contained 730 /// matchers, so moving them out after finalize() is not supported. 731 void finalize(); 732 void optimize() override; 733 void emit(MatchTable &Table) override; 734 735 /// Could be used to move out the matchers added previously, unless finalize() 736 /// has been already called. If any of the matchers are moved out, the group 737 /// becomes safe to destroy, but not safe to re-use for anything else. 738 iterator_range<std::vector<Matcher *>::iterator> matchers() { 739 return make_range(Matchers.begin(), Matchers.end()); 740 } 741 size_t size() const { return Matchers.size(); } 742 bool empty() const { return Matchers.empty(); } 743 744 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 745 assert(!Conditions.empty() && 746 "Trying to pop a condition from a condition-less group"); 747 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front()); 748 Conditions.erase(Conditions.begin()); 749 return P; 750 } 751 const PredicateMatcher &getFirstCondition() const override { 752 assert(!Conditions.empty() && 753 "Trying to get a condition from a condition-less group"); 754 return *Conditions.front(); 755 } 756 bool hasFirstCondition() const override { return !Conditions.empty(); } 757 758 private: 759 /// See if a candidate matcher could be added to this group solely by 760 /// analyzing its first condition. 761 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 762 }; 763 764 class SwitchMatcher : public Matcher { 765 /// All the nested matchers, representing distinct switch-cases. The first 766 /// conditions (as Matcher::getFirstCondition() reports) of all the nested 767 /// matchers must share the same type and path to a value they check, in other 768 /// words, be isIdenticalDownToValue, but have different values they check 769 /// against. 770 std::vector<Matcher *> Matchers; 771 772 /// The representative condition, with a type and a path (InsnVarID and OpIdx 773 /// in most cases) shared by all the matchers contained. 774 std::unique_ptr<PredicateMatcher> Condition = nullptr; 775 776 /// Temporary set used to check that the case values don't repeat within the 777 /// same switch. 778 std::set<MatchTableRecord> Values; 779 780 /// An owning collection for any auxiliary matchers created while optimizing 781 /// nested matchers contained. 782 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 783 784 public: 785 bool addMatcher(Matcher &Candidate); 786 787 void finalize(); 788 void emit(MatchTable &Table) override; 789 790 iterator_range<std::vector<Matcher *>::iterator> matchers() { 791 return make_range(Matchers.begin(), Matchers.end()); 792 } 793 size_t size() const { return Matchers.size(); } 794 bool empty() const { return Matchers.empty(); } 795 796 std::unique_ptr<PredicateMatcher> popFirstCondition() override { 797 // SwitchMatcher doesn't have a common first condition for its cases, as all 798 // the cases only share a kind of a value (a type and a path to it) they 799 // match, but deliberately differ in the actual value they match. 800 llvm_unreachable("Trying to pop a condition from a condition-less group"); 801 } 802 const PredicateMatcher &getFirstCondition() const override { 803 llvm_unreachable("Trying to pop a condition from a condition-less group"); 804 } 805 bool hasFirstCondition() const override { return false; } 806 807 private: 808 /// See if the predicate type has a Switch-implementation for it. 809 static bool isSupportedPredicateType(const PredicateMatcher &Predicate); 810 811 bool candidateConditionMatches(const PredicateMatcher &Predicate) const; 812 813 /// emit()-helper 814 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, 815 MatchTable &Table); 816 }; 817 818 /// Generates code to check that a match rule matches. 819 class RuleMatcher : public Matcher { 820 public: 821 using ActionList = std::list<std::unique_ptr<MatchAction>>; 822 using action_iterator = ActionList::iterator; 823 824 protected: 825 /// A list of matchers that all need to succeed for the current rule to match. 826 /// FIXME: This currently supports a single match position but could be 827 /// extended to support multiple positions to support div/rem fusion or 828 /// load-multiple instructions. 829 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ; 830 MatchersTy Matchers; 831 832 /// A list of actions that need to be taken when all predicates in this rule 833 /// have succeeded. 834 ActionList Actions; 835 836 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>; 837 838 /// A map of instruction matchers to the local variables 839 DefinedInsnVariablesMap InsnVariableIDs; 840 841 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>; 842 843 // The set of instruction matchers that have not yet been claimed for mutation 844 // by a BuildMI. 845 MutatableInsnSet MutatableInsns; 846 847 /// A map of named operands defined by the matchers that may be referenced by 848 /// the renderers. 849 StringMap<OperandMatcher *> DefinedOperands; 850 851 /// A map of anonymous physical register operands defined by the matchers that 852 /// may be referenced by the renderers. 853 DenseMap<Record *, OperandMatcher *> PhysRegOperands; 854 855 /// ID for the next instruction variable defined with implicitlyDefineInsnVar() 856 unsigned NextInsnVarID; 857 858 /// ID for the next output instruction allocated with allocateOutputInsnID() 859 unsigned NextOutputInsnID; 860 861 /// ID for the next temporary register ID allocated with allocateTempRegID() 862 unsigned NextTempRegID; 863 864 std::vector<Record *> RequiredFeatures; 865 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers; 866 867 ArrayRef<SMLoc> SrcLoc; 868 869 typedef std::tuple<Record *, unsigned, unsigned> 870 DefinedComplexPatternSubOperand; 871 typedef StringMap<DefinedComplexPatternSubOperand> 872 DefinedComplexPatternSubOperandMap; 873 /// A map of Symbolic Names to ComplexPattern sub-operands. 874 DefinedComplexPatternSubOperandMap ComplexSubOperands; 875 /// A map used to for multiple referenced error check of ComplexSubOperand. 876 /// ComplexSubOperand can't be referenced multiple from different operands, 877 /// however multiple references from same operand are allowed since that is 878 /// how 'same operand checks' are generated. 879 StringMap<std::string> ComplexSubOperandsParentName; 880 881 uint64_t RuleID; 882 static uint64_t NextRuleID; 883 884 public: 885 RuleMatcher(ArrayRef<SMLoc> SrcLoc) 886 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(), 887 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0), 888 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(), 889 RuleID(NextRuleID++) {} 890 RuleMatcher(RuleMatcher &&Other) = default; 891 RuleMatcher &operator=(RuleMatcher &&Other) = default; 892 893 uint64_t getRuleID() const { return RuleID; } 894 895 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); 896 void addRequiredFeature(Record *Feature); 897 const std::vector<Record *> &getRequiredFeatures() const; 898 899 template <class Kind, class... Args> Kind &addAction(Args &&... args); 900 template <class Kind, class... Args> 901 action_iterator insertAction(action_iterator InsertPt, Args &&... args); 902 903 /// Define an instruction without emitting any code to do so. 904 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); 905 906 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; 907 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { 908 return InsnVariableIDs.begin(); 909 } 910 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { 911 return InsnVariableIDs.end(); 912 } 913 iterator_range<typename DefinedInsnVariablesMap::const_iterator> 914 defined_insn_vars() const { 915 return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); 916 } 917 918 MutatableInsnSet::const_iterator mutatable_insns_begin() const { 919 return MutatableInsns.begin(); 920 } 921 MutatableInsnSet::const_iterator mutatable_insns_end() const { 922 return MutatableInsns.end(); 923 } 924 iterator_range<typename MutatableInsnSet::const_iterator> 925 mutatable_insns() const { 926 return make_range(mutatable_insns_begin(), mutatable_insns_end()); 927 } 928 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { 929 bool R = MutatableInsns.erase(InsnMatcher); 930 assert(R && "Reserving a mutatable insn that isn't available"); 931 (void)R; 932 } 933 934 action_iterator actions_begin() { return Actions.begin(); } 935 action_iterator actions_end() { return Actions.end(); } 936 iterator_range<action_iterator> actions() { 937 return make_range(actions_begin(), actions_end()); 938 } 939 940 void defineOperand(StringRef SymbolicName, OperandMatcher &OM); 941 942 void definePhysRegOperand(Record *Reg, OperandMatcher &OM); 943 944 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, 945 unsigned RendererID, unsigned SubOperandID, 946 StringRef ParentSymbolicName) { 947 std::string ParentName(ParentSymbolicName); 948 if (ComplexSubOperands.count(SymbolicName)) { 949 const std::string &RecordedParentName = 950 ComplexSubOperandsParentName[SymbolicName]; 951 if (RecordedParentName != ParentName) 952 return failedImport("Error: Complex suboperand " + SymbolicName + 953 " referenced by different operands: " + 954 RecordedParentName + " and " + ParentName + "."); 955 // Complex suboperand referenced more than once from same the operand is 956 // used to generate 'same operand check'. Emitting of 957 // GIR_ComplexSubOperandRenderer for them is already handled. 958 return Error::success(); 959 } 960 961 ComplexSubOperands[SymbolicName] = 962 std::make_tuple(ComplexPattern, RendererID, SubOperandID); 963 ComplexSubOperandsParentName[SymbolicName] = ParentName; 964 965 return Error::success(); 966 } 967 968 Optional<DefinedComplexPatternSubOperand> 969 getComplexSubOperand(StringRef SymbolicName) const { 970 const auto &I = ComplexSubOperands.find(SymbolicName); 971 if (I == ComplexSubOperands.end()) 972 return None; 973 return I->second; 974 } 975 976 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; 977 const OperandMatcher &getOperandMatcher(StringRef Name) const; 978 const OperandMatcher &getPhysRegOperandMatcher(Record *) const; 979 980 void optimize() override; 981 void emit(MatchTable &Table) override; 982 983 /// Compare the priority of this object and B. 984 /// 985 /// Returns true if this object is more important than B. 986 bool isHigherPriorityThan(const RuleMatcher &B) const; 987 988 /// Report the maximum number of temporary operands needed by the rule 989 /// matcher. 990 unsigned countRendererFns() const; 991 992 std::unique_ptr<PredicateMatcher> popFirstCondition() override; 993 const PredicateMatcher &getFirstCondition() const override; 994 LLTCodeGen getFirstConditionAsRootType(); 995 bool hasFirstCondition() const override; 996 unsigned getNumOperands() const; 997 StringRef getOpcode() const; 998 999 // FIXME: Remove this as soon as possible 1000 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } 1001 1002 unsigned allocateOutputInsnID() { return NextOutputInsnID++; } 1003 unsigned allocateTempRegID() { return NextTempRegID++; } 1004 1005 iterator_range<MatchersTy::iterator> insnmatchers() { 1006 return make_range(Matchers.begin(), Matchers.end()); 1007 } 1008 bool insnmatchers_empty() const { return Matchers.empty(); } 1009 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } 1010 }; 1011 1012 uint64_t RuleMatcher::NextRuleID = 0; 1013 1014 using action_iterator = RuleMatcher::action_iterator; 1015 1016 template <class PredicateTy> class PredicateListMatcher { 1017 private: 1018 /// Template instantiations should specialize this to return a string to use 1019 /// for the comment emitted when there are no predicates. 1020 std::string getNoPredicateComment() const; 1021 1022 protected: 1023 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>; 1024 PredicatesTy Predicates; 1025 1026 /// Track if the list of predicates was manipulated by one of the optimization 1027 /// methods. 1028 bool Optimized = false; 1029 1030 public: 1031 typename PredicatesTy::iterator predicates_begin() { 1032 return Predicates.begin(); 1033 } 1034 typename PredicatesTy::iterator predicates_end() { 1035 return Predicates.end(); 1036 } 1037 iterator_range<typename PredicatesTy::iterator> predicates() { 1038 return make_range(predicates_begin(), predicates_end()); 1039 } 1040 typename PredicatesTy::size_type predicates_size() const { 1041 return Predicates.size(); 1042 } 1043 bool predicates_empty() const { return Predicates.empty(); } 1044 1045 std::unique_ptr<PredicateTy> predicates_pop_front() { 1046 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front()); 1047 Predicates.pop_front(); 1048 Optimized = true; 1049 return Front; 1050 } 1051 1052 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) { 1053 Predicates.push_front(std::move(Predicate)); 1054 } 1055 1056 void eraseNullPredicates() { 1057 const auto NewEnd = 1058 std::stable_partition(Predicates.begin(), Predicates.end(), 1059 std::logical_not<std::unique_ptr<PredicateTy>>()); 1060 if (NewEnd != Predicates.begin()) { 1061 Predicates.erase(Predicates.begin(), NewEnd); 1062 Optimized = true; 1063 } 1064 } 1065 1066 /// Emit MatchTable opcodes that tests whether all the predicates are met. 1067 template <class... Args> 1068 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { 1069 if (Predicates.empty() && !Optimized) { 1070 Table << MatchTable::Comment(getNoPredicateComment()) 1071 << MatchTable::LineBreak; 1072 return; 1073 } 1074 1075 for (const auto &Predicate : predicates()) 1076 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1077 } 1078 1079 /// Provide a function to avoid emitting certain predicates. This is used to 1080 /// defer some predicate checks until after others 1081 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>; 1082 1083 /// Emit MatchTable opcodes for predicates which satisfy \p 1084 /// ShouldEmitPredicate. This should be called multiple times to ensure all 1085 /// predicates are eventually added to the match table. 1086 template <class... Args> 1087 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate, 1088 MatchTable &Table, Args &&... args) { 1089 if (Predicates.empty() && !Optimized) { 1090 Table << MatchTable::Comment(getNoPredicateComment()) 1091 << MatchTable::LineBreak; 1092 return; 1093 } 1094 1095 for (const auto &Predicate : predicates()) { 1096 if (ShouldEmitPredicate(*Predicate)) 1097 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...); 1098 } 1099 } 1100 }; 1101 1102 class PredicateMatcher { 1103 public: 1104 /// This enum is used for RTTI and also defines the priority that is given to 1105 /// the predicate when generating the matcher code. Kinds with higher priority 1106 /// must be tested first. 1107 /// 1108 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter 1109 /// but OPM_Int must have priority over OPM_RegBank since constant integers 1110 /// are represented by a virtual register defined by a G_CONSTANT instruction. 1111 /// 1112 /// Note: The relative priority between IPM_ and OPM_ does not matter, they 1113 /// are currently not compared between each other. 1114 enum PredicateKind { 1115 IPM_Opcode, 1116 IPM_NumOperands, 1117 IPM_ImmPredicate, 1118 IPM_Imm, 1119 IPM_AtomicOrderingMMO, 1120 IPM_MemoryLLTSize, 1121 IPM_MemoryVsLLTSize, 1122 IPM_MemoryAddressSpace, 1123 IPM_MemoryAlignment, 1124 IPM_VectorSplatImm, 1125 IPM_GenericPredicate, 1126 OPM_SameOperand, 1127 OPM_ComplexPattern, 1128 OPM_IntrinsicID, 1129 OPM_CmpPredicate, 1130 OPM_Instruction, 1131 OPM_Int, 1132 OPM_LiteralInt, 1133 OPM_LLT, 1134 OPM_PointerToAny, 1135 OPM_RegBank, 1136 OPM_MBB, 1137 OPM_RecordNamedOperand, 1138 }; 1139 1140 protected: 1141 PredicateKind Kind; 1142 unsigned InsnVarID; 1143 unsigned OpIdx; 1144 1145 public: 1146 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) 1147 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} 1148 1149 unsigned getInsnVarID() const { return InsnVarID; } 1150 unsigned getOpIdx() const { return OpIdx; } 1151 1152 virtual ~PredicateMatcher() = default; 1153 /// Emit MatchTable opcodes that check the predicate for the given operand. 1154 virtual void emitPredicateOpcodes(MatchTable &Table, 1155 RuleMatcher &Rule) const = 0; 1156 1157 PredicateKind getKind() const { return Kind; } 1158 1159 bool dependsOnOperands() const { 1160 // Custom predicates really depend on the context pattern of the 1161 // instruction, not just the individual instruction. This therefore 1162 // implicitly depends on all other pattern constraints. 1163 return Kind == IPM_GenericPredicate; 1164 } 1165 1166 virtual bool isIdentical(const PredicateMatcher &B) const { 1167 return B.getKind() == getKind() && InsnVarID == B.InsnVarID && 1168 OpIdx == B.OpIdx; 1169 } 1170 1171 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { 1172 return hasValue() && PredicateMatcher::isIdentical(B); 1173 } 1174 1175 virtual MatchTableRecord getValue() const { 1176 assert(hasValue() && "Can not get a value of a value-less predicate!"); 1177 llvm_unreachable("Not implemented yet"); 1178 } 1179 virtual bool hasValue() const { return false; } 1180 1181 /// Report the maximum number of temporary operands needed by the predicate 1182 /// matcher. 1183 virtual unsigned countRendererFns() const { return 0; } 1184 }; 1185 1186 /// Generates code to check a predicate of an operand. 1187 /// 1188 /// Typical predicates include: 1189 /// * Operand is a particular register. 1190 /// * Operand is assigned a particular register bank. 1191 /// * Operand is an MBB. 1192 class OperandPredicateMatcher : public PredicateMatcher { 1193 public: 1194 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, 1195 unsigned OpIdx) 1196 : PredicateMatcher(Kind, InsnVarID, OpIdx) {} 1197 virtual ~OperandPredicateMatcher() {} 1198 1199 /// Compare the priority of this object and B. 1200 /// 1201 /// Returns true if this object is more important than B. 1202 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; 1203 }; 1204 1205 template <> 1206 std::string 1207 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const { 1208 return "No operand predicates"; 1209 } 1210 1211 /// Generates code to check that a register operand is defined by the same exact 1212 /// one as another. 1213 class SameOperandMatcher : public OperandPredicateMatcher { 1214 std::string MatchingName; 1215 unsigned OrigOpIdx; 1216 1217 public: 1218 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName, 1219 unsigned OrigOpIdx) 1220 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), 1221 MatchingName(MatchingName), OrigOpIdx(OrigOpIdx) {} 1222 1223 static bool classof(const PredicateMatcher *P) { 1224 return P->getKind() == OPM_SameOperand; 1225 } 1226 1227 void emitPredicateOpcodes(MatchTable &Table, 1228 RuleMatcher &Rule) const override; 1229 1230 bool isIdentical(const PredicateMatcher &B) const override { 1231 return OperandPredicateMatcher::isIdentical(B) && 1232 OrigOpIdx == cast<SameOperandMatcher>(&B)->OrigOpIdx && 1233 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName; 1234 } 1235 }; 1236 1237 /// Generates code to check that an operand is a particular LLT. 1238 class LLTOperandMatcher : public OperandPredicateMatcher { 1239 protected: 1240 LLTCodeGen Ty; 1241 1242 public: 1243 static std::map<LLTCodeGen, unsigned> TypeIDValues; 1244 1245 static void initTypeIDValuesMap() { 1246 TypeIDValues.clear(); 1247 1248 unsigned ID = 0; 1249 for (const LLTCodeGen &LLTy : KnownTypes) 1250 TypeIDValues[LLTy] = ID++; 1251 } 1252 1253 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) 1254 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { 1255 KnownTypes.insert(Ty); 1256 } 1257 1258 static bool classof(const PredicateMatcher *P) { 1259 return P->getKind() == OPM_LLT; 1260 } 1261 bool isIdentical(const PredicateMatcher &B) const override { 1262 return OperandPredicateMatcher::isIdentical(B) && 1263 Ty == cast<LLTOperandMatcher>(&B)->Ty; 1264 } 1265 MatchTableRecord getValue() const override { 1266 const auto VI = TypeIDValues.find(Ty); 1267 if (VI == TypeIDValues.end()) 1268 return MatchTable::NamedValue(getTy().getCxxEnumValue()); 1269 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); 1270 } 1271 bool hasValue() const override { 1272 if (TypeIDValues.size() != KnownTypes.size()) 1273 initTypeIDValuesMap(); 1274 return TypeIDValues.count(Ty); 1275 } 1276 1277 LLTCodeGen getTy() const { return Ty; } 1278 1279 void emitPredicateOpcodes(MatchTable &Table, 1280 RuleMatcher &Rule) const override { 1281 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") 1282 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1283 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") 1284 << getValue() << MatchTable::LineBreak; 1285 } 1286 }; 1287 1288 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues; 1289 1290 /// Generates code to check that an operand is a pointer to any address space. 1291 /// 1292 /// In SelectionDAG, the types did not describe pointers or address spaces. As a 1293 /// result, iN is used to describe a pointer of N bits to any address space and 1294 /// PatFrag predicates are typically used to constrain the address space. There's 1295 /// no reliable means to derive the missing type information from the pattern so 1296 /// imported rules must test the components of a pointer separately. 1297 /// 1298 /// If SizeInBits is zero, then the pointer size will be obtained from the 1299 /// subtarget. 1300 class PointerToAnyOperandMatcher : public OperandPredicateMatcher { 1301 protected: 1302 unsigned SizeInBits; 1303 1304 public: 1305 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1306 unsigned SizeInBits) 1307 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), 1308 SizeInBits(SizeInBits) {} 1309 1310 static bool classof(const PredicateMatcher *P) { 1311 return P->getKind() == OPM_PointerToAny; 1312 } 1313 1314 bool isIdentical(const PredicateMatcher &B) const override { 1315 return OperandPredicateMatcher::isIdentical(B) && 1316 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits; 1317 } 1318 1319 void emitPredicateOpcodes(MatchTable &Table, 1320 RuleMatcher &Rule) const override { 1321 Table << MatchTable::Opcode("GIM_CheckPointerToAny") 1322 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1323 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1324 << MatchTable::Comment("SizeInBits") 1325 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; 1326 } 1327 }; 1328 1329 /// Generates code to record named operand in RecordedOperands list at StoreIdx. 1330 /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as 1331 /// an argument to predicate's c++ code once all operands have been matched. 1332 class RecordNamedOperandMatcher : public OperandPredicateMatcher { 1333 protected: 1334 unsigned StoreIdx; 1335 std::string Name; 1336 1337 public: 1338 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1339 unsigned StoreIdx, StringRef Name) 1340 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx), 1341 StoreIdx(StoreIdx), Name(Name) {} 1342 1343 static bool classof(const PredicateMatcher *P) { 1344 return P->getKind() == OPM_RecordNamedOperand; 1345 } 1346 1347 bool isIdentical(const PredicateMatcher &B) const override { 1348 return OperandPredicateMatcher::isIdentical(B) && 1349 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx && 1350 Name == cast<RecordNamedOperandMatcher>(&B)->Name; 1351 } 1352 1353 void emitPredicateOpcodes(MatchTable &Table, 1354 RuleMatcher &Rule) const override { 1355 Table << MatchTable::Opcode("GIM_RecordNamedOperand") 1356 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1357 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1358 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx) 1359 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak; 1360 } 1361 }; 1362 1363 /// Generates code to check that an operand is a particular target constant. 1364 class ComplexPatternOperandMatcher : public OperandPredicateMatcher { 1365 protected: 1366 const OperandMatcher &Operand; 1367 const Record &TheDef; 1368 1369 unsigned getAllocatedTemporariesBaseID() const; 1370 1371 public: 1372 bool isIdentical(const PredicateMatcher &B) const override { return false; } 1373 1374 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1375 const OperandMatcher &Operand, 1376 const Record &TheDef) 1377 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), 1378 Operand(Operand), TheDef(TheDef) {} 1379 1380 static bool classof(const PredicateMatcher *P) { 1381 return P->getKind() == OPM_ComplexPattern; 1382 } 1383 1384 void emitPredicateOpcodes(MatchTable &Table, 1385 RuleMatcher &Rule) const override { 1386 unsigned ID = getAllocatedTemporariesBaseID(); 1387 Table << MatchTable::Opcode("GIM_CheckComplexPattern") 1388 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1389 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1390 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) 1391 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) 1392 << MatchTable::LineBreak; 1393 } 1394 1395 unsigned countRendererFns() const override { 1396 return 1; 1397 } 1398 }; 1399 1400 /// Generates code to check that an operand is in a particular register bank. 1401 class RegisterBankOperandMatcher : public OperandPredicateMatcher { 1402 protected: 1403 const CodeGenRegisterClass &RC; 1404 1405 public: 1406 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1407 const CodeGenRegisterClass &RC) 1408 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} 1409 1410 bool isIdentical(const PredicateMatcher &B) const override { 1411 return OperandPredicateMatcher::isIdentical(B) && 1412 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef(); 1413 } 1414 1415 static bool classof(const PredicateMatcher *P) { 1416 return P->getKind() == OPM_RegBank; 1417 } 1418 1419 void emitPredicateOpcodes(MatchTable &Table, 1420 RuleMatcher &Rule) const override { 1421 Table << MatchTable::Opcode("GIM_CheckRegBankForClass") 1422 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1423 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1424 << MatchTable::Comment("RC") 1425 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 1426 << MatchTable::LineBreak; 1427 } 1428 }; 1429 1430 /// Generates code to check that an operand is a basic block. 1431 class MBBOperandMatcher : public OperandPredicateMatcher { 1432 public: 1433 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1434 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} 1435 1436 static bool classof(const PredicateMatcher *P) { 1437 return P->getKind() == OPM_MBB; 1438 } 1439 1440 void emitPredicateOpcodes(MatchTable &Table, 1441 RuleMatcher &Rule) const override { 1442 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") 1443 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1444 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1445 } 1446 }; 1447 1448 class ImmOperandMatcher : public OperandPredicateMatcher { 1449 public: 1450 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) 1451 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} 1452 1453 static bool classof(const PredicateMatcher *P) { 1454 return P->getKind() == IPM_Imm; 1455 } 1456 1457 void emitPredicateOpcodes(MatchTable &Table, 1458 RuleMatcher &Rule) const override { 1459 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") 1460 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") 1461 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; 1462 } 1463 }; 1464 1465 /// Generates code to check that an operand is a G_CONSTANT with a particular 1466 /// int. 1467 class ConstantIntOperandMatcher : public OperandPredicateMatcher { 1468 protected: 1469 int64_t Value; 1470 1471 public: 1472 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1473 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} 1474 1475 bool isIdentical(const PredicateMatcher &B) const override { 1476 return OperandPredicateMatcher::isIdentical(B) && 1477 Value == cast<ConstantIntOperandMatcher>(&B)->Value; 1478 } 1479 1480 static bool classof(const PredicateMatcher *P) { 1481 return P->getKind() == OPM_Int; 1482 } 1483 1484 void emitPredicateOpcodes(MatchTable &Table, 1485 RuleMatcher &Rule) const override { 1486 Table << MatchTable::Opcode("GIM_CheckConstantInt") 1487 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1488 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1489 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1490 } 1491 }; 1492 1493 /// Generates code to check that an operand is a raw int (where MO.isImm() or 1494 /// MO.isCImm() is true). 1495 class LiteralIntOperandMatcher : public OperandPredicateMatcher { 1496 protected: 1497 int64_t Value; 1498 1499 public: 1500 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) 1501 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), 1502 Value(Value) {} 1503 1504 bool isIdentical(const PredicateMatcher &B) const override { 1505 return OperandPredicateMatcher::isIdentical(B) && 1506 Value == cast<LiteralIntOperandMatcher>(&B)->Value; 1507 } 1508 1509 static bool classof(const PredicateMatcher *P) { 1510 return P->getKind() == OPM_LiteralInt; 1511 } 1512 1513 void emitPredicateOpcodes(MatchTable &Table, 1514 RuleMatcher &Rule) const override { 1515 Table << MatchTable::Opcode("GIM_CheckLiteralInt") 1516 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1517 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1518 << MatchTable::IntValue(Value) << MatchTable::LineBreak; 1519 } 1520 }; 1521 1522 /// Generates code to check that an operand is an CmpInst predicate 1523 class CmpPredicateOperandMatcher : public OperandPredicateMatcher { 1524 protected: 1525 std::string PredName; 1526 1527 public: 1528 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1529 std::string P) 1530 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} 1531 1532 bool isIdentical(const PredicateMatcher &B) const override { 1533 return OperandPredicateMatcher::isIdentical(B) && 1534 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName; 1535 } 1536 1537 static bool classof(const PredicateMatcher *P) { 1538 return P->getKind() == OPM_CmpPredicate; 1539 } 1540 1541 void emitPredicateOpcodes(MatchTable &Table, 1542 RuleMatcher &Rule) const override { 1543 Table << MatchTable::Opcode("GIM_CheckCmpPredicate") 1544 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1545 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1546 << MatchTable::Comment("Predicate") 1547 << MatchTable::NamedValue("CmpInst", PredName) 1548 << MatchTable::LineBreak; 1549 } 1550 }; 1551 1552 /// Generates code to check that an operand is an intrinsic ID. 1553 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { 1554 protected: 1555 const CodeGenIntrinsic *II; 1556 1557 public: 1558 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 1559 const CodeGenIntrinsic *II) 1560 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} 1561 1562 bool isIdentical(const PredicateMatcher &B) const override { 1563 return OperandPredicateMatcher::isIdentical(B) && 1564 II == cast<IntrinsicIDOperandMatcher>(&B)->II; 1565 } 1566 1567 static bool classof(const PredicateMatcher *P) { 1568 return P->getKind() == OPM_IntrinsicID; 1569 } 1570 1571 void emitPredicateOpcodes(MatchTable &Table, 1572 RuleMatcher &Rule) const override { 1573 Table << MatchTable::Opcode("GIM_CheckIntrinsicID") 1574 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1575 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 1576 << MatchTable::NamedValue("Intrinsic::" + II->EnumName) 1577 << MatchTable::LineBreak; 1578 } 1579 }; 1580 1581 /// Generates code to check that this operand is an immediate whose value meets 1582 /// an immediate predicate. 1583 class OperandImmPredicateMatcher : public OperandPredicateMatcher { 1584 protected: 1585 TreePredicateFn Predicate; 1586 1587 public: 1588 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx, 1589 const TreePredicateFn &Predicate) 1590 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx), 1591 Predicate(Predicate) {} 1592 1593 bool isIdentical(const PredicateMatcher &B) const override { 1594 return OperandPredicateMatcher::isIdentical(B) && 1595 Predicate.getOrigPatFragRecord() == 1596 cast<OperandImmPredicateMatcher>(&B) 1597 ->Predicate.getOrigPatFragRecord(); 1598 } 1599 1600 static bool classof(const PredicateMatcher *P) { 1601 return P->getKind() == IPM_ImmPredicate; 1602 } 1603 1604 void emitPredicateOpcodes(MatchTable &Table, 1605 RuleMatcher &Rule) const override { 1606 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate") 1607 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1608 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx) 1609 << MatchTable::Comment("Predicate") 1610 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1611 << MatchTable::LineBreak; 1612 } 1613 }; 1614 1615 /// Generates code to check that a set of predicates match for a particular 1616 /// operand. 1617 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> { 1618 protected: 1619 InstructionMatcher &Insn; 1620 unsigned OpIdx; 1621 std::string SymbolicName; 1622 1623 /// The index of the first temporary variable allocated to this operand. The 1624 /// number of allocated temporaries can be found with 1625 /// countRendererFns(). 1626 unsigned AllocatedTemporariesBaseID; 1627 1628 public: 1629 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, 1630 const std::string &SymbolicName, 1631 unsigned AllocatedTemporariesBaseID) 1632 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), 1633 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} 1634 1635 bool hasSymbolicName() const { return !SymbolicName.empty(); } 1636 StringRef getSymbolicName() const { return SymbolicName; } 1637 void setSymbolicName(StringRef Name) { 1638 assert(SymbolicName.empty() && "Operand already has a symbolic name"); 1639 SymbolicName = std::string(Name); 1640 } 1641 1642 /// Construct a new operand predicate and add it to the matcher. 1643 template <class Kind, class... Args> 1644 Optional<Kind *> addPredicate(Args &&... args) { 1645 if (isSameAsAnotherOperand()) 1646 return None; 1647 Predicates.emplace_back(std::make_unique<Kind>( 1648 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...)); 1649 return static_cast<Kind *>(Predicates.back().get()); 1650 } 1651 1652 unsigned getOpIdx() const { return OpIdx; } 1653 unsigned getInsnVarID() const; 1654 1655 std::string getOperandExpr(unsigned InsnVarID) const { 1656 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + 1657 llvm::to_string(OpIdx) + ")"; 1658 } 1659 1660 InstructionMatcher &getInstructionMatcher() const { return Insn; } 1661 1662 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1663 bool OperandIsAPointer); 1664 1665 /// Emit MatchTable opcodes that test whether the instruction named in 1666 /// InsnVarID matches all the predicates and all the operands. 1667 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 1668 if (!Optimized) { 1669 std::string Comment; 1670 raw_string_ostream CommentOS(Comment); 1671 CommentOS << "MIs[" << getInsnVarID() << "] "; 1672 if (SymbolicName.empty()) 1673 CommentOS << "Operand " << OpIdx; 1674 else 1675 CommentOS << SymbolicName; 1676 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak; 1677 } 1678 1679 emitPredicateListOpcodes(Table, Rule); 1680 } 1681 1682 /// Compare the priority of this object and B. 1683 /// 1684 /// Returns true if this object is more important than B. 1685 bool isHigherPriorityThan(OperandMatcher &B) { 1686 // Operand matchers involving more predicates have higher priority. 1687 if (predicates_size() > B.predicates_size()) 1688 return true; 1689 if (predicates_size() < B.predicates_size()) 1690 return false; 1691 1692 // This assumes that predicates are added in a consistent order. 1693 for (auto &&Predicate : zip(predicates(), B.predicates())) { 1694 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) 1695 return true; 1696 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) 1697 return false; 1698 } 1699 1700 return false; 1701 }; 1702 1703 /// Report the maximum number of temporary operands needed by the operand 1704 /// matcher. 1705 unsigned countRendererFns() { 1706 return std::accumulate( 1707 predicates().begin(), predicates().end(), 0, 1708 [](unsigned A, 1709 const std::unique_ptr<OperandPredicateMatcher> &Predicate) { 1710 return A + Predicate->countRendererFns(); 1711 }); 1712 } 1713 1714 unsigned getAllocatedTemporariesBaseID() const { 1715 return AllocatedTemporariesBaseID; 1716 } 1717 1718 bool isSameAsAnotherOperand() { 1719 for (const auto &Predicate : predicates()) 1720 if (isa<SameOperandMatcher>(Predicate)) 1721 return true; 1722 return false; 1723 } 1724 }; 1725 1726 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, 1727 bool OperandIsAPointer) { 1728 if (!VTy.isMachineValueType()) 1729 return failedImport("unsupported typeset"); 1730 1731 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { 1732 addPredicate<PointerToAnyOperandMatcher>(0); 1733 return Error::success(); 1734 } 1735 1736 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); 1737 if (!OpTyOrNone) 1738 return failedImport("unsupported type"); 1739 1740 if (OperandIsAPointer) 1741 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits()); 1742 else if (VTy.isPointer()) 1743 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(), 1744 OpTyOrNone->get().getSizeInBits())); 1745 else 1746 addPredicate<LLTOperandMatcher>(*OpTyOrNone); 1747 return Error::success(); 1748 } 1749 1750 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { 1751 return Operand.getAllocatedTemporariesBaseID(); 1752 } 1753 1754 /// Generates code to check a predicate on an instruction. 1755 /// 1756 /// Typical predicates include: 1757 /// * The opcode of the instruction is a particular value. 1758 /// * The nsw/nuw flag is/isn't set. 1759 class InstructionPredicateMatcher : public PredicateMatcher { 1760 public: 1761 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) 1762 : PredicateMatcher(Kind, InsnVarID) {} 1763 virtual ~InstructionPredicateMatcher() {} 1764 1765 /// Compare the priority of this object and B. 1766 /// 1767 /// Returns true if this object is more important than B. 1768 virtual bool 1769 isHigherPriorityThan(const InstructionPredicateMatcher &B) const { 1770 return Kind < B.Kind; 1771 }; 1772 }; 1773 1774 template <> 1775 std::string 1776 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const { 1777 return "No instruction predicates"; 1778 } 1779 1780 /// Generates code to check the opcode of an instruction. 1781 class InstructionOpcodeMatcher : public InstructionPredicateMatcher { 1782 protected: 1783 // Allow matching one to several, similar opcodes that share properties. This 1784 // is to handle patterns where one SelectionDAG operation maps to multiple 1785 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first 1786 // is treated as the canonical opcode. 1787 SmallVector<const CodeGenInstruction *, 2> Insts; 1788 1789 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues; 1790 1791 1792 MatchTableRecord getInstValue(const CodeGenInstruction *I) const { 1793 const auto VI = OpcodeValues.find(I); 1794 if (VI != OpcodeValues.end()) 1795 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1796 VI->second); 1797 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1798 } 1799 1800 public: 1801 static void initOpcodeValuesMap(const CodeGenTarget &Target) { 1802 OpcodeValues.clear(); 1803 1804 unsigned OpcodeValue = 0; 1805 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) 1806 OpcodeValues[I] = OpcodeValue++; 1807 } 1808 1809 InstructionOpcodeMatcher(unsigned InsnVarID, 1810 ArrayRef<const CodeGenInstruction *> I) 1811 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), 1812 Insts(I.begin(), I.end()) { 1813 assert((Insts.size() == 1 || Insts.size() == 2) && 1814 "unexpected number of opcode alternatives"); 1815 } 1816 1817 static bool classof(const PredicateMatcher *P) { 1818 return P->getKind() == IPM_Opcode; 1819 } 1820 1821 bool isIdentical(const PredicateMatcher &B) const override { 1822 return InstructionPredicateMatcher::isIdentical(B) && 1823 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts; 1824 } 1825 1826 bool hasValue() const override { 1827 return Insts.size() == 1 && OpcodeValues.count(Insts[0]); 1828 } 1829 1830 // TODO: This is used for the SwitchMatcher optimization. We should be able to 1831 // return a list of the opcodes to match. 1832 MatchTableRecord getValue() const override { 1833 assert(Insts.size() == 1); 1834 1835 const CodeGenInstruction *I = Insts[0]; 1836 const auto VI = OpcodeValues.find(I); 1837 if (VI != OpcodeValues.end()) 1838 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), 1839 VI->second); 1840 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); 1841 } 1842 1843 void emitPredicateOpcodes(MatchTable &Table, 1844 RuleMatcher &Rule) const override { 1845 StringRef CheckType = Insts.size() == 1 ? 1846 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither"; 1847 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI") 1848 << MatchTable::IntValue(InsnVarID); 1849 1850 for (const CodeGenInstruction *I : Insts) 1851 Table << getInstValue(I); 1852 Table << MatchTable::LineBreak; 1853 } 1854 1855 /// Compare the priority of this object and B. 1856 /// 1857 /// Returns true if this object is more important than B. 1858 bool 1859 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { 1860 if (InstructionPredicateMatcher::isHigherPriorityThan(B)) 1861 return true; 1862 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) 1863 return false; 1864 1865 // Prioritize opcodes for cosmetic reasons in the generated source. Although 1866 // this is cosmetic at the moment, we may want to drive a similar ordering 1867 // using instruction frequency information to improve compile time. 1868 if (const InstructionOpcodeMatcher *BO = 1869 dyn_cast<InstructionOpcodeMatcher>(&B)) 1870 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName(); 1871 1872 return false; 1873 }; 1874 1875 bool isConstantInstruction() const { 1876 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT"; 1877 } 1878 1879 // The first opcode is the canonical opcode, and later are alternatives. 1880 StringRef getOpcode() const { 1881 return Insts[0]->TheDef->getName(); 1882 } 1883 1884 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() { 1885 return Insts; 1886 } 1887 1888 bool isVariadicNumOperands() const { 1889 // If one is variadic, they all should be. 1890 return Insts[0]->Operands.isVariadic; 1891 } 1892 1893 StringRef getOperandType(unsigned OpIdx) const { 1894 // Types expected to be uniform for all alternatives. 1895 return Insts[0]->Operands[OpIdx].OperandType; 1896 } 1897 }; 1898 1899 DenseMap<const CodeGenInstruction *, unsigned> 1900 InstructionOpcodeMatcher::OpcodeValues; 1901 1902 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { 1903 unsigned NumOperands = 0; 1904 1905 public: 1906 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) 1907 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), 1908 NumOperands(NumOperands) {} 1909 1910 static bool classof(const PredicateMatcher *P) { 1911 return P->getKind() == IPM_NumOperands; 1912 } 1913 1914 bool isIdentical(const PredicateMatcher &B) const override { 1915 return InstructionPredicateMatcher::isIdentical(B) && 1916 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands; 1917 } 1918 1919 void emitPredicateOpcodes(MatchTable &Table, 1920 RuleMatcher &Rule) const override { 1921 Table << MatchTable::Opcode("GIM_CheckNumOperands") 1922 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1923 << MatchTable::Comment("Expected") 1924 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; 1925 } 1926 }; 1927 1928 /// Generates code to check that this instruction is a constant whose value 1929 /// meets an immediate predicate. 1930 /// 1931 /// Immediates are slightly odd since they are typically used like an operand 1932 /// but are represented as an operator internally. We typically write simm8:$src 1933 /// in a tablegen pattern, but this is just syntactic sugar for 1934 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes 1935 /// that will be matched and the predicate (which is attached to the imm 1936 /// operator) that will be tested. In SelectionDAG this describes a 1937 /// ConstantSDNode whose internal value will be tested using the simm8 predicate. 1938 /// 1939 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In 1940 /// this representation, the immediate could be tested with an 1941 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a 1942 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but 1943 /// there are two implementation issues with producing that matcher 1944 /// configuration from the SelectionDAG pattern: 1945 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that 1946 /// were we to sink the immediate predicate to the operand we would have to 1947 /// have two partial implementations of PatFrag support, one for immediates 1948 /// and one for non-immediates. 1949 /// * At the point we handle the predicate, the OperandMatcher hasn't been 1950 /// created yet. If we were to sink the predicate to the OperandMatcher we 1951 /// would also have to complicate (or duplicate) the code that descends and 1952 /// creates matchers for the subtree. 1953 /// Overall, it's simpler to handle it in the place it was found. 1954 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { 1955 protected: 1956 TreePredicateFn Predicate; 1957 1958 public: 1959 InstructionImmPredicateMatcher(unsigned InsnVarID, 1960 const TreePredicateFn &Predicate) 1961 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), 1962 Predicate(Predicate) {} 1963 1964 bool isIdentical(const PredicateMatcher &B) const override { 1965 return InstructionPredicateMatcher::isIdentical(B) && 1966 Predicate.getOrigPatFragRecord() == 1967 cast<InstructionImmPredicateMatcher>(&B) 1968 ->Predicate.getOrigPatFragRecord(); 1969 } 1970 1971 static bool classof(const PredicateMatcher *P) { 1972 return P->getKind() == IPM_ImmPredicate; 1973 } 1974 1975 void emitPredicateOpcodes(MatchTable &Table, 1976 RuleMatcher &Rule) const override { 1977 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate)) 1978 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 1979 << MatchTable::Comment("Predicate") 1980 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 1981 << MatchTable::LineBreak; 1982 } 1983 }; 1984 1985 /// Generates code to check that a memory instruction has a atomic ordering 1986 /// MachineMemoryOperand. 1987 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { 1988 public: 1989 enum AOComparator { 1990 AO_Exactly, 1991 AO_OrStronger, 1992 AO_WeakerThan, 1993 }; 1994 1995 protected: 1996 StringRef Order; 1997 AOComparator Comparator; 1998 1999 public: 2000 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, 2001 AOComparator Comparator = AO_Exactly) 2002 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), 2003 Order(Order), Comparator(Comparator) {} 2004 2005 static bool classof(const PredicateMatcher *P) { 2006 return P->getKind() == IPM_AtomicOrderingMMO; 2007 } 2008 2009 bool isIdentical(const PredicateMatcher &B) const override { 2010 if (!InstructionPredicateMatcher::isIdentical(B)) 2011 return false; 2012 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B); 2013 return Order == R.Order && Comparator == R.Comparator; 2014 } 2015 2016 void emitPredicateOpcodes(MatchTable &Table, 2017 RuleMatcher &Rule) const override { 2018 StringRef Opcode = "GIM_CheckAtomicOrdering"; 2019 2020 if (Comparator == AO_OrStronger) 2021 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; 2022 if (Comparator == AO_WeakerThan) 2023 Opcode = "GIM_CheckAtomicOrderingWeakerThan"; 2024 2025 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") 2026 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") 2027 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) 2028 << MatchTable::LineBreak; 2029 } 2030 }; 2031 2032 /// Generates code to check that the size of an MMO is exactly N bytes. 2033 class MemorySizePredicateMatcher : public InstructionPredicateMatcher { 2034 protected: 2035 unsigned MMOIdx; 2036 uint64_t Size; 2037 2038 public: 2039 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) 2040 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), 2041 MMOIdx(MMOIdx), Size(Size) {} 2042 2043 static bool classof(const PredicateMatcher *P) { 2044 return P->getKind() == IPM_MemoryLLTSize; 2045 } 2046 bool isIdentical(const PredicateMatcher &B) const override { 2047 return InstructionPredicateMatcher::isIdentical(B) && 2048 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx && 2049 Size == cast<MemorySizePredicateMatcher>(&B)->Size; 2050 } 2051 2052 void emitPredicateOpcodes(MatchTable &Table, 2053 RuleMatcher &Rule) const override { 2054 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") 2055 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2056 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2057 << MatchTable::Comment("Size") << MatchTable::IntValue(Size) 2058 << MatchTable::LineBreak; 2059 } 2060 }; 2061 2062 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { 2063 protected: 2064 unsigned MMOIdx; 2065 SmallVector<unsigned, 4> AddrSpaces; 2066 2067 public: 2068 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2069 ArrayRef<unsigned> AddrSpaces) 2070 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), 2071 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} 2072 2073 static bool classof(const PredicateMatcher *P) { 2074 return P->getKind() == IPM_MemoryAddressSpace; 2075 } 2076 bool isIdentical(const PredicateMatcher &B) const override { 2077 if (!InstructionPredicateMatcher::isIdentical(B)) 2078 return false; 2079 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B); 2080 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; 2081 } 2082 2083 void emitPredicateOpcodes(MatchTable &Table, 2084 RuleMatcher &Rule) const override { 2085 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") 2086 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2087 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2088 // Encode number of address spaces to expect. 2089 << MatchTable::Comment("NumAddrSpace") 2090 << MatchTable::IntValue(AddrSpaces.size()); 2091 for (unsigned AS : AddrSpaces) 2092 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); 2093 2094 Table << MatchTable::LineBreak; 2095 } 2096 }; 2097 2098 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { 2099 protected: 2100 unsigned MMOIdx; 2101 int MinAlign; 2102 2103 public: 2104 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2105 int MinAlign) 2106 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), 2107 MMOIdx(MMOIdx), MinAlign(MinAlign) { 2108 assert(MinAlign > 0); 2109 } 2110 2111 static bool classof(const PredicateMatcher *P) { 2112 return P->getKind() == IPM_MemoryAlignment; 2113 } 2114 2115 bool isIdentical(const PredicateMatcher &B) const override { 2116 if (!InstructionPredicateMatcher::isIdentical(B)) 2117 return false; 2118 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B); 2119 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; 2120 } 2121 2122 void emitPredicateOpcodes(MatchTable &Table, 2123 RuleMatcher &Rule) const override { 2124 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") 2125 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2126 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2127 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) 2128 << MatchTable::LineBreak; 2129 } 2130 }; 2131 2132 /// Generates code to check that the size of an MMO is less-than, equal-to, or 2133 /// greater than a given LLT. 2134 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { 2135 public: 2136 enum RelationKind { 2137 GreaterThan, 2138 EqualTo, 2139 LessThan, 2140 }; 2141 2142 protected: 2143 unsigned MMOIdx; 2144 RelationKind Relation; 2145 unsigned OpIdx; 2146 2147 public: 2148 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, 2149 enum RelationKind Relation, 2150 unsigned OpIdx) 2151 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), 2152 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} 2153 2154 static bool classof(const PredicateMatcher *P) { 2155 return P->getKind() == IPM_MemoryVsLLTSize; 2156 } 2157 bool isIdentical(const PredicateMatcher &B) const override { 2158 return InstructionPredicateMatcher::isIdentical(B) && 2159 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx && 2160 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation && 2161 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx; 2162 } 2163 2164 void emitPredicateOpcodes(MatchTable &Table, 2165 RuleMatcher &Rule) const override { 2166 Table << MatchTable::Opcode(Relation == EqualTo 2167 ? "GIM_CheckMemorySizeEqualToLLT" 2168 : Relation == GreaterThan 2169 ? "GIM_CheckMemorySizeGreaterThanLLT" 2170 : "GIM_CheckMemorySizeLessThanLLT") 2171 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2172 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) 2173 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 2174 << MatchTable::LineBreak; 2175 } 2176 }; 2177 2178 // Matcher for immAllOnesV/immAllZerosV 2179 class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher { 2180 public: 2181 enum SplatKind { 2182 AllZeros, 2183 AllOnes 2184 }; 2185 2186 private: 2187 SplatKind Kind; 2188 2189 public: 2190 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K) 2191 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {} 2192 2193 static bool classof(const PredicateMatcher *P) { 2194 return P->getKind() == IPM_VectorSplatImm; 2195 } 2196 2197 bool isIdentical(const PredicateMatcher &B) const override { 2198 return InstructionPredicateMatcher::isIdentical(B) && 2199 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind; 2200 } 2201 2202 void emitPredicateOpcodes(MatchTable &Table, 2203 RuleMatcher &Rule) const override { 2204 if (Kind == AllOnes) 2205 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes"); 2206 else 2207 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros"); 2208 2209 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID); 2210 Table << MatchTable::LineBreak; 2211 } 2212 }; 2213 2214 /// Generates code to check an arbitrary C++ instruction predicate. 2215 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { 2216 protected: 2217 TreePredicateFn Predicate; 2218 2219 public: 2220 GenericInstructionPredicateMatcher(unsigned InsnVarID, 2221 TreePredicateFn Predicate) 2222 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), 2223 Predicate(Predicate) {} 2224 2225 static bool classof(const InstructionPredicateMatcher *P) { 2226 return P->getKind() == IPM_GenericPredicate; 2227 } 2228 bool isIdentical(const PredicateMatcher &B) const override { 2229 return InstructionPredicateMatcher::isIdentical(B) && 2230 Predicate == 2231 static_cast<const GenericInstructionPredicateMatcher &>(B) 2232 .Predicate; 2233 } 2234 void emitPredicateOpcodes(MatchTable &Table, 2235 RuleMatcher &Rule) const override { 2236 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") 2237 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 2238 << MatchTable::Comment("FnId") 2239 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) 2240 << MatchTable::LineBreak; 2241 } 2242 }; 2243 2244 /// Generates code to check that a set of predicates and operands match for a 2245 /// particular instruction. 2246 /// 2247 /// Typical predicates include: 2248 /// * Has a specific opcode. 2249 /// * Has an nsw/nuw flag or doesn't. 2250 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> { 2251 protected: 2252 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec; 2253 2254 RuleMatcher &Rule; 2255 2256 /// The operands to match. All rendered operands must be present even if the 2257 /// condition is always true. 2258 OperandVec Operands; 2259 bool NumOperandsCheck = true; 2260 2261 std::string SymbolicName; 2262 unsigned InsnVarID; 2263 2264 /// PhysRegInputs - List list has an entry for each explicitly specified 2265 /// physreg input to the pattern. The first elt is the Register node, the 2266 /// second is the recorded slot number the input pattern match saved it in. 2267 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs; 2268 2269 public: 2270 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName, 2271 bool NumOpsCheck = true) 2272 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) { 2273 // We create a new instruction matcher. 2274 // Get a new ID for that instruction. 2275 InsnVarID = Rule.implicitlyDefineInsnVar(*this); 2276 } 2277 2278 /// Construct a new instruction predicate and add it to the matcher. 2279 template <class Kind, class... Args> 2280 Optional<Kind *> addPredicate(Args &&... args) { 2281 Predicates.emplace_back( 2282 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...)); 2283 return static_cast<Kind *>(Predicates.back().get()); 2284 } 2285 2286 RuleMatcher &getRuleMatcher() const { return Rule; } 2287 2288 unsigned getInsnVarID() const { return InsnVarID; } 2289 2290 /// Add an operand to the matcher. 2291 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, 2292 unsigned AllocatedTemporariesBaseID) { 2293 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, 2294 AllocatedTemporariesBaseID)); 2295 if (!SymbolicName.empty()) 2296 Rule.defineOperand(SymbolicName, *Operands.back()); 2297 2298 return *Operands.back(); 2299 } 2300 2301 OperandMatcher &getOperand(unsigned OpIdx) { 2302 auto I = llvm::find_if(Operands, 2303 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) { 2304 return X->getOpIdx() == OpIdx; 2305 }); 2306 if (I != Operands.end()) 2307 return **I; 2308 llvm_unreachable("Failed to lookup operand"); 2309 } 2310 2311 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, 2312 unsigned TempOpIdx) { 2313 assert(SymbolicName.empty()); 2314 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); 2315 Operands.emplace_back(OM); 2316 Rule.definePhysRegOperand(Reg, *OM); 2317 PhysRegInputs.emplace_back(Reg, OpIdx); 2318 return *OM; 2319 } 2320 2321 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const { 2322 return PhysRegInputs; 2323 } 2324 2325 StringRef getSymbolicName() const { return SymbolicName; } 2326 unsigned getNumOperands() const { return Operands.size(); } 2327 OperandVec::iterator operands_begin() { return Operands.begin(); } 2328 OperandVec::iterator operands_end() { return Operands.end(); } 2329 iterator_range<OperandVec::iterator> operands() { 2330 return make_range(operands_begin(), operands_end()); 2331 } 2332 OperandVec::const_iterator operands_begin() const { return Operands.begin(); } 2333 OperandVec::const_iterator operands_end() const { return Operands.end(); } 2334 iterator_range<OperandVec::const_iterator> operands() const { 2335 return make_range(operands_begin(), operands_end()); 2336 } 2337 bool operands_empty() const { return Operands.empty(); } 2338 2339 void pop_front() { Operands.erase(Operands.begin()); } 2340 2341 void optimize(); 2342 2343 /// Emit MatchTable opcodes that test whether the instruction named in 2344 /// InsnVarName matches all the predicates and all the operands. 2345 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { 2346 if (NumOperandsCheck) 2347 InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) 2348 .emitPredicateOpcodes(Table, Rule); 2349 2350 // First emit all instruction level predicates need to be verified before we 2351 // can verify operands. 2352 emitFilteredPredicateListOpcodes( 2353 [](const PredicateMatcher &P) { 2354 return !P.dependsOnOperands(); 2355 }, Table, Rule); 2356 2357 // Emit all operand constraints. 2358 for (const auto &Operand : Operands) 2359 Operand->emitPredicateOpcodes(Table, Rule); 2360 2361 // All of the tablegen defined predicates should now be matched. Now emit 2362 // any custom predicates that rely on all generated checks. 2363 emitFilteredPredicateListOpcodes( 2364 [](const PredicateMatcher &P) { 2365 return P.dependsOnOperands(); 2366 }, Table, Rule); 2367 } 2368 2369 /// Compare the priority of this object and B. 2370 /// 2371 /// Returns true if this object is more important than B. 2372 bool isHigherPriorityThan(InstructionMatcher &B) { 2373 // Instruction matchers involving more operands have higher priority. 2374 if (Operands.size() > B.Operands.size()) 2375 return true; 2376 if (Operands.size() < B.Operands.size()) 2377 return false; 2378 2379 for (auto &&P : zip(predicates(), B.predicates())) { 2380 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get()); 2381 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get()); 2382 if (L->isHigherPriorityThan(*R)) 2383 return true; 2384 if (R->isHigherPriorityThan(*L)) 2385 return false; 2386 } 2387 2388 for (auto Operand : zip(Operands, B.Operands)) { 2389 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) 2390 return true; 2391 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) 2392 return false; 2393 } 2394 2395 return false; 2396 }; 2397 2398 /// Report the maximum number of temporary operands needed by the instruction 2399 /// matcher. 2400 unsigned countRendererFns() { 2401 return std::accumulate( 2402 predicates().begin(), predicates().end(), 0, 2403 [](unsigned A, 2404 const std::unique_ptr<PredicateMatcher> &Predicate) { 2405 return A + Predicate->countRendererFns(); 2406 }) + 2407 std::accumulate( 2408 Operands.begin(), Operands.end(), 0, 2409 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) { 2410 return A + Operand->countRendererFns(); 2411 }); 2412 } 2413 2414 InstructionOpcodeMatcher &getOpcodeMatcher() { 2415 for (auto &P : predicates()) 2416 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get())) 2417 return *OpMatcher; 2418 llvm_unreachable("Didn't find an opcode matcher"); 2419 } 2420 2421 bool isConstantInstruction() { 2422 return getOpcodeMatcher().isConstantInstruction(); 2423 } 2424 2425 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } 2426 }; 2427 2428 StringRef RuleMatcher::getOpcode() const { 2429 return Matchers.front()->getOpcode(); 2430 } 2431 2432 unsigned RuleMatcher::getNumOperands() const { 2433 return Matchers.front()->getNumOperands(); 2434 } 2435 2436 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { 2437 InstructionMatcher &InsnMatcher = *Matchers.front(); 2438 if (!InsnMatcher.predicates_empty()) 2439 if (const auto *TM = 2440 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin())) 2441 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) 2442 return TM->getTy(); 2443 return {}; 2444 } 2445 2446 /// Generates code to check that the operand is a register defined by an 2447 /// instruction that matches the given instruction matcher. 2448 /// 2449 /// For example, the pattern: 2450 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) 2451 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match 2452 /// the: 2453 /// (G_ADD $src1, $src2) 2454 /// subpattern. 2455 class InstructionOperandMatcher : public OperandPredicateMatcher { 2456 protected: 2457 std::unique_ptr<InstructionMatcher> InsnMatcher; 2458 2459 public: 2460 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, 2461 RuleMatcher &Rule, StringRef SymbolicName, 2462 bool NumOpsCheck = true) 2463 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), 2464 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {} 2465 2466 static bool classof(const PredicateMatcher *P) { 2467 return P->getKind() == OPM_Instruction; 2468 } 2469 2470 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } 2471 2472 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { 2473 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); 2474 Table << MatchTable::Opcode("GIM_RecordInsn") 2475 << MatchTable::Comment("DefineMI") 2476 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") 2477 << MatchTable::IntValue(getInsnVarID()) 2478 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) 2479 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") 2480 << MatchTable::LineBreak; 2481 } 2482 2483 void emitPredicateOpcodes(MatchTable &Table, 2484 RuleMatcher &Rule) const override { 2485 emitCaptureOpcodes(Table, Rule); 2486 InsnMatcher->emitPredicateOpcodes(Table, Rule); 2487 } 2488 2489 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { 2490 if (OperandPredicateMatcher::isHigherPriorityThan(B)) 2491 return true; 2492 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) 2493 return false; 2494 2495 if (const InstructionOperandMatcher *BP = 2496 dyn_cast<InstructionOperandMatcher>(&B)) 2497 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) 2498 return true; 2499 return false; 2500 } 2501 }; 2502 2503 void InstructionMatcher::optimize() { 2504 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash; 2505 const auto &OpcMatcher = getOpcodeMatcher(); 2506 2507 Stash.push_back(predicates_pop_front()); 2508 if (Stash.back().get() == &OpcMatcher) { 2509 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) 2510 Stash.emplace_back( 2511 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); 2512 NumOperandsCheck = false; 2513 2514 for (auto &OM : Operands) 2515 for (auto &OP : OM->predicates()) 2516 if (isa<IntrinsicIDOperandMatcher>(OP)) { 2517 Stash.push_back(std::move(OP)); 2518 OM->eraseNullPredicates(); 2519 break; 2520 } 2521 } 2522 2523 if (InsnVarID > 0) { 2524 assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); 2525 for (auto &OP : Operands[0]->predicates()) 2526 OP.reset(); 2527 Operands[0]->eraseNullPredicates(); 2528 } 2529 for (auto &OM : Operands) { 2530 for (auto &OP : OM->predicates()) 2531 if (isa<LLTOperandMatcher>(OP)) 2532 Stash.push_back(std::move(OP)); 2533 OM->eraseNullPredicates(); 2534 } 2535 while (!Stash.empty()) 2536 prependPredicate(Stash.pop_back_val()); 2537 } 2538 2539 //===- Actions ------------------------------------------------------------===// 2540 class OperandRenderer { 2541 public: 2542 enum RendererKind { 2543 OR_Copy, 2544 OR_CopyOrAddZeroReg, 2545 OR_CopySubReg, 2546 OR_CopyPhysReg, 2547 OR_CopyConstantAsImm, 2548 OR_CopyFConstantAsFPImm, 2549 OR_Imm, 2550 OR_SubRegIndex, 2551 OR_Register, 2552 OR_TempRegister, 2553 OR_ComplexPattern, 2554 OR_Custom, 2555 OR_CustomOperand 2556 }; 2557 2558 protected: 2559 RendererKind Kind; 2560 2561 public: 2562 OperandRenderer(RendererKind Kind) : Kind(Kind) {} 2563 virtual ~OperandRenderer() {} 2564 2565 RendererKind getKind() const { return Kind; } 2566 2567 virtual void emitRenderOpcodes(MatchTable &Table, 2568 RuleMatcher &Rule) const = 0; 2569 }; 2570 2571 /// A CopyRenderer emits code to copy a single operand from an existing 2572 /// instruction to the one being built. 2573 class CopyRenderer : public OperandRenderer { 2574 protected: 2575 unsigned NewInsnID; 2576 /// The name of the operand. 2577 const StringRef SymbolicName; 2578 2579 public: 2580 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) 2581 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), 2582 SymbolicName(SymbolicName) { 2583 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2584 } 2585 2586 static bool classof(const OperandRenderer *R) { 2587 return R->getKind() == OR_Copy; 2588 } 2589 2590 StringRef getSymbolicName() const { return SymbolicName; } 2591 2592 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2593 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2594 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2595 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2596 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2597 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2598 << MatchTable::IntValue(Operand.getOpIdx()) 2599 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2600 } 2601 }; 2602 2603 /// A CopyRenderer emits code to copy a virtual register to a specific physical 2604 /// register. 2605 class CopyPhysRegRenderer : public OperandRenderer { 2606 protected: 2607 unsigned NewInsnID; 2608 Record *PhysReg; 2609 2610 public: 2611 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) 2612 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), 2613 PhysReg(Reg) { 2614 assert(PhysReg); 2615 } 2616 2617 static bool classof(const OperandRenderer *R) { 2618 return R->getKind() == OR_CopyPhysReg; 2619 } 2620 2621 Record *getPhysReg() const { return PhysReg; } 2622 2623 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2624 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); 2625 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2626 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") 2627 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") 2628 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2629 << MatchTable::IntValue(Operand.getOpIdx()) 2630 << MatchTable::Comment(PhysReg->getName()) 2631 << MatchTable::LineBreak; 2632 } 2633 }; 2634 2635 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an 2636 /// existing instruction to the one being built. If the operand turns out to be 2637 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. 2638 class CopyOrAddZeroRegRenderer : public OperandRenderer { 2639 protected: 2640 unsigned NewInsnID; 2641 /// The name of the operand. 2642 const StringRef SymbolicName; 2643 const Record *ZeroRegisterDef; 2644 2645 public: 2646 CopyOrAddZeroRegRenderer(unsigned NewInsnID, 2647 StringRef SymbolicName, Record *ZeroRegisterDef) 2648 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), 2649 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { 2650 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); 2651 } 2652 2653 static bool classof(const OperandRenderer *R) { 2654 return R->getKind() == OR_CopyOrAddZeroReg; 2655 } 2656 2657 StringRef getSymbolicName() const { return SymbolicName; } 2658 2659 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2660 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2661 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2662 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") 2663 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2664 << MatchTable::Comment("OldInsnID") 2665 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2666 << MatchTable::IntValue(Operand.getOpIdx()) 2667 << MatchTable::NamedValue( 2668 (ZeroRegisterDef->getValue("Namespace") 2669 ? ZeroRegisterDef->getValueAsString("Namespace") 2670 : ""), 2671 ZeroRegisterDef->getName()) 2672 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2673 } 2674 }; 2675 2676 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to 2677 /// an extended immediate operand. 2678 class CopyConstantAsImmRenderer : public OperandRenderer { 2679 protected: 2680 unsigned NewInsnID; 2681 /// The name of the operand. 2682 const std::string SymbolicName; 2683 bool Signed; 2684 2685 public: 2686 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2687 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), 2688 SymbolicName(SymbolicName), Signed(true) {} 2689 2690 static bool classof(const OperandRenderer *R) { 2691 return R->getKind() == OR_CopyConstantAsImm; 2692 } 2693 2694 StringRef getSymbolicName() const { return SymbolicName; } 2695 2696 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2697 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2698 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2699 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" 2700 : "GIR_CopyConstantAsUImm") 2701 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2702 << MatchTable::Comment("OldInsnID") 2703 << MatchTable::IntValue(OldInsnVarID) 2704 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2705 } 2706 }; 2707 2708 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT 2709 /// instruction to an extended immediate operand. 2710 class CopyFConstantAsFPImmRenderer : public OperandRenderer { 2711 protected: 2712 unsigned NewInsnID; 2713 /// The name of the operand. 2714 const std::string SymbolicName; 2715 2716 public: 2717 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) 2718 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), 2719 SymbolicName(SymbolicName) {} 2720 2721 static bool classof(const OperandRenderer *R) { 2722 return R->getKind() == OR_CopyFConstantAsFPImm; 2723 } 2724 2725 StringRef getSymbolicName() const { return SymbolicName; } 2726 2727 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2728 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2729 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2730 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") 2731 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2732 << MatchTable::Comment("OldInsnID") 2733 << MatchTable::IntValue(OldInsnVarID) 2734 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2735 } 2736 }; 2737 2738 /// A CopySubRegRenderer emits code to copy a single register operand from an 2739 /// existing instruction to the one being built and indicate that only a 2740 /// subregister should be copied. 2741 class CopySubRegRenderer : public OperandRenderer { 2742 protected: 2743 unsigned NewInsnID; 2744 /// The name of the operand. 2745 const StringRef SymbolicName; 2746 /// The subregister to extract. 2747 const CodeGenSubRegIndex *SubReg; 2748 2749 public: 2750 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, 2751 const CodeGenSubRegIndex *SubReg) 2752 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), 2753 SymbolicName(SymbolicName), SubReg(SubReg) {} 2754 2755 static bool classof(const OperandRenderer *R) { 2756 return R->getKind() == OR_CopySubReg; 2757 } 2758 2759 StringRef getSymbolicName() const { return SymbolicName; } 2760 2761 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2762 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); 2763 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); 2764 Table << MatchTable::Opcode("GIR_CopySubReg") 2765 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) 2766 << MatchTable::Comment("OldInsnID") 2767 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") 2768 << MatchTable::IntValue(Operand.getOpIdx()) 2769 << MatchTable::Comment("SubRegIdx") 2770 << MatchTable::IntValue(SubReg->EnumValue) 2771 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2772 } 2773 }; 2774 2775 /// Adds a specific physical register to the instruction being built. 2776 /// This is typically useful for WZR/XZR on AArch64. 2777 class AddRegisterRenderer : public OperandRenderer { 2778 protected: 2779 unsigned InsnID; 2780 const Record *RegisterDef; 2781 bool IsDef; 2782 const CodeGenTarget &Target; 2783 2784 public: 2785 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target, 2786 const Record *RegisterDef, bool IsDef = false) 2787 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), 2788 IsDef(IsDef), Target(Target) {} 2789 2790 static bool classof(const OperandRenderer *R) { 2791 return R->getKind() == OR_Register; 2792 } 2793 2794 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2795 Table << MatchTable::Opcode("GIR_AddRegister") 2796 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID); 2797 if (RegisterDef->getName() != "zero_reg") { 2798 Table << MatchTable::NamedValue( 2799 (RegisterDef->getValue("Namespace") 2800 ? RegisterDef->getValueAsString("Namespace") 2801 : ""), 2802 RegisterDef->getName()); 2803 } else { 2804 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister"); 2805 } 2806 Table << MatchTable::Comment("AddRegisterRegFlags"); 2807 2808 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are 2809 // really needed for a physical register reference. We can pack the 2810 // register and flags in a single field. 2811 if (IsDef) 2812 Table << MatchTable::NamedValue("RegState::Define"); 2813 else 2814 Table << MatchTable::IntValue(0); 2815 Table << MatchTable::LineBreak; 2816 } 2817 }; 2818 2819 /// Adds a specific temporary virtual register to the instruction being built. 2820 /// This is used to chain instructions together when emitting multiple 2821 /// instructions. 2822 class TempRegRenderer : public OperandRenderer { 2823 protected: 2824 unsigned InsnID; 2825 unsigned TempRegID; 2826 const CodeGenSubRegIndex *SubRegIdx; 2827 bool IsDef; 2828 bool IsDead; 2829 2830 public: 2831 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false, 2832 const CodeGenSubRegIndex *SubReg = nullptr, 2833 bool IsDead = false) 2834 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), 2835 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {} 2836 2837 static bool classof(const OperandRenderer *R) { 2838 return R->getKind() == OR_TempRegister; 2839 } 2840 2841 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2842 if (SubRegIdx) { 2843 assert(!IsDef); 2844 Table << MatchTable::Opcode("GIR_AddTempSubRegister"); 2845 } else 2846 Table << MatchTable::Opcode("GIR_AddTempRegister"); 2847 2848 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2849 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 2850 << MatchTable::Comment("TempRegFlags"); 2851 2852 if (IsDef) { 2853 SmallString<32> RegFlags; 2854 RegFlags += "RegState::Define"; 2855 if (IsDead) 2856 RegFlags += "|RegState::Dead"; 2857 Table << MatchTable::NamedValue(RegFlags); 2858 } else 2859 Table << MatchTable::IntValue(0); 2860 2861 if (SubRegIdx) 2862 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName()); 2863 Table << MatchTable::LineBreak; 2864 } 2865 }; 2866 2867 /// Adds a specific immediate to the instruction being built. 2868 class ImmRenderer : public OperandRenderer { 2869 protected: 2870 unsigned InsnID; 2871 int64_t Imm; 2872 2873 public: 2874 ImmRenderer(unsigned InsnID, int64_t Imm) 2875 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} 2876 2877 static bool classof(const OperandRenderer *R) { 2878 return R->getKind() == OR_Imm; 2879 } 2880 2881 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2882 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2883 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") 2884 << MatchTable::IntValue(Imm) << MatchTable::LineBreak; 2885 } 2886 }; 2887 2888 /// Adds an enum value for a subreg index to the instruction being built. 2889 class SubRegIndexRenderer : public OperandRenderer { 2890 protected: 2891 unsigned InsnID; 2892 const CodeGenSubRegIndex *SubRegIdx; 2893 2894 public: 2895 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) 2896 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} 2897 2898 static bool classof(const OperandRenderer *R) { 2899 return R->getKind() == OR_SubRegIndex; 2900 } 2901 2902 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2903 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") 2904 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") 2905 << MatchTable::IntValue(SubRegIdx->EnumValue) 2906 << MatchTable::LineBreak; 2907 } 2908 }; 2909 2910 /// Adds operands by calling a renderer function supplied by the ComplexPattern 2911 /// matcher function. 2912 class RenderComplexPatternOperand : public OperandRenderer { 2913 private: 2914 unsigned InsnID; 2915 const Record &TheDef; 2916 /// The name of the operand. 2917 const StringRef SymbolicName; 2918 /// The renderer number. This must be unique within a rule since it's used to 2919 /// identify a temporary variable to hold the renderer function. 2920 unsigned RendererID; 2921 /// When provided, this is the suboperand of the ComplexPattern operand to 2922 /// render. Otherwise all the suboperands will be rendered. 2923 Optional<unsigned> SubOperand; 2924 2925 unsigned getNumOperands() const { 2926 return TheDef.getValueAsDag("Operands")->getNumArgs(); 2927 } 2928 2929 public: 2930 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, 2931 StringRef SymbolicName, unsigned RendererID, 2932 Optional<unsigned> SubOperand = None) 2933 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), 2934 SymbolicName(SymbolicName), RendererID(RendererID), 2935 SubOperand(SubOperand) {} 2936 2937 static bool classof(const OperandRenderer *R) { 2938 return R->getKind() == OR_ComplexPattern; 2939 } 2940 2941 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2942 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer" 2943 : "GIR_ComplexRenderer") 2944 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2945 << MatchTable::Comment("RendererID") 2946 << MatchTable::IntValue(RendererID); 2947 if (SubOperand.hasValue()) 2948 Table << MatchTable::Comment("SubOperand") 2949 << MatchTable::IntValue(SubOperand.getValue()); 2950 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2951 } 2952 }; 2953 2954 class CustomRenderer : public OperandRenderer { 2955 protected: 2956 unsigned InsnID; 2957 const Record &Renderer; 2958 /// The name of the operand. 2959 const std::string SymbolicName; 2960 2961 public: 2962 CustomRenderer(unsigned InsnID, const Record &Renderer, 2963 StringRef SymbolicName) 2964 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), 2965 SymbolicName(SymbolicName) {} 2966 2967 static bool classof(const OperandRenderer *R) { 2968 return R->getKind() == OR_Custom; 2969 } 2970 2971 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 2972 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); 2973 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); 2974 Table << MatchTable::Opcode("GIR_CustomRenderer") 2975 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 2976 << MatchTable::Comment("OldInsnID") 2977 << MatchTable::IntValue(OldInsnVarID) 2978 << MatchTable::Comment("Renderer") 2979 << MatchTable::NamedValue( 2980 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 2981 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 2982 } 2983 }; 2984 2985 class CustomOperandRenderer : public OperandRenderer { 2986 protected: 2987 unsigned InsnID; 2988 const Record &Renderer; 2989 /// The name of the operand. 2990 const std::string SymbolicName; 2991 2992 public: 2993 CustomOperandRenderer(unsigned InsnID, const Record &Renderer, 2994 StringRef SymbolicName) 2995 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), 2996 SymbolicName(SymbolicName) {} 2997 2998 static bool classof(const OperandRenderer *R) { 2999 return R->getKind() == OR_CustomOperand; 3000 } 3001 3002 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3003 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); 3004 Table << MatchTable::Opcode("GIR_CustomOperandRenderer") 3005 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3006 << MatchTable::Comment("OldInsnID") 3007 << MatchTable::IntValue(OpdMatcher.getInsnVarID()) 3008 << MatchTable::Comment("OpIdx") 3009 << MatchTable::IntValue(OpdMatcher.getOpIdx()) 3010 << MatchTable::Comment("OperandRenderer") 3011 << MatchTable::NamedValue( 3012 "GICR_" + Renderer.getValueAsString("RendererFn").str()) 3013 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; 3014 } 3015 }; 3016 3017 /// An action taken when all Matcher predicates succeeded for a parent rule. 3018 /// 3019 /// Typical actions include: 3020 /// * Changing the opcode of an instruction. 3021 /// * Adding an operand to an instruction. 3022 class MatchAction { 3023 public: 3024 virtual ~MatchAction() {} 3025 3026 /// Emit the MatchTable opcodes to implement the action. 3027 virtual void emitActionOpcodes(MatchTable &Table, 3028 RuleMatcher &Rule) const = 0; 3029 }; 3030 3031 /// Generates a comment describing the matched rule being acted upon. 3032 class DebugCommentAction : public MatchAction { 3033 private: 3034 std::string S; 3035 3036 public: 3037 DebugCommentAction(StringRef S) : S(std::string(S)) {} 3038 3039 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3040 Table << MatchTable::Comment(S) << MatchTable::LineBreak; 3041 } 3042 }; 3043 3044 /// Generates code to build an instruction or mutate an existing instruction 3045 /// into the desired instruction when this is possible. 3046 class BuildMIAction : public MatchAction { 3047 private: 3048 unsigned InsnID; 3049 const CodeGenInstruction *I; 3050 InstructionMatcher *Matched; 3051 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers; 3052 3053 /// True if the instruction can be built solely by mutating the opcode. 3054 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { 3055 if (!Insn) 3056 return false; 3057 3058 if (OperandRenderers.size() != Insn->getNumOperands()) 3059 return false; 3060 3061 for (const auto &Renderer : enumerate(OperandRenderers)) { 3062 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) { 3063 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); 3064 if (Insn != &OM.getInstructionMatcher() || 3065 OM.getOpIdx() != Renderer.index()) 3066 return false; 3067 } else 3068 return false; 3069 } 3070 3071 return true; 3072 } 3073 3074 public: 3075 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) 3076 : InsnID(InsnID), I(I), Matched(nullptr) {} 3077 3078 unsigned getInsnID() const { return InsnID; } 3079 const CodeGenInstruction *getCGI() const { return I; } 3080 3081 void chooseInsnToMutate(RuleMatcher &Rule) { 3082 for (auto *MutateCandidate : Rule.mutatable_insns()) { 3083 if (canMutate(Rule, MutateCandidate)) { 3084 // Take the first one we're offered that we're able to mutate. 3085 Rule.reserveInsnMatcherForMutation(MutateCandidate); 3086 Matched = MutateCandidate; 3087 return; 3088 } 3089 } 3090 } 3091 3092 template <class Kind, class... Args> 3093 Kind &addRenderer(Args&&... args) { 3094 OperandRenderers.emplace_back( 3095 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...)); 3096 return *static_cast<Kind *>(OperandRenderers.back().get()); 3097 } 3098 3099 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3100 if (Matched) { 3101 assert(canMutate(Rule, Matched) && 3102 "Arranged to mutate an insn that isn't mutatable"); 3103 3104 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); 3105 Table << MatchTable::Opcode("GIR_MutateOpcode") 3106 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3107 << MatchTable::Comment("RecycleInsnID") 3108 << MatchTable::IntValue(RecycleInsnID) 3109 << MatchTable::Comment("Opcode") 3110 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3111 << MatchTable::LineBreak; 3112 3113 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { 3114 for (auto Def : I->ImplicitDefs) { 3115 auto Namespace = Def->getValue("Namespace") 3116 ? Def->getValueAsString("Namespace") 3117 : ""; 3118 Table << MatchTable::Opcode("GIR_AddImplicitDef") 3119 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3120 << MatchTable::NamedValue(Namespace, Def->getName()) 3121 << MatchTable::LineBreak; 3122 } 3123 for (auto Use : I->ImplicitUses) { 3124 auto Namespace = Use->getValue("Namespace") 3125 ? Use->getValueAsString("Namespace") 3126 : ""; 3127 Table << MatchTable::Opcode("GIR_AddImplicitUse") 3128 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3129 << MatchTable::NamedValue(Namespace, Use->getName()) 3130 << MatchTable::LineBreak; 3131 } 3132 } 3133 return; 3134 } 3135 3136 // TODO: Simple permutation looks like it could be almost as common as 3137 // mutation due to commutative operations. 3138 3139 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") 3140 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") 3141 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) 3142 << MatchTable::LineBreak; 3143 for (const auto &Renderer : OperandRenderers) 3144 Renderer->emitRenderOpcodes(Table, Rule); 3145 3146 if (I->mayLoad || I->mayStore) { 3147 Table << MatchTable::Opcode("GIR_MergeMemOperands") 3148 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3149 << MatchTable::Comment("MergeInsnID's"); 3150 // Emit the ID's for all the instructions that are matched by this rule. 3151 // TODO: Limit this to matched instructions that mayLoad/mayStore or have 3152 // some other means of having a memoperand. Also limit this to 3153 // emitted instructions that expect to have a memoperand too. For 3154 // example, (G_SEXT (G_LOAD x)) that results in separate load and 3155 // sign-extend instructions shouldn't put the memoperand on the 3156 // sign-extend since it has no effect there. 3157 std::vector<unsigned> MergeInsnIDs; 3158 for (const auto &IDMatcherPair : Rule.defined_insn_vars()) 3159 MergeInsnIDs.push_back(IDMatcherPair.second); 3160 llvm::sort(MergeInsnIDs); 3161 for (const auto &MergeInsnID : MergeInsnIDs) 3162 Table << MatchTable::IntValue(MergeInsnID); 3163 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") 3164 << MatchTable::LineBreak; 3165 } 3166 3167 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do 3168 // better for combines. Particularly when there are multiple match 3169 // roots. 3170 if (InsnID == 0) 3171 Table << MatchTable::Opcode("GIR_EraseFromParent") 3172 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3173 << MatchTable::LineBreak; 3174 } 3175 }; 3176 3177 /// Generates code to constrain the operands of an output instruction to the 3178 /// register classes specified by the definition of that instruction. 3179 class ConstrainOperandsToDefinitionAction : public MatchAction { 3180 unsigned InsnID; 3181 3182 public: 3183 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} 3184 3185 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3186 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") 3187 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3188 << MatchTable::LineBreak; 3189 } 3190 }; 3191 3192 /// Generates code to constrain the specified operand of an output instruction 3193 /// to the specified register class. 3194 class ConstrainOperandToRegClassAction : public MatchAction { 3195 unsigned InsnID; 3196 unsigned OpIdx; 3197 const CodeGenRegisterClass &RC; 3198 3199 public: 3200 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, 3201 const CodeGenRegisterClass &RC) 3202 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} 3203 3204 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3205 Table << MatchTable::Opcode("GIR_ConstrainOperandRC") 3206 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3207 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) 3208 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") 3209 << MatchTable::LineBreak; 3210 } 3211 }; 3212 3213 /// Generates code to create a temporary register which can be used to chain 3214 /// instructions together. 3215 class MakeTempRegisterAction : public MatchAction { 3216 private: 3217 LLTCodeGen Ty; 3218 unsigned TempRegID; 3219 3220 public: 3221 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) 3222 : Ty(Ty), TempRegID(TempRegID) { 3223 KnownTypes.insert(Ty); 3224 } 3225 3226 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { 3227 Table << MatchTable::Opcode("GIR_MakeTempReg") 3228 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) 3229 << MatchTable::Comment("TypeID") 3230 << MatchTable::NamedValue(Ty.getCxxEnumValue()) 3231 << MatchTable::LineBreak; 3232 } 3233 }; 3234 3235 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { 3236 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); 3237 MutatableInsns.insert(Matchers.back().get()); 3238 return *Matchers.back(); 3239 } 3240 3241 void RuleMatcher::addRequiredFeature(Record *Feature) { 3242 RequiredFeatures.push_back(Feature); 3243 } 3244 3245 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const { 3246 return RequiredFeatures; 3247 } 3248 3249 // Emplaces an action of the specified Kind at the end of the action list. 3250 // 3251 // Returns a reference to the newly created action. 3252 // 3253 // Like std::vector::emplace_back(), may invalidate all iterators if the new 3254 // size exceeds the capacity. Otherwise, only invalidates the past-the-end 3255 // iterator. 3256 template <class Kind, class... Args> 3257 Kind &RuleMatcher::addAction(Args &&... args) { 3258 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...)); 3259 return *static_cast<Kind *>(Actions.back().get()); 3260 } 3261 3262 // Emplaces an action of the specified Kind before the given insertion point. 3263 // 3264 // Returns an iterator pointing at the newly created instruction. 3265 // 3266 // Like std::vector::insert(), may invalidate all iterators if the new size 3267 // exceeds the capacity. Otherwise, only invalidates the iterators from the 3268 // insertion point onwards. 3269 template <class Kind, class... Args> 3270 action_iterator RuleMatcher::insertAction(action_iterator InsertPt, 3271 Args &&... args) { 3272 return Actions.emplace(InsertPt, 3273 std::make_unique<Kind>(std::forward<Args>(args)...)); 3274 } 3275 3276 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { 3277 unsigned NewInsnVarID = NextInsnVarID++; 3278 InsnVariableIDs[&Matcher] = NewInsnVarID; 3279 return NewInsnVarID; 3280 } 3281 3282 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { 3283 const auto &I = InsnVariableIDs.find(&InsnMatcher); 3284 if (I != InsnVariableIDs.end()) 3285 return I->second; 3286 llvm_unreachable("Matched Insn was not captured in a local variable"); 3287 } 3288 3289 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { 3290 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { 3291 DefinedOperands[SymbolicName] = &OM; 3292 return; 3293 } 3294 3295 // If the operand is already defined, then we must ensure both references in 3296 // the matcher have the exact same node. 3297 OM.addPredicate<SameOperandMatcher>( 3298 OM.getSymbolicName(), getOperandMatcher(OM.getSymbolicName()).getOpIdx()); 3299 } 3300 3301 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { 3302 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { 3303 PhysRegOperands[Reg] = &OM; 3304 return; 3305 } 3306 } 3307 3308 InstructionMatcher & 3309 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { 3310 for (const auto &I : InsnVariableIDs) 3311 if (I.first->getSymbolicName() == SymbolicName) 3312 return *I.first; 3313 llvm_unreachable( 3314 ("Failed to lookup instruction " + SymbolicName).str().c_str()); 3315 } 3316 3317 const OperandMatcher & 3318 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { 3319 const auto &I = PhysRegOperands.find(Reg); 3320 3321 if (I == PhysRegOperands.end()) { 3322 PrintFatalError(SrcLoc, "Register " + Reg->getName() + 3323 " was not declared in matcher"); 3324 } 3325 3326 return *I->second; 3327 } 3328 3329 const OperandMatcher & 3330 RuleMatcher::getOperandMatcher(StringRef Name) const { 3331 const auto &I = DefinedOperands.find(Name); 3332 3333 if (I == DefinedOperands.end()) 3334 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); 3335 3336 return *I->second; 3337 } 3338 3339 void RuleMatcher::emit(MatchTable &Table) { 3340 if (Matchers.empty()) 3341 llvm_unreachable("Unexpected empty matcher!"); 3342 3343 // The representation supports rules that require multiple roots such as: 3344 // %ptr(p0) = ... 3345 // %elt0(s32) = G_LOAD %ptr 3346 // %1(p0) = G_ADD %ptr, 4 3347 // %elt1(s32) = G_LOAD p0 %1 3348 // which could be usefully folded into: 3349 // %ptr(p0) = ... 3350 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr 3351 // on some targets but we don't need to make use of that yet. 3352 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); 3353 3354 unsigned LabelID = Table.allocateLabelID(); 3355 Table << MatchTable::Opcode("GIM_Try", +1) 3356 << MatchTable::Comment("On fail goto") 3357 << MatchTable::JumpTarget(LabelID) 3358 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) 3359 << MatchTable::LineBreak; 3360 3361 if (!RequiredFeatures.empty()) { 3362 Table << MatchTable::Opcode("GIM_CheckFeatures") 3363 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) 3364 << MatchTable::LineBreak; 3365 } 3366 3367 Matchers.front()->emitPredicateOpcodes(Table, *this); 3368 3369 // We must also check if it's safe to fold the matched instructions. 3370 if (InsnVariableIDs.size() >= 2) { 3371 // Invert the map to create stable ordering (by var names) 3372 SmallVector<unsigned, 2> InsnIDs; 3373 for (const auto &Pair : InsnVariableIDs) { 3374 // Skip the root node since it isn't moving anywhere. Everything else is 3375 // sinking to meet it. 3376 if (Pair.first == Matchers.front().get()) 3377 continue; 3378 3379 InsnIDs.push_back(Pair.second); 3380 } 3381 llvm::sort(InsnIDs); 3382 3383 for (const auto &InsnID : InsnIDs) { 3384 // Reject the difficult cases until we have a more accurate check. 3385 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") 3386 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) 3387 << MatchTable::LineBreak; 3388 3389 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or 3390 // account for unsafe cases. 3391 // 3392 // Example: 3393 // MI1--> %0 = ... 3394 // %1 = ... %0 3395 // MI0--> %2 = ... %0 3396 // It's not safe to erase MI1. We currently handle this by not 3397 // erasing %0 (even when it's dead). 3398 // 3399 // Example: 3400 // MI1--> %0 = load volatile @a 3401 // %1 = load volatile @a 3402 // MI0--> %2 = ... %0 3403 // It's not safe to sink %0's def past %1. We currently handle 3404 // this by rejecting all loads. 3405 // 3406 // Example: 3407 // MI1--> %0 = load @a 3408 // %1 = store @a 3409 // MI0--> %2 = ... %0 3410 // It's not safe to sink %0's def past %1. We currently handle 3411 // this by rejecting all loads. 3412 // 3413 // Example: 3414 // G_CONDBR %cond, @BB1 3415 // BB0: 3416 // MI1--> %0 = load @a 3417 // G_BR @BB1 3418 // BB1: 3419 // MI0--> %2 = ... %0 3420 // It's not always safe to sink %0 across control flow. In this 3421 // case it may introduce a memory fault. We currentl handle this 3422 // by rejecting all loads. 3423 } 3424 } 3425 3426 for (const auto &PM : EpilogueMatchers) 3427 PM->emitPredicateOpcodes(Table, *this); 3428 3429 for (const auto &MA : Actions) 3430 MA->emitActionOpcodes(Table, *this); 3431 3432 if (Table.isWithCoverage()) 3433 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) 3434 << MatchTable::LineBreak; 3435 else 3436 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) 3437 << MatchTable::LineBreak; 3438 3439 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak 3440 << MatchTable::Label(LabelID); 3441 ++NumPatternEmitted; 3442 } 3443 3444 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { 3445 // Rules involving more match roots have higher priority. 3446 if (Matchers.size() > B.Matchers.size()) 3447 return true; 3448 if (Matchers.size() < B.Matchers.size()) 3449 return false; 3450 3451 for (auto Matcher : zip(Matchers, B.Matchers)) { 3452 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) 3453 return true; 3454 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) 3455 return false; 3456 } 3457 3458 return false; 3459 } 3460 3461 unsigned RuleMatcher::countRendererFns() const { 3462 return std::accumulate( 3463 Matchers.begin(), Matchers.end(), 0, 3464 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) { 3465 return A + Matcher->countRendererFns(); 3466 }); 3467 } 3468 3469 bool OperandPredicateMatcher::isHigherPriorityThan( 3470 const OperandPredicateMatcher &B) const { 3471 // Generally speaking, an instruction is more important than an Int or a 3472 // LiteralInt because it can cover more nodes but theres an exception to 3473 // this. G_CONSTANT's are less important than either of those two because they 3474 // are more permissive. 3475 3476 const InstructionOperandMatcher *AOM = 3477 dyn_cast<InstructionOperandMatcher>(this); 3478 const InstructionOperandMatcher *BOM = 3479 dyn_cast<InstructionOperandMatcher>(&B); 3480 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); 3481 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); 3482 3483 if (AOM && BOM) { 3484 // The relative priorities between a G_CONSTANT and any other instruction 3485 // don't actually matter but this code is needed to ensure a strict weak 3486 // ordering. This is particularly important on Windows where the rules will 3487 // be incorrectly sorted without it. 3488 if (AIsConstantInsn != BIsConstantInsn) 3489 return AIsConstantInsn < BIsConstantInsn; 3490 return false; 3491 } 3492 3493 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) 3494 return false; 3495 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) 3496 return true; 3497 3498 return Kind < B.Kind; 3499 } 3500 3501 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, 3502 RuleMatcher &Rule) const { 3503 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); 3504 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); 3505 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); 3506 3507 Table << MatchTable::Opcode("GIM_CheckIsSameOperand") 3508 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) 3509 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) 3510 << MatchTable::Comment("OtherMI") 3511 << MatchTable::IntValue(OtherInsnVarID) 3512 << MatchTable::Comment("OtherOpIdx") 3513 << MatchTable::IntValue(OtherOM.getOpIdx()) 3514 << MatchTable::LineBreak; 3515 } 3516 3517 //===- GlobalISelEmitter class --------------------------------------------===// 3518 3519 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) { 3520 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes(); 3521 if (ChildTypes.size() != 1) 3522 return failedImport("Dst pattern child has multiple results"); 3523 3524 Optional<LLTCodeGen> MaybeOpTy; 3525 if (ChildTypes.front().isMachineValueType()) { 3526 MaybeOpTy = 3527 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 3528 } 3529 3530 if (!MaybeOpTy) 3531 return failedImport("Dst operand has an unsupported type"); 3532 return *MaybeOpTy; 3533 } 3534 3535 class GlobalISelEmitter { 3536 public: 3537 explicit GlobalISelEmitter(RecordKeeper &RK); 3538 void run(raw_ostream &OS); 3539 3540 private: 3541 const RecordKeeper &RK; 3542 const CodeGenDAGPatterns CGP; 3543 const CodeGenTarget &Target; 3544 CodeGenRegBank &CGRegs; 3545 3546 /// Keep track of the equivalence between SDNodes and Instruction by mapping 3547 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to 3548 /// check for attributes on the relation such as CheckMMOIsNonAtomic. 3549 /// This is defined using 'GINodeEquiv' in the target description. 3550 DenseMap<Record *, Record *> NodeEquivs; 3551 3552 /// Keep track of the equivalence between ComplexPattern's and 3553 /// GIComplexOperandMatcher. Map entries are specified by subclassing 3554 /// GIComplexPatternEquiv. 3555 DenseMap<const Record *, const Record *> ComplexPatternEquivs; 3556 3557 /// Keep track of the equivalence between SDNodeXForm's and 3558 /// GICustomOperandRenderer. Map entries are specified by subclassing 3559 /// GISDNodeXFormEquiv. 3560 DenseMap<const Record *, const Record *> SDNodeXFormEquivs; 3561 3562 /// Keep track of Scores of PatternsToMatch similar to how the DAG does. 3563 /// This adds compatibility for RuleMatchers to use this for ordering rules. 3564 DenseMap<uint64_t, int> RuleMatcherScores; 3565 3566 // Map of predicates to their subtarget features. 3567 SubtargetFeatureInfoMap SubtargetFeatures; 3568 3569 // Rule coverage information. 3570 Optional<CodeGenCoverage> RuleCoverage; 3571 3572 /// Variables used to help with collecting of named operands for predicates 3573 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set 3574 /// to the number of named operands that predicate expects. Store locations in 3575 /// StoreIdxForName correspond to the order in which operand names appear in 3576 /// predicate's argument list. 3577 /// When we visit named leaf operand and WaitingForNamedOperands is not zero, 3578 /// add matcher that will record operand and decrease counter. 3579 unsigned WaitingForNamedOperands = 0; 3580 StringMap<unsigned> StoreIdxForName; 3581 3582 void gatherOpcodeValues(); 3583 void gatherTypeIDValues(); 3584 void gatherNodeEquivs(); 3585 3586 Record *findNodeEquiv(Record *N) const; 3587 const CodeGenInstruction *getEquivNode(Record &Equiv, 3588 const TreePatternNode *N) const; 3589 3590 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates); 3591 Expected<InstructionMatcher &> 3592 createAndImportSelDAGMatcher(RuleMatcher &Rule, 3593 InstructionMatcher &InsnMatcher, 3594 const TreePatternNode *Src, unsigned &TempOpIdx); 3595 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, 3596 unsigned &TempOpIdx) const; 3597 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3598 const TreePatternNode *SrcChild, 3599 bool OperandIsAPointer, bool OperandIsImmArg, 3600 unsigned OpIdx, unsigned &TempOpIdx); 3601 3602 Expected<BuildMIAction &> createAndImportInstructionRenderer( 3603 RuleMatcher &M, InstructionMatcher &InsnMatcher, 3604 const TreePatternNode *Src, const TreePatternNode *Dst); 3605 Expected<action_iterator> createAndImportSubInstructionRenderer( 3606 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 3607 unsigned TempReg); 3608 Expected<action_iterator> 3609 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, 3610 const TreePatternNode *Dst); 3611 3612 Expected<action_iterator> 3613 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, 3614 BuildMIAction &DstMIBuilder, 3615 const TreePatternNode *Dst); 3616 3617 Expected<action_iterator> 3618 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, 3619 BuildMIAction &DstMIBuilder, 3620 const llvm::TreePatternNode *Dst); 3621 Expected<action_iterator> 3622 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, 3623 BuildMIAction &DstMIBuilder, 3624 TreePatternNode *DstChild); 3625 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, 3626 BuildMIAction &DstMIBuilder, 3627 DagInit *DefaultOps) const; 3628 Error 3629 importImplicitDefRenderers(BuildMIAction &DstMIBuilder, 3630 const std::vector<Record *> &ImplicitDefs) const; 3631 3632 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, 3633 StringRef TypeIdentifier, StringRef ArgType, 3634 StringRef ArgName, StringRef AdditionalArgs, 3635 StringRef AdditionalDeclarations, 3636 std::function<bool(const Record *R)> Filter); 3637 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, 3638 StringRef ArgType, 3639 std::function<bool(const Record *R)> Filter); 3640 void emitMIPredicateFns(raw_ostream &OS); 3641 3642 /// Analyze pattern \p P, returning a matcher for it if possible. 3643 /// Otherwise, return an Error explaining why we don't support it. 3644 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); 3645 3646 void declareSubtargetFeature(Record *Predicate); 3647 3648 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, 3649 bool WithCoverage); 3650 3651 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned 3652 /// CodeGenRegisterClass will support the CodeGenRegisterClass of 3653 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. 3654 /// If no register class is found, return None. 3655 Optional<const CodeGenRegisterClass *> 3656 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, 3657 TreePatternNode *SuperRegNode, 3658 TreePatternNode *SubRegIdxNode); 3659 Optional<CodeGenSubRegIndex *> 3660 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); 3661 3662 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. 3663 /// Return None if no such class exists. 3664 Optional<const CodeGenRegisterClass *> 3665 inferSuperRegisterClass(const TypeSetByHwMode &Ty, 3666 TreePatternNode *SubRegIdxNode); 3667 3668 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. 3669 Optional<const CodeGenRegisterClass *> 3670 getRegClassFromLeaf(TreePatternNode *Leaf); 3671 3672 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None 3673 /// otherwise. 3674 Optional<const CodeGenRegisterClass *> 3675 inferRegClassFromPattern(TreePatternNode *N); 3676 3677 /// Return the size of the MemoryVT in this predicate, if possible. 3678 Optional<unsigned> 3679 getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); 3680 3681 // Add builtin predicates. 3682 Expected<InstructionMatcher &> 3683 addBuiltinPredicates(const Record *SrcGIEquivOrNull, 3684 const TreePredicateFn &Predicate, 3685 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); 3686 3687 public: 3688 /// Takes a sequence of \p Rules and group them based on the predicates 3689 /// they share. \p MatcherStorage is used as a memory container 3690 /// for the group that are created as part of this process. 3691 /// 3692 /// What this optimization does looks like if GroupT = GroupMatcher: 3693 /// Output without optimization: 3694 /// \verbatim 3695 /// # R1 3696 /// # predicate A 3697 /// # predicate B 3698 /// ... 3699 /// # R2 3700 /// # predicate A // <-- effectively this is going to be checked twice. 3701 /// // Once in R1 and once in R2. 3702 /// # predicate C 3703 /// \endverbatim 3704 /// Output with optimization: 3705 /// \verbatim 3706 /// # Group1_2 3707 /// # predicate A // <-- Check is now shared. 3708 /// # R1 3709 /// # predicate B 3710 /// # R2 3711 /// # predicate C 3712 /// \endverbatim 3713 template <class GroupT> 3714 static std::vector<Matcher *> optimizeRules( 3715 ArrayRef<Matcher *> Rules, 3716 std::vector<std::unique_ptr<Matcher>> &MatcherStorage); 3717 }; 3718 3719 void GlobalISelEmitter::gatherOpcodeValues() { 3720 InstructionOpcodeMatcher::initOpcodeValuesMap(Target); 3721 } 3722 3723 void GlobalISelEmitter::gatherTypeIDValues() { 3724 LLTOperandMatcher::initTypeIDValuesMap(); 3725 } 3726 3727 void GlobalISelEmitter::gatherNodeEquivs() { 3728 assert(NodeEquivs.empty()); 3729 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) 3730 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; 3731 3732 assert(ComplexPatternEquivs.empty()); 3733 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { 3734 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3735 if (!SelDAGEquiv) 3736 continue; 3737 ComplexPatternEquivs[SelDAGEquiv] = Equiv; 3738 } 3739 3740 assert(SDNodeXFormEquivs.empty()); 3741 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { 3742 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); 3743 if (!SelDAGEquiv) 3744 continue; 3745 SDNodeXFormEquivs[SelDAGEquiv] = Equiv; 3746 } 3747 } 3748 3749 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { 3750 return NodeEquivs.lookup(N); 3751 } 3752 3753 const CodeGenInstruction * 3754 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { 3755 if (N->getNumChildren() >= 1) { 3756 // setcc operation maps to two different G_* instructions based on the type. 3757 if (!Equiv.isValueUnset("IfFloatingPoint") && 3758 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) 3759 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); 3760 } 3761 3762 for (const TreePredicateCall &Call : N->getPredicateCalls()) { 3763 const TreePredicateFn &Predicate = Call.Fn; 3764 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() && 3765 Predicate.isSignExtLoad()) 3766 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); 3767 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() && 3768 Predicate.isZeroExtLoad()) 3769 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); 3770 } 3771 3772 return &Target.getInstruction(Equiv.getValueAsDef("I")); 3773 } 3774 3775 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) 3776 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), 3777 CGRegs(Target.getRegBank()) {} 3778 3779 //===- Emitter ------------------------------------------------------------===// 3780 3781 Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M, 3782 ArrayRef<Record *> Predicates) { 3783 for (Record *Pred : Predicates) { 3784 if (Pred->getValueAsString("CondString").empty()) 3785 continue; 3786 declareSubtargetFeature(Pred); 3787 M.addRequiredFeature(Pred); 3788 } 3789 3790 return Error::success(); 3791 } 3792 3793 Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) { 3794 Optional<LLTCodeGen> MemTyOrNone = 3795 MVTToLLT(getValueType(Predicate.getMemoryVT())); 3796 3797 if (!MemTyOrNone) 3798 return None; 3799 3800 // Align so unusual types like i1 don't get rounded down. 3801 return llvm::alignTo( 3802 static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8); 3803 } 3804 3805 Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( 3806 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, 3807 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { 3808 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3809 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { 3810 SmallVector<unsigned, 4> ParsedAddrSpaces; 3811 3812 for (Init *Val : AddrSpaces->getValues()) { 3813 IntInit *IntVal = dyn_cast<IntInit>(Val); 3814 if (!IntVal) 3815 return failedImport("Address space is not an integer"); 3816 ParsedAddrSpaces.push_back(IntVal->getValue()); 3817 } 3818 3819 if (!ParsedAddrSpaces.empty()) { 3820 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( 3821 0, ParsedAddrSpaces); 3822 } 3823 } 3824 3825 int64_t MinAlign = Predicate.getMinAlignment(); 3826 if (MinAlign > 0) 3827 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign); 3828 } 3829 3830 // G_LOAD is used for both non-extending and any-extending loads. 3831 if (Predicate.isLoad() && Predicate.isNonExtLoad()) { 3832 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3833 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3834 return InsnMatcher; 3835 } 3836 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { 3837 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3838 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3839 return InsnMatcher; 3840 } 3841 3842 if (Predicate.isStore()) { 3843 if (Predicate.isTruncStore()) { 3844 if (Predicate.getMemoryVT() != nullptr) { 3845 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. 3846 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3847 if (!MemSizeInBits) 3848 return failedImport("MemVT could not be converted to LLT"); 3849 3850 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits / 3851 8); 3852 } else { 3853 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3854 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); 3855 } 3856 return InsnMatcher; 3857 } 3858 if (Predicate.isNonTruncStore()) { 3859 // We need to check the sizes match here otherwise we could incorrectly 3860 // match truncating stores with non-truncating ones. 3861 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( 3862 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); 3863 } 3864 } 3865 3866 // No check required. We already did it by swapping the opcode. 3867 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && 3868 Predicate.isSignExtLoad()) 3869 return InsnMatcher; 3870 3871 // No check required. We already did it by swapping the opcode. 3872 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && 3873 Predicate.isZeroExtLoad()) 3874 return InsnMatcher; 3875 3876 // No check required. G_STORE by itself is a non-extending store. 3877 if (Predicate.isNonTruncStore()) 3878 return InsnMatcher; 3879 3880 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { 3881 if (Predicate.getMemoryVT() != nullptr) { 3882 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); 3883 if (!MemSizeInBits) 3884 return failedImport("MemVT could not be converted to LLT"); 3885 3886 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, 3887 *MemSizeInBits / 8); 3888 return InsnMatcher; 3889 } 3890 } 3891 3892 if (Predicate.isLoad() || Predicate.isStore()) { 3893 // No check required. A G_LOAD/G_STORE is an unindexed load. 3894 if (Predicate.isUnindexed()) 3895 return InsnMatcher; 3896 } 3897 3898 if (Predicate.isAtomic()) { 3899 if (Predicate.isAtomicOrderingMonotonic()) { 3900 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic"); 3901 return InsnMatcher; 3902 } 3903 if (Predicate.isAtomicOrderingAcquire()) { 3904 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire"); 3905 return InsnMatcher; 3906 } 3907 if (Predicate.isAtomicOrderingRelease()) { 3908 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release"); 3909 return InsnMatcher; 3910 } 3911 if (Predicate.isAtomicOrderingAcquireRelease()) { 3912 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3913 "AcquireRelease"); 3914 return InsnMatcher; 3915 } 3916 if (Predicate.isAtomicOrderingSequentiallyConsistent()) { 3917 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3918 "SequentiallyConsistent"); 3919 return InsnMatcher; 3920 } 3921 } 3922 3923 if (Predicate.isAtomicOrderingAcquireOrStronger()) { 3924 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3925 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3926 return InsnMatcher; 3927 } 3928 if (Predicate.isAtomicOrderingWeakerThanAcquire()) { 3929 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3930 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3931 return InsnMatcher; 3932 } 3933 3934 if (Predicate.isAtomicOrderingReleaseOrStronger()) { 3935 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3936 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 3937 return InsnMatcher; 3938 } 3939 if (Predicate.isAtomicOrderingWeakerThanRelease()) { 3940 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 3941 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); 3942 return InsnMatcher; 3943 } 3944 HasAddedMatcher = false; 3945 return InsnMatcher; 3946 } 3947 3948 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( 3949 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 3950 const TreePatternNode *Src, unsigned &TempOpIdx) { 3951 Record *SrcGIEquivOrNull = nullptr; 3952 const CodeGenInstruction *SrcGIOrNull = nullptr; 3953 3954 // Start with the defined operands (i.e., the results of the root operator). 3955 if (Src->getExtTypes().size() > 1) 3956 return failedImport("Src pattern has multiple results"); 3957 3958 if (Src->isLeaf()) { 3959 Init *SrcInit = Src->getLeafValue(); 3960 if (isa<IntInit>(SrcInit)) { 3961 InsnMatcher.addPredicate<InstructionOpcodeMatcher>( 3962 &Target.getInstruction(RK.getDef("G_CONSTANT"))); 3963 } else 3964 return failedImport( 3965 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 3966 } else { 3967 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); 3968 if (!SrcGIEquivOrNull) 3969 return failedImport("Pattern operator lacks an equivalent Instruction" + 3970 explainOperator(Src->getOperator())); 3971 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); 3972 3973 // The operators look good: match the opcode 3974 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull); 3975 } 3976 3977 unsigned OpIdx = 0; 3978 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 3979 // Results don't have a name unless they are the root node. The caller will 3980 // set the name if appropriate. 3981 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 3982 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 3983 return failedImport(toString(std::move(Error)) + 3984 " for result of Src pattern operator"); 3985 } 3986 3987 for (const TreePredicateCall &Call : Src->getPredicateCalls()) { 3988 const TreePredicateFn &Predicate = Call.Fn; 3989 bool HasAddedBuiltinMatcher = true; 3990 if (Predicate.isAlwaysTrue()) 3991 continue; 3992 3993 if (Predicate.isImmediatePattern()) { 3994 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate); 3995 continue; 3996 } 3997 3998 auto InsnMatcherOrError = addBuiltinPredicates( 3999 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher); 4000 if (auto Error = InsnMatcherOrError.takeError()) 4001 return std::move(Error); 4002 4003 if (Predicate.hasGISelPredicateCode()) { 4004 if (Predicate.usesOperands()) { 4005 assert(WaitingForNamedOperands == 0 && 4006 "previous predicate didn't find all operands or " 4007 "nested predicate that uses operands"); 4008 TreePattern *TP = Predicate.getOrigPatFragRecord(); 4009 WaitingForNamedOperands = TP->getNumArgs(); 4010 for (unsigned i = 0; i < WaitingForNamedOperands; ++i) 4011 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i; 4012 } 4013 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate); 4014 continue; 4015 } 4016 if (!HasAddedBuiltinMatcher) { 4017 return failedImport("Src pattern child has predicate (" + 4018 explainPredicates(Src) + ")"); 4019 } 4020 } 4021 4022 bool IsAtomic = false; 4023 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) 4024 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic"); 4025 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { 4026 IsAtomic = true; 4027 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( 4028 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); 4029 } 4030 4031 if (Src->isLeaf()) { 4032 Init *SrcInit = Src->getLeafValue(); 4033 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) { 4034 OperandMatcher &OM = 4035 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); 4036 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue()); 4037 } else 4038 return failedImport( 4039 "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); 4040 } else { 4041 assert(SrcGIOrNull && 4042 "Expected to have already found an equivalent Instruction"); 4043 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || 4044 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { 4045 // imm/fpimm still have operands but we don't need to do anything with it 4046 // here since we don't support ImmLeaf predicates yet. However, we still 4047 // need to note the hidden operand to get GIM_CheckNumOperands correct. 4048 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); 4049 return InsnMatcher; 4050 } 4051 4052 // Special case because the operand order is changed from setcc. The 4053 // predicate operand needs to be swapped from the last operand to the first 4054 // source. 4055 4056 unsigned NumChildren = Src->getNumChildren(); 4057 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; 4058 4059 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { 4060 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); 4061 if (SrcChild->isLeaf()) { 4062 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue()); 4063 Record *CCDef = DI ? DI->getDef() : nullptr; 4064 if (!CCDef || !CCDef->isSubClassOf("CondCode")) 4065 return failedImport("Unable to handle CondCode"); 4066 4067 OperandMatcher &OM = 4068 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4069 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : 4070 CCDef->getValueAsString("ICmpPredicate"); 4071 4072 if (!PredType.empty()) { 4073 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType)); 4074 // Process the other 2 operands normally. 4075 --NumChildren; 4076 } 4077 } 4078 } 4079 4080 // Hack around an unfortunate mistake in how atomic store (and really 4081 // atomicrmw in general) operands were ordered. A ISD::STORE used the order 4082 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite, 4083 // <pointer>, <stored value>. In GlobalISel there's just the one store 4084 // opcode, so we need to swap the operands here to get the right type check. 4085 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") { 4086 assert(NumChildren == 2 && "wrong operands for atomic store"); 4087 4088 TreePatternNode *PtrChild = Src->getChild(0); 4089 TreePatternNode *ValueChild = Src->getChild(1); 4090 4091 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true, 4092 false, 1, TempOpIdx)) 4093 return std::move(Error); 4094 4095 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false, 4096 false, 0, TempOpIdx)) 4097 return std::move(Error); 4098 return InsnMatcher; 4099 } 4100 4101 // Match the used operands (i.e. the children of the operator). 4102 bool IsIntrinsic = 4103 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || 4104 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; 4105 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); 4106 if (IsIntrinsic && !II) 4107 return failedImport("Expected IntInit containing intrinsic ID)"); 4108 4109 for (unsigned i = 0; i != NumChildren; ++i) { 4110 TreePatternNode *SrcChild = Src->getChild(i); 4111 4112 // We need to determine the meaning of a literal integer based on the 4113 // context. If this is a field required to be an immediate (such as an 4114 // immarg intrinsic argument), the required predicates are different than 4115 // a constant which may be materialized in a register. If we have an 4116 // argument that is required to be an immediate, we should not emit an LLT 4117 // type check, and should not be looking for a G_CONSTANT defined 4118 // register. 4119 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); 4120 4121 // SelectionDAG allows pointers to be represented with iN since it doesn't 4122 // distinguish between pointers and integers but they are different types in GlobalISel. 4123 // Coerce integers to pointers to address space 0 if the context indicates a pointer. 4124 // 4125 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); 4126 4127 if (IsIntrinsic) { 4128 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately 4129 // following the defs is an intrinsic ID. 4130 if (i == 0) { 4131 OperandMatcher &OM = 4132 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); 4133 OM.addPredicate<IntrinsicIDOperandMatcher>(II); 4134 continue; 4135 } 4136 4137 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. 4138 // 4139 // Note that we have to look at the i-1th parameter, because we don't 4140 // have the intrinsic ID in the intrinsic's parameter list. 4141 OperandIsAPointer |= II->isParamAPointer(i - 1); 4142 OperandIsImmArg |= II->isParamImmArg(i - 1); 4143 } 4144 4145 if (auto Error = 4146 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, 4147 OperandIsImmArg, OpIdx++, TempOpIdx)) 4148 return std::move(Error); 4149 } 4150 } 4151 4152 return InsnMatcher; 4153 } 4154 4155 Error GlobalISelEmitter::importComplexPatternOperandMatcher( 4156 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { 4157 const auto &ComplexPattern = ComplexPatternEquivs.find(R); 4158 if (ComplexPattern == ComplexPatternEquivs.end()) 4159 return failedImport("SelectionDAG ComplexPattern (" + R->getName() + 4160 ") not mapped to GlobalISel"); 4161 4162 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second); 4163 TempOpIdx++; 4164 return Error::success(); 4165 } 4166 4167 // Get the name to use for a pattern operand. For an anonymous physical register 4168 // input, this should use the register name. 4169 static StringRef getSrcChildName(const TreePatternNode *SrcChild, 4170 Record *&PhysReg) { 4171 StringRef SrcChildName = SrcChild->getName(); 4172 if (SrcChildName.empty() && SrcChild->isLeaf()) { 4173 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4174 auto *ChildRec = ChildDefInit->getDef(); 4175 if (ChildRec->isSubClassOf("Register")) { 4176 SrcChildName = ChildRec->getName(); 4177 PhysReg = ChildRec; 4178 } 4179 } 4180 } 4181 4182 return SrcChildName; 4183 } 4184 4185 Error GlobalISelEmitter::importChildMatcher( 4186 RuleMatcher &Rule, InstructionMatcher &InsnMatcher, 4187 const TreePatternNode *SrcChild, bool OperandIsAPointer, 4188 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { 4189 4190 Record *PhysReg = nullptr; 4191 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg)); 4192 if (!SrcChild->isLeaf() && 4193 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4194 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 4195 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. 4196 std::string PatternName = std::string(SrcChild->getOperator()->getName()); 4197 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) { 4198 PatternName += ":"; 4199 PatternName += SrcChild->getChild(i)->getName(); 4200 } 4201 SrcChildName = PatternName; 4202 } 4203 4204 OperandMatcher &OM = 4205 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) 4206 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); 4207 if (OM.isSameAsAnotherOperand()) 4208 return Error::success(); 4209 4210 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes(); 4211 if (ChildTypes.size() != 1) 4212 return failedImport("Src pattern child has multiple results"); 4213 4214 // Check MBB's before the type check since they are not a known type. 4215 if (!SrcChild->isLeaf()) { 4216 if (SrcChild->getOperator()->isSubClassOf("SDNode")) { 4217 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); 4218 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4219 OM.addPredicate<MBBOperandMatcher>(); 4220 return Error::success(); 4221 } 4222 if (SrcChild->getOperator()->getName() == "timm") { 4223 OM.addPredicate<ImmOperandMatcher>(); 4224 4225 // Add predicates, if any 4226 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) { 4227 const TreePredicateFn &Predicate = Call.Fn; 4228 4229 // Only handle immediate patterns for now 4230 if (Predicate.isImmediatePattern()) { 4231 OM.addPredicate<OperandImmPredicateMatcher>(Predicate); 4232 } 4233 } 4234 4235 return Error::success(); 4236 } 4237 } 4238 } 4239 4240 // Immediate arguments have no meaningful type to check as they don't have 4241 // registers. 4242 if (!OperandIsImmArg) { 4243 if (auto Error = 4244 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) 4245 return failedImport(toString(std::move(Error)) + " for Src operand (" + 4246 to_string(*SrcChild) + ")"); 4247 } 4248 4249 // Check for nested instructions. 4250 if (!SrcChild->isLeaf()) { 4251 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { 4252 // When a ComplexPattern is used as an operator, it should do the same 4253 // thing as when used as a leaf. However, the children of the operator 4254 // name the sub-operands that make up the complex operand and we must 4255 // prepare to reference them in the renderer too. 4256 unsigned RendererID = TempOpIdx; 4257 if (auto Error = importComplexPatternOperandMatcher( 4258 OM, SrcChild->getOperator(), TempOpIdx)) 4259 return Error; 4260 4261 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { 4262 auto *SubOperand = SrcChild->getChild(i); 4263 if (!SubOperand->getName().empty()) { 4264 if (auto Error = Rule.defineComplexSubOperand( 4265 SubOperand->getName(), SrcChild->getOperator(), RendererID, i, 4266 SrcChildName)) 4267 return Error; 4268 } 4269 } 4270 4271 return Error::success(); 4272 } 4273 4274 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4275 InsnMatcher.getRuleMatcher(), SrcChild->getName()); 4276 if (!MaybeInsnOperand.hasValue()) { 4277 // This isn't strictly true. If the user were to provide exactly the same 4278 // matchers as the original operand then we could allow it. However, it's 4279 // simpler to not permit the redundant specification. 4280 return failedImport("Nested instruction cannot be the same as another operand"); 4281 } 4282 4283 // Map the node to a gMIR instruction. 4284 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4285 auto InsnMatcherOrError = createAndImportSelDAGMatcher( 4286 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); 4287 if (auto Error = InsnMatcherOrError.takeError()) 4288 return Error; 4289 4290 return Error::success(); 4291 } 4292 4293 if (SrcChild->hasAnyPredicate()) 4294 return failedImport("Src pattern child has unsupported predicate"); 4295 4296 // Check for constant immediates. 4297 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) { 4298 if (OperandIsImmArg) { 4299 // Checks for argument directly in operand list 4300 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue()); 4301 } else { 4302 // Checks for materialized constant 4303 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue()); 4304 } 4305 return Error::success(); 4306 } 4307 4308 // Check for def's like register classes or ComplexPattern's. 4309 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) { 4310 auto *ChildRec = ChildDefInit->getDef(); 4311 4312 if (WaitingForNamedOperands) { 4313 auto PA = SrcChild->getNamesAsPredicateArg().begin(); 4314 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier()); 4315 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name); 4316 --WaitingForNamedOperands; 4317 } 4318 4319 // Check for register classes. 4320 if (ChildRec->isSubClassOf("RegisterClass") || 4321 ChildRec->isSubClassOf("RegisterOperand")) { 4322 OM.addPredicate<RegisterBankOperandMatcher>( 4323 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); 4324 return Error::success(); 4325 } 4326 4327 if (ChildRec->isSubClassOf("Register")) { 4328 // This just be emitted as a copy to the specific register. 4329 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); 4330 const CodeGenRegisterClass *RC 4331 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); 4332 if (!RC) { 4333 return failedImport( 4334 "Could not determine physical register class of pattern source"); 4335 } 4336 4337 OM.addPredicate<RegisterBankOperandMatcher>(*RC); 4338 return Error::success(); 4339 } 4340 4341 // Check for ValueType. 4342 if (ChildRec->isSubClassOf("ValueType")) { 4343 // We already added a type check as standard practice so this doesn't need 4344 // to do anything. 4345 return Error::success(); 4346 } 4347 4348 // Check for ComplexPattern's. 4349 if (ChildRec->isSubClassOf("ComplexPattern")) 4350 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); 4351 4352 if (ChildRec->isSubClassOf("ImmLeaf")) { 4353 return failedImport( 4354 "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); 4355 } 4356 4357 // Place holder for SRCVALUE nodes. Nothing to do here. 4358 if (ChildRec->getName() == "srcvalue") 4359 return Error::success(); 4360 4361 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV"; 4362 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") { 4363 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( 4364 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false); 4365 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; 4366 4367 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); 4368 4369 const CodeGenInstruction &BuildVector 4370 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR")); 4371 const CodeGenInstruction &BuildVectorTrunc 4372 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC")); 4373 4374 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC 4375 // as an alternative. 4376 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( 4377 makeArrayRef({&BuildVector, &BuildVectorTrunc})); 4378 4379 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could 4380 // theoretically not emit any opcode check, but getOpcodeMatcher currently 4381 // has to succeed. 4382 OperandMatcher &OM = 4383 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx); 4384 if (auto Error = 4385 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) 4386 return failedImport(toString(std::move(Error)) + 4387 " for result of Src pattern operator"); 4388 4389 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( 4390 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes 4391 : VectorSplatImmPredicateMatcher::AllZeros); 4392 return Error::success(); 4393 } 4394 4395 return failedImport( 4396 "Src pattern child def is an unsupported tablegen class"); 4397 } 4398 4399 return failedImport("Src pattern child is an unsupported kind"); 4400 } 4401 4402 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer( 4403 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, 4404 TreePatternNode *DstChild) { 4405 4406 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); 4407 if (SubOperand.hasValue()) { 4408 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4409 *std::get<0>(*SubOperand), DstChild->getName(), 4410 std::get<1>(*SubOperand), std::get<2>(*SubOperand)); 4411 return InsertPt; 4412 } 4413 4414 if (!DstChild->isLeaf()) { 4415 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { 4416 auto Child = DstChild->getChild(0); 4417 auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); 4418 if (I != SDNodeXFormEquivs.end()) { 4419 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); 4420 if (XFormOpc->getName() == "timm") { 4421 // If this is a TargetConstant, there won't be a corresponding 4422 // instruction to transform. Instead, this will refer directly to an 4423 // operand in an instruction's operand list. 4424 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second, 4425 Child->getName()); 4426 } else { 4427 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, 4428 Child->getName()); 4429 } 4430 4431 return InsertPt; 4432 } 4433 return failedImport("SDNodeXForm " + Child->getName() + 4434 " has no custom renderer"); 4435 } 4436 4437 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't 4438 // inline, but in MI it's just another operand. 4439 if (DstChild->getOperator()->isSubClassOf("SDNode")) { 4440 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); 4441 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { 4442 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4443 return InsertPt; 4444 } 4445 } 4446 4447 // Similarly, imm is an operator in TreePatternNode's view but must be 4448 // rendered as operands. 4449 // FIXME: The target should be able to choose sign-extended when appropriate 4450 // (e.g. on Mips). 4451 if (DstChild->getOperator()->getName() == "timm") { 4452 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4453 return InsertPt; 4454 } else if (DstChild->getOperator()->getName() == "imm") { 4455 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName()); 4456 return InsertPt; 4457 } else if (DstChild->getOperator()->getName() == "fpimm") { 4458 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>( 4459 DstChild->getName()); 4460 return InsertPt; 4461 } 4462 4463 if (DstChild->getOperator()->isSubClassOf("Instruction")) { 4464 auto OpTy = getInstResultType(DstChild); 4465 if (!OpTy) 4466 return OpTy.takeError(); 4467 4468 unsigned TempRegID = Rule.allocateTempRegID(); 4469 InsertPt = Rule.insertAction<MakeTempRegisterAction>( 4470 InsertPt, *OpTy, TempRegID); 4471 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4472 4473 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4474 ++InsertPt, Rule, DstChild, TempRegID); 4475 if (auto Error = InsertPtOrError.takeError()) 4476 return std::move(Error); 4477 return InsertPtOrError.get(); 4478 } 4479 4480 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); 4481 } 4482 4483 // It could be a specific immediate in which case we should just check for 4484 // that immediate. 4485 if (const IntInit *ChildIntInit = 4486 dyn_cast<IntInit>(DstChild->getLeafValue())) { 4487 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue()); 4488 return InsertPt; 4489 } 4490 4491 // Otherwise, we're looking for a bog-standard RegisterClass operand. 4492 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) { 4493 auto *ChildRec = ChildDefInit->getDef(); 4494 4495 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes(); 4496 if (ChildTypes.size() != 1) 4497 return failedImport("Dst pattern child has multiple results"); 4498 4499 Optional<LLTCodeGen> OpTyOrNone = None; 4500 if (ChildTypes.front().isMachineValueType()) 4501 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); 4502 if (!OpTyOrNone) 4503 return failedImport("Dst operand has an unsupported type"); 4504 4505 if (ChildRec->isSubClassOf("Register")) { 4506 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec); 4507 return InsertPt; 4508 } 4509 4510 if (ChildRec->isSubClassOf("RegisterClass") || 4511 ChildRec->isSubClassOf("RegisterOperand") || 4512 ChildRec->isSubClassOf("ValueType")) { 4513 if (ChildRec->isSubClassOf("RegisterOperand") && 4514 !ChildRec->isValueUnset("GIZeroRegister")) { 4515 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( 4516 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); 4517 return InsertPt; 4518 } 4519 4520 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName()); 4521 return InsertPt; 4522 } 4523 4524 if (ChildRec->isSubClassOf("SubRegIndex")) { 4525 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); 4526 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue); 4527 return InsertPt; 4528 } 4529 4530 if (ChildRec->isSubClassOf("ComplexPattern")) { 4531 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); 4532 if (ComplexPattern == ComplexPatternEquivs.end()) 4533 return failedImport( 4534 "SelectionDAG ComplexPattern not mapped to GlobalISel"); 4535 4536 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); 4537 DstMIBuilder.addRenderer<RenderComplexPatternOperand>( 4538 *ComplexPattern->second, DstChild->getName(), 4539 OM.getAllocatedTemporariesBaseID()); 4540 return InsertPt; 4541 } 4542 4543 return failedImport( 4544 "Dst pattern child def is an unsupported tablegen class"); 4545 } 4546 return failedImport("Dst pattern child is an unsupported kind"); 4547 } 4548 4549 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( 4550 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, 4551 const TreePatternNode *Dst) { 4552 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); 4553 if (auto Error = InsertPtOrError.takeError()) 4554 return std::move(Error); 4555 4556 action_iterator InsertPt = InsertPtOrError.get(); 4557 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); 4558 4559 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { 4560 InsertPt = M.insertAction<BuildMIAction>( 4561 InsertPt, M.allocateOutputInsnID(), 4562 &Target.getInstruction(RK.getDef("COPY"))); 4563 BuildMIAction &CopyToPhysRegMIBuilder = 4564 *static_cast<BuildMIAction *>(InsertPt->get()); 4565 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target, 4566 PhysInput.first, 4567 true); 4568 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first); 4569 } 4570 4571 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst) 4572 .takeError()) 4573 return std::move(Error); 4574 4575 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) 4576 .takeError()) 4577 return std::move(Error); 4578 4579 return DstMIBuilder; 4580 } 4581 4582 Expected<action_iterator> 4583 GlobalISelEmitter::createAndImportSubInstructionRenderer( 4584 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, 4585 unsigned TempRegID) { 4586 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); 4587 4588 // TODO: Assert there's exactly one result. 4589 4590 if (auto Error = InsertPtOrError.takeError()) 4591 return std::move(Error); 4592 4593 BuildMIAction &DstMIBuilder = 4594 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); 4595 4596 // Assign the result to TempReg. 4597 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true); 4598 4599 InsertPtOrError = 4600 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); 4601 if (auto Error = InsertPtOrError.takeError()) 4602 return std::move(Error); 4603 4604 // We need to make sure that when we import an INSERT_SUBREG as a 4605 // subinstruction that it ends up being constrained to the correct super 4606 // register and subregister classes. 4607 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); 4608 if (OpName == "INSERT_SUBREG") { 4609 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4610 if (!SubClass) 4611 return failedImport( 4612 "Cannot infer register class from INSERT_SUBREG operand #1"); 4613 Optional<const CodeGenRegisterClass *> SuperClass = 4614 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), 4615 Dst->getChild(2)); 4616 if (!SuperClass) 4617 return failedImport( 4618 "Cannot infer register class for INSERT_SUBREG operand #0"); 4619 // The destination and the super register source of an INSERT_SUBREG must 4620 // be the same register class. 4621 M.insertAction<ConstrainOperandToRegClassAction>( 4622 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4623 M.insertAction<ConstrainOperandToRegClassAction>( 4624 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); 4625 M.insertAction<ConstrainOperandToRegClassAction>( 4626 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4627 return InsertPtOrError.get(); 4628 } 4629 4630 if (OpName == "EXTRACT_SUBREG") { 4631 // EXTRACT_SUBREG selects into a subregister COPY but unlike most 4632 // instructions, the result register class is controlled by the 4633 // subregisters of the operand. As a result, we must constrain the result 4634 // class rather than check that it's already the right one. 4635 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4636 if (!SuperClass) 4637 return failedImport( 4638 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 4639 4640 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 4641 if (!SubIdx) 4642 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4643 4644 const auto SrcRCDstRCPair = 4645 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4646 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4647 M.insertAction<ConstrainOperandToRegClassAction>( 4648 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); 4649 M.insertAction<ConstrainOperandToRegClassAction>( 4650 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); 4651 4652 // We're done with this pattern! It's eligible for GISel emission; return 4653 // it. 4654 return InsertPtOrError.get(); 4655 } 4656 4657 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a 4658 // subinstruction. 4659 if (OpName == "SUBREG_TO_REG") { 4660 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 4661 if (!SubClass) 4662 return failedImport( 4663 "Cannot infer register class from SUBREG_TO_REG child #1"); 4664 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), 4665 Dst->getChild(2)); 4666 if (!SuperClass) 4667 return failedImport( 4668 "Cannot infer register class for SUBREG_TO_REG operand #0"); 4669 M.insertAction<ConstrainOperandToRegClassAction>( 4670 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4671 M.insertAction<ConstrainOperandToRegClassAction>( 4672 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); 4673 return InsertPtOrError.get(); 4674 } 4675 4676 if (OpName == "REG_SEQUENCE") { 4677 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 4678 M.insertAction<ConstrainOperandToRegClassAction>( 4679 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); 4680 4681 unsigned Num = Dst->getNumChildren(); 4682 for (unsigned I = 1; I != Num; I += 2) { 4683 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4684 4685 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 4686 if (!SubIdx) 4687 return failedImport("REG_SEQUENCE child is not a subreg index"); 4688 4689 const auto SrcRCDstRCPair = 4690 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 4691 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4692 M.insertAction<ConstrainOperandToRegClassAction>( 4693 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second); 4694 } 4695 4696 return InsertPtOrError.get(); 4697 } 4698 4699 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, 4700 DstMIBuilder.getInsnID()); 4701 return InsertPtOrError.get(); 4702 } 4703 4704 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer( 4705 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { 4706 Record *DstOp = Dst->getOperator(); 4707 if (!DstOp->isSubClassOf("Instruction")) { 4708 if (DstOp->isSubClassOf("ValueType")) 4709 return failedImport( 4710 "Pattern operator isn't an instruction (it's a ValueType)"); 4711 return failedImport("Pattern operator isn't an instruction"); 4712 } 4713 CodeGenInstruction *DstI = &Target.getInstruction(DstOp); 4714 4715 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction 4716 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. 4717 StringRef Name = DstI->TheDef->getName(); 4718 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") 4719 DstI = &Target.getInstruction(RK.getDef("COPY")); 4720 4721 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(), 4722 DstI); 4723 } 4724 4725 Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( 4726 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4727 const TreePatternNode *Dst) { 4728 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4729 const unsigned NumDefs = DstI->Operands.NumDefs; 4730 if (NumDefs == 0) 4731 return InsertPt; 4732 4733 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name); 4734 4735 // Some instructions have multiple defs, but are missing a type entry 4736 // (e.g. s_cc_out operands). 4737 if (Dst->getExtTypes().size() < NumDefs) 4738 return failedImport("unhandled discarded def"); 4739 4740 // Patterns only handle a single result, so any result after the first is an 4741 // implicitly dead def. 4742 for (unsigned I = 1; I < NumDefs; ++I) { 4743 const TypeSetByHwMode &ExtTy = Dst->getExtType(I); 4744 if (!ExtTy.isMachineValueType()) 4745 return failedImport("unsupported typeset"); 4746 4747 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy); 4748 if (!OpTy) 4749 return failedImport("unsupported type"); 4750 4751 unsigned TempRegID = M.allocateTempRegID(); 4752 InsertPt = 4753 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID); 4754 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true); 4755 } 4756 4757 return InsertPt; 4758 } 4759 4760 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( 4761 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4762 const llvm::TreePatternNode *Dst) { 4763 const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); 4764 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); 4765 4766 StringRef Name = OrigDstI->TheDef->getName(); 4767 unsigned ExpectedDstINumUses = Dst->getNumChildren(); 4768 4769 // EXTRACT_SUBREG needs to use a subregister COPY. 4770 if (Name == "EXTRACT_SUBREG") { 4771 if (!Dst->getChild(1)->isLeaf()) 4772 return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); 4773 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 4774 if (!SubRegInit) 4775 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 4776 4777 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4778 TreePatternNode *ValChild = Dst->getChild(0); 4779 if (!ValChild->isLeaf()) { 4780 // We really have to handle the source instruction, and then insert a 4781 // copy from the subregister. 4782 auto ExtractSrcTy = getInstResultType(ValChild); 4783 if (!ExtractSrcTy) 4784 return ExtractSrcTy.takeError(); 4785 4786 unsigned TempRegID = M.allocateTempRegID(); 4787 InsertPt = M.insertAction<MakeTempRegisterAction>( 4788 InsertPt, *ExtractSrcTy, TempRegID); 4789 4790 auto InsertPtOrError = createAndImportSubInstructionRenderer( 4791 ++InsertPt, M, ValChild, TempRegID); 4792 if (auto Error = InsertPtOrError.takeError()) 4793 return std::move(Error); 4794 4795 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx); 4796 return InsertPt; 4797 } 4798 4799 // If this is a source operand, this is just a subregister copy. 4800 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue()); 4801 if (!RCDef) 4802 return failedImport("EXTRACT_SUBREG child #0 could not " 4803 "be coerced to a register class"); 4804 4805 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); 4806 4807 const auto SrcRCDstRCPair = 4808 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); 4809 if (SrcRCDstRCPair.hasValue()) { 4810 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 4811 if (SrcRCDstRCPair->first != RC) 4812 return failedImport("EXTRACT_SUBREG requires an additional COPY"); 4813 } 4814 4815 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(), 4816 SubIdx); 4817 return InsertPt; 4818 } 4819 4820 if (Name == "REG_SEQUENCE") { 4821 if (!Dst->getChild(0)->isLeaf()) 4822 return failedImport("REG_SEQUENCE child #0 is not a leaf"); 4823 4824 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 4825 if (!RCDef) 4826 return failedImport("REG_SEQUENCE child #0 could not " 4827 "be coerced to a register class"); 4828 4829 if ((ExpectedDstINumUses - 1) % 2 != 0) 4830 return failedImport("Malformed REG_SEQUENCE"); 4831 4832 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { 4833 TreePatternNode *ValChild = Dst->getChild(I); 4834 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 4835 4836 if (DefInit *SubRegInit = 4837 dyn_cast<DefInit>(SubRegChild->getLeafValue())) { 4838 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 4839 4840 auto InsertPtOrError = 4841 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); 4842 if (auto Error = InsertPtOrError.takeError()) 4843 return std::move(Error); 4844 InsertPt = InsertPtOrError.get(); 4845 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx); 4846 } 4847 } 4848 4849 return InsertPt; 4850 } 4851 4852 // Render the explicit uses. 4853 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; 4854 if (Name == "COPY_TO_REGCLASS") { 4855 DstINumUses--; // Ignore the class constraint. 4856 ExpectedDstINumUses--; 4857 } 4858 4859 // NumResults - This is the number of results produced by the instruction in 4860 // the "outs" list. 4861 unsigned NumResults = OrigDstI->Operands.NumDefs; 4862 4863 // Number of operands we know the output instruction must have. If it is 4864 // variadic, we could have more operands. 4865 unsigned NumFixedOperands = DstI->Operands.size(); 4866 4867 // Loop over all of the fixed operands of the instruction pattern, emitting 4868 // code to fill them all in. The node 'N' usually has number children equal to 4869 // the number of input operands of the instruction. However, in cases where 4870 // there are predicate operands for an instruction, we need to fill in the 4871 // 'execute always' values. Match up the node operands to the instruction 4872 // operands to do this. 4873 unsigned Child = 0; 4874 4875 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the 4876 // number of operands at the end of the list which have default values. 4877 // Those can come from the pattern if it provides enough arguments, or be 4878 // filled in with the default if the pattern hasn't provided them. But any 4879 // operand with a default value _before_ the last mandatory one will be 4880 // filled in with their defaults unconditionally. 4881 unsigned NonOverridableOperands = NumFixedOperands; 4882 while (NonOverridableOperands > NumResults && 4883 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) 4884 --NonOverridableOperands; 4885 4886 unsigned NumDefaultOps = 0; 4887 for (unsigned I = 0; I != DstINumUses; ++I) { 4888 unsigned InstOpNo = DstI->Operands.NumDefs + I; 4889 4890 // Determine what to emit for this operand. 4891 Record *OperandNode = DstI->Operands[InstOpNo].Rec; 4892 4893 // If the operand has default values, introduce them now. 4894 if (CGP.operandHasDefault(OperandNode) && 4895 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { 4896 // This is a predicate or optional def operand which the pattern has not 4897 // overridden, or which we aren't letting it override; emit the 'default 4898 // ops' operands. 4899 4900 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; 4901 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); 4902 if (auto Error = importDefaultOperandRenderers( 4903 InsertPt, M, DstMIBuilder, DefaultOps)) 4904 return std::move(Error); 4905 ++NumDefaultOps; 4906 continue; 4907 } 4908 4909 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, 4910 Dst->getChild(Child)); 4911 if (auto Error = InsertPtOrError.takeError()) 4912 return std::move(Error); 4913 InsertPt = InsertPtOrError.get(); 4914 ++Child; 4915 } 4916 4917 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) 4918 return failedImport("Expected " + llvm::to_string(DstINumUses) + 4919 " used operands but found " + 4920 llvm::to_string(ExpectedDstINumUses) + 4921 " explicit ones and " + llvm::to_string(NumDefaultOps) + 4922 " default ones"); 4923 4924 return InsertPt; 4925 } 4926 4927 Error GlobalISelEmitter::importDefaultOperandRenderers( 4928 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, 4929 DagInit *DefaultOps) const { 4930 for (const auto *DefaultOp : DefaultOps->getArgs()) { 4931 Optional<LLTCodeGen> OpTyOrNone = None; 4932 4933 // Look through ValueType operators. 4934 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) { 4935 if (const DefInit *DefaultDagOperator = 4936 dyn_cast<DefInit>(DefaultDagOp->getOperator())) { 4937 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { 4938 OpTyOrNone = MVTToLLT(getValueType( 4939 DefaultDagOperator->getDef())); 4940 DefaultOp = DefaultDagOp->getArg(0); 4941 } 4942 } 4943 } 4944 4945 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) { 4946 auto Def = DefaultDefOp->getDef(); 4947 if (Def->getName() == "undef_tied_input") { 4948 unsigned TempRegID = M.allocateTempRegID(); 4949 M.insertAction<MakeTempRegisterAction>( 4950 InsertPt, OpTyOrNone.getValue(), TempRegID); 4951 InsertPt = M.insertAction<BuildMIAction>( 4952 InsertPt, M.allocateOutputInsnID(), 4953 &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); 4954 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>( 4955 InsertPt->get()); 4956 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4957 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID); 4958 } else { 4959 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def); 4960 } 4961 continue; 4962 } 4963 4964 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) { 4965 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue()); 4966 continue; 4967 } 4968 4969 return failedImport("Could not add default op"); 4970 } 4971 4972 return Error::success(); 4973 } 4974 4975 Error GlobalISelEmitter::importImplicitDefRenderers( 4976 BuildMIAction &DstMIBuilder, 4977 const std::vector<Record *> &ImplicitDefs) const { 4978 if (!ImplicitDefs.empty()) 4979 return failedImport("Pattern defines a physical register"); 4980 return Error::success(); 4981 } 4982 4983 Optional<const CodeGenRegisterClass *> 4984 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { 4985 assert(Leaf && "Expected node?"); 4986 assert(Leaf->isLeaf() && "Expected leaf?"); 4987 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); 4988 if (!RCRec) 4989 return None; 4990 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); 4991 if (!RC) 4992 return None; 4993 return RC; 4994 } 4995 4996 Optional<const CodeGenRegisterClass *> 4997 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { 4998 if (!N) 4999 return None; 5000 5001 if (N->isLeaf()) 5002 return getRegClassFromLeaf(N); 5003 5004 // We don't have a leaf node, so we have to try and infer something. Check 5005 // that we have an instruction that we an infer something from. 5006 5007 // Only handle things that produce a single type. 5008 if (N->getNumTypes() != 1) 5009 return None; 5010 Record *OpRec = N->getOperator(); 5011 5012 // We only want instructions. 5013 if (!OpRec->isSubClassOf("Instruction")) 5014 return None; 5015 5016 // Don't want to try and infer things when there could potentially be more 5017 // than one candidate register class. 5018 auto &Inst = Target.getInstruction(OpRec); 5019 if (Inst.Operands.NumDefs > 1) 5020 return None; 5021 5022 // Handle any special-case instructions which we can safely infer register 5023 // classes from. 5024 StringRef InstName = Inst.TheDef->getName(); 5025 bool IsRegSequence = InstName == "REG_SEQUENCE"; 5026 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { 5027 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It 5028 // has the desired register class as the first child. 5029 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); 5030 if (!RCChild->isLeaf()) 5031 return None; 5032 return getRegClassFromLeaf(RCChild); 5033 } 5034 if (InstName == "INSERT_SUBREG") { 5035 TreePatternNode *Child0 = N->getChild(0); 5036 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!"); 5037 const TypeSetByHwMode &VTy = Child0->getExtType(0); 5038 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2)); 5039 } 5040 if (InstName == "EXTRACT_SUBREG") { 5041 assert(N->getNumTypes() == 1 && "Unexpected number of types!"); 5042 const TypeSetByHwMode &VTy = N->getExtType(0); 5043 return inferSuperRegisterClass(VTy, N->getChild(1)); 5044 } 5045 5046 // Handle destination record types that we can safely infer a register class 5047 // from. 5048 const auto &DstIOperand = Inst.Operands[0]; 5049 Record *DstIOpRec = DstIOperand.Rec; 5050 if (DstIOpRec->isSubClassOf("RegisterOperand")) { 5051 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5052 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5053 return &RC; 5054 } 5055 5056 if (DstIOpRec->isSubClassOf("RegisterClass")) { 5057 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); 5058 return &RC; 5059 } 5060 5061 return None; 5062 } 5063 5064 Optional<const CodeGenRegisterClass *> 5065 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, 5066 TreePatternNode *SubRegIdxNode) { 5067 assert(SubRegIdxNode && "Expected subregister index node!"); 5068 // We need a ValueTypeByHwMode for getSuperRegForSubReg. 5069 if (!Ty.isValueTypeByHwMode(false)) 5070 return None; 5071 if (!SubRegIdxNode->isLeaf()) 5072 return None; 5073 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5074 if (!SubRegInit) 5075 return None; 5076 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); 5077 5078 // Use the information we found above to find a minimal register class which 5079 // supports the subregister and type we want. 5080 auto RC = 5081 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx, 5082 /* MustBeAllocatable */ true); 5083 if (!RC) 5084 return None; 5085 return *RC; 5086 } 5087 5088 Optional<const CodeGenRegisterClass *> 5089 GlobalISelEmitter::inferSuperRegisterClassForNode( 5090 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, 5091 TreePatternNode *SubRegIdxNode) { 5092 assert(SuperRegNode && "Expected super register node!"); 5093 // Check if we already have a defined register class for the super register 5094 // node. If we do, then we should preserve that rather than inferring anything 5095 // from the subregister index node. We can assume that whoever wrote the 5096 // pattern in the first place made sure that the super register and 5097 // subregister are compatible. 5098 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass = 5099 inferRegClassFromPattern(SuperRegNode)) 5100 return *SuperRegisterClass; 5101 return inferSuperRegisterClass(Ty, SubRegIdxNode); 5102 } 5103 5104 Optional<CodeGenSubRegIndex *> 5105 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { 5106 if (!SubRegIdxNode->isLeaf()) 5107 return None; 5108 5109 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue()); 5110 if (!SubRegInit) 5111 return None; 5112 return CGRegs.getSubRegIdx(SubRegInit->getDef()); 5113 } 5114 5115 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { 5116 // Keep track of the matchers and actions to emit. 5117 int Score = P.getPatternComplexity(CGP); 5118 RuleMatcher M(P.getSrcRecord()->getLoc()); 5119 RuleMatcherScores[M.getRuleID()] = Score; 5120 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) + 5121 " => " + 5122 llvm::to_string(*P.getDstPattern())); 5123 5124 SmallVector<Record *, 4> Predicates; 5125 P.getPredicateRecords(Predicates); 5126 if (auto Error = importRulePredicates(M, Predicates)) 5127 return std::move(Error); 5128 5129 // Next, analyze the pattern operators. 5130 TreePatternNode *Src = P.getSrcPattern(); 5131 TreePatternNode *Dst = P.getDstPattern(); 5132 5133 // If the root of either pattern isn't a simple operator, ignore it. 5134 if (auto Err = isTrivialOperatorNode(Dst)) 5135 return failedImport("Dst pattern root isn't a trivial operator (" + 5136 toString(std::move(Err)) + ")"); 5137 if (auto Err = isTrivialOperatorNode(Src)) 5138 return failedImport("Src pattern root isn't a trivial operator (" + 5139 toString(std::move(Err)) + ")"); 5140 5141 // The different predicates and matchers created during 5142 // addInstructionMatcher use the RuleMatcher M to set up their 5143 // instruction ID (InsnVarID) that are going to be used when 5144 // M is going to be emitted. 5145 // However, the code doing the emission still relies on the IDs 5146 // returned during that process by the RuleMatcher when issuing 5147 // the recordInsn opcodes. 5148 // Because of that: 5149 // 1. The order in which we created the predicates 5150 // and such must be the same as the order in which we emit them, 5151 // and 5152 // 2. We need to reset the generation of the IDs in M somewhere between 5153 // addInstructionMatcher and emit 5154 // 5155 // FIXME: Long term, we don't want to have to rely on this implicit 5156 // naming being the same. One possible solution would be to have 5157 // explicit operator for operation capture and reference those. 5158 // The plus side is that it would expose opportunities to share 5159 // the capture accross rules. The downside is that it would 5160 // introduce a dependency between predicates (captures must happen 5161 // before their first use.) 5162 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); 5163 unsigned TempOpIdx = 0; 5164 auto InsnMatcherOrError = 5165 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); 5166 if (auto Error = InsnMatcherOrError.takeError()) 5167 return std::move(Error); 5168 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); 5169 5170 if (Dst->isLeaf()) { 5171 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); 5172 if (RCDef) { 5173 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); 5174 5175 // We need to replace the def and all its uses with the specified 5176 // operand. However, we must also insert COPY's wherever needed. 5177 // For now, emit a copy and let the register allocator clean up. 5178 auto &DstI = Target.getInstruction(RK.getDef("COPY")); 5179 const auto &DstIOperand = DstI.Operands[0]; 5180 5181 OperandMatcher &OM0 = InsnMatcher.getOperand(0); 5182 OM0.setSymbolicName(DstIOperand.Name); 5183 M.defineOperand(OM0.getSymbolicName(), OM0); 5184 OM0.addPredicate<RegisterBankOperandMatcher>(RC); 5185 5186 auto &DstMIBuilder = 5187 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI); 5188 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name); 5189 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName()); 5190 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC); 5191 5192 // We're done with this pattern! It's eligible for GISel emission; return 5193 // it. 5194 ++NumPatternImported; 5195 return std::move(M); 5196 } 5197 5198 return failedImport("Dst pattern root isn't a known leaf"); 5199 } 5200 5201 // Start with the defined operands (i.e., the results of the root operator). 5202 Record *DstOp = Dst->getOperator(); 5203 if (!DstOp->isSubClassOf("Instruction")) 5204 return failedImport("Pattern operator isn't an instruction"); 5205 5206 auto &DstI = Target.getInstruction(DstOp); 5207 StringRef DstIName = DstI.TheDef->getName(); 5208 5209 if (DstI.Operands.NumDefs < Src->getExtTypes().size()) 5210 return failedImport("Src pattern result has more defs than dst MI (" + 5211 to_string(Src->getExtTypes().size()) + " def(s) vs " + 5212 to_string(DstI.Operands.NumDefs) + " def(s))"); 5213 5214 // The root of the match also has constraints on the register bank so that it 5215 // matches the result instruction. 5216 unsigned OpIdx = 0; 5217 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { 5218 (void)VTy; 5219 5220 const auto &DstIOperand = DstI.Operands[OpIdx]; 5221 Record *DstIOpRec = DstIOperand.Rec; 5222 if (DstIName == "COPY_TO_REGCLASS") { 5223 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5224 5225 if (DstIOpRec == nullptr) 5226 return failedImport( 5227 "COPY_TO_REGCLASS operand #1 isn't a register class"); 5228 } else if (DstIName == "REG_SEQUENCE") { 5229 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); 5230 if (DstIOpRec == nullptr) 5231 return failedImport("REG_SEQUENCE operand #0 isn't a register class"); 5232 } else if (DstIName == "EXTRACT_SUBREG") { 5233 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0)); 5234 if (!InferredClass) 5235 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0"); 5236 5237 // We can assume that a subregister is in the same bank as it's super 5238 // register. 5239 DstIOpRec = (*InferredClass)->getDef(); 5240 } else if (DstIName == "INSERT_SUBREG") { 5241 auto MaybeSuperClass = inferSuperRegisterClassForNode( 5242 VTy, Dst->getChild(0), Dst->getChild(2)); 5243 if (!MaybeSuperClass) 5244 return failedImport( 5245 "Cannot infer register class for INSERT_SUBREG operand #0"); 5246 // Move to the next pattern here, because the register class we found 5247 // doesn't necessarily have a record associated with it. So, we can't 5248 // set DstIOpRec using this. 5249 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5250 OM.setSymbolicName(DstIOperand.Name); 5251 M.defineOperand(OM.getSymbolicName(), OM); 5252 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass); 5253 ++OpIdx; 5254 continue; 5255 } else if (DstIName == "SUBREG_TO_REG") { 5256 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); 5257 if (!MaybeRegClass) 5258 return failedImport( 5259 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5260 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5261 OM.setSymbolicName(DstIOperand.Name); 5262 M.defineOperand(OM.getSymbolicName(), OM); 5263 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass); 5264 ++OpIdx; 5265 continue; 5266 } else if (DstIOpRec->isSubClassOf("RegisterOperand")) 5267 DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); 5268 else if (!DstIOpRec->isSubClassOf("RegisterClass")) 5269 return failedImport("Dst MI def isn't a register class" + 5270 to_string(*Dst)); 5271 5272 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); 5273 OM.setSymbolicName(DstIOperand.Name); 5274 M.defineOperand(OM.getSymbolicName(), OM); 5275 OM.addPredicate<RegisterBankOperandMatcher>( 5276 Target.getRegisterClass(DstIOpRec)); 5277 ++OpIdx; 5278 } 5279 5280 auto DstMIBuilderOrError = 5281 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); 5282 if (auto Error = DstMIBuilderOrError.takeError()) 5283 return std::move(Error); 5284 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); 5285 5286 // Render the implicit defs. 5287 // These are only added to the root of the result. 5288 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) 5289 return std::move(Error); 5290 5291 DstMIBuilder.chooseInsnToMutate(M); 5292 5293 // Constrain the registers to classes. This is normally derived from the 5294 // emitted instruction but a few instructions require special handling. 5295 if (DstIName == "COPY_TO_REGCLASS") { 5296 // COPY_TO_REGCLASS does not provide operand constraints itself but the 5297 // result is constrained to the class given by the second child. 5298 Record *DstIOpRec = 5299 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); 5300 5301 if (DstIOpRec == nullptr) 5302 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); 5303 5304 M.addAction<ConstrainOperandToRegClassAction>( 5305 0, 0, Target.getRegisterClass(DstIOpRec)); 5306 5307 // We're done with this pattern! It's eligible for GISel emission; return 5308 // it. 5309 ++NumPatternImported; 5310 return std::move(M); 5311 } 5312 5313 if (DstIName == "EXTRACT_SUBREG") { 5314 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5315 if (!SuperClass) 5316 return failedImport( 5317 "Cannot infer register class from EXTRACT_SUBREG operand #0"); 5318 5319 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); 5320 if (!SubIdx) 5321 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); 5322 5323 // It would be nice to leave this constraint implicit but we're required 5324 // to pick a register class so constrain the result to a register class 5325 // that can hold the correct MVT. 5326 // 5327 // FIXME: This may introduce an extra copy if the chosen class doesn't 5328 // actually contain the subregisters. 5329 assert(Src->getExtTypes().size() == 1 && 5330 "Expected Src of EXTRACT_SUBREG to have one result type"); 5331 5332 const auto SrcRCDstRCPair = 5333 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5334 if (!SrcRCDstRCPair) { 5335 return failedImport("subreg index is incompatible " 5336 "with inferred reg class"); 5337 } 5338 5339 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); 5340 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second); 5341 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first); 5342 5343 // We're done with this pattern! It's eligible for GISel emission; return 5344 // it. 5345 ++NumPatternImported; 5346 return std::move(M); 5347 } 5348 5349 if (DstIName == "INSERT_SUBREG") { 5350 assert(Src->getExtTypes().size() == 1 && 5351 "Expected Src of INSERT_SUBREG to have one result type"); 5352 // We need to constrain the destination, a super regsister source, and a 5353 // subregister source. 5354 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5355 if (!SubClass) 5356 return failedImport( 5357 "Cannot infer register class from INSERT_SUBREG operand #1"); 5358 auto SuperClass = inferSuperRegisterClassForNode( 5359 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); 5360 if (!SuperClass) 5361 return failedImport( 5362 "Cannot infer register class for INSERT_SUBREG operand #0"); 5363 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5364 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass); 5365 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5366 ++NumPatternImported; 5367 return std::move(M); 5368 } 5369 5370 if (DstIName == "SUBREG_TO_REG") { 5371 // We need to constrain the destination and subregister source. 5372 assert(Src->getExtTypes().size() == 1 && 5373 "Expected Src of SUBREG_TO_REG to have one result type"); 5374 5375 // Attempt to infer the subregister source from the first child. If it has 5376 // an explicitly given register class, we'll use that. Otherwise, we will 5377 // fail. 5378 auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); 5379 if (!SubClass) 5380 return failedImport( 5381 "Cannot infer register class from SUBREG_TO_REG child #1"); 5382 // We don't have a child to look at that might have a super register node. 5383 auto SuperClass = 5384 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); 5385 if (!SuperClass) 5386 return failedImport( 5387 "Cannot infer register class for SUBREG_TO_REG operand #0"); 5388 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5389 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass); 5390 ++NumPatternImported; 5391 return std::move(M); 5392 } 5393 5394 if (DstIName == "REG_SEQUENCE") { 5395 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); 5396 5397 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass); 5398 5399 unsigned Num = Dst->getNumChildren(); 5400 for (unsigned I = 1; I != Num; I += 2) { 5401 TreePatternNode *SubRegChild = Dst->getChild(I + 1); 5402 5403 auto SubIdx = inferSubRegIndexForNode(SubRegChild); 5404 if (!SubIdx) 5405 return failedImport("REG_SEQUENCE child is not a subreg index"); 5406 5407 const auto SrcRCDstRCPair = 5408 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); 5409 5410 M.addAction<ConstrainOperandToRegClassAction>(0, I, 5411 *SrcRCDstRCPair->second); 5412 } 5413 5414 ++NumPatternImported; 5415 return std::move(M); 5416 } 5417 5418 M.addAction<ConstrainOperandsToDefinitionAction>(0); 5419 5420 // We're done with this pattern! It's eligible for GISel emission; return it. 5421 ++NumPatternImported; 5422 return std::move(M); 5423 } 5424 5425 // Emit imm predicate table and an enum to reference them with. 5426 // The 'Predicate_' part of the name is redundant but eliminating it is more 5427 // trouble than it's worth. 5428 void GlobalISelEmitter::emitCxxPredicateFns( 5429 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, 5430 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs, 5431 StringRef AdditionalDeclarations, 5432 std::function<bool(const Record *R)> Filter) { 5433 std::vector<const Record *> MatchedRecords; 5434 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags"); 5435 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), 5436 [&](Record *Record) { 5437 return !Record->getValueAsString(CodeFieldName).empty() && 5438 Filter(Record); 5439 }); 5440 5441 if (!MatchedRecords.empty()) { 5442 OS << "// PatFrag predicates.\n" 5443 << "enum {\n"; 5444 std::string EnumeratorSeparator = 5445 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); 5446 for (const auto *Record : MatchedRecords) { 5447 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() 5448 << EnumeratorSeparator; 5449 EnumeratorSeparator = ",\n"; 5450 } 5451 OS << "};\n"; 5452 } 5453 5454 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName 5455 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " 5456 << ArgName << AdditionalArgs <<") const {\n" 5457 << AdditionalDeclarations; 5458 if (!AdditionalDeclarations.empty()) 5459 OS << "\n"; 5460 if (!MatchedRecords.empty()) 5461 OS << " switch (PredicateID) {\n"; 5462 for (const auto *Record : MatchedRecords) { 5463 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" 5464 << Record->getName() << ": {\n" 5465 << " " << Record->getValueAsString(CodeFieldName) << "\n" 5466 << " llvm_unreachable(\"" << CodeFieldName 5467 << " should have returned\");\n" 5468 << " return false;\n" 5469 << " }\n"; 5470 } 5471 if (!MatchedRecords.empty()) 5472 OS << " }\n"; 5473 OS << " llvm_unreachable(\"Unknown predicate\");\n" 5474 << " return false;\n" 5475 << "}\n"; 5476 } 5477 5478 void GlobalISelEmitter::emitImmPredicateFns( 5479 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, 5480 std::function<bool(const Record *R)> Filter) { 5481 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, 5482 "Imm", "", "", Filter); 5483 } 5484 5485 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { 5486 return emitCxxPredicateFns( 5487 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", 5488 ", const std::array<const MachineOperand *, 3> &Operands", 5489 " const MachineFunction &MF = *MI.getParent()->getParent();\n" 5490 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5491 " (void)MRI;", 5492 [](const Record *R) { return true; }); 5493 } 5494 5495 template <class GroupT> 5496 std::vector<Matcher *> GlobalISelEmitter::optimizeRules( 5497 ArrayRef<Matcher *> Rules, 5498 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) { 5499 5500 std::vector<Matcher *> OptRules; 5501 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>(); 5502 assert(CurrentGroup->empty() && "Newly created group isn't empty!"); 5503 unsigned NumGroups = 0; 5504 5505 auto ProcessCurrentGroup = [&]() { 5506 if (CurrentGroup->empty()) 5507 // An empty group is good to be reused: 5508 return; 5509 5510 // If the group isn't large enough to provide any benefit, move all the 5511 // added rules out of it and make sure to re-create the group to properly 5512 // re-initialize it: 5513 if (CurrentGroup->size() < 2) 5514 append_range(OptRules, CurrentGroup->matchers()); 5515 else { 5516 CurrentGroup->finalize(); 5517 OptRules.push_back(CurrentGroup.get()); 5518 MatcherStorage.emplace_back(std::move(CurrentGroup)); 5519 ++NumGroups; 5520 } 5521 CurrentGroup = std::make_unique<GroupT>(); 5522 }; 5523 for (Matcher *Rule : Rules) { 5524 // Greedily add as many matchers as possible to the current group: 5525 if (CurrentGroup->addMatcher(*Rule)) 5526 continue; 5527 5528 ProcessCurrentGroup(); 5529 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); 5530 5531 // Try to add the pending matcher to a newly created empty group: 5532 if (!CurrentGroup->addMatcher(*Rule)) 5533 // If we couldn't add the matcher to an empty group, that group type 5534 // doesn't support that kind of matchers at all, so just skip it: 5535 OptRules.push_back(Rule); 5536 } 5537 ProcessCurrentGroup(); 5538 5539 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); 5540 assert(CurrentGroup->empty() && "The last group wasn't properly processed"); 5541 return OptRules; 5542 } 5543 5544 MatchTable 5545 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, 5546 bool Optimize, bool WithCoverage) { 5547 std::vector<Matcher *> InputRules; 5548 for (Matcher &Rule : Rules) 5549 InputRules.push_back(&Rule); 5550 5551 if (!Optimize) 5552 return MatchTable::buildTable(InputRules, WithCoverage); 5553 5554 unsigned CurrentOrdering = 0; 5555 StringMap<unsigned> OpcodeOrder; 5556 for (RuleMatcher &Rule : Rules) { 5557 const StringRef Opcode = Rule.getOpcode(); 5558 assert(!Opcode.empty() && "Didn't expect an undefined opcode"); 5559 if (OpcodeOrder.count(Opcode) == 0) 5560 OpcodeOrder[Opcode] = CurrentOrdering++; 5561 } 5562 5563 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A, 5564 const Matcher *B) { 5565 auto *L = static_cast<const RuleMatcher *>(A); 5566 auto *R = static_cast<const RuleMatcher *>(B); 5567 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) < 5568 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands()); 5569 }); 5570 5571 for (Matcher *Rule : InputRules) 5572 Rule->optimize(); 5573 5574 std::vector<std::unique_ptr<Matcher>> MatcherStorage; 5575 std::vector<Matcher *> OptRules = 5576 optimizeRules<GroupMatcher>(InputRules, MatcherStorage); 5577 5578 for (Matcher *Rule : OptRules) 5579 Rule->optimize(); 5580 5581 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage); 5582 5583 return MatchTable::buildTable(OptRules, WithCoverage); 5584 } 5585 5586 void GroupMatcher::optimize() { 5587 // Make sure we only sort by a specific predicate within a range of rules that 5588 // all have that predicate checked against a specific value (not a wildcard): 5589 auto F = Matchers.begin(); 5590 auto T = F; 5591 auto E = Matchers.end(); 5592 while (T != E) { 5593 while (T != E) { 5594 auto *R = static_cast<RuleMatcher *>(*T); 5595 if (!R->getFirstConditionAsRootType().get().isValid()) 5596 break; 5597 ++T; 5598 } 5599 std::stable_sort(F, T, [](Matcher *A, Matcher *B) { 5600 auto *L = static_cast<RuleMatcher *>(A); 5601 auto *R = static_cast<RuleMatcher *>(B); 5602 return L->getFirstConditionAsRootType() < 5603 R->getFirstConditionAsRootType(); 5604 }); 5605 if (T != E) 5606 F = ++T; 5607 } 5608 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage) 5609 .swap(Matchers); 5610 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage) 5611 .swap(Matchers); 5612 } 5613 5614 void GlobalISelEmitter::run(raw_ostream &OS) { 5615 if (!UseCoverageFile.empty()) { 5616 RuleCoverage = CodeGenCoverage(); 5617 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); 5618 if (!RuleCoverageBufOrErr) { 5619 PrintWarning(SMLoc(), "Missing rule coverage data"); 5620 RuleCoverage = None; 5621 } else { 5622 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { 5623 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); 5624 RuleCoverage = None; 5625 } 5626 } 5627 } 5628 5629 // Track the run-time opcode values 5630 gatherOpcodeValues(); 5631 // Track the run-time LLT ID values 5632 gatherTypeIDValues(); 5633 5634 // Track the GINodeEquiv definitions. 5635 gatherNodeEquivs(); 5636 5637 emitSourceFileHeader(("Global Instruction Selector for the " + 5638 Target.getName() + " target").str(), OS); 5639 std::vector<RuleMatcher> Rules; 5640 // Look through the SelectionDAG patterns we found, possibly emitting some. 5641 for (const PatternToMatch &Pat : CGP.ptms()) { 5642 ++NumPatternTotal; 5643 5644 auto MatcherOrErr = runOnPattern(Pat); 5645 5646 // The pattern analysis can fail, indicating an unsupported pattern. 5647 // Report that if we've been asked to do so. 5648 if (auto Err = MatcherOrErr.takeError()) { 5649 if (WarnOnSkippedPatterns) { 5650 PrintWarning(Pat.getSrcRecord()->getLoc(), 5651 "Skipped pattern: " + toString(std::move(Err))); 5652 } else { 5653 consumeError(std::move(Err)); 5654 } 5655 ++NumPatternImportsSkipped; 5656 continue; 5657 } 5658 5659 if (RuleCoverage) { 5660 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) 5661 ++NumPatternsTested; 5662 else 5663 PrintWarning(Pat.getSrcRecord()->getLoc(), 5664 "Pattern is not covered by a test"); 5665 } 5666 Rules.push_back(std::move(MatcherOrErr.get())); 5667 } 5668 5669 // Comparison function to order records by name. 5670 auto orderByName = [](const Record *A, const Record *B) { 5671 return A->getName() < B->getName(); 5672 }; 5673 5674 std::vector<Record *> ComplexPredicates = 5675 RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); 5676 llvm::sort(ComplexPredicates, orderByName); 5677 5678 std::vector<StringRef> CustomRendererFns; 5679 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"), 5680 std::back_inserter(CustomRendererFns), [](const auto &Record) { 5681 return Record->getValueAsString("RendererFn"); 5682 }); 5683 // Sort and remove duplicates to get a list of unique renderer functions, in 5684 // case some were mentioned more than once. 5685 llvm::sort(CustomRendererFns); 5686 CustomRendererFns.erase( 5687 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()), 5688 CustomRendererFns.end()); 5689 5690 unsigned MaxTemporaries = 0; 5691 for (const auto &Rule : Rules) 5692 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); 5693 5694 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" 5695 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() 5696 << ";\n" 5697 << "using PredicateBitset = " 5698 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n" 5699 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; 5700 5701 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" 5702 << " mutable MatcherState State;\n" 5703 << " typedef " 5704 "ComplexRendererFns(" 5705 << Target.getName() 5706 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" 5707 5708 << " typedef void(" << Target.getName() 5709 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " 5710 "MachineInstr &, int) " 5711 "const;\n" 5712 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, " 5713 "CustomRendererFn> " 5714 "ISelInfo;\n"; 5715 OS << " static " << Target.getName() 5716 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" 5717 << " static " << Target.getName() 5718 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" 5719 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " 5720 "override;\n" 5721 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " 5722 "const override;\n" 5723 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " 5724 "&Imm) const override;\n" 5725 << " const int64_t *getMatchTable() const override;\n" 5726 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI" 5727 ", const std::array<const MachineOperand *, 3> &Operands) " 5728 "const override;\n" 5729 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; 5730 5731 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" 5732 << ", State(" << MaxTemporaries << "),\n" 5733 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" 5734 << ", ComplexPredicateFns, CustomRenderers)\n" 5735 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; 5736 5737 OS << "#ifdef GET_GLOBALISEL_IMPL\n"; 5738 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 5739 OS); 5740 5741 // Separate subtarget features by how often they must be recomputed. 5742 SubtargetFeatureInfoMap ModuleFeatures; 5743 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5744 std::inserter(ModuleFeatures, ModuleFeatures.end()), 5745 [](const SubtargetFeatureInfoMap::value_type &X) { 5746 return !X.second.mustRecomputePerFunction(); 5747 }); 5748 SubtargetFeatureInfoMap FunctionFeatures; 5749 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), 5750 std::inserter(FunctionFeatures, FunctionFeatures.end()), 5751 [](const SubtargetFeatureInfoMap::value_type &X) { 5752 return X.second.mustRecomputePerFunction(); 5753 }); 5754 5755 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5756 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", 5757 ModuleFeatures, OS); 5758 5759 5760 OS << "void " << Target.getName() << "InstructionSelector" 5761 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" 5762 " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" 5763 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n" 5764 "}\n"; 5765 5766 SubtargetFeatureInfo::emitComputeAvailableFeatures( 5767 Target.getName(), "InstructionSelector", 5768 "computeAvailableFunctionFeatures", FunctionFeatures, OS, 5769 "const MachineFunction *MF"); 5770 5771 // Emit a table containing the LLT objects needed by the matcher and an enum 5772 // for the matcher to reference them with. 5773 std::vector<LLTCodeGen> TypeObjects; 5774 append_range(TypeObjects, KnownTypes); 5775 llvm::sort(TypeObjects); 5776 OS << "// LLT Objects.\n" 5777 << "enum {\n"; 5778 for (const auto &TypeObject : TypeObjects) { 5779 OS << " "; 5780 TypeObject.emitCxxEnumValue(OS); 5781 OS << ",\n"; 5782 } 5783 OS << "};\n"; 5784 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" 5785 << "const static LLT TypeObjects[] = {\n"; 5786 for (const auto &TypeObject : TypeObjects) { 5787 OS << " "; 5788 TypeObject.emitCxxConstructorCall(OS); 5789 OS << ",\n"; 5790 } 5791 OS << "};\n\n"; 5792 5793 // Emit a table containing the PredicateBitsets objects needed by the matcher 5794 // and an enum for the matcher to reference them with. 5795 std::vector<std::vector<Record *>> FeatureBitsets; 5796 for (auto &Rule : Rules) 5797 FeatureBitsets.push_back(Rule.getRequiredFeatures()); 5798 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 5799 const std::vector<Record *> &B) { 5800 if (A.size() < B.size()) 5801 return true; 5802 if (A.size() > B.size()) 5803 return false; 5804 for (auto Pair : zip(A, B)) { 5805 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 5806 return true; 5807 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 5808 return false; 5809 } 5810 return false; 5811 }); 5812 FeatureBitsets.erase( 5813 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 5814 FeatureBitsets.end()); 5815 OS << "// Feature bitsets.\n" 5816 << "enum {\n" 5817 << " GIFBS_Invalid,\n"; 5818 for (const auto &FeatureBitset : FeatureBitsets) { 5819 if (FeatureBitset.empty()) 5820 continue; 5821 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 5822 } 5823 OS << "};\n" 5824 << "const static PredicateBitset FeatureBitsets[] {\n" 5825 << " {}, // GIFBS_Invalid\n"; 5826 for (const auto &FeatureBitset : FeatureBitsets) { 5827 if (FeatureBitset.empty()) 5828 continue; 5829 OS << " {"; 5830 for (const auto &Feature : FeatureBitset) { 5831 const auto &I = SubtargetFeatures.find(Feature); 5832 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 5833 OS << I->second.getEnumBitName() << ", "; 5834 } 5835 OS << "},\n"; 5836 } 5837 OS << "};\n\n"; 5838 5839 // Emit complex predicate table and an enum to reference them with. 5840 OS << "// ComplexPattern predicates.\n" 5841 << "enum {\n" 5842 << " GICP_Invalid,\n"; 5843 for (const auto &Record : ComplexPredicates) 5844 OS << " GICP_" << Record->getName() << ",\n"; 5845 OS << "};\n" 5846 << "// See constructor for table contents\n\n"; 5847 5848 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { 5849 bool Unset; 5850 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && 5851 !R->getValueAsBit("IsAPInt"); 5852 }); 5853 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { 5854 bool Unset; 5855 return R->getValueAsBitOrUnset("IsAPFloat", Unset); 5856 }); 5857 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { 5858 return R->getValueAsBit("IsAPInt"); 5859 }); 5860 emitMIPredicateFns(OS); 5861 OS << "\n"; 5862 5863 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" 5864 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" 5865 << " nullptr, // GICP_Invalid\n"; 5866 for (const auto &Record : ComplexPredicates) 5867 OS << " &" << Target.getName() 5868 << "InstructionSelector::" << Record->getValueAsString("MatcherFn") 5869 << ", // " << Record->getName() << "\n"; 5870 OS << "};\n\n"; 5871 5872 OS << "// Custom renderers.\n" 5873 << "enum {\n" 5874 << " GICR_Invalid,\n"; 5875 for (const auto &Fn : CustomRendererFns) 5876 OS << " GICR_" << Fn << ",\n"; 5877 OS << "};\n"; 5878 5879 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" 5880 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" 5881 << " nullptr, // GICR_Invalid\n"; 5882 for (const auto &Fn : CustomRendererFns) 5883 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n"; 5884 OS << "};\n\n"; 5885 5886 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { 5887 int ScoreA = RuleMatcherScores[A.getRuleID()]; 5888 int ScoreB = RuleMatcherScores[B.getRuleID()]; 5889 if (ScoreA > ScoreB) 5890 return true; 5891 if (ScoreB > ScoreA) 5892 return false; 5893 if (A.isHigherPriorityThan(B)) { 5894 assert(!B.isHigherPriorityThan(A) && "Cannot be more important " 5895 "and less important at " 5896 "the same time"); 5897 return true; 5898 } 5899 return false; 5900 }); 5901 5902 OS << "bool " << Target.getName() 5903 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " 5904 "&CoverageInfo) const {\n" 5905 << " MachineFunction &MF = *I.getParent()->getParent();\n" 5906 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" 5907 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" 5908 << " NewMIVector OutMIs;\n" 5909 << " State.MIs.clear();\n" 5910 << " State.MIs.push_back(&I);\n\n" 5911 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" 5912 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" 5913 << ", CoverageInfo)) {\n" 5914 << " return true;\n" 5915 << " }\n\n" 5916 << " return false;\n" 5917 << "}\n\n"; 5918 5919 const MatchTable Table = 5920 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); 5921 OS << "const int64_t *" << Target.getName() 5922 << "InstructionSelector::getMatchTable() const {\n"; 5923 Table.emitDeclaration(OS); 5924 OS << " return "; 5925 Table.emitUse(OS); 5926 OS << ";\n}\n"; 5927 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; 5928 5929 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" 5930 << "PredicateBitset AvailableModuleFeatures;\n" 5931 << "mutable PredicateBitset AvailableFunctionFeatures;\n" 5932 << "PredicateBitset getAvailableFeatures() const {\n" 5933 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" 5934 << "}\n" 5935 << "PredicateBitset\n" 5936 << "computeAvailableModuleFeatures(const " << Target.getName() 5937 << "Subtarget *Subtarget) const;\n" 5938 << "PredicateBitset\n" 5939 << "computeAvailableFunctionFeatures(const " << Target.getName() 5940 << "Subtarget *Subtarget,\n" 5941 << " const MachineFunction *MF) const;\n" 5942 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" 5943 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; 5944 5945 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" 5946 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" 5947 << "AvailableFunctionFeatures()\n" 5948 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; 5949 } 5950 5951 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { 5952 if (SubtargetFeatures.count(Predicate) == 0) 5953 SubtargetFeatures.emplace( 5954 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); 5955 } 5956 5957 void RuleMatcher::optimize() { 5958 for (auto &Item : InsnVariableIDs) { 5959 InstructionMatcher &InsnMatcher = *Item.first; 5960 for (auto &OM : InsnMatcher.operands()) { 5961 // Complex Patterns are usually expensive and they relatively rarely fail 5962 // on their own: more often we end up throwing away all the work done by a 5963 // matching part of a complex pattern because some other part of the 5964 // enclosing pattern didn't match. All of this makes it beneficial to 5965 // delay complex patterns until the very end of the rule matching, 5966 // especially for targets having lots of complex patterns. 5967 for (auto &OP : OM->predicates()) 5968 if (isa<ComplexPatternOperandMatcher>(OP)) 5969 EpilogueMatchers.emplace_back(std::move(OP)); 5970 OM->eraseNullPredicates(); 5971 } 5972 InsnMatcher.optimize(); 5973 } 5974 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L, 5975 const std::unique_ptr<PredicateMatcher> &R) { 5976 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < 5977 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); 5978 }); 5979 } 5980 5981 bool RuleMatcher::hasFirstCondition() const { 5982 if (insnmatchers_empty()) 5983 return false; 5984 InstructionMatcher &Matcher = insnmatchers_front(); 5985 if (!Matcher.predicates_empty()) 5986 return true; 5987 for (auto &OM : Matcher.operands()) 5988 for (auto &OP : OM->predicates()) 5989 if (!isa<InstructionOperandMatcher>(OP)) 5990 return true; 5991 return false; 5992 } 5993 5994 const PredicateMatcher &RuleMatcher::getFirstCondition() const { 5995 assert(!insnmatchers_empty() && 5996 "Trying to get a condition from an empty RuleMatcher"); 5997 5998 InstructionMatcher &Matcher = insnmatchers_front(); 5999 if (!Matcher.predicates_empty()) 6000 return **Matcher.predicates_begin(); 6001 // If there is no more predicate on the instruction itself, look at its 6002 // operands. 6003 for (auto &OM : Matcher.operands()) 6004 for (auto &OP : OM->predicates()) 6005 if (!isa<InstructionOperandMatcher>(OP)) 6006 return *OP; 6007 6008 llvm_unreachable("Trying to get a condition from an InstructionMatcher with " 6009 "no conditions"); 6010 } 6011 6012 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() { 6013 assert(!insnmatchers_empty() && 6014 "Trying to pop a condition from an empty RuleMatcher"); 6015 6016 InstructionMatcher &Matcher = insnmatchers_front(); 6017 if (!Matcher.predicates_empty()) 6018 return Matcher.predicates_pop_front(); 6019 // If there is no more predicate on the instruction itself, look at its 6020 // operands. 6021 for (auto &OM : Matcher.operands()) 6022 for (auto &OP : OM->predicates()) 6023 if (!isa<InstructionOperandMatcher>(OP)) { 6024 std::unique_ptr<PredicateMatcher> Result = std::move(OP); 6025 OM->eraseNullPredicates(); 6026 return Result; 6027 } 6028 6029 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " 6030 "no conditions"); 6031 } 6032 6033 bool GroupMatcher::candidateConditionMatches( 6034 const PredicateMatcher &Predicate) const { 6035 6036 if (empty()) { 6037 // Sharing predicates for nested instructions is not supported yet as we 6038 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6039 // only work on the original root instruction (InsnVarID == 0): 6040 if (Predicate.getInsnVarID() != 0) 6041 return false; 6042 // ... otherwise an empty group can handle any predicate with no specific 6043 // requirements: 6044 return true; 6045 } 6046 6047 const Matcher &Representative = **Matchers.begin(); 6048 const auto &RepresentativeCondition = Representative.getFirstCondition(); 6049 // ... if not empty, the group can only accomodate matchers with the exact 6050 // same first condition: 6051 return Predicate.isIdentical(RepresentativeCondition); 6052 } 6053 6054 bool GroupMatcher::addMatcher(Matcher &Candidate) { 6055 if (!Candidate.hasFirstCondition()) 6056 return false; 6057 6058 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6059 if (!candidateConditionMatches(Predicate)) 6060 return false; 6061 6062 Matchers.push_back(&Candidate); 6063 return true; 6064 } 6065 6066 void GroupMatcher::finalize() { 6067 assert(Conditions.empty() && "Already finalized?"); 6068 if (empty()) 6069 return; 6070 6071 Matcher &FirstRule = **Matchers.begin(); 6072 for (;;) { 6073 // All the checks are expected to succeed during the first iteration: 6074 for (const auto &Rule : Matchers) 6075 if (!Rule->hasFirstCondition()) 6076 return; 6077 const auto &FirstCondition = FirstRule.getFirstCondition(); 6078 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6079 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) 6080 return; 6081 6082 Conditions.push_back(FirstRule.popFirstCondition()); 6083 for (unsigned I = 1, E = Matchers.size(); I < E; ++I) 6084 Matchers[I]->popFirstCondition(); 6085 } 6086 } 6087 6088 void GroupMatcher::emit(MatchTable &Table) { 6089 unsigned LabelID = ~0U; 6090 if (!Conditions.empty()) { 6091 LabelID = Table.allocateLabelID(); 6092 Table << MatchTable::Opcode("GIM_Try", +1) 6093 << MatchTable::Comment("On fail goto") 6094 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; 6095 } 6096 for (auto &Condition : Conditions) 6097 Condition->emitPredicateOpcodes( 6098 Table, *static_cast<RuleMatcher *>(*Matchers.begin())); 6099 6100 for (const auto &M : Matchers) 6101 M->emit(Table); 6102 6103 // Exit the group 6104 if (!Conditions.empty()) 6105 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak 6106 << MatchTable::Label(LabelID); 6107 } 6108 6109 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { 6110 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P); 6111 } 6112 6113 bool SwitchMatcher::candidateConditionMatches( 6114 const PredicateMatcher &Predicate) const { 6115 6116 if (empty()) { 6117 // Sharing predicates for nested instructions is not supported yet as we 6118 // currently don't hoist the GIM_RecordInsn's properly, therefore we can 6119 // only work on the original root instruction (InsnVarID == 0): 6120 if (Predicate.getInsnVarID() != 0) 6121 return false; 6122 // ... while an attempt to add even a root matcher to an empty SwitchMatcher 6123 // could fail as not all the types of conditions are supported: 6124 if (!isSupportedPredicateType(Predicate)) 6125 return false; 6126 // ... or the condition might not have a proper implementation of 6127 // getValue() / isIdenticalDownToValue() yet: 6128 if (!Predicate.hasValue()) 6129 return false; 6130 // ... otherwise an empty Switch can accomodate the condition with no 6131 // further requirements: 6132 return true; 6133 } 6134 6135 const Matcher &CaseRepresentative = **Matchers.begin(); 6136 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); 6137 // Switch-cases must share the same kind of condition and path to the value it 6138 // checks: 6139 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) 6140 return false; 6141 6142 const auto Value = Predicate.getValue(); 6143 // ... but be unique with respect to the actual value they check: 6144 return Values.count(Value) == 0; 6145 } 6146 6147 bool SwitchMatcher::addMatcher(Matcher &Candidate) { 6148 if (!Candidate.hasFirstCondition()) 6149 return false; 6150 6151 const PredicateMatcher &Predicate = Candidate.getFirstCondition(); 6152 if (!candidateConditionMatches(Predicate)) 6153 return false; 6154 const auto Value = Predicate.getValue(); 6155 Values.insert(Value); 6156 6157 Matchers.push_back(&Candidate); 6158 return true; 6159 } 6160 6161 void SwitchMatcher::finalize() { 6162 assert(Condition == nullptr && "Already finalized"); 6163 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6164 if (empty()) 6165 return; 6166 6167 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) { 6168 return L->getFirstCondition().getValue() < 6169 R->getFirstCondition().getValue(); 6170 }); 6171 Condition = Matchers[0]->popFirstCondition(); 6172 for (unsigned I = 1, E = Values.size(); I < E; ++I) 6173 Matchers[I]->popFirstCondition(); 6174 } 6175 6176 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, 6177 MatchTable &Table) { 6178 assert(isSupportedPredicateType(P) && "Predicate type is not supported"); 6179 6180 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) { 6181 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") 6182 << MatchTable::IntValue(Condition->getInsnVarID()); 6183 return; 6184 } 6185 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) { 6186 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") 6187 << MatchTable::IntValue(Condition->getInsnVarID()) 6188 << MatchTable::Comment("Op") 6189 << MatchTable::IntValue(Condition->getOpIdx()); 6190 return; 6191 } 6192 6193 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " 6194 "predicate type that is claimed to be supported"); 6195 } 6196 6197 void SwitchMatcher::emit(MatchTable &Table) { 6198 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); 6199 if (empty()) 6200 return; 6201 assert(Condition != nullptr && 6202 "Broken SwitchMatcher, hasn't been finalized?"); 6203 6204 std::vector<unsigned> LabelIDs(Values.size()); 6205 std::generate(LabelIDs.begin(), LabelIDs.end(), 6206 [&Table]() { return Table.allocateLabelID(); }); 6207 const unsigned Default = Table.allocateLabelID(); 6208 6209 const int64_t LowerBound = Values.begin()->getRawValue(); 6210 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; 6211 6212 emitPredicateSpecificOpcodes(*Condition, Table); 6213 6214 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) 6215 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") 6216 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); 6217 6218 int64_t J = LowerBound; 6219 auto VI = Values.begin(); 6220 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6221 auto V = *VI++; 6222 while (J++ < V.getRawValue()) 6223 Table << MatchTable::IntValue(0); 6224 V.turnIntoComment(); 6225 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); 6226 } 6227 Table << MatchTable::LineBreak; 6228 6229 for (unsigned I = 0, E = Values.size(); I < E; ++I) { 6230 Table << MatchTable::Label(LabelIDs[I]); 6231 Matchers[I]->emit(Table); 6232 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; 6233 } 6234 Table << MatchTable::Label(Default); 6235 } 6236 6237 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } 6238 6239 } // end anonymous namespace 6240 6241 //===----------------------------------------------------------------------===// 6242 6243 namespace llvm { 6244 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { 6245 GlobalISelEmitter(RK).run(OS); 6246 } 6247 } // End llvm namespace 6248