1*df3765bfSSheng //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===//
2*df3765bfSSheng //
3*df3765bfSSheng // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*df3765bfSSheng // See https://llvm.org/LICENSE.txt for license information.
5*df3765bfSSheng // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*df3765bfSSheng //
7*df3765bfSSheng //===----------------------------------------------------------------------===//
8*df3765bfSSheng //
9*df3765bfSSheng // It contains the tablegen backend that emits the decoder functions for
10*df3765bfSSheng // targets with fixed/variable length instruction set.
11*df3765bfSSheng //
12*df3765bfSSheng //===----------------------------------------------------------------------===//
13*df3765bfSSheng 
14*df3765bfSSheng #include "CodeGenInstruction.h"
15*df3765bfSSheng #include "CodeGenTarget.h"
16*df3765bfSSheng #include "InfoByHwMode.h"
17*df3765bfSSheng #include "VarLenCodeEmitterGen.h"
18*df3765bfSSheng #include "llvm/ADT/APInt.h"
19*df3765bfSSheng #include "llvm/ADT/ArrayRef.h"
20*df3765bfSSheng #include "llvm/ADT/CachedHashString.h"
21*df3765bfSSheng #include "llvm/ADT/STLExtras.h"
22*df3765bfSSheng #include "llvm/ADT/SetVector.h"
23*df3765bfSSheng #include "llvm/ADT/SmallString.h"
24*df3765bfSSheng #include "llvm/ADT/Statistic.h"
25*df3765bfSSheng #include "llvm/ADT/StringExtras.h"
26*df3765bfSSheng #include "llvm/ADT/StringRef.h"
27*df3765bfSSheng #include "llvm/MC/MCFixedLenDisassembler.h"
28*df3765bfSSheng #include "llvm/Support/Casting.h"
29*df3765bfSSheng #include "llvm/Support/Debug.h"
30*df3765bfSSheng #include "llvm/Support/ErrorHandling.h"
31*df3765bfSSheng #include "llvm/Support/FormattedStream.h"
32*df3765bfSSheng #include "llvm/Support/LEB128.h"
33*df3765bfSSheng #include "llvm/Support/raw_ostream.h"
34*df3765bfSSheng #include "llvm/TableGen/Error.h"
35*df3765bfSSheng #include "llvm/TableGen/Record.h"
36*df3765bfSSheng #include <algorithm>
37*df3765bfSSheng #include <cassert>
38*df3765bfSSheng #include <cstddef>
39*df3765bfSSheng #include <cstdint>
40*df3765bfSSheng #include <map>
41*df3765bfSSheng #include <memory>
42*df3765bfSSheng #include <set>
43*df3765bfSSheng #include <string>
44*df3765bfSSheng #include <utility>
45*df3765bfSSheng #include <vector>
46*df3765bfSSheng 
47*df3765bfSSheng using namespace llvm;
48*df3765bfSSheng 
49*df3765bfSSheng #define DEBUG_TYPE "decoder-emitter"
50*df3765bfSSheng 
51*df3765bfSSheng namespace {
52*df3765bfSSheng 
53*df3765bfSSheng STATISTIC(NumEncodings, "Number of encodings considered");
54*df3765bfSSheng STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
55*df3765bfSSheng STATISTIC(NumInstructions, "Number of instructions considered");
56*df3765bfSSheng STATISTIC(NumEncodingsSupported, "Number of encodings supported");
57*df3765bfSSheng STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
58*df3765bfSSheng 
59*df3765bfSSheng struct EncodingField {
60*df3765bfSSheng   unsigned Base, Width, Offset;
61*df3765bfSSheng   EncodingField(unsigned B, unsigned W, unsigned O)
62*df3765bfSSheng     : Base(B), Width(W), Offset(O) { }
63*df3765bfSSheng };
64*df3765bfSSheng 
65*df3765bfSSheng struct OperandInfo {
66*df3765bfSSheng   std::vector<EncodingField> Fields;
67*df3765bfSSheng   std::string Decoder;
68*df3765bfSSheng   bool HasCompleteDecoder;
69*df3765bfSSheng   uint64_t InitValue;
70*df3765bfSSheng 
71*df3765bfSSheng   OperandInfo(std::string D, bool HCD)
72*df3765bfSSheng       : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}
73*df3765bfSSheng 
74*df3765bfSSheng   void addField(unsigned Base, unsigned Width, unsigned Offset) {
75*df3765bfSSheng     Fields.push_back(EncodingField(Base, Width, Offset));
76*df3765bfSSheng   }
77*df3765bfSSheng 
78*df3765bfSSheng   unsigned numFields() const { return Fields.size(); }
79*df3765bfSSheng 
80*df3765bfSSheng   typedef std::vector<EncodingField>::const_iterator const_iterator;
81*df3765bfSSheng 
82*df3765bfSSheng   const_iterator begin() const { return Fields.begin(); }
83*df3765bfSSheng   const_iterator end() const   { return Fields.end();   }
84*df3765bfSSheng };
85*df3765bfSSheng 
86*df3765bfSSheng typedef std::vector<uint8_t> DecoderTable;
87*df3765bfSSheng typedef uint32_t DecoderFixup;
88*df3765bfSSheng typedef std::vector<DecoderFixup> FixupList;
89*df3765bfSSheng typedef std::vector<FixupList> FixupScopeList;
90*df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> PredicateSet;
91*df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> DecoderSet;
92*df3765bfSSheng struct DecoderTableInfo {
93*df3765bfSSheng   DecoderTable Table;
94*df3765bfSSheng   FixupScopeList FixupStack;
95*df3765bfSSheng   PredicateSet Predicates;
96*df3765bfSSheng   DecoderSet Decoders;
97*df3765bfSSheng };
98*df3765bfSSheng 
99*df3765bfSSheng struct EncodingAndInst {
100*df3765bfSSheng   const Record *EncodingDef;
101*df3765bfSSheng   const CodeGenInstruction *Inst;
102*df3765bfSSheng   StringRef HwModeName;
103*df3765bfSSheng 
104*df3765bfSSheng   EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
105*df3765bfSSheng                   StringRef HwModeName = "")
106*df3765bfSSheng       : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
107*df3765bfSSheng };
108*df3765bfSSheng 
109*df3765bfSSheng struct EncodingIDAndOpcode {
110*df3765bfSSheng   unsigned EncodingID;
111*df3765bfSSheng   unsigned Opcode;
112*df3765bfSSheng 
113*df3765bfSSheng   EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
114*df3765bfSSheng   EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
115*df3765bfSSheng       : EncodingID(EncodingID), Opcode(Opcode) {}
116*df3765bfSSheng };
117*df3765bfSSheng 
118*df3765bfSSheng raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
119*df3765bfSSheng   if (Value.EncodingDef != Value.Inst->TheDef)
120*df3765bfSSheng     OS << Value.EncodingDef->getName() << ":";
121*df3765bfSSheng   OS << Value.Inst->TheDef->getName();
122*df3765bfSSheng   return OS;
123*df3765bfSSheng }
124*df3765bfSSheng 
125*df3765bfSSheng class DecoderEmitter {
126*df3765bfSSheng   RecordKeeper &RK;
127*df3765bfSSheng   std::vector<EncodingAndInst> NumberedEncodings;
128*df3765bfSSheng 
129*df3765bfSSheng public:
130*df3765bfSSheng   // Defaults preserved here for documentation, even though they aren't
131*df3765bfSSheng   // strictly necessary given the way that this is currently being called.
132*df3765bfSSheng   DecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
133*df3765bfSSheng                  std::string GPrefix = "if (",
134*df3765bfSSheng                  std::string GPostfix = " == MCDisassembler::Fail)",
135*df3765bfSSheng                  std::string ROK = "MCDisassembler::Success",
136*df3765bfSSheng                  std::string RFail = "MCDisassembler::Fail", std::string L = "")
137*df3765bfSSheng       : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
138*df3765bfSSheng         GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
139*df3765bfSSheng         ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
140*df3765bfSSheng         Locals(std::move(L)) {}
141*df3765bfSSheng 
142*df3765bfSSheng   // Emit the decoder state machine table.
143*df3765bfSSheng   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
144*df3765bfSSheng                  unsigned Indentation, unsigned BitWidth,
145*df3765bfSSheng                  StringRef Namespace) const;
146*df3765bfSSheng   void emitInstrLenTable(formatted_raw_ostream &OS,
147*df3765bfSSheng                          std::vector<unsigned> &InstrLen) const;
148*df3765bfSSheng   void emitPredicateFunction(formatted_raw_ostream &OS,
149*df3765bfSSheng                              PredicateSet &Predicates,
150*df3765bfSSheng                              unsigned Indentation) const;
151*df3765bfSSheng   void emitDecoderFunction(formatted_raw_ostream &OS,
152*df3765bfSSheng                            DecoderSet &Decoders,
153*df3765bfSSheng                            unsigned Indentation) const;
154*df3765bfSSheng 
155*df3765bfSSheng   // run - Output the code emitter
156*df3765bfSSheng   void run(raw_ostream &o);
157*df3765bfSSheng 
158*df3765bfSSheng private:
159*df3765bfSSheng   CodeGenTarget Target;
160*df3765bfSSheng 
161*df3765bfSSheng public:
162*df3765bfSSheng   std::string PredicateNamespace;
163*df3765bfSSheng   std::string GuardPrefix, GuardPostfix;
164*df3765bfSSheng   std::string ReturnOK, ReturnFail;
165*df3765bfSSheng   std::string Locals;
166*df3765bfSSheng };
167*df3765bfSSheng 
168*df3765bfSSheng } // end anonymous namespace
169*df3765bfSSheng 
170*df3765bfSSheng // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
171*df3765bfSSheng // for a bit value.
172*df3765bfSSheng //
173*df3765bfSSheng // BIT_UNFILTERED is used as the init value for a filter position.  It is used
174*df3765bfSSheng // only for filter processings.
175*df3765bfSSheng typedef enum {
176*df3765bfSSheng   BIT_TRUE,      // '1'
177*df3765bfSSheng   BIT_FALSE,     // '0'
178*df3765bfSSheng   BIT_UNSET,     // '?'
179*df3765bfSSheng   BIT_UNFILTERED // unfiltered
180*df3765bfSSheng } bit_value_t;
181*df3765bfSSheng 
182*df3765bfSSheng static bool ValueSet(bit_value_t V) {
183*df3765bfSSheng   return (V == BIT_TRUE || V == BIT_FALSE);
184*df3765bfSSheng }
185*df3765bfSSheng 
186*df3765bfSSheng static bool ValueNotSet(bit_value_t V) {
187*df3765bfSSheng   return (V == BIT_UNSET);
188*df3765bfSSheng }
189*df3765bfSSheng 
190*df3765bfSSheng static int Value(bit_value_t V) {
191*df3765bfSSheng   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
192*df3765bfSSheng }
193*df3765bfSSheng 
194*df3765bfSSheng static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
195*df3765bfSSheng   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
196*df3765bfSSheng     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
197*df3765bfSSheng 
198*df3765bfSSheng   // The bit is uninitialized.
199*df3765bfSSheng   return BIT_UNSET;
200*df3765bfSSheng }
201*df3765bfSSheng 
202*df3765bfSSheng // Prints the bit value for each position.
203*df3765bfSSheng static void dumpBits(raw_ostream &o, const BitsInit &bits) {
204*df3765bfSSheng   for (unsigned index = bits.getNumBits(); index > 0; --index) {
205*df3765bfSSheng     switch (bitFromBits(bits, index - 1)) {
206*df3765bfSSheng     case BIT_TRUE:
207*df3765bfSSheng       o << "1";
208*df3765bfSSheng       break;
209*df3765bfSSheng     case BIT_FALSE:
210*df3765bfSSheng       o << "0";
211*df3765bfSSheng       break;
212*df3765bfSSheng     case BIT_UNSET:
213*df3765bfSSheng       o << "_";
214*df3765bfSSheng       break;
215*df3765bfSSheng     default:
216*df3765bfSSheng       llvm_unreachable("unexpected return value from bitFromBits");
217*df3765bfSSheng     }
218*df3765bfSSheng   }
219*df3765bfSSheng }
220*df3765bfSSheng 
221*df3765bfSSheng static BitsInit &getBitsField(const Record &def, StringRef str) {
222*df3765bfSSheng   const RecordVal *RV = def.getValue(str);
223*df3765bfSSheng   if (BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue()))
224*df3765bfSSheng     return *Bits;
225*df3765bfSSheng 
226*df3765bfSSheng   // variable length instruction
227*df3765bfSSheng   VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV);
228*df3765bfSSheng   SmallVector<Init *, 16> Bits;
229*df3765bfSSheng 
230*df3765bfSSheng   for (auto &SI : VLI) {
231*df3765bfSSheng     if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) {
232*df3765bfSSheng       for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) {
233*df3765bfSSheng         Bits.push_back(BI->getBit(Idx));
234*df3765bfSSheng       }
235*df3765bfSSheng     } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) {
236*df3765bfSSheng       Bits.push_back(const_cast<BitInit *>(BI));
237*df3765bfSSheng     } else {
238*df3765bfSSheng       for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx)
239*df3765bfSSheng         Bits.push_back(UnsetInit::get());
240*df3765bfSSheng     }
241*df3765bfSSheng   }
242*df3765bfSSheng 
243*df3765bfSSheng   return *BitsInit::get(Bits);
244*df3765bfSSheng }
245*df3765bfSSheng 
246*df3765bfSSheng // Representation of the instruction to work on.
247*df3765bfSSheng typedef std::vector<bit_value_t> insn_t;
248*df3765bfSSheng 
249*df3765bfSSheng namespace {
250*df3765bfSSheng 
251*df3765bfSSheng static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;
252*df3765bfSSheng 
253*df3765bfSSheng class FilterChooser;
254*df3765bfSSheng 
255*df3765bfSSheng /// Filter - Filter works with FilterChooser to produce the decoding tree for
256*df3765bfSSheng /// the ISA.
257*df3765bfSSheng ///
258*df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the
259*df3765bfSSheng /// decoding tree in a certain level.  Each case stmt delegates to an inferior
260*df3765bfSSheng /// FilterChooser to decide what further decoding logic to employ, or in another
261*df3765bfSSheng /// words, what other remaining bits to look at.  The FilterChooser eventually
262*df3765bfSSheng /// chooses a best Filter to do its job.
263*df3765bfSSheng ///
264*df3765bfSSheng /// This recursive scheme ends when the number of Opcodes assigned to the
265*df3765bfSSheng /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
266*df3765bfSSheng /// the Filter/FilterChooser combo does not know how to distinguish among the
267*df3765bfSSheng /// Opcodes assigned.
268*df3765bfSSheng ///
269*df3765bfSSheng /// An example of a conflict is
270*df3765bfSSheng ///
271*df3765bfSSheng /// Conflict:
272*df3765bfSSheng ///                     111101000.00........00010000....
273*df3765bfSSheng ///                     111101000.00........0001........
274*df3765bfSSheng ///                     1111010...00........0001........
275*df3765bfSSheng ///                     1111010...00....................
276*df3765bfSSheng ///                     1111010.........................
277*df3765bfSSheng ///                     1111............................
278*df3765bfSSheng ///                     ................................
279*df3765bfSSheng ///     VST4q8a         111101000_00________00010000____
280*df3765bfSSheng ///     VST4q8b         111101000_00________00010000____
281*df3765bfSSheng ///
282*df3765bfSSheng /// The Debug output shows the path that the decoding tree follows to reach the
283*df3765bfSSheng /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
284*df3765bfSSheng /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
285*df3765bfSSheng ///
286*df3765bfSSheng /// The encoding info in the .td files does not specify this meta information,
287*df3765bfSSheng /// which could have been used by the decoder to resolve the conflict.  The
288*df3765bfSSheng /// decoder could try to decode the even/odd register numbering and assign to
289*df3765bfSSheng /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
290*df3765bfSSheng /// version and return the Opcode since the two have the same Asm format string.
291*df3765bfSSheng class Filter {
292*df3765bfSSheng protected:
293*df3765bfSSheng   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
294*df3765bfSSheng   unsigned StartBit; // the starting bit position
295*df3765bfSSheng   unsigned NumBits; // number of bits to filter
296*df3765bfSSheng   bool Mixed; // a mixed region contains both set and unset bits
297*df3765bfSSheng 
298*df3765bfSSheng   // Map of well-known segment value to the set of uid's with that value.
299*df3765bfSSheng   std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
300*df3765bfSSheng       FilteredInstructions;
301*df3765bfSSheng 
302*df3765bfSSheng   // Set of uid's with non-constant segment values.
303*df3765bfSSheng   std::vector<EncodingIDAndOpcode> VariableInstructions;
304*df3765bfSSheng 
305*df3765bfSSheng   // Map of well-known segment value to its delegate.
306*df3765bfSSheng   std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;
307*df3765bfSSheng 
308*df3765bfSSheng   // Number of instructions which fall under FilteredInstructions category.
309*df3765bfSSheng   unsigned NumFiltered;
310*df3765bfSSheng 
311*df3765bfSSheng   // Keeps track of the last opcode in the filtered bucket.
312*df3765bfSSheng   EncodingIDAndOpcode LastOpcFiltered;
313*df3765bfSSheng 
314*df3765bfSSheng public:
315*df3765bfSSheng   Filter(Filter &&f);
316*df3765bfSSheng   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
317*df3765bfSSheng 
318*df3765bfSSheng   ~Filter() = default;
319*df3765bfSSheng 
320*df3765bfSSheng   unsigned getNumFiltered() const { return NumFiltered; }
321*df3765bfSSheng 
322*df3765bfSSheng   EncodingIDAndOpcode getSingletonOpc() const {
323*df3765bfSSheng     assert(NumFiltered == 1);
324*df3765bfSSheng     return LastOpcFiltered;
325*df3765bfSSheng   }
326*df3765bfSSheng 
327*df3765bfSSheng   // Return the filter chooser for the group of instructions without constant
328*df3765bfSSheng   // segment values.
329*df3765bfSSheng   const FilterChooser &getVariableFC() const {
330*df3765bfSSheng     assert(NumFiltered == 1);
331*df3765bfSSheng     assert(FilterChooserMap.size() == 1);
332*df3765bfSSheng     return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
333*df3765bfSSheng   }
334*df3765bfSSheng 
335*df3765bfSSheng   // Divides the decoding task into sub tasks and delegates them to the
336*df3765bfSSheng   // inferior FilterChooser's.
337*df3765bfSSheng   //
338*df3765bfSSheng   // A special case arises when there's only one entry in the filtered
339*df3765bfSSheng   // instructions.  In order to unambiguously decode the singleton, we need to
340*df3765bfSSheng   // match the remaining undecoded encoding bits against the singleton.
341*df3765bfSSheng   void recurse();
342*df3765bfSSheng 
343*df3765bfSSheng   // Emit table entries to decode instructions given a segment or segments of
344*df3765bfSSheng   // bits.
345*df3765bfSSheng   void emitTableEntry(DecoderTableInfo &TableInfo) const;
346*df3765bfSSheng 
347*df3765bfSSheng   // Returns the number of fanout produced by the filter.  More fanout implies
348*df3765bfSSheng   // the filter distinguishes more categories of instructions.
349*df3765bfSSheng   unsigned usefulness() const;
350*df3765bfSSheng }; // end class Filter
351*df3765bfSSheng 
352*df3765bfSSheng } // end anonymous namespace
353*df3765bfSSheng 
354*df3765bfSSheng // These are states of our finite state machines used in FilterChooser's
355*df3765bfSSheng // filterProcessor() which produces the filter candidates to use.
356*df3765bfSSheng typedef enum {
357*df3765bfSSheng   ATTR_NONE,
358*df3765bfSSheng   ATTR_FILTERED,
359*df3765bfSSheng   ATTR_ALL_SET,
360*df3765bfSSheng   ATTR_ALL_UNSET,
361*df3765bfSSheng   ATTR_MIXED
362*df3765bfSSheng } bitAttr_t;
363*df3765bfSSheng 
364*df3765bfSSheng /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
365*df3765bfSSheng /// in order to perform the decoding of instructions at the current level.
366*df3765bfSSheng ///
367*df3765bfSSheng /// Decoding proceeds from the top down.  Based on the well-known encoding bits
368*df3765bfSSheng /// of instructions available, FilterChooser builds up the possible Filters that
369*df3765bfSSheng /// can further the task of decoding by distinguishing among the remaining
370*df3765bfSSheng /// candidate instructions.
371*df3765bfSSheng ///
372*df3765bfSSheng /// Once a filter has been chosen, it is called upon to divide the decoding task
373*df3765bfSSheng /// into sub-tasks and delegates them to its inferior FilterChoosers for further
374*df3765bfSSheng /// processings.
375*df3765bfSSheng ///
376*df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the
377*df3765bfSSheng /// decoding tree.  And each case is delegated to an inferior FilterChooser to
378*df3765bfSSheng /// decide what further remaining bits to look at.
379*df3765bfSSheng namespace {
380*df3765bfSSheng 
381*df3765bfSSheng class FilterChooser {
382*df3765bfSSheng protected:
383*df3765bfSSheng   friend class Filter;
384*df3765bfSSheng 
385*df3765bfSSheng   // Vector of codegen instructions to choose our filter.
386*df3765bfSSheng   ArrayRef<EncodingAndInst> AllInstructions;
387*df3765bfSSheng 
388*df3765bfSSheng   // Vector of uid's for this filter chooser to work on.
389*df3765bfSSheng   // The first member of the pair is the opcode id being decoded, the second is
390*df3765bfSSheng   // the opcode id that should be emitted.
391*df3765bfSSheng   const std::vector<EncodingIDAndOpcode> &Opcodes;
392*df3765bfSSheng 
393*df3765bfSSheng   // Lookup table for the operand decoding of instructions.
394*df3765bfSSheng   const std::map<unsigned, std::vector<OperandInfo>> &Operands;
395*df3765bfSSheng 
396*df3765bfSSheng   // Vector of candidate filters.
397*df3765bfSSheng   std::vector<Filter> Filters;
398*df3765bfSSheng 
399*df3765bfSSheng   // Array of bit values passed down from our parent.
400*df3765bfSSheng   // Set to all BIT_UNFILTERED's for Parent == NULL.
401*df3765bfSSheng   std::vector<bit_value_t> FilterBitValues;
402*df3765bfSSheng 
403*df3765bfSSheng   // Links to the FilterChooser above us in the decoding tree.
404*df3765bfSSheng   const FilterChooser *Parent;
405*df3765bfSSheng 
406*df3765bfSSheng   // Index of the best filter from Filters.
407*df3765bfSSheng   int BestIndex;
408*df3765bfSSheng 
409*df3765bfSSheng   // Width of instructions
410*df3765bfSSheng   unsigned BitWidth;
411*df3765bfSSheng 
412*df3765bfSSheng   // Parent emitter
413*df3765bfSSheng   const DecoderEmitter *Emitter;
414*df3765bfSSheng 
415*df3765bfSSheng public:
416*df3765bfSSheng   FilterChooser(ArrayRef<EncodingAndInst> Insts,
417*df3765bfSSheng                 const std::vector<EncodingIDAndOpcode> &IDs,
418*df3765bfSSheng                 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
419*df3765bfSSheng                 unsigned BW, const DecoderEmitter *E)
420*df3765bfSSheng       : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
421*df3765bfSSheng         FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
422*df3765bfSSheng         BitWidth(BW), Emitter(E) {
423*df3765bfSSheng     doFilter();
424*df3765bfSSheng   }
425*df3765bfSSheng 
426*df3765bfSSheng   FilterChooser(ArrayRef<EncodingAndInst> Insts,
427*df3765bfSSheng                 const std::vector<EncodingIDAndOpcode> &IDs,
428*df3765bfSSheng                 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
429*df3765bfSSheng                 const std::vector<bit_value_t> &ParentFilterBitValues,
430*df3765bfSSheng                 const FilterChooser &parent)
431*df3765bfSSheng       : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
432*df3765bfSSheng         FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
433*df3765bfSSheng         BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
434*df3765bfSSheng     doFilter();
435*df3765bfSSheng   }
436*df3765bfSSheng 
437*df3765bfSSheng   FilterChooser(const FilterChooser &) = delete;
438*df3765bfSSheng   void operator=(const FilterChooser &) = delete;
439*df3765bfSSheng 
440*df3765bfSSheng   unsigned getBitWidth() const { return BitWidth; }
441*df3765bfSSheng 
442*df3765bfSSheng protected:
443*df3765bfSSheng   // Populates the insn given the uid.
444*df3765bfSSheng   void insnWithID(insn_t &Insn, unsigned Opcode) const {
445*df3765bfSSheng     BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
446*df3765bfSSheng     Insn.resize(BitWidth > Bits.getNumBits() ? BitWidth : Bits.getNumBits(),
447*df3765bfSSheng                 BIT_UNSET);
448*df3765bfSSheng     // We may have a SoftFail bitmask, which specifies a mask where an encoding
449*df3765bfSSheng     // may differ from the value in "Inst" and yet still be valid, but the
450*df3765bfSSheng     // disassembler should return SoftFail instead of Success.
451*df3765bfSSheng     //
452*df3765bfSSheng     // This is used for marking UNPREDICTABLE instructions in the ARM world.
453*df3765bfSSheng     const RecordVal *RV =
454*df3765bfSSheng         AllInstructions[Opcode].EncodingDef->getValue("SoftFail");
455*df3765bfSSheng     const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
456*df3765bfSSheng     for (unsigned i = 0; i < Bits.getNumBits(); ++i) {
457*df3765bfSSheng       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
458*df3765bfSSheng         Insn[i] = BIT_UNSET;
459*df3765bfSSheng       else
460*df3765bfSSheng         Insn[i] = bitFromBits(Bits, i);
461*df3765bfSSheng     }
462*df3765bfSSheng   }
463*df3765bfSSheng 
464*df3765bfSSheng   // Emit the name of the encoding/instruction pair.
465*df3765bfSSheng   void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
466*df3765bfSSheng     const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
467*df3765bfSSheng     const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
468*df3765bfSSheng     if (EncodingDef != InstDef)
469*df3765bfSSheng       OS << EncodingDef->getName() << ":";
470*df3765bfSSheng     OS << InstDef->getName();
471*df3765bfSSheng   }
472*df3765bfSSheng 
473*df3765bfSSheng   // Populates the field of the insn given the start position and the number of
474*df3765bfSSheng   // consecutive bits to scan for.
475*df3765bfSSheng   //
476*df3765bfSSheng   // Returns false if there exists any uninitialized bit value in the range.
477*df3765bfSSheng   // Returns true, otherwise.
478*df3765bfSSheng   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
479*df3765bfSSheng                      unsigned NumBits) const;
480*df3765bfSSheng 
481*df3765bfSSheng   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
482*df3765bfSSheng   /// filter array as a series of chars.
483*df3765bfSSheng   void dumpFilterArray(raw_ostream &o,
484*df3765bfSSheng                        const std::vector<bit_value_t> & filter) const;
485*df3765bfSSheng 
486*df3765bfSSheng   /// dumpStack - dumpStack traverses the filter chooser chain and calls
487*df3765bfSSheng   /// dumpFilterArray on each filter chooser up to the top level one.
488*df3765bfSSheng   void dumpStack(raw_ostream &o, const char *prefix) const;
489*df3765bfSSheng 
490*df3765bfSSheng   Filter &bestFilter() {
491*df3765bfSSheng     assert(BestIndex != -1 && "BestIndex not set");
492*df3765bfSSheng     return Filters[BestIndex];
493*df3765bfSSheng   }
494*df3765bfSSheng 
495*df3765bfSSheng   bool PositionFiltered(unsigned i) const {
496*df3765bfSSheng     return ValueSet(FilterBitValues[i]);
497*df3765bfSSheng   }
498*df3765bfSSheng 
499*df3765bfSSheng   // Calculates the island(s) needed to decode the instruction.
500*df3765bfSSheng   // This returns a lit of undecoded bits of an instructions, for example,
501*df3765bfSSheng   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
502*df3765bfSSheng   // decoded bits in order to verify that the instruction matches the Opcode.
503*df3765bfSSheng   unsigned getIslands(std::vector<unsigned> &StartBits,
504*df3765bfSSheng                       std::vector<unsigned> &EndBits,
505*df3765bfSSheng                       std::vector<uint64_t> &FieldVals,
506*df3765bfSSheng                       const insn_t &Insn) const;
507*df3765bfSSheng 
508*df3765bfSSheng   // Emits code to check the Predicates member of an instruction are true.
509*df3765bfSSheng   // Returns true if predicate matches were emitted, false otherwise.
510*df3765bfSSheng   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
511*df3765bfSSheng                           unsigned Opc) const;
512*df3765bfSSheng 
513*df3765bfSSheng   bool doesOpcodeNeedPredicate(unsigned Opc) const;
514*df3765bfSSheng   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
515*df3765bfSSheng   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
516*df3765bfSSheng                                unsigned Opc) const;
517*df3765bfSSheng 
518*df3765bfSSheng   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
519*df3765bfSSheng                               unsigned Opc) const;
520*df3765bfSSheng 
521*df3765bfSSheng   // Emits table entries to decode the singleton.
522*df3765bfSSheng   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
523*df3765bfSSheng                                EncodingIDAndOpcode Opc) const;
524*df3765bfSSheng 
525*df3765bfSSheng   // Emits code to decode the singleton, and then to decode the rest.
526*df3765bfSSheng   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
527*df3765bfSSheng                                const Filter &Best) const;
528*df3765bfSSheng 
529*df3765bfSSheng   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
530*df3765bfSSheng                         const OperandInfo &OpInfo,
531*df3765bfSSheng                         bool &OpHasCompleteDecoder) const;
532*df3765bfSSheng 
533*df3765bfSSheng   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
534*df3765bfSSheng                    bool &HasCompleteDecoder) const;
535*df3765bfSSheng   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
536*df3765bfSSheng                            bool &HasCompleteDecoder) const;
537*df3765bfSSheng 
538*df3765bfSSheng   // Assign a single filter and run with it.
539*df3765bfSSheng   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
540*df3765bfSSheng 
541*df3765bfSSheng   // reportRegion is a helper function for filterProcessor to mark a region as
542*df3765bfSSheng   // eligible for use as a filter region.
543*df3765bfSSheng   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
544*df3765bfSSheng                     bool AllowMixed);
545*df3765bfSSheng 
546*df3765bfSSheng   // FilterProcessor scans the well-known encoding bits of the instructions and
547*df3765bfSSheng   // builds up a list of candidate filters.  It chooses the best filter and
548*df3765bfSSheng   // recursively descends down the decoding tree.
549*df3765bfSSheng   bool filterProcessor(bool AllowMixed, bool Greedy = true);
550*df3765bfSSheng 
551*df3765bfSSheng   // Decides on the best configuration of filter(s) to use in order to decode
552*df3765bfSSheng   // the instructions.  A conflict of instructions may occur, in which case we
553*df3765bfSSheng   // dump the conflict set to the standard error.
554*df3765bfSSheng   void doFilter();
555*df3765bfSSheng 
556*df3765bfSSheng public:
557*df3765bfSSheng   // emitTableEntries - Emit state machine entries to decode our share of
558*df3765bfSSheng   // instructions.
559*df3765bfSSheng   void emitTableEntries(DecoderTableInfo &TableInfo) const;
560*df3765bfSSheng };
561*df3765bfSSheng 
562*df3765bfSSheng } // end anonymous namespace
563*df3765bfSSheng 
564*df3765bfSSheng ///////////////////////////
565*df3765bfSSheng //                       //
566*df3765bfSSheng // Filter Implementation //
567*df3765bfSSheng //                       //
568*df3765bfSSheng ///////////////////////////
569*df3765bfSSheng 
570*df3765bfSSheng Filter::Filter(Filter &&f)
571*df3765bfSSheng   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
572*df3765bfSSheng     FilteredInstructions(std::move(f.FilteredInstructions)),
573*df3765bfSSheng     VariableInstructions(std::move(f.VariableInstructions)),
574*df3765bfSSheng     FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
575*df3765bfSSheng     LastOpcFiltered(f.LastOpcFiltered) {
576*df3765bfSSheng }
577*df3765bfSSheng 
578*df3765bfSSheng Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
579*df3765bfSSheng                bool mixed)
580*df3765bfSSheng   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
581*df3765bfSSheng   assert(StartBit + NumBits - 1 < Owner->BitWidth);
582*df3765bfSSheng 
583*df3765bfSSheng   NumFiltered = 0;
584*df3765bfSSheng   LastOpcFiltered = {0, 0};
585*df3765bfSSheng 
586*df3765bfSSheng   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
587*df3765bfSSheng     insn_t Insn;
588*df3765bfSSheng 
589*df3765bfSSheng     // Populates the insn given the uid.
590*df3765bfSSheng     Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
591*df3765bfSSheng 
592*df3765bfSSheng     uint64_t Field;
593*df3765bfSSheng     // Scans the segment for possibly well-specified encoding bits.
594*df3765bfSSheng     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
595*df3765bfSSheng 
596*df3765bfSSheng     if (ok) {
597*df3765bfSSheng       // The encoding bits are well-known.  Lets add the uid of the
598*df3765bfSSheng       // instruction into the bucket keyed off the constant field value.
599*df3765bfSSheng       LastOpcFiltered = Owner->Opcodes[i];
600*df3765bfSSheng       FilteredInstructions[Field].push_back(LastOpcFiltered);
601*df3765bfSSheng       ++NumFiltered;
602*df3765bfSSheng     } else {
603*df3765bfSSheng       // Some of the encoding bit(s) are unspecified.  This contributes to
604*df3765bfSSheng       // one additional member of "Variable" instructions.
605*df3765bfSSheng       VariableInstructions.push_back(Owner->Opcodes[i]);
606*df3765bfSSheng     }
607*df3765bfSSheng   }
608*df3765bfSSheng 
609*df3765bfSSheng   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
610*df3765bfSSheng          && "Filter returns no instruction categories");
611*df3765bfSSheng }
612*df3765bfSSheng 
613*df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the
614*df3765bfSSheng // inferior FilterChooser's.
615*df3765bfSSheng //
616*df3765bfSSheng // A special case arises when there's only one entry in the filtered
617*df3765bfSSheng // instructions.  In order to unambiguously decode the singleton, we need to
618*df3765bfSSheng // match the remaining undecoded encoding bits against the singleton.
619*df3765bfSSheng void Filter::recurse() {
620*df3765bfSSheng   // Starts by inheriting our parent filter chooser's filter bit values.
621*df3765bfSSheng   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
622*df3765bfSSheng 
623*df3765bfSSheng   if (!VariableInstructions.empty()) {
624*df3765bfSSheng     // Conservatively marks each segment position as BIT_UNSET.
625*df3765bfSSheng     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
626*df3765bfSSheng       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
627*df3765bfSSheng 
628*df3765bfSSheng     // Delegates to an inferior filter chooser for further processing on this
629*df3765bfSSheng     // group of instructions whose segment values are variable.
630*df3765bfSSheng     FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
631*df3765bfSSheng         std::make_unique<FilterChooser>(Owner->AllInstructions,
632*df3765bfSSheng             VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
633*df3765bfSSheng   }
634*df3765bfSSheng 
635*df3765bfSSheng   // No need to recurse for a singleton filtered instruction.
636*df3765bfSSheng   // See also Filter::emit*().
637*df3765bfSSheng   if (getNumFiltered() == 1) {
638*df3765bfSSheng     assert(FilterChooserMap.size() == 1);
639*df3765bfSSheng     return;
640*df3765bfSSheng   }
641*df3765bfSSheng 
642*df3765bfSSheng   // Otherwise, create sub choosers.
643*df3765bfSSheng   for (const auto &Inst : FilteredInstructions) {
644*df3765bfSSheng 
645*df3765bfSSheng     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
646*df3765bfSSheng     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
647*df3765bfSSheng       if (Inst.first & (1ULL << bitIndex))
648*df3765bfSSheng         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
649*df3765bfSSheng       else
650*df3765bfSSheng         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
651*df3765bfSSheng     }
652*df3765bfSSheng 
653*df3765bfSSheng     // Delegates to an inferior filter chooser for further processing on this
654*df3765bfSSheng     // category of instructions.
655*df3765bfSSheng     FilterChooserMap.insert(std::make_pair(
656*df3765bfSSheng         Inst.first, std::make_unique<FilterChooser>(
657*df3765bfSSheng                                 Owner->AllInstructions, Inst.second,
658*df3765bfSSheng                                 Owner->Operands, BitValueArray, *Owner)));
659*df3765bfSSheng   }
660*df3765bfSSheng }
661*df3765bfSSheng 
662*df3765bfSSheng static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
663*df3765bfSSheng                                uint32_t DestIdx) {
664*df3765bfSSheng   // Any NumToSkip fixups in the current scope can resolve to the
665*df3765bfSSheng   // current location.
666*df3765bfSSheng   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
667*df3765bfSSheng                                          E = Fixups.rend();
668*df3765bfSSheng        I != E; ++I) {
669*df3765bfSSheng     // Calculate the distance from the byte following the fixup entry byte
670*df3765bfSSheng     // to the destination. The Target is calculated from after the 16-bit
671*df3765bfSSheng     // NumToSkip entry itself, so subtract two  from the displacement here
672*df3765bfSSheng     // to account for that.
673*df3765bfSSheng     uint32_t FixupIdx = *I;
674*df3765bfSSheng     uint32_t Delta = DestIdx - FixupIdx - 3;
675*df3765bfSSheng     // Our NumToSkip entries are 24-bits. Make sure our table isn't too
676*df3765bfSSheng     // big.
677*df3765bfSSheng     assert(Delta < (1u << 24));
678*df3765bfSSheng     Table[FixupIdx] = (uint8_t)Delta;
679*df3765bfSSheng     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
680*df3765bfSSheng     Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
681*df3765bfSSheng   }
682*df3765bfSSheng }
683*df3765bfSSheng 
684*df3765bfSSheng // Emit table entries to decode instructions given a segment or segments
685*df3765bfSSheng // of bits.
686*df3765bfSSheng void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
687*df3765bfSSheng   TableInfo.Table.push_back(MCD::OPC_ExtractField);
688*df3765bfSSheng   TableInfo.Table.push_back(StartBit);
689*df3765bfSSheng   TableInfo.Table.push_back(NumBits);
690*df3765bfSSheng 
691*df3765bfSSheng   // A new filter entry begins a new scope for fixup resolution.
692*df3765bfSSheng   TableInfo.FixupStack.emplace_back();
693*df3765bfSSheng 
694*df3765bfSSheng   DecoderTable &Table = TableInfo.Table;
695*df3765bfSSheng 
696*df3765bfSSheng   size_t PrevFilter = 0;
697*df3765bfSSheng   bool HasFallthrough = false;
698*df3765bfSSheng   for (auto &Filter : FilterChooserMap) {
699*df3765bfSSheng     // Field value -1 implies a non-empty set of variable instructions.
700*df3765bfSSheng     // See also recurse().
701*df3765bfSSheng     if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
702*df3765bfSSheng       HasFallthrough = true;
703*df3765bfSSheng 
704*df3765bfSSheng       // Each scope should always have at least one filter value to check
705*df3765bfSSheng       // for.
706*df3765bfSSheng       assert(PrevFilter != 0 && "empty filter set!");
707*df3765bfSSheng       FixupList &CurScope = TableInfo.FixupStack.back();
708*df3765bfSSheng       // Resolve any NumToSkip fixups in the current scope.
709*df3765bfSSheng       resolveTableFixups(Table, CurScope, Table.size());
710*df3765bfSSheng       CurScope.clear();
711*df3765bfSSheng       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
712*df3765bfSSheng     } else {
713*df3765bfSSheng       Table.push_back(MCD::OPC_FilterValue);
714*df3765bfSSheng       // Encode and emit the value to filter against.
715*df3765bfSSheng       uint8_t Buffer[16];
716*df3765bfSSheng       unsigned Len = encodeULEB128(Filter.first, Buffer);
717*df3765bfSSheng       Table.insert(Table.end(), Buffer, Buffer + Len);
718*df3765bfSSheng       // Reserve space for the NumToSkip entry. We'll backpatch the value
719*df3765bfSSheng       // later.
720*df3765bfSSheng       PrevFilter = Table.size();
721*df3765bfSSheng       Table.push_back(0);
722*df3765bfSSheng       Table.push_back(0);
723*df3765bfSSheng       Table.push_back(0);
724*df3765bfSSheng     }
725*df3765bfSSheng 
726*df3765bfSSheng     // We arrive at a category of instructions with the same segment value.
727*df3765bfSSheng     // Now delegate to the sub filter chooser for further decodings.
728*df3765bfSSheng     // The case may fallthrough, which happens if the remaining well-known
729*df3765bfSSheng     // encoding bits do not match exactly.
730*df3765bfSSheng     Filter.second->emitTableEntries(TableInfo);
731*df3765bfSSheng 
732*df3765bfSSheng     // Now that we've emitted the body of the handler, update the NumToSkip
733*df3765bfSSheng     // of the filter itself to be able to skip forward when false. Subtract
734*df3765bfSSheng     // two as to account for the width of the NumToSkip field itself.
735*df3765bfSSheng     if (PrevFilter) {
736*df3765bfSSheng       uint32_t NumToSkip = Table.size() - PrevFilter - 3;
737*df3765bfSSheng       assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
738*df3765bfSSheng       Table[PrevFilter] = (uint8_t)NumToSkip;
739*df3765bfSSheng       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
740*df3765bfSSheng       Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
741*df3765bfSSheng     }
742*df3765bfSSheng   }
743*df3765bfSSheng 
744*df3765bfSSheng   // Any remaining unresolved fixups bubble up to the parent fixup scope.
745*df3765bfSSheng   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
746*df3765bfSSheng   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
747*df3765bfSSheng   FixupScopeList::iterator Dest = Source - 1;
748*df3765bfSSheng   llvm::append_range(*Dest, *Source);
749*df3765bfSSheng   TableInfo.FixupStack.pop_back();
750*df3765bfSSheng 
751*df3765bfSSheng   // If there is no fallthrough, then the final filter should get fixed
752*df3765bfSSheng   // up according to the enclosing scope rather than the current position.
753*df3765bfSSheng   if (!HasFallthrough)
754*df3765bfSSheng     TableInfo.FixupStack.back().push_back(PrevFilter);
755*df3765bfSSheng }
756*df3765bfSSheng 
757*df3765bfSSheng // Returns the number of fanout produced by the filter.  More fanout implies
758*df3765bfSSheng // the filter distinguishes more categories of instructions.
759*df3765bfSSheng unsigned Filter::usefulness() const {
760*df3765bfSSheng   if (!VariableInstructions.empty())
761*df3765bfSSheng     return FilteredInstructions.size();
762*df3765bfSSheng   else
763*df3765bfSSheng     return FilteredInstructions.size() + 1;
764*df3765bfSSheng }
765*df3765bfSSheng 
766*df3765bfSSheng //////////////////////////////////
767*df3765bfSSheng //                              //
768*df3765bfSSheng // Filterchooser Implementation //
769*df3765bfSSheng //                              //
770*df3765bfSSheng //////////////////////////////////
771*df3765bfSSheng 
772*df3765bfSSheng // Emit the decoder state machine table.
773*df3765bfSSheng void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table,
774*df3765bfSSheng                                unsigned Indentation, unsigned BitWidth,
775*df3765bfSSheng                                StringRef Namespace) const {
776*df3765bfSSheng   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
777*df3765bfSSheng     << BitWidth << "[] = {\n";
778*df3765bfSSheng 
779*df3765bfSSheng   Indentation += 2;
780*df3765bfSSheng 
781*df3765bfSSheng   // FIXME: We may be able to use the NumToSkip values to recover
782*df3765bfSSheng   // appropriate indentation levels.
783*df3765bfSSheng   DecoderTable::const_iterator I = Table.begin();
784*df3765bfSSheng   DecoderTable::const_iterator E = Table.end();
785*df3765bfSSheng   while (I != E) {
786*df3765bfSSheng     assert (I < E && "incomplete decode table entry!");
787*df3765bfSSheng 
788*df3765bfSSheng     uint64_t Pos = I - Table.begin();
789*df3765bfSSheng     OS << "/* " << Pos << " */";
790*df3765bfSSheng     OS.PadToColumn(12);
791*df3765bfSSheng 
792*df3765bfSSheng     switch (*I) {
793*df3765bfSSheng     default:
794*df3765bfSSheng       PrintFatalError("invalid decode table opcode");
795*df3765bfSSheng     case MCD::OPC_ExtractField: {
796*df3765bfSSheng       ++I;
797*df3765bfSSheng       unsigned Start = *I++;
798*df3765bfSSheng       unsigned Len = *I++;
799*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
800*df3765bfSSheng         << Len << ",  // Inst{";
801*df3765bfSSheng       if (Len > 1)
802*df3765bfSSheng         OS << (Start + Len - 1) << "-";
803*df3765bfSSheng       OS << Start << "} ...\n";
804*df3765bfSSheng       break;
805*df3765bfSSheng     }
806*df3765bfSSheng     case MCD::OPC_FilterValue: {
807*df3765bfSSheng       ++I;
808*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
809*df3765bfSSheng       // The filter value is ULEB128 encoded.
810*df3765bfSSheng       while (*I >= 128)
811*df3765bfSSheng         OS << (unsigned)*I++ << ", ";
812*df3765bfSSheng       OS << (unsigned)*I++ << ", ";
813*df3765bfSSheng 
814*df3765bfSSheng       // 24-bit numtoskip value.
815*df3765bfSSheng       uint8_t Byte = *I++;
816*df3765bfSSheng       uint32_t NumToSkip = Byte;
817*df3765bfSSheng       OS << (unsigned)Byte << ", ";
818*df3765bfSSheng       Byte = *I++;
819*df3765bfSSheng       OS << (unsigned)Byte << ", ";
820*df3765bfSSheng       NumToSkip |= Byte << 8;
821*df3765bfSSheng       Byte = *I++;
822*df3765bfSSheng       OS << utostr(Byte) << ", ";
823*df3765bfSSheng       NumToSkip |= Byte << 16;
824*df3765bfSSheng       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
825*df3765bfSSheng       break;
826*df3765bfSSheng     }
827*df3765bfSSheng     case MCD::OPC_CheckField: {
828*df3765bfSSheng       ++I;
829*df3765bfSSheng       unsigned Start = *I++;
830*df3765bfSSheng       unsigned Len = *I++;
831*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
832*df3765bfSSheng         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
833*df3765bfSSheng       // ULEB128 encoded field value.
834*df3765bfSSheng       for (; *I >= 128; ++I)
835*df3765bfSSheng         OS << (unsigned)*I << ", ";
836*df3765bfSSheng       OS << (unsigned)*I++ << ", ";
837*df3765bfSSheng       // 24-bit numtoskip value.
838*df3765bfSSheng       uint8_t Byte = *I++;
839*df3765bfSSheng       uint32_t NumToSkip = Byte;
840*df3765bfSSheng       OS << (unsigned)Byte << ", ";
841*df3765bfSSheng       Byte = *I++;
842*df3765bfSSheng       OS << (unsigned)Byte << ", ";
843*df3765bfSSheng       NumToSkip |= Byte << 8;
844*df3765bfSSheng       Byte = *I++;
845*df3765bfSSheng       OS << utostr(Byte) << ", ";
846*df3765bfSSheng       NumToSkip |= Byte << 16;
847*df3765bfSSheng       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
848*df3765bfSSheng       break;
849*df3765bfSSheng     }
850*df3765bfSSheng     case MCD::OPC_CheckPredicate: {
851*df3765bfSSheng       ++I;
852*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
853*df3765bfSSheng       for (; *I >= 128; ++I)
854*df3765bfSSheng         OS << (unsigned)*I << ", ";
855*df3765bfSSheng       OS << (unsigned)*I++ << ", ";
856*df3765bfSSheng 
857*df3765bfSSheng       // 24-bit numtoskip value.
858*df3765bfSSheng       uint8_t Byte = *I++;
859*df3765bfSSheng       uint32_t NumToSkip = Byte;
860*df3765bfSSheng       OS << (unsigned)Byte << ", ";
861*df3765bfSSheng       Byte = *I++;
862*df3765bfSSheng       OS << (unsigned)Byte << ", ";
863*df3765bfSSheng       NumToSkip |= Byte << 8;
864*df3765bfSSheng       Byte = *I++;
865*df3765bfSSheng       OS << utostr(Byte) << ", ";
866*df3765bfSSheng       NumToSkip |= Byte << 16;
867*df3765bfSSheng       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
868*df3765bfSSheng       break;
869*df3765bfSSheng     }
870*df3765bfSSheng     case MCD::OPC_Decode:
871*df3765bfSSheng     case MCD::OPC_TryDecode: {
872*df3765bfSSheng       bool IsTry = *I == MCD::OPC_TryDecode;
873*df3765bfSSheng       ++I;
874*df3765bfSSheng       // Extract the ULEB128 encoded Opcode to a buffer.
875*df3765bfSSheng       uint8_t Buffer[16], *p = Buffer;
876*df3765bfSSheng       while ((*p++ = *I++) >= 128)
877*df3765bfSSheng         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
878*df3765bfSSheng                && "ULEB128 value too large!");
879*df3765bfSSheng       // Decode the Opcode value.
880*df3765bfSSheng       unsigned Opc = decodeULEB128(Buffer);
881*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
882*df3765bfSSheng         << "Decode, ";
883*df3765bfSSheng       for (p = Buffer; *p >= 128; ++p)
884*df3765bfSSheng         OS << (unsigned)*p << ", ";
885*df3765bfSSheng       OS << (unsigned)*p << ", ";
886*df3765bfSSheng 
887*df3765bfSSheng       // Decoder index.
888*df3765bfSSheng       for (; *I >= 128; ++I)
889*df3765bfSSheng         OS << (unsigned)*I << ", ";
890*df3765bfSSheng       OS << (unsigned)*I++ << ", ";
891*df3765bfSSheng 
892*df3765bfSSheng       if (!IsTry) {
893*df3765bfSSheng         OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
894*df3765bfSSheng         break;
895*df3765bfSSheng       }
896*df3765bfSSheng 
897*df3765bfSSheng       // Fallthrough for OPC_TryDecode.
898*df3765bfSSheng 
899*df3765bfSSheng       // 24-bit numtoskip value.
900*df3765bfSSheng       uint8_t Byte = *I++;
901*df3765bfSSheng       uint32_t NumToSkip = Byte;
902*df3765bfSSheng       OS << (unsigned)Byte << ", ";
903*df3765bfSSheng       Byte = *I++;
904*df3765bfSSheng       OS << (unsigned)Byte << ", ";
905*df3765bfSSheng       NumToSkip |= Byte << 8;
906*df3765bfSSheng       Byte = *I++;
907*df3765bfSSheng       OS << utostr(Byte) << ", ";
908*df3765bfSSheng       NumToSkip |= Byte << 16;
909*df3765bfSSheng 
910*df3765bfSSheng       OS << "// Opcode: " << NumberedEncodings[Opc]
911*df3765bfSSheng          << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
912*df3765bfSSheng       break;
913*df3765bfSSheng     }
914*df3765bfSSheng     case MCD::OPC_SoftFail: {
915*df3765bfSSheng       ++I;
916*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_SoftFail";
917*df3765bfSSheng       // Positive mask
918*df3765bfSSheng       uint64_t Value = 0;
919*df3765bfSSheng       unsigned Shift = 0;
920*df3765bfSSheng       do {
921*df3765bfSSheng         OS << ", " << (unsigned)*I;
922*df3765bfSSheng         Value += (*I & 0x7f) << Shift;
923*df3765bfSSheng         Shift += 7;
924*df3765bfSSheng       } while (*I++ >= 128);
925*df3765bfSSheng       if (Value > 127) {
926*df3765bfSSheng         OS << " /* 0x";
927*df3765bfSSheng         OS.write_hex(Value);
928*df3765bfSSheng         OS << " */";
929*df3765bfSSheng       }
930*df3765bfSSheng       // Negative mask
931*df3765bfSSheng       Value = 0;
932*df3765bfSSheng       Shift = 0;
933*df3765bfSSheng       do {
934*df3765bfSSheng         OS << ", " << (unsigned)*I;
935*df3765bfSSheng         Value += (*I & 0x7f) << Shift;
936*df3765bfSSheng         Shift += 7;
937*df3765bfSSheng       } while (*I++ >= 128);
938*df3765bfSSheng       if (Value > 127) {
939*df3765bfSSheng         OS << " /* 0x";
940*df3765bfSSheng         OS.write_hex(Value);
941*df3765bfSSheng         OS << " */";
942*df3765bfSSheng       }
943*df3765bfSSheng       OS << ",\n";
944*df3765bfSSheng       break;
945*df3765bfSSheng     }
946*df3765bfSSheng     case MCD::OPC_Fail: {
947*df3765bfSSheng       ++I;
948*df3765bfSSheng       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
949*df3765bfSSheng       break;
950*df3765bfSSheng     }
951*df3765bfSSheng     }
952*df3765bfSSheng   }
953*df3765bfSSheng   OS.indent(Indentation) << "0\n";
954*df3765bfSSheng 
955*df3765bfSSheng   Indentation -= 2;
956*df3765bfSSheng 
957*df3765bfSSheng   OS.indent(Indentation) << "};\n\n";
958*df3765bfSSheng }
959*df3765bfSSheng 
960*df3765bfSSheng void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS,
961*df3765bfSSheng                                        std::vector<unsigned> &InstrLen) const {
962*df3765bfSSheng   OS << "static const uint8_t InstrLenTable[] = {\n";
963*df3765bfSSheng   for (unsigned &Len : InstrLen) {
964*df3765bfSSheng     OS << Len << ",\n";
965*df3765bfSSheng   }
966*df3765bfSSheng   OS << "};\n\n";
967*df3765bfSSheng }
968*df3765bfSSheng 
969*df3765bfSSheng void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS,
970*df3765bfSSheng                                            PredicateSet &Predicates,
971*df3765bfSSheng                                            unsigned Indentation) const {
972*df3765bfSSheng   // The predicate function is just a big switch statement based on the
973*df3765bfSSheng   // input predicate index.
974*df3765bfSSheng   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
975*df3765bfSSheng     << "const FeatureBitset &Bits) {\n";
976*df3765bfSSheng   Indentation += 2;
977*df3765bfSSheng   if (!Predicates.empty()) {
978*df3765bfSSheng     OS.indent(Indentation) << "switch (Idx) {\n";
979*df3765bfSSheng     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
980*df3765bfSSheng     unsigned Index = 0;
981*df3765bfSSheng     for (const auto &Predicate : Predicates) {
982*df3765bfSSheng       OS.indent(Indentation) << "case " << Index++ << ":\n";
983*df3765bfSSheng       OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
984*df3765bfSSheng     }
985*df3765bfSSheng     OS.indent(Indentation) << "}\n";
986*df3765bfSSheng   } else {
987*df3765bfSSheng     // No case statement to emit
988*df3765bfSSheng     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
989*df3765bfSSheng   }
990*df3765bfSSheng   Indentation -= 2;
991*df3765bfSSheng   OS.indent(Indentation) << "}\n\n";
992*df3765bfSSheng }
993*df3765bfSSheng 
994*df3765bfSSheng void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS,
995*df3765bfSSheng                                          DecoderSet &Decoders,
996*df3765bfSSheng                                          unsigned Indentation) const {
997*df3765bfSSheng   // The decoder function is just a big switch statement based on the
998*df3765bfSSheng   // input decoder index.
999*df3765bfSSheng   OS.indent(Indentation) << "template <typename InsnType>\n";
1000*df3765bfSSheng   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
1001*df3765bfSSheng     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
1002*df3765bfSSheng   OS.indent(Indentation)
1003*df3765bfSSheng       << "                                   uint64_t "
1004*df3765bfSSheng       << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n";
1005*df3765bfSSheng   Indentation += 2;
1006*df3765bfSSheng   OS.indent(Indentation) << "DecodeComplete = true;\n";
1007*df3765bfSSheng   // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
1008*df3765bfSSheng   // It would be better for emitBinaryParser to use a 64-bit tmp whenever
1009*df3765bfSSheng   // possible but fall back to an InsnType-sized tmp for truly large fields.
1010*df3765bfSSheng   OS.indent(Indentation) << "using TmpType = "
1011*df3765bfSSheng                             "std::conditional_t<std::is_integral<InsnType>::"
1012*df3765bfSSheng                             "value, InsnType, uint64_t>;\n";
1013*df3765bfSSheng   OS.indent(Indentation) << "TmpType tmp;\n";
1014*df3765bfSSheng   OS.indent(Indentation) << "switch (Idx) {\n";
1015*df3765bfSSheng   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
1016*df3765bfSSheng   unsigned Index = 0;
1017*df3765bfSSheng   for (const auto &Decoder : Decoders) {
1018*df3765bfSSheng     OS.indent(Indentation) << "case " << Index++ << ":\n";
1019*df3765bfSSheng     OS << Decoder;
1020*df3765bfSSheng     OS.indent(Indentation+2) << "return S;\n";
1021*df3765bfSSheng   }
1022*df3765bfSSheng   OS.indent(Indentation) << "}\n";
1023*df3765bfSSheng   Indentation -= 2;
1024*df3765bfSSheng   OS.indent(Indentation) << "}\n\n";
1025*df3765bfSSheng }
1026*df3765bfSSheng 
1027*df3765bfSSheng // Populates the field of the insn given the start position and the number of
1028*df3765bfSSheng // consecutive bits to scan for.
1029*df3765bfSSheng //
1030*df3765bfSSheng // Returns false if and on the first uninitialized bit value encountered.
1031*df3765bfSSheng // Returns true, otherwise.
1032*df3765bfSSheng bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
1033*df3765bfSSheng                                   unsigned StartBit, unsigned NumBits) const {
1034*df3765bfSSheng   Field = 0;
1035*df3765bfSSheng 
1036*df3765bfSSheng   for (unsigned i = 0; i < NumBits; ++i) {
1037*df3765bfSSheng     if (Insn[StartBit + i] == BIT_UNSET)
1038*df3765bfSSheng       return false;
1039*df3765bfSSheng 
1040*df3765bfSSheng     if (Insn[StartBit + i] == BIT_TRUE)
1041*df3765bfSSheng       Field = Field | (1ULL << i);
1042*df3765bfSSheng   }
1043*df3765bfSSheng 
1044*df3765bfSSheng   return true;
1045*df3765bfSSheng }
1046*df3765bfSSheng 
1047*df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1048*df3765bfSSheng /// filter array as a series of chars.
1049*df3765bfSSheng void FilterChooser::dumpFilterArray(raw_ostream &o,
1050*df3765bfSSheng                                  const std::vector<bit_value_t> &filter) const {
1051*df3765bfSSheng   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
1052*df3765bfSSheng     switch (filter[bitIndex - 1]) {
1053*df3765bfSSheng     case BIT_UNFILTERED:
1054*df3765bfSSheng       o << ".";
1055*df3765bfSSheng       break;
1056*df3765bfSSheng     case BIT_UNSET:
1057*df3765bfSSheng       o << "_";
1058*df3765bfSSheng       break;
1059*df3765bfSSheng     case BIT_TRUE:
1060*df3765bfSSheng       o << "1";
1061*df3765bfSSheng       break;
1062*df3765bfSSheng     case BIT_FALSE:
1063*df3765bfSSheng       o << "0";
1064*df3765bfSSheng       break;
1065*df3765bfSSheng     }
1066*df3765bfSSheng   }
1067*df3765bfSSheng }
1068*df3765bfSSheng 
1069*df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls
1070*df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one.
1071*df3765bfSSheng void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1072*df3765bfSSheng   const FilterChooser *current = this;
1073*df3765bfSSheng 
1074*df3765bfSSheng   while (current) {
1075*df3765bfSSheng     o << prefix;
1076*df3765bfSSheng     dumpFilterArray(o, current->FilterBitValues);
1077*df3765bfSSheng     o << '\n';
1078*df3765bfSSheng     current = current->Parent;
1079*df3765bfSSheng   }
1080*df3765bfSSheng }
1081*df3765bfSSheng 
1082*df3765bfSSheng // Calculates the island(s) needed to decode the instruction.
1083*df3765bfSSheng // This returns a list of undecoded bits of an instructions, for example,
1084*df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1085*df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode.
1086*df3765bfSSheng unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1087*df3765bfSSheng                                    std::vector<unsigned> &EndBits,
1088*df3765bfSSheng                                    std::vector<uint64_t> &FieldVals,
1089*df3765bfSSheng                                    const insn_t &Insn) const {
1090*df3765bfSSheng   unsigned Num, BitNo;
1091*df3765bfSSheng   Num = BitNo = 0;
1092*df3765bfSSheng 
1093*df3765bfSSheng   uint64_t FieldVal = 0;
1094*df3765bfSSheng 
1095*df3765bfSSheng   // 0: Init
1096*df3765bfSSheng   // 1: Water (the bit value does not affect decoding)
1097*df3765bfSSheng   // 2: Island (well-known bit value needed for decoding)
1098*df3765bfSSheng   int State = 0;
1099*df3765bfSSheng 
1100*df3765bfSSheng   for (unsigned i = 0; i < BitWidth; ++i) {
1101*df3765bfSSheng     int64_t Val = Value(Insn[i]);
1102*df3765bfSSheng     bool Filtered = PositionFiltered(i);
1103*df3765bfSSheng     switch (State) {
1104*df3765bfSSheng     default: llvm_unreachable("Unreachable code!");
1105*df3765bfSSheng     case 0:
1106*df3765bfSSheng     case 1:
1107*df3765bfSSheng       if (Filtered || Val == -1)
1108*df3765bfSSheng         State = 1; // Still in Water
1109*df3765bfSSheng       else {
1110*df3765bfSSheng         State = 2; // Into the Island
1111*df3765bfSSheng         BitNo = 0;
1112*df3765bfSSheng         StartBits.push_back(i);
1113*df3765bfSSheng         FieldVal = Val;
1114*df3765bfSSheng       }
1115*df3765bfSSheng       break;
1116*df3765bfSSheng     case 2:
1117*df3765bfSSheng       if (Filtered || Val == -1) {
1118*df3765bfSSheng         State = 1; // Into the Water
1119*df3765bfSSheng         EndBits.push_back(i - 1);
1120*df3765bfSSheng         FieldVals.push_back(FieldVal);
1121*df3765bfSSheng         ++Num;
1122*df3765bfSSheng       } else {
1123*df3765bfSSheng         State = 2; // Still in Island
1124*df3765bfSSheng         ++BitNo;
1125*df3765bfSSheng         FieldVal = FieldVal | Val << BitNo;
1126*df3765bfSSheng       }
1127*df3765bfSSheng       break;
1128*df3765bfSSheng     }
1129*df3765bfSSheng   }
1130*df3765bfSSheng   // If we are still in Island after the loop, do some housekeeping.
1131*df3765bfSSheng   if (State == 2) {
1132*df3765bfSSheng     EndBits.push_back(BitWidth - 1);
1133*df3765bfSSheng     FieldVals.push_back(FieldVal);
1134*df3765bfSSheng     ++Num;
1135*df3765bfSSheng   }
1136*df3765bfSSheng 
1137*df3765bfSSheng   assert(StartBits.size() == Num && EndBits.size() == Num &&
1138*df3765bfSSheng          FieldVals.size() == Num);
1139*df3765bfSSheng   return Num;
1140*df3765bfSSheng }
1141*df3765bfSSheng 
1142*df3765bfSSheng void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1143*df3765bfSSheng                                      const OperandInfo &OpInfo,
1144*df3765bfSSheng                                      bool &OpHasCompleteDecoder) const {
1145*df3765bfSSheng   const std::string &Decoder = OpInfo.Decoder;
1146*df3765bfSSheng 
1147*df3765bfSSheng   bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;
1148*df3765bfSSheng 
1149*df3765bfSSheng   if (UseInsertBits) {
1150*df3765bfSSheng     o.indent(Indentation) << "tmp = 0x";
1151*df3765bfSSheng     o.write_hex(OpInfo.InitValue);
1152*df3765bfSSheng     o << ";\n";
1153*df3765bfSSheng   }
1154*df3765bfSSheng 
1155*df3765bfSSheng   for (const EncodingField &EF : OpInfo) {
1156*df3765bfSSheng     o.indent(Indentation);
1157*df3765bfSSheng     if (UseInsertBits)
1158*df3765bfSSheng       o << "insertBits(tmp, ";
1159*df3765bfSSheng     else
1160*df3765bfSSheng       o << "tmp = ";
1161*df3765bfSSheng     o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
1162*df3765bfSSheng     if (UseInsertBits)
1163*df3765bfSSheng       o << ", " << EF.Offset << ", " << EF.Width << ')';
1164*df3765bfSSheng     else if (EF.Offset != 0)
1165*df3765bfSSheng       o << " << " << EF.Offset;
1166*df3765bfSSheng     o << ";\n";
1167*df3765bfSSheng   }
1168*df3765bfSSheng 
1169*df3765bfSSheng   if (Decoder != "") {
1170*df3765bfSSheng     OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1171*df3765bfSSheng     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1172*df3765bfSSheng       << "(MI, tmp, Address, Decoder)"
1173*df3765bfSSheng       << Emitter->GuardPostfix
1174*df3765bfSSheng       << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1175*df3765bfSSheng       << "return MCDisassembler::Fail; }\n";
1176*df3765bfSSheng   } else {
1177*df3765bfSSheng     OpHasCompleteDecoder = true;
1178*df3765bfSSheng     o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1179*df3765bfSSheng   }
1180*df3765bfSSheng }
1181*df3765bfSSheng 
1182*df3765bfSSheng void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1183*df3765bfSSheng                                 unsigned Opc, bool &HasCompleteDecoder) const {
1184*df3765bfSSheng   HasCompleteDecoder = true;
1185*df3765bfSSheng 
1186*df3765bfSSheng   for (const auto &Op : Operands.find(Opc)->second) {
1187*df3765bfSSheng     // If a custom instruction decoder was specified, use that.
1188*df3765bfSSheng     if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1189*df3765bfSSheng       HasCompleteDecoder = Op.HasCompleteDecoder;
1190*df3765bfSSheng       OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1191*df3765bfSSheng         << "(MI, insn, Address, Decoder)"
1192*df3765bfSSheng         << Emitter->GuardPostfix
1193*df3765bfSSheng         << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1194*df3765bfSSheng         << "return MCDisassembler::Fail; }\n";
1195*df3765bfSSheng       break;
1196*df3765bfSSheng     }
1197*df3765bfSSheng 
1198*df3765bfSSheng     bool OpHasCompleteDecoder;
1199*df3765bfSSheng     emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1200*df3765bfSSheng     if (!OpHasCompleteDecoder)
1201*df3765bfSSheng       HasCompleteDecoder = false;
1202*df3765bfSSheng   }
1203*df3765bfSSheng }
1204*df3765bfSSheng 
1205*df3765bfSSheng unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1206*df3765bfSSheng                                         unsigned Opc,
1207*df3765bfSSheng                                         bool &HasCompleteDecoder) const {
1208*df3765bfSSheng   // Build up the predicate string.
1209*df3765bfSSheng   SmallString<256> Decoder;
1210*df3765bfSSheng   // FIXME: emitDecoder() function can take a buffer directly rather than
1211*df3765bfSSheng   // a stream.
1212*df3765bfSSheng   raw_svector_ostream S(Decoder);
1213*df3765bfSSheng   unsigned I = 4;
1214*df3765bfSSheng   emitDecoder(S, I, Opc, HasCompleteDecoder);
1215*df3765bfSSheng 
1216*df3765bfSSheng   // Using the full decoder string as the key value here is a bit
1217*df3765bfSSheng   // heavyweight, but is effective. If the string comparisons become a
1218*df3765bfSSheng   // performance concern, we can implement a mangling of the predicate
1219*df3765bfSSheng   // data easily enough with a map back to the actual string. That's
1220*df3765bfSSheng   // overkill for now, though.
1221*df3765bfSSheng 
1222*df3765bfSSheng   // Make sure the predicate is in the table.
1223*df3765bfSSheng   Decoders.insert(CachedHashString(Decoder));
1224*df3765bfSSheng   // Now figure out the index for when we write out the table.
1225*df3765bfSSheng   DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1226*df3765bfSSheng   return (unsigned)(P - Decoders.begin());
1227*df3765bfSSheng }
1228*df3765bfSSheng 
1229*df3765bfSSheng bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1230*df3765bfSSheng                                        unsigned Opc) const {
1231*df3765bfSSheng   ListInit *Predicates =
1232*df3765bfSSheng       AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1233*df3765bfSSheng   bool IsFirstEmission = true;
1234*df3765bfSSheng   for (unsigned i = 0; i < Predicates->size(); ++i) {
1235*df3765bfSSheng     Record *Pred = Predicates->getElementAsRecord(i);
1236*df3765bfSSheng     if (!Pred->getValue("AssemblerMatcherPredicate"))
1237*df3765bfSSheng       continue;
1238*df3765bfSSheng 
1239*df3765bfSSheng     if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1240*df3765bfSSheng       continue;
1241*df3765bfSSheng 
1242*df3765bfSSheng     const DagInit *D = Pred->getValueAsDag("AssemblerCondDag");
1243*df3765bfSSheng     std::string CombineType = D->getOperator()->getAsString();
1244*df3765bfSSheng     if (CombineType != "any_of" && CombineType != "all_of")
1245*df3765bfSSheng       PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1246*df3765bfSSheng     if (D->getNumArgs() == 0)
1247*df3765bfSSheng       PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1248*df3765bfSSheng     bool IsOr = CombineType == "any_of";
1249*df3765bfSSheng 
1250*df3765bfSSheng     if (!IsFirstEmission)
1251*df3765bfSSheng       o << " && ";
1252*df3765bfSSheng 
1253*df3765bfSSheng     if (IsOr)
1254*df3765bfSSheng       o << "(";
1255*df3765bfSSheng 
1256*df3765bfSSheng     ListSeparator LS(IsOr ? " || " : " && ");
1257*df3765bfSSheng     for (auto *Arg : D->getArgs()) {
1258*df3765bfSSheng       o << LS;
1259*df3765bfSSheng       if (auto *NotArg = dyn_cast<DagInit>(Arg)) {
1260*df3765bfSSheng         if (NotArg->getOperator()->getAsString() != "not" ||
1261*df3765bfSSheng             NotArg->getNumArgs() != 1)
1262*df3765bfSSheng           PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1263*df3765bfSSheng         Arg = NotArg->getArg(0);
1264*df3765bfSSheng         o << "!";
1265*df3765bfSSheng       }
1266*df3765bfSSheng       if (!isa<DefInit>(Arg) ||
1267*df3765bfSSheng           !cast<DefInit>(Arg)->getDef()->isSubClassOf("SubtargetFeature"))
1268*df3765bfSSheng         PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1269*df3765bfSSheng       o << "Bits[" << Emitter->PredicateNamespace << "::" << Arg->getAsString()
1270*df3765bfSSheng         << "]";
1271*df3765bfSSheng     }
1272*df3765bfSSheng 
1273*df3765bfSSheng     if (IsOr)
1274*df3765bfSSheng       o << ")";
1275*df3765bfSSheng 
1276*df3765bfSSheng     IsFirstEmission = false;
1277*df3765bfSSheng   }
1278*df3765bfSSheng   return !Predicates->empty();
1279*df3765bfSSheng }
1280*df3765bfSSheng 
1281*df3765bfSSheng bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1282*df3765bfSSheng   ListInit *Predicates =
1283*df3765bfSSheng       AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1284*df3765bfSSheng   for (unsigned i = 0; i < Predicates->size(); ++i) {
1285*df3765bfSSheng     Record *Pred = Predicates->getElementAsRecord(i);
1286*df3765bfSSheng     if (!Pred->getValue("AssemblerMatcherPredicate"))
1287*df3765bfSSheng       continue;
1288*df3765bfSSheng 
1289*df3765bfSSheng     if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1290*df3765bfSSheng       return true;
1291*df3765bfSSheng   }
1292*df3765bfSSheng   return false;
1293*df3765bfSSheng }
1294*df3765bfSSheng 
1295*df3765bfSSheng unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1296*df3765bfSSheng                                           StringRef Predicate) const {
1297*df3765bfSSheng   // Using the full predicate string as the key value here is a bit
1298*df3765bfSSheng   // heavyweight, but is effective. If the string comparisons become a
1299*df3765bfSSheng   // performance concern, we can implement a mangling of the predicate
1300*df3765bfSSheng   // data easily enough with a map back to the actual string. That's
1301*df3765bfSSheng   // overkill for now, though.
1302*df3765bfSSheng 
1303*df3765bfSSheng   // Make sure the predicate is in the table.
1304*df3765bfSSheng   TableInfo.Predicates.insert(CachedHashString(Predicate));
1305*df3765bfSSheng   // Now figure out the index for when we write out the table.
1306*df3765bfSSheng   PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1307*df3765bfSSheng   return (unsigned)(P - TableInfo.Predicates.begin());
1308*df3765bfSSheng }
1309*df3765bfSSheng 
1310*df3765bfSSheng void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1311*df3765bfSSheng                                             unsigned Opc) const {
1312*df3765bfSSheng   if (!doesOpcodeNeedPredicate(Opc))
1313*df3765bfSSheng     return;
1314*df3765bfSSheng 
1315*df3765bfSSheng   // Build up the predicate string.
1316*df3765bfSSheng   SmallString<256> Predicate;
1317*df3765bfSSheng   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1318*df3765bfSSheng   // than a stream.
1319*df3765bfSSheng   raw_svector_ostream PS(Predicate);
1320*df3765bfSSheng   unsigned I = 0;
1321*df3765bfSSheng   emitPredicateMatch(PS, I, Opc);
1322*df3765bfSSheng 
1323*df3765bfSSheng   // Figure out the index into the predicate table for the predicate just
1324*df3765bfSSheng   // computed.
1325*df3765bfSSheng   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1326*df3765bfSSheng   SmallString<16> PBytes;
1327*df3765bfSSheng   raw_svector_ostream S(PBytes);
1328*df3765bfSSheng   encodeULEB128(PIdx, S);
1329*df3765bfSSheng 
1330*df3765bfSSheng   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1331*df3765bfSSheng   // Predicate index
1332*df3765bfSSheng   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1333*df3765bfSSheng     TableInfo.Table.push_back(PBytes[i]);
1334*df3765bfSSheng   // Push location for NumToSkip backpatching.
1335*df3765bfSSheng   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1336*df3765bfSSheng   TableInfo.Table.push_back(0);
1337*df3765bfSSheng   TableInfo.Table.push_back(0);
1338*df3765bfSSheng   TableInfo.Table.push_back(0);
1339*df3765bfSSheng }
1340*df3765bfSSheng 
1341*df3765bfSSheng void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1342*df3765bfSSheng                                            unsigned Opc) const {
1343*df3765bfSSheng   const RecordVal *RV = AllInstructions[Opc].EncodingDef->getValue("SoftFail");
1344*df3765bfSSheng   BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
1345*df3765bfSSheng 
1346*df3765bfSSheng   if (!SFBits) return;
1347*df3765bfSSheng   BitsInit *InstBits =
1348*df3765bfSSheng       AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1349*df3765bfSSheng 
1350*df3765bfSSheng   APInt PositiveMask(BitWidth, 0ULL);
1351*df3765bfSSheng   APInt NegativeMask(BitWidth, 0ULL);
1352*df3765bfSSheng   for (unsigned i = 0; i < BitWidth; ++i) {
1353*df3765bfSSheng     bit_value_t B = bitFromBits(*SFBits, i);
1354*df3765bfSSheng     bit_value_t IB = bitFromBits(*InstBits, i);
1355*df3765bfSSheng 
1356*df3765bfSSheng     if (B != BIT_TRUE) continue;
1357*df3765bfSSheng 
1358*df3765bfSSheng     switch (IB) {
1359*df3765bfSSheng     case BIT_FALSE:
1360*df3765bfSSheng       // The bit is meant to be false, so emit a check to see if it is true.
1361*df3765bfSSheng       PositiveMask.setBit(i);
1362*df3765bfSSheng       break;
1363*df3765bfSSheng     case BIT_TRUE:
1364*df3765bfSSheng       // The bit is meant to be true, so emit a check to see if it is false.
1365*df3765bfSSheng       NegativeMask.setBit(i);
1366*df3765bfSSheng       break;
1367*df3765bfSSheng     default:
1368*df3765bfSSheng       // The bit is not set; this must be an error!
1369*df3765bfSSheng       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1370*df3765bfSSheng              << AllInstructions[Opc] << " is set but Inst{" << i
1371*df3765bfSSheng              << "} is unset!\n"
1372*df3765bfSSheng              << "  - You can only mark a bit as SoftFail if it is fully defined"
1373*df3765bfSSheng              << " (1/0 - not '?') in Inst\n";
1374*df3765bfSSheng       return;
1375*df3765bfSSheng     }
1376*df3765bfSSheng   }
1377*df3765bfSSheng 
1378*df3765bfSSheng   bool NeedPositiveMask = PositiveMask.getBoolValue();
1379*df3765bfSSheng   bool NeedNegativeMask = NegativeMask.getBoolValue();
1380*df3765bfSSheng 
1381*df3765bfSSheng   if (!NeedPositiveMask && !NeedNegativeMask)
1382*df3765bfSSheng     return;
1383*df3765bfSSheng 
1384*df3765bfSSheng   TableInfo.Table.push_back(MCD::OPC_SoftFail);
1385*df3765bfSSheng 
1386*df3765bfSSheng   SmallString<16> MaskBytes;
1387*df3765bfSSheng   raw_svector_ostream S(MaskBytes);
1388*df3765bfSSheng   if (NeedPositiveMask) {
1389*df3765bfSSheng     encodeULEB128(PositiveMask.getZExtValue(), S);
1390*df3765bfSSheng     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1391*df3765bfSSheng       TableInfo.Table.push_back(MaskBytes[i]);
1392*df3765bfSSheng   } else
1393*df3765bfSSheng     TableInfo.Table.push_back(0);
1394*df3765bfSSheng   if (NeedNegativeMask) {
1395*df3765bfSSheng     MaskBytes.clear();
1396*df3765bfSSheng     encodeULEB128(NegativeMask.getZExtValue(), S);
1397*df3765bfSSheng     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1398*df3765bfSSheng       TableInfo.Table.push_back(MaskBytes[i]);
1399*df3765bfSSheng   } else
1400*df3765bfSSheng     TableInfo.Table.push_back(0);
1401*df3765bfSSheng }
1402*df3765bfSSheng 
1403*df3765bfSSheng // Emits table entries to decode the singleton.
1404*df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1405*df3765bfSSheng                                             EncodingIDAndOpcode Opc) const {
1406*df3765bfSSheng   std::vector<unsigned> StartBits;
1407*df3765bfSSheng   std::vector<unsigned> EndBits;
1408*df3765bfSSheng   std::vector<uint64_t> FieldVals;
1409*df3765bfSSheng   insn_t Insn;
1410*df3765bfSSheng   insnWithID(Insn, Opc.EncodingID);
1411*df3765bfSSheng 
1412*df3765bfSSheng   // Look for islands of undecoded bits of the singleton.
1413*df3765bfSSheng   getIslands(StartBits, EndBits, FieldVals, Insn);
1414*df3765bfSSheng 
1415*df3765bfSSheng   unsigned Size = StartBits.size();
1416*df3765bfSSheng 
1417*df3765bfSSheng   // Emit the predicate table entry if one is needed.
1418*df3765bfSSheng   emitPredicateTableEntry(TableInfo, Opc.EncodingID);
1419*df3765bfSSheng 
1420*df3765bfSSheng   // Check any additional encoding fields needed.
1421*df3765bfSSheng   for (unsigned I = Size; I != 0; --I) {
1422*df3765bfSSheng     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1423*df3765bfSSheng     TableInfo.Table.push_back(MCD::OPC_CheckField);
1424*df3765bfSSheng     TableInfo.Table.push_back(StartBits[I-1]);
1425*df3765bfSSheng     TableInfo.Table.push_back(NumBits);
1426*df3765bfSSheng     uint8_t Buffer[16], *p;
1427*df3765bfSSheng     encodeULEB128(FieldVals[I-1], Buffer);
1428*df3765bfSSheng     for (p = Buffer; *p >= 128 ; ++p)
1429*df3765bfSSheng       TableInfo.Table.push_back(*p);
1430*df3765bfSSheng     TableInfo.Table.push_back(*p);
1431*df3765bfSSheng     // Push location for NumToSkip backpatching.
1432*df3765bfSSheng     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1433*df3765bfSSheng     // The fixup is always 24-bits, so go ahead and allocate the space
1434*df3765bfSSheng     // in the table so all our relative position calculations work OK even
1435*df3765bfSSheng     // before we fully resolve the real value here.
1436*df3765bfSSheng     TableInfo.Table.push_back(0);
1437*df3765bfSSheng     TableInfo.Table.push_back(0);
1438*df3765bfSSheng     TableInfo.Table.push_back(0);
1439*df3765bfSSheng   }
1440*df3765bfSSheng 
1441*df3765bfSSheng   // Check for soft failure of the match.
1442*df3765bfSSheng   emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
1443*df3765bfSSheng 
1444*df3765bfSSheng   bool HasCompleteDecoder;
1445*df3765bfSSheng   unsigned DIdx =
1446*df3765bfSSheng       getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
1447*df3765bfSSheng 
1448*df3765bfSSheng   // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1449*df3765bfSSheng   // whether the instruction decoder is complete or not. If it is complete
1450*df3765bfSSheng   // then it handles all possible values of remaining variable/unfiltered bits
1451*df3765bfSSheng   // and for any value can determine if the bitpattern is a valid instruction
1452*df3765bfSSheng   // or not. This means OPC_Decode will be the final step in the decoding
1453*df3765bfSSheng   // process. If it is not complete, then the Fail return code from the
1454*df3765bfSSheng   // decoder method indicates that additional processing should be done to see
1455*df3765bfSSheng   // if there is any other instruction that also matches the bitpattern and
1456*df3765bfSSheng   // can decode it.
1457*df3765bfSSheng   TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1458*df3765bfSSheng       MCD::OPC_TryDecode);
1459*df3765bfSSheng   NumEncodingsSupported++;
1460*df3765bfSSheng   uint8_t Buffer[16], *p;
1461*df3765bfSSheng   encodeULEB128(Opc.Opcode, Buffer);
1462*df3765bfSSheng   for (p = Buffer; *p >= 128 ; ++p)
1463*df3765bfSSheng     TableInfo.Table.push_back(*p);
1464*df3765bfSSheng   TableInfo.Table.push_back(*p);
1465*df3765bfSSheng 
1466*df3765bfSSheng   SmallString<16> Bytes;
1467*df3765bfSSheng   raw_svector_ostream S(Bytes);
1468*df3765bfSSheng   encodeULEB128(DIdx, S);
1469*df3765bfSSheng 
1470*df3765bfSSheng   // Decoder index
1471*df3765bfSSheng   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1472*df3765bfSSheng     TableInfo.Table.push_back(Bytes[i]);
1473*df3765bfSSheng 
1474*df3765bfSSheng   if (!HasCompleteDecoder) {
1475*df3765bfSSheng     // Push location for NumToSkip backpatching.
1476*df3765bfSSheng     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1477*df3765bfSSheng     // Allocate the space for the fixup.
1478*df3765bfSSheng     TableInfo.Table.push_back(0);
1479*df3765bfSSheng     TableInfo.Table.push_back(0);
1480*df3765bfSSheng     TableInfo.Table.push_back(0);
1481*df3765bfSSheng   }
1482*df3765bfSSheng }
1483*df3765bfSSheng 
1484*df3765bfSSheng // Emits table entries to decode the singleton, and then to decode the rest.
1485*df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1486*df3765bfSSheng                                             const Filter &Best) const {
1487*df3765bfSSheng   EncodingIDAndOpcode Opc = Best.getSingletonOpc();
1488*df3765bfSSheng 
1489*df3765bfSSheng   // complex singletons need predicate checks from the first singleton
1490*df3765bfSSheng   // to refer forward to the variable filterchooser that follows.
1491*df3765bfSSheng   TableInfo.FixupStack.emplace_back();
1492*df3765bfSSheng 
1493*df3765bfSSheng   emitSingletonTableEntry(TableInfo, Opc);
1494*df3765bfSSheng 
1495*df3765bfSSheng   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1496*df3765bfSSheng                      TableInfo.Table.size());
1497*df3765bfSSheng   TableInfo.FixupStack.pop_back();
1498*df3765bfSSheng 
1499*df3765bfSSheng   Best.getVariableFC().emitTableEntries(TableInfo);
1500*df3765bfSSheng }
1501*df3765bfSSheng 
1502*df3765bfSSheng // Assign a single filter and run with it.  Top level API client can initialize
1503*df3765bfSSheng // with a single filter to start the filtering process.
1504*df3765bfSSheng void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1505*df3765bfSSheng                                     bool mixed) {
1506*df3765bfSSheng   Filters.clear();
1507*df3765bfSSheng   Filters.emplace_back(*this, startBit, numBit, true);
1508*df3765bfSSheng   BestIndex = 0; // Sole Filter instance to choose from.
1509*df3765bfSSheng   bestFilter().recurse();
1510*df3765bfSSheng }
1511*df3765bfSSheng 
1512*df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as
1513*df3765bfSSheng // eligible for use as a filter region.
1514*df3765bfSSheng void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1515*df3765bfSSheng                                  unsigned BitIndex, bool AllowMixed) {
1516*df3765bfSSheng   if (RA == ATTR_MIXED && AllowMixed)
1517*df3765bfSSheng     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1518*df3765bfSSheng   else if (RA == ATTR_ALL_SET && !AllowMixed)
1519*df3765bfSSheng     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1520*df3765bfSSheng }
1521*df3765bfSSheng 
1522*df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and
1523*df3765bfSSheng // builds up a list of candidate filters.  It chooses the best filter and
1524*df3765bfSSheng // recursively descends down the decoding tree.
1525*df3765bfSSheng bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1526*df3765bfSSheng   Filters.clear();
1527*df3765bfSSheng   BestIndex = -1;
1528*df3765bfSSheng   unsigned numInstructions = Opcodes.size();
1529*df3765bfSSheng 
1530*df3765bfSSheng   assert(numInstructions && "Filter created with no instructions");
1531*df3765bfSSheng 
1532*df3765bfSSheng   // No further filtering is necessary.
1533*df3765bfSSheng   if (numInstructions == 1)
1534*df3765bfSSheng     return true;
1535*df3765bfSSheng 
1536*df3765bfSSheng   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1537*df3765bfSSheng   // instructions is 3.
1538*df3765bfSSheng   if (AllowMixed && !Greedy) {
1539*df3765bfSSheng     assert(numInstructions == 3);
1540*df3765bfSSheng 
1541*df3765bfSSheng     for (auto Opcode : Opcodes) {
1542*df3765bfSSheng       std::vector<unsigned> StartBits;
1543*df3765bfSSheng       std::vector<unsigned> EndBits;
1544*df3765bfSSheng       std::vector<uint64_t> FieldVals;
1545*df3765bfSSheng       insn_t Insn;
1546*df3765bfSSheng 
1547*df3765bfSSheng       insnWithID(Insn, Opcode.EncodingID);
1548*df3765bfSSheng 
1549*df3765bfSSheng       // Look for islands of undecoded bits of any instruction.
1550*df3765bfSSheng       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1551*df3765bfSSheng         // Found an instruction with island(s).  Now just assign a filter.
1552*df3765bfSSheng         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1553*df3765bfSSheng         return true;
1554*df3765bfSSheng       }
1555*df3765bfSSheng     }
1556*df3765bfSSheng   }
1557*df3765bfSSheng 
1558*df3765bfSSheng   unsigned BitIndex;
1559*df3765bfSSheng 
1560*df3765bfSSheng   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1561*df3765bfSSheng   // The automaton consumes the corresponding bit from each
1562*df3765bfSSheng   // instruction.
1563*df3765bfSSheng   //
1564*df3765bfSSheng   //   Input symbols: 0, 1, and _ (unset).
1565*df3765bfSSheng   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1566*df3765bfSSheng   //   Initial state: NONE.
1567*df3765bfSSheng   //
1568*df3765bfSSheng   // (NONE) ------- [01] -> (ALL_SET)
1569*df3765bfSSheng   // (NONE) ------- _ ----> (ALL_UNSET)
1570*df3765bfSSheng   // (ALL_SET) ---- [01] -> (ALL_SET)
1571*df3765bfSSheng   // (ALL_SET) ---- _ ----> (MIXED)
1572*df3765bfSSheng   // (ALL_UNSET) -- [01] -> (MIXED)
1573*df3765bfSSheng   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1574*df3765bfSSheng   // (MIXED) ------ . ----> (MIXED)
1575*df3765bfSSheng   // (FILTERED)---- . ----> (FILTERED)
1576*df3765bfSSheng 
1577*df3765bfSSheng   std::vector<bitAttr_t> bitAttrs;
1578*df3765bfSSheng 
1579*df3765bfSSheng   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1580*df3765bfSSheng   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1581*df3765bfSSheng   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1582*df3765bfSSheng     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1583*df3765bfSSheng         FilterBitValues[BitIndex] == BIT_FALSE)
1584*df3765bfSSheng       bitAttrs.push_back(ATTR_FILTERED);
1585*df3765bfSSheng     else
1586*df3765bfSSheng       bitAttrs.push_back(ATTR_NONE);
1587*df3765bfSSheng 
1588*df3765bfSSheng   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1589*df3765bfSSheng     insn_t insn;
1590*df3765bfSSheng 
1591*df3765bfSSheng     insnWithID(insn, Opcodes[InsnIndex].EncodingID);
1592*df3765bfSSheng 
1593*df3765bfSSheng     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1594*df3765bfSSheng       switch (bitAttrs[BitIndex]) {
1595*df3765bfSSheng       case ATTR_NONE:
1596*df3765bfSSheng         if (insn[BitIndex] == BIT_UNSET)
1597*df3765bfSSheng           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1598*df3765bfSSheng         else
1599*df3765bfSSheng           bitAttrs[BitIndex] = ATTR_ALL_SET;
1600*df3765bfSSheng         break;
1601*df3765bfSSheng       case ATTR_ALL_SET:
1602*df3765bfSSheng         if (insn[BitIndex] == BIT_UNSET)
1603*df3765bfSSheng           bitAttrs[BitIndex] = ATTR_MIXED;
1604*df3765bfSSheng         break;
1605*df3765bfSSheng       case ATTR_ALL_UNSET:
1606*df3765bfSSheng         if (insn[BitIndex] != BIT_UNSET)
1607*df3765bfSSheng           bitAttrs[BitIndex] = ATTR_MIXED;
1608*df3765bfSSheng         break;
1609*df3765bfSSheng       case ATTR_MIXED:
1610*df3765bfSSheng       case ATTR_FILTERED:
1611*df3765bfSSheng         break;
1612*df3765bfSSheng       }
1613*df3765bfSSheng     }
1614*df3765bfSSheng   }
1615*df3765bfSSheng 
1616*df3765bfSSheng   // The regionAttr automaton consumes the bitAttrs automatons' state,
1617*df3765bfSSheng   // lowest-to-highest.
1618*df3765bfSSheng   //
1619*df3765bfSSheng   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1620*df3765bfSSheng   //   States:        NONE, ALL_SET, MIXED
1621*df3765bfSSheng   //   Initial state: NONE
1622*df3765bfSSheng   //
1623*df3765bfSSheng   // (NONE) ----- F --> (NONE)
1624*df3765bfSSheng   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1625*df3765bfSSheng   // (NONE) ----- U --> (NONE)
1626*df3765bfSSheng   // (NONE) ----- M --> (MIXED)       ; and set region start
1627*df3765bfSSheng   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1628*df3765bfSSheng   // (ALL_SET) -- S --> (ALL_SET)
1629*df3765bfSSheng   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1630*df3765bfSSheng   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1631*df3765bfSSheng   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1632*df3765bfSSheng   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1633*df3765bfSSheng   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1634*df3765bfSSheng   // (MIXED) ---- M --> (MIXED)
1635*df3765bfSSheng 
1636*df3765bfSSheng   bitAttr_t RA = ATTR_NONE;
1637*df3765bfSSheng   unsigned StartBit = 0;
1638*df3765bfSSheng 
1639*df3765bfSSheng   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1640*df3765bfSSheng     bitAttr_t bitAttr = bitAttrs[BitIndex];
1641*df3765bfSSheng 
1642*df3765bfSSheng     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1643*df3765bfSSheng 
1644*df3765bfSSheng     switch (RA) {
1645*df3765bfSSheng     case ATTR_NONE:
1646*df3765bfSSheng       switch (bitAttr) {
1647*df3765bfSSheng       case ATTR_FILTERED:
1648*df3765bfSSheng         break;
1649*df3765bfSSheng       case ATTR_ALL_SET:
1650*df3765bfSSheng         StartBit = BitIndex;
1651*df3765bfSSheng         RA = ATTR_ALL_SET;
1652*df3765bfSSheng         break;
1653*df3765bfSSheng       case ATTR_ALL_UNSET:
1654*df3765bfSSheng         break;
1655*df3765bfSSheng       case ATTR_MIXED:
1656*df3765bfSSheng         StartBit = BitIndex;
1657*df3765bfSSheng         RA = ATTR_MIXED;
1658*df3765bfSSheng         break;
1659*df3765bfSSheng       default:
1660*df3765bfSSheng         llvm_unreachable("Unexpected bitAttr!");
1661*df3765bfSSheng       }
1662*df3765bfSSheng       break;
1663*df3765bfSSheng     case ATTR_ALL_SET:
1664*df3765bfSSheng       switch (bitAttr) {
1665*df3765bfSSheng       case ATTR_FILTERED:
1666*df3765bfSSheng         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1667*df3765bfSSheng         RA = ATTR_NONE;
1668*df3765bfSSheng         break;
1669*df3765bfSSheng       case ATTR_ALL_SET:
1670*df3765bfSSheng         break;
1671*df3765bfSSheng       case ATTR_ALL_UNSET:
1672*df3765bfSSheng         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1673*df3765bfSSheng         RA = ATTR_NONE;
1674*df3765bfSSheng         break;
1675*df3765bfSSheng       case ATTR_MIXED:
1676*df3765bfSSheng         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1677*df3765bfSSheng         StartBit = BitIndex;
1678*df3765bfSSheng         RA = ATTR_MIXED;
1679*df3765bfSSheng         break;
1680*df3765bfSSheng       default:
1681*df3765bfSSheng         llvm_unreachable("Unexpected bitAttr!");
1682*df3765bfSSheng       }
1683*df3765bfSSheng       break;
1684*df3765bfSSheng     case ATTR_MIXED:
1685*df3765bfSSheng       switch (bitAttr) {
1686*df3765bfSSheng       case ATTR_FILTERED:
1687*df3765bfSSheng         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1688*df3765bfSSheng         StartBit = BitIndex;
1689*df3765bfSSheng         RA = ATTR_NONE;
1690*df3765bfSSheng         break;
1691*df3765bfSSheng       case ATTR_ALL_SET:
1692*df3765bfSSheng         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1693*df3765bfSSheng         StartBit = BitIndex;
1694*df3765bfSSheng         RA = ATTR_ALL_SET;
1695*df3765bfSSheng         break;
1696*df3765bfSSheng       case ATTR_ALL_UNSET:
1697*df3765bfSSheng         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1698*df3765bfSSheng         RA = ATTR_NONE;
1699*df3765bfSSheng         break;
1700*df3765bfSSheng       case ATTR_MIXED:
1701*df3765bfSSheng         break;
1702*df3765bfSSheng       default:
1703*df3765bfSSheng         llvm_unreachable("Unexpected bitAttr!");
1704*df3765bfSSheng       }
1705*df3765bfSSheng       break;
1706*df3765bfSSheng     case ATTR_ALL_UNSET:
1707*df3765bfSSheng       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1708*df3765bfSSheng     case ATTR_FILTERED:
1709*df3765bfSSheng       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1710*df3765bfSSheng     }
1711*df3765bfSSheng   }
1712*df3765bfSSheng 
1713*df3765bfSSheng   // At the end, if we're still in ALL_SET or MIXED states, report a region
1714*df3765bfSSheng   switch (RA) {
1715*df3765bfSSheng   case ATTR_NONE:
1716*df3765bfSSheng     break;
1717*df3765bfSSheng   case ATTR_FILTERED:
1718*df3765bfSSheng     break;
1719*df3765bfSSheng   case ATTR_ALL_SET:
1720*df3765bfSSheng     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1721*df3765bfSSheng     break;
1722*df3765bfSSheng   case ATTR_ALL_UNSET:
1723*df3765bfSSheng     break;
1724*df3765bfSSheng   case ATTR_MIXED:
1725*df3765bfSSheng     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1726*df3765bfSSheng     break;
1727*df3765bfSSheng   }
1728*df3765bfSSheng 
1729*df3765bfSSheng   // We have finished with the filter processings.  Now it's time to choose
1730*df3765bfSSheng   // the best performing filter.
1731*df3765bfSSheng   BestIndex = 0;
1732*df3765bfSSheng   bool AllUseless = true;
1733*df3765bfSSheng   unsigned BestScore = 0;
1734*df3765bfSSheng 
1735*df3765bfSSheng   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1736*df3765bfSSheng     unsigned Usefulness = Filters[i].usefulness();
1737*df3765bfSSheng 
1738*df3765bfSSheng     if (Usefulness)
1739*df3765bfSSheng       AllUseless = false;
1740*df3765bfSSheng 
1741*df3765bfSSheng     if (Usefulness > BestScore) {
1742*df3765bfSSheng       BestIndex = i;
1743*df3765bfSSheng       BestScore = Usefulness;
1744*df3765bfSSheng     }
1745*df3765bfSSheng   }
1746*df3765bfSSheng 
1747*df3765bfSSheng   if (!AllUseless)
1748*df3765bfSSheng     bestFilter().recurse();
1749*df3765bfSSheng 
1750*df3765bfSSheng   return !AllUseless;
1751*df3765bfSSheng } // end of FilterChooser::filterProcessor(bool)
1752*df3765bfSSheng 
1753*df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode
1754*df3765bfSSheng // the instructions.  A conflict of instructions may occur, in which case we
1755*df3765bfSSheng // dump the conflict set to the standard error.
1756*df3765bfSSheng void FilterChooser::doFilter() {
1757*df3765bfSSheng   unsigned Num = Opcodes.size();
1758*df3765bfSSheng   assert(Num && "FilterChooser created with no instructions");
1759*df3765bfSSheng 
1760*df3765bfSSheng   // Try regions of consecutive known bit values first.
1761*df3765bfSSheng   if (filterProcessor(false))
1762*df3765bfSSheng     return;
1763*df3765bfSSheng 
1764*df3765bfSSheng   // Then regions of mixed bits (both known and unitialized bit values allowed).
1765*df3765bfSSheng   if (filterProcessor(true))
1766*df3765bfSSheng     return;
1767*df3765bfSSheng 
1768*df3765bfSSheng   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1769*df3765bfSSheng   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1770*df3765bfSSheng   // well-known encoding pattern.  In such case, we backtrack and scan for the
1771*df3765bfSSheng   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1772*df3765bfSSheng   if (Num == 3 && filterProcessor(true, false))
1773*df3765bfSSheng     return;
1774*df3765bfSSheng 
1775*df3765bfSSheng   // If we come to here, the instruction decoding has failed.
1776*df3765bfSSheng   // Set the BestIndex to -1 to indicate so.
1777*df3765bfSSheng   BestIndex = -1;
1778*df3765bfSSheng }
1779*df3765bfSSheng 
1780*df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of
1781*df3765bfSSheng // instructions.
1782*df3765bfSSheng void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1783*df3765bfSSheng   if (Opcodes.size() == 1) {
1784*df3765bfSSheng     // There is only one instruction in the set, which is great!
1785*df3765bfSSheng     // Call emitSingletonDecoder() to see whether there are any remaining
1786*df3765bfSSheng     // encodings bits.
1787*df3765bfSSheng     emitSingletonTableEntry(TableInfo, Opcodes[0]);
1788*df3765bfSSheng     return;
1789*df3765bfSSheng   }
1790*df3765bfSSheng 
1791*df3765bfSSheng   // Choose the best filter to do the decodings!
1792*df3765bfSSheng   if (BestIndex != -1) {
1793*df3765bfSSheng     const Filter &Best = Filters[BestIndex];
1794*df3765bfSSheng     if (Best.getNumFiltered() == 1)
1795*df3765bfSSheng       emitSingletonTableEntry(TableInfo, Best);
1796*df3765bfSSheng     else
1797*df3765bfSSheng       Best.emitTableEntry(TableInfo);
1798*df3765bfSSheng     return;
1799*df3765bfSSheng   }
1800*df3765bfSSheng 
1801*df3765bfSSheng   // We don't know how to decode these instructions!  Dump the
1802*df3765bfSSheng   // conflict set and bail.
1803*df3765bfSSheng 
1804*df3765bfSSheng   // Print out useful conflict information for postmortem analysis.
1805*df3765bfSSheng   errs() << "Decoding Conflict:\n";
1806*df3765bfSSheng 
1807*df3765bfSSheng   dumpStack(errs(), "\t\t");
1808*df3765bfSSheng 
1809*df3765bfSSheng   for (auto Opcode : Opcodes) {
1810*df3765bfSSheng     errs() << '\t';
1811*df3765bfSSheng     emitNameWithID(errs(), Opcode.EncodingID);
1812*df3765bfSSheng     errs() << " ";
1813*df3765bfSSheng     dumpBits(
1814*df3765bfSSheng         errs(),
1815*df3765bfSSheng         getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
1816*df3765bfSSheng     errs() << '\n';
1817*df3765bfSSheng   }
1818*df3765bfSSheng }
1819*df3765bfSSheng 
1820*df3765bfSSheng static std::string findOperandDecoderMethod(Record *Record) {
1821*df3765bfSSheng   std::string Decoder;
1822*df3765bfSSheng 
1823*df3765bfSSheng   RecordVal *DecoderString = Record->getValue("DecoderMethod");
1824*df3765bfSSheng   StringInit *String = DecoderString ?
1825*df3765bfSSheng     dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1826*df3765bfSSheng   if (String) {
1827*df3765bfSSheng     Decoder = std::string(String->getValue());
1828*df3765bfSSheng     if (!Decoder.empty())
1829*df3765bfSSheng       return Decoder;
1830*df3765bfSSheng   }
1831*df3765bfSSheng 
1832*df3765bfSSheng   if (Record->isSubClassOf("RegisterOperand"))
1833*df3765bfSSheng     Record = Record->getValueAsDef("RegClass");
1834*df3765bfSSheng 
1835*df3765bfSSheng   if (Record->isSubClassOf("RegisterClass")) {
1836*df3765bfSSheng     Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1837*df3765bfSSheng   } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1838*df3765bfSSheng     Decoder = "DecodePointerLikeRegClass" +
1839*df3765bfSSheng       utostr(Record->getValueAsInt("RegClassKind"));
1840*df3765bfSSheng   }
1841*df3765bfSSheng 
1842*df3765bfSSheng   return Decoder;
1843*df3765bfSSheng }
1844*df3765bfSSheng 
1845*df3765bfSSheng OperandInfo getOpInfo(Record *TypeRecord) {
1846*df3765bfSSheng   std::string Decoder = findOperandDecoderMethod(TypeRecord);
1847*df3765bfSSheng 
1848*df3765bfSSheng   RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder");
1849*df3765bfSSheng   BitInit *HasCompleteDecoderBit =
1850*df3765bfSSheng       HasCompleteDecoderVal
1851*df3765bfSSheng           ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
1852*df3765bfSSheng           : nullptr;
1853*df3765bfSSheng   bool HasCompleteDecoder =
1854*df3765bfSSheng       HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
1855*df3765bfSSheng 
1856*df3765bfSSheng   return OperandInfo(Decoder, HasCompleteDecoder);
1857*df3765bfSSheng }
1858*df3765bfSSheng 
1859*df3765bfSSheng void parseVarLenInstOperand(const Record &Def,
1860*df3765bfSSheng                             std::vector<OperandInfo> &Operands,
1861*df3765bfSSheng                             const CodeGenInstruction &CGI) {
1862*df3765bfSSheng 
1863*df3765bfSSheng   const RecordVal *RV = Def.getValue("Inst");
1864*df3765bfSSheng   VarLenInst VLI(cast<DagInit>(RV->getValue()), RV);
1865*df3765bfSSheng   SmallVector<int> TiedTo;
1866*df3765bfSSheng 
1867*df3765bfSSheng   for (unsigned Idx = 0; Idx < CGI.Operands.size(); ++Idx) {
1868*df3765bfSSheng     auto &Op = CGI.Operands[Idx];
1869*df3765bfSSheng     if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0)
1870*df3765bfSSheng       for (auto *Arg : Op.MIOperandInfo->getArgs())
1871*df3765bfSSheng         Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef()));
1872*df3765bfSSheng     else
1873*df3765bfSSheng       Operands.push_back(getOpInfo(Op.Rec));
1874*df3765bfSSheng 
1875*df3765bfSSheng     int TiedReg = Op.getTiedRegister();
1876*df3765bfSSheng     TiedTo.push_back(-1);
1877*df3765bfSSheng     if (TiedReg != -1) {
1878*df3765bfSSheng       TiedTo[Idx] = TiedReg;
1879*df3765bfSSheng       TiedTo[TiedReg] = Idx;
1880*df3765bfSSheng     }
1881*df3765bfSSheng   }
1882*df3765bfSSheng 
1883*df3765bfSSheng   unsigned CurrBitPos = 0;
1884*df3765bfSSheng   for (auto &EncodingSegment : VLI) {
1885*df3765bfSSheng     unsigned Offset = 0;
1886*df3765bfSSheng     StringRef OpName;
1887*df3765bfSSheng 
1888*df3765bfSSheng     if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) {
1889*df3765bfSSheng       OpName = SI->getValue();
1890*df3765bfSSheng     } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) {
1891*df3765bfSSheng       OpName = cast<StringInit>(DI->getArg(0))->getValue();
1892*df3765bfSSheng       Offset = cast<IntInit>(DI->getArg(2))->getValue();
1893*df3765bfSSheng     }
1894*df3765bfSSheng 
1895*df3765bfSSheng     if (!OpName.empty()) {
1896*df3765bfSSheng       auto OpSubOpPair =
1897*df3765bfSSheng           const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName(
1898*df3765bfSSheng               OpName);
1899*df3765bfSSheng       unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair);
1900*df3765bfSSheng       Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1901*df3765bfSSheng 
1902*df3765bfSSheng       int TiedReg = TiedTo[OpSubOpPair.first];
1903*df3765bfSSheng       if (TiedReg != -1) {
1904*df3765bfSSheng         unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(
1905*df3765bfSSheng             std::make_pair(TiedReg, OpSubOpPair.second));
1906*df3765bfSSheng         Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1907*df3765bfSSheng       }
1908*df3765bfSSheng     }
1909*df3765bfSSheng 
1910*df3765bfSSheng     CurrBitPos += EncodingSegment.BitWidth;
1911*df3765bfSSheng   }
1912*df3765bfSSheng }
1913*df3765bfSSheng 
1914*df3765bfSSheng static unsigned
1915*df3765bfSSheng populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
1916*df3765bfSSheng                     const CodeGenInstruction &CGI, unsigned Opc,
1917*df3765bfSSheng                     std::map<unsigned, std::vector<OperandInfo>> &Operands,
1918*df3765bfSSheng                     bool IsVarLenInst) {
1919*df3765bfSSheng   const Record &Def = *CGI.TheDef;
1920*df3765bfSSheng   // If all the bit positions are not specified; do not decode this instruction.
1921*df3765bfSSheng   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1922*df3765bfSSheng   // of the instruction must be fully specified.
1923*df3765bfSSheng 
1924*df3765bfSSheng   BitsInit &Bits = getBitsField(EncodingDef, "Inst");
1925*df3765bfSSheng   if (Bits.allInComplete())
1926*df3765bfSSheng     return 0;
1927*df3765bfSSheng 
1928*df3765bfSSheng   std::vector<OperandInfo> InsnOperands;
1929*df3765bfSSheng 
1930*df3765bfSSheng   // If the instruction has specified a custom decoding hook, use that instead
1931*df3765bfSSheng   // of trying to auto-generate the decoder.
1932*df3765bfSSheng   StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
1933*df3765bfSSheng   if (InstDecoder != "") {
1934*df3765bfSSheng     bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
1935*df3765bfSSheng     InsnOperands.push_back(
1936*df3765bfSSheng         OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
1937*df3765bfSSheng     Operands[Opc] = InsnOperands;
1938*df3765bfSSheng     return Bits.getNumBits();
1939*df3765bfSSheng   }
1940*df3765bfSSheng 
1941*df3765bfSSheng   // Generate a description of the operand of the instruction that we know
1942*df3765bfSSheng   // how to decode automatically.
1943*df3765bfSSheng   // FIXME: We'll need to have a way to manually override this as needed.
1944*df3765bfSSheng 
1945*df3765bfSSheng   // Gather the outputs/inputs of the instruction, so we can find their
1946*df3765bfSSheng   // positions in the encoding.  This assumes for now that they appear in the
1947*df3765bfSSheng   // MCInst in the order that they're listed.
1948*df3765bfSSheng   std::vector<std::pair<Init*, StringRef>> InOutOperands;
1949*df3765bfSSheng   DagInit *Out  = Def.getValueAsDag("OutOperandList");
1950*df3765bfSSheng   DagInit *In  = Def.getValueAsDag("InOperandList");
1951*df3765bfSSheng   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1952*df3765bfSSheng     InOutOperands.push_back(
1953*df3765bfSSheng         std::make_pair(Out->getArg(i), Out->getArgNameStr(i)));
1954*df3765bfSSheng   for (unsigned i = 0; i < In->getNumArgs(); ++i)
1955*df3765bfSSheng     InOutOperands.push_back(
1956*df3765bfSSheng         std::make_pair(In->getArg(i), In->getArgNameStr(i)));
1957*df3765bfSSheng 
1958*df3765bfSSheng   // Search for tied operands, so that we can correctly instantiate
1959*df3765bfSSheng   // operands that are not explicitly represented in the encoding.
1960*df3765bfSSheng   std::map<std::string, std::string> TiedNames;
1961*df3765bfSSheng   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1962*df3765bfSSheng     int tiedTo = CGI.Operands[i].getTiedRegister();
1963*df3765bfSSheng     if (tiedTo != -1) {
1964*df3765bfSSheng       std::pair<unsigned, unsigned> SO =
1965*df3765bfSSheng         CGI.Operands.getSubOperandNumber(tiedTo);
1966*df3765bfSSheng       TiedNames[std::string(InOutOperands[i].second)] =
1967*df3765bfSSheng           std::string(InOutOperands[SO.first].second);
1968*df3765bfSSheng       TiedNames[std::string(InOutOperands[SO.first].second)] =
1969*df3765bfSSheng           std::string(InOutOperands[i].second);
1970*df3765bfSSheng     }
1971*df3765bfSSheng   }
1972*df3765bfSSheng 
1973*df3765bfSSheng   if (IsVarLenInst) {
1974*df3765bfSSheng     parseVarLenInstOperand(EncodingDef, InsnOperands, CGI);
1975*df3765bfSSheng   } else {
1976*df3765bfSSheng     std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
1977*df3765bfSSheng     std::set<std::string> NumberedInsnOperandsNoTie;
1978*df3765bfSSheng     if (Target.getInstructionSet()->getValueAsBit(
1979*df3765bfSSheng             "decodePositionallyEncodedOperands")) {
1980*df3765bfSSheng       const std::vector<RecordVal> &Vals = Def.getValues();
1981*df3765bfSSheng       unsigned NumberedOp = 0;
1982*df3765bfSSheng 
1983*df3765bfSSheng       std::set<unsigned> NamedOpIndices;
1984*df3765bfSSheng       if (Target.getInstructionSet()->getValueAsBit(
1985*df3765bfSSheng               "noNamedPositionallyEncodedOperands"))
1986*df3765bfSSheng         // Collect the set of operand indices that might correspond to named
1987*df3765bfSSheng         // operand, and skip these when assigning operands based on position.
1988*df3765bfSSheng         for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1989*df3765bfSSheng           unsigned OpIdx;
1990*df3765bfSSheng           if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1991*df3765bfSSheng             continue;
1992*df3765bfSSheng 
1993*df3765bfSSheng           NamedOpIndices.insert(OpIdx);
1994*df3765bfSSheng         }
1995*df3765bfSSheng 
1996*df3765bfSSheng       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1997*df3765bfSSheng         // Ignore fixed fields in the record, we're looking for values like:
1998*df3765bfSSheng         //    bits<5> RST = { ?, ?, ?, ?, ? };
1999*df3765bfSSheng         if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
2000*df3765bfSSheng           continue;
2001*df3765bfSSheng 
2002*df3765bfSSheng         // Determine if Vals[i] actually contributes to the Inst encoding.
2003*df3765bfSSheng         unsigned bi = 0;
2004*df3765bfSSheng         for (; bi < Bits.getNumBits(); ++bi) {
2005*df3765bfSSheng           VarInit *Var = nullptr;
2006*df3765bfSSheng           VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2007*df3765bfSSheng           if (BI)
2008*df3765bfSSheng             Var = dyn_cast<VarInit>(BI->getBitVar());
2009*df3765bfSSheng           else
2010*df3765bfSSheng             Var = dyn_cast<VarInit>(Bits.getBit(bi));
2011*df3765bfSSheng 
2012*df3765bfSSheng           if (Var && Var->getName() == Vals[i].getName())
2013*df3765bfSSheng             break;
2014*df3765bfSSheng         }
2015*df3765bfSSheng 
2016*df3765bfSSheng         if (bi == Bits.getNumBits())
2017*df3765bfSSheng           continue;
2018*df3765bfSSheng 
2019*df3765bfSSheng         // Skip variables that correspond to explicitly-named operands.
2020*df3765bfSSheng         unsigned OpIdx;
2021*df3765bfSSheng         if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
2022*df3765bfSSheng           continue;
2023*df3765bfSSheng 
2024*df3765bfSSheng         // Get the bit range for this operand:
2025*df3765bfSSheng         unsigned bitStart = bi++, bitWidth = 1;
2026*df3765bfSSheng         for (; bi < Bits.getNumBits(); ++bi) {
2027*df3765bfSSheng           VarInit *Var = nullptr;
2028*df3765bfSSheng           VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2029*df3765bfSSheng           if (BI)
2030*df3765bfSSheng             Var = dyn_cast<VarInit>(BI->getBitVar());
2031*df3765bfSSheng           else
2032*df3765bfSSheng             Var = dyn_cast<VarInit>(Bits.getBit(bi));
2033*df3765bfSSheng 
2034*df3765bfSSheng           if (!Var)
2035*df3765bfSSheng             break;
2036*df3765bfSSheng 
2037*df3765bfSSheng           if (Var->getName() != Vals[i].getName())
2038*df3765bfSSheng             break;
2039*df3765bfSSheng 
2040*df3765bfSSheng           ++bitWidth;
2041*df3765bfSSheng         }
2042*df3765bfSSheng 
2043*df3765bfSSheng         unsigned NumberOps = CGI.Operands.size();
2044*df3765bfSSheng         while (NumberedOp < NumberOps &&
2045*df3765bfSSheng                (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
2046*df3765bfSSheng                 (!NamedOpIndices.empty() &&
2047*df3765bfSSheng                  NamedOpIndices.count(
2048*df3765bfSSheng                      CGI.Operands.getSubOperandNumber(NumberedOp).first))))
2049*df3765bfSSheng           ++NumberedOp;
2050*df3765bfSSheng 
2051*df3765bfSSheng         OpIdx = NumberedOp++;
2052*df3765bfSSheng 
2053*df3765bfSSheng         // OpIdx now holds the ordered operand number of Vals[i].
2054*df3765bfSSheng         std::pair<unsigned, unsigned> SO =
2055*df3765bfSSheng             CGI.Operands.getSubOperandNumber(OpIdx);
2056*df3765bfSSheng         const std::string &Name = CGI.Operands[SO.first].Name;
2057*df3765bfSSheng 
2058*df3765bfSSheng         LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
2059*df3765bfSSheng                           << ": " << Name << "(" << SO.first << ", "
2060*df3765bfSSheng                           << SO.second << ") => " << Vals[i].getName() << "\n");
2061*df3765bfSSheng 
2062*df3765bfSSheng         std::string Decoder;
2063*df3765bfSSheng         Record *TypeRecord = CGI.Operands[SO.first].Rec;
2064*df3765bfSSheng 
2065*df3765bfSSheng         RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
2066*df3765bfSSheng         StringInit *String =
2067*df3765bfSSheng             DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2068*df3765bfSSheng                           : nullptr;
2069*df3765bfSSheng         if (String && String->getValue() != "")
2070*df3765bfSSheng           Decoder = std::string(String->getValue());
2071*df3765bfSSheng 
2072*df3765bfSSheng         if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo &&
2073*df3765bfSSheng             CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
2074*df3765bfSSheng           Init *Arg = CGI.Operands[SO.first].MIOperandInfo->getArg(SO.second);
2075*df3765bfSSheng           if (DefInit *DI = cast<DefInit>(Arg))
2076*df3765bfSSheng             TypeRecord = DI->getDef();
2077*df3765bfSSheng         }
2078*df3765bfSSheng 
2079*df3765bfSSheng         bool isReg = false;
2080*df3765bfSSheng         if (TypeRecord->isSubClassOf("RegisterOperand"))
2081*df3765bfSSheng           TypeRecord = TypeRecord->getValueAsDef("RegClass");
2082*df3765bfSSheng         if (TypeRecord->isSubClassOf("RegisterClass")) {
2083*df3765bfSSheng           Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
2084*df3765bfSSheng           isReg = true;
2085*df3765bfSSheng         } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
2086*df3765bfSSheng           Decoder = "DecodePointerLikeRegClass" +
2087*df3765bfSSheng                     utostr(TypeRecord->getValueAsInt("RegClassKind"));
2088*df3765bfSSheng           isReg = true;
2089*df3765bfSSheng         }
2090*df3765bfSSheng 
2091*df3765bfSSheng         DecoderString = TypeRecord->getValue("DecoderMethod");
2092*df3765bfSSheng         String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2093*df3765bfSSheng                                : nullptr;
2094*df3765bfSSheng         if (!isReg && String && String->getValue() != "")
2095*df3765bfSSheng           Decoder = std::string(String->getValue());
2096*df3765bfSSheng 
2097*df3765bfSSheng         RecordVal *HasCompleteDecoderVal =
2098*df3765bfSSheng             TypeRecord->getValue("hasCompleteDecoder");
2099*df3765bfSSheng         BitInit *HasCompleteDecoderBit =
2100*df3765bfSSheng             HasCompleteDecoderVal
2101*df3765bfSSheng                 ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
2102*df3765bfSSheng                 : nullptr;
2103*df3765bfSSheng         bool HasCompleteDecoder =
2104*df3765bfSSheng             HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
2105*df3765bfSSheng 
2106*df3765bfSSheng         OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2107*df3765bfSSheng         OpInfo.addField(bitStart, bitWidth, 0);
2108*df3765bfSSheng 
2109*df3765bfSSheng         NumberedInsnOperands[Name].push_back(OpInfo);
2110*df3765bfSSheng 
2111*df3765bfSSheng         // FIXME: For complex operands with custom decoders we can't handle tied
2112*df3765bfSSheng         // sub-operands automatically. Skip those here and assume that this is
2113*df3765bfSSheng         // fixed up elsewhere.
2114*df3765bfSSheng         if (CGI.Operands[SO.first].MIOperandInfo &&
2115*df3765bfSSheng             CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String &&
2116*df3765bfSSheng             String->getValue() != "")
2117*df3765bfSSheng           NumberedInsnOperandsNoTie.insert(Name);
2118*df3765bfSSheng       }
2119*df3765bfSSheng     }
2120*df3765bfSSheng 
2121*df3765bfSSheng     // For each operand, see if we can figure out where it is encoded.
2122*df3765bfSSheng     for (const auto &Op : InOutOperands) {
2123*df3765bfSSheng       if (!NumberedInsnOperands[std::string(Op.second)].empty()) {
2124*df3765bfSSheng         llvm::append_range(InsnOperands,
2125*df3765bfSSheng                            NumberedInsnOperands[std::string(Op.second)]);
2126*df3765bfSSheng         continue;
2127*df3765bfSSheng       }
2128*df3765bfSSheng       if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) {
2129*df3765bfSSheng         if (!NumberedInsnOperandsNoTie.count(
2130*df3765bfSSheng                 TiedNames[std::string(Op.second)])) {
2131*df3765bfSSheng           // Figure out to which (sub)operand we're tied.
2132*df3765bfSSheng           unsigned i =
2133*df3765bfSSheng               CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]);
2134*df3765bfSSheng           int tiedTo = CGI.Operands[i].getTiedRegister();
2135*df3765bfSSheng           if (tiedTo == -1) {
2136*df3765bfSSheng             i = CGI.Operands.getOperandNamed(Op.second);
2137*df3765bfSSheng             tiedTo = CGI.Operands[i].getTiedRegister();
2138*df3765bfSSheng           }
2139*df3765bfSSheng 
2140*df3765bfSSheng           if (tiedTo != -1) {
2141*df3765bfSSheng             std::pair<unsigned, unsigned> SO =
2142*df3765bfSSheng                 CGI.Operands.getSubOperandNumber(tiedTo);
2143*df3765bfSSheng 
2144*df3765bfSSheng             InsnOperands.push_back(
2145*df3765bfSSheng                 NumberedInsnOperands[TiedNames[std::string(Op.second)]]
2146*df3765bfSSheng                                     [SO.second]);
2147*df3765bfSSheng           }
2148*df3765bfSSheng         }
2149*df3765bfSSheng         continue;
2150*df3765bfSSheng       }
2151*df3765bfSSheng 
2152*df3765bfSSheng       // At this point, we can locate the decoder field, but we need to know how
2153*df3765bfSSheng       // to interpret it.  As a first step, require the target to provide
2154*df3765bfSSheng       // callbacks for decoding register classes.
2155*df3765bfSSheng 
2156*df3765bfSSheng       OperandInfo OpInfo = getOpInfo(cast<DefInit>(Op.first)->getDef());
2157*df3765bfSSheng 
2158*df3765bfSSheng       // Some bits of the operand may be required to be 1 depending on the
2159*df3765bfSSheng       // instruction's encoding. Collect those bits.
2160*df3765bfSSheng       if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second))
2161*df3765bfSSheng         if (const BitsInit *OpBits =
2162*df3765bfSSheng                 dyn_cast<BitsInit>(EncodedValue->getValue()))
2163*df3765bfSSheng           for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
2164*df3765bfSSheng             if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
2165*df3765bfSSheng               if (OpBit->getValue())
2166*df3765bfSSheng                 OpInfo.InitValue |= 1ULL << I;
2167*df3765bfSSheng 
2168*df3765bfSSheng       unsigned Base = ~0U;
2169*df3765bfSSheng       unsigned Width = 0;
2170*df3765bfSSheng       unsigned Offset = 0;
2171*df3765bfSSheng 
2172*df3765bfSSheng       for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
2173*df3765bfSSheng         VarInit *Var = nullptr;
2174*df3765bfSSheng         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2175*df3765bfSSheng         if (BI)
2176*df3765bfSSheng           Var = dyn_cast<VarInit>(BI->getBitVar());
2177*df3765bfSSheng         else
2178*df3765bfSSheng           Var = dyn_cast<VarInit>(Bits.getBit(bi));
2179*df3765bfSSheng 
2180*df3765bfSSheng         if (!Var) {
2181*df3765bfSSheng           if (Base != ~0U) {
2182*df3765bfSSheng             OpInfo.addField(Base, Width, Offset);
2183*df3765bfSSheng             Base = ~0U;
2184*df3765bfSSheng             Width = 0;
2185*df3765bfSSheng             Offset = 0;
2186*df3765bfSSheng           }
2187*df3765bfSSheng           continue;
2188*df3765bfSSheng         }
2189*df3765bfSSheng 
2190*df3765bfSSheng         if ((Var->getName() != Op.second &&
2191*df3765bfSSheng              Var->getName() != TiedNames[std::string(Op.second)])) {
2192*df3765bfSSheng           if (Base != ~0U) {
2193*df3765bfSSheng             OpInfo.addField(Base, Width, Offset);
2194*df3765bfSSheng             Base = ~0U;
2195*df3765bfSSheng             Width = 0;
2196*df3765bfSSheng             Offset = 0;
2197*df3765bfSSheng           }
2198*df3765bfSSheng           continue;
2199*df3765bfSSheng         }
2200*df3765bfSSheng 
2201*df3765bfSSheng         if (Base == ~0U) {
2202*df3765bfSSheng           Base = bi;
2203*df3765bfSSheng           Width = 1;
2204*df3765bfSSheng           Offset = BI ? BI->getBitNum() : 0;
2205*df3765bfSSheng         } else if (BI && BI->getBitNum() != Offset + Width) {
2206*df3765bfSSheng           OpInfo.addField(Base, Width, Offset);
2207*df3765bfSSheng           Base = bi;
2208*df3765bfSSheng           Width = 1;
2209*df3765bfSSheng           Offset = BI->getBitNum();
2210*df3765bfSSheng         } else {
2211*df3765bfSSheng           ++Width;
2212*df3765bfSSheng         }
2213*df3765bfSSheng       }
2214*df3765bfSSheng 
2215*df3765bfSSheng       if (Base != ~0U)
2216*df3765bfSSheng         OpInfo.addField(Base, Width, Offset);
2217*df3765bfSSheng 
2218*df3765bfSSheng       if (OpInfo.numFields() > 0)
2219*df3765bfSSheng         InsnOperands.push_back(OpInfo);
2220*df3765bfSSheng     }
2221*df3765bfSSheng   }
2222*df3765bfSSheng 
2223*df3765bfSSheng   Operands[Opc] = InsnOperands;
2224*df3765bfSSheng 
2225*df3765bfSSheng #if 0
2226*df3765bfSSheng   LLVM_DEBUG({
2227*df3765bfSSheng       // Dumps the instruction encoding bits.
2228*df3765bfSSheng       dumpBits(errs(), Bits);
2229*df3765bfSSheng 
2230*df3765bfSSheng       errs() << '\n';
2231*df3765bfSSheng 
2232*df3765bfSSheng       // Dumps the list of operand info.
2233*df3765bfSSheng       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2234*df3765bfSSheng         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2235*df3765bfSSheng         const std::string &OperandName = Info.Name;
2236*df3765bfSSheng         const Record &OperandDef = *Info.Rec;
2237*df3765bfSSheng 
2238*df3765bfSSheng         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2239*df3765bfSSheng       }
2240*df3765bfSSheng     });
2241*df3765bfSSheng #endif
2242*df3765bfSSheng 
2243*df3765bfSSheng   return Bits.getNumBits();
2244*df3765bfSSheng }
2245*df3765bfSSheng 
2246*df3765bfSSheng // emitFieldFromInstruction - Emit the templated helper function
2247*df3765bfSSheng // fieldFromInstruction().
2248*df3765bfSSheng // On Windows we make sure that this function is not inlined when
2249*df3765bfSSheng // using the VS compiler. It has a bug which causes the function
2250*df3765bfSSheng // to be optimized out in some circustances. See llvm.org/pr38292
2251*df3765bfSSheng static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2252*df3765bfSSheng   OS << "// Helper functions for extracting fields from encoded instructions.\n"
2253*df3765bfSSheng      << "// InsnType must either be integral or an APInt-like object that "
2254*df3765bfSSheng         "must:\n"
2255*df3765bfSSheng      << "// * be default-constructible and copy-constructible\n"
2256*df3765bfSSheng      << "// * be constructible from a uint64_t\n"
2257*df3765bfSSheng      << "// * be constructible from an APInt (this can be private)\n"
2258*df3765bfSSheng      << "// * Support insertBits(bits, startBit, numBits)\n"
2259*df3765bfSSheng      << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
2260*df3765bfSSheng      << "// * be convertible to bool\n"
2261*df3765bfSSheng      << "// * Support the ~, &, ==, and != operators with other objects of "
2262*df3765bfSSheng         "the same type\n"
2263*df3765bfSSheng      << "// * Support put (<<) to raw_ostream&\n"
2264*df3765bfSSheng      << "template <typename InsnType>\n"
2265*df3765bfSSheng      << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2266*df3765bfSSheng      << "__declspec(noinline)\n"
2267*df3765bfSSheng      << "#endif\n"
2268*df3765bfSSheng      << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
2269*df3765bfSSheng      << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2270*df3765bfSSheng      << "                     unsigned numBits) {\n"
2271*df3765bfSSheng      << "  assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2272*df3765bfSSheng         "extractions!\");\n"
2273*df3765bfSSheng      << "  assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2274*df3765bfSSheng      << "         \"Instruction field out of bounds!\");\n"
2275*df3765bfSSheng      << "  InsnType fieldMask;\n"
2276*df3765bfSSheng      << "  if (numBits == sizeof(InsnType) * 8)\n"
2277*df3765bfSSheng      << "    fieldMask = (InsnType)(-1LL);\n"
2278*df3765bfSSheng      << "  else\n"
2279*df3765bfSSheng      << "    fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2280*df3765bfSSheng      << "  return (insn & fieldMask) >> startBit;\n"
2281*df3765bfSSheng      << "}\n"
2282*df3765bfSSheng      << "\n"
2283*df3765bfSSheng      << "template <typename InsnType>\n"
2284*df3765bfSSheng      << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
2285*df3765bfSSheng         "uint64_t>\n"
2286*df3765bfSSheng      << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2287*df3765bfSSheng      << "                     unsigned numBits) {\n"
2288*df3765bfSSheng      << "  return insn.extractBitsAsZExtValue(numBits, startBit);\n"
2289*df3765bfSSheng      << "}\n\n";
2290*df3765bfSSheng }
2291*df3765bfSSheng 
2292*df3765bfSSheng // emitInsertBits - Emit the templated helper function insertBits().
2293*df3765bfSSheng static void emitInsertBits(formatted_raw_ostream &OS) {
2294*df3765bfSSheng   OS << "// Helper function for inserting bits extracted from an encoded "
2295*df3765bfSSheng         "instruction into\n"
2296*df3765bfSSheng      << "// a field.\n"
2297*df3765bfSSheng      << "template <typename InsnType>\n"
2298*df3765bfSSheng      << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
2299*df3765bfSSheng      << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
2300*df3765bfSSheng         "unsigned numBits) {\n"
2301*df3765bfSSheng      << "  assert(startBit + numBits <= sizeof field * 8);\n"
2302*df3765bfSSheng      << "  field |= (InsnType)bits << startBit;\n"
2303*df3765bfSSheng      << "}\n"
2304*df3765bfSSheng      << "\n"
2305*df3765bfSSheng      << "template <typename InsnType>\n"
2306*df3765bfSSheng      << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
2307*df3765bfSSheng      << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
2308*df3765bfSSheng         "unsigned numBits) {\n"
2309*df3765bfSSheng      << "  field.insertBits(bits, startBit, numBits);\n"
2310*df3765bfSSheng      << "}\n\n";
2311*df3765bfSSheng }
2312*df3765bfSSheng 
2313*df3765bfSSheng // emitDecodeInstruction - Emit the templated helper function
2314*df3765bfSSheng // decodeInstruction().
2315*df3765bfSSheng static void emitDecodeInstruction(formatted_raw_ostream &OS,
2316*df3765bfSSheng                                   bool IsVarLenInst) {
2317*df3765bfSSheng   OS << "template <typename InsnType>\n"
2318*df3765bfSSheng      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2319*df3765bfSSheng         "MCInst &MI,\n"
2320*df3765bfSSheng      << "                                      InsnType insn, uint64_t "
2321*df3765bfSSheng         "Address,\n"
2322*df3765bfSSheng      << "                                      const MCDisassembler *DisAsm,\n"
2323*df3765bfSSheng      << "                                      const MCSubtargetInfo &STI";
2324*df3765bfSSheng   if (IsVarLenInst) {
2325*df3765bfSSheng     OS << ",\n"
2326*df3765bfSSheng        << "                                      llvm::function_ref<void(APInt "
2327*df3765bfSSheng           "&,"
2328*df3765bfSSheng        << " uint64_t)> makeUp";
2329*df3765bfSSheng   }
2330*df3765bfSSheng   OS << ") {\n"
2331*df3765bfSSheng      << "  const FeatureBitset &Bits = STI.getFeatureBits();\n"
2332*df3765bfSSheng      << "\n"
2333*df3765bfSSheng      << "  const uint8_t *Ptr = DecodeTable;\n"
2334*df3765bfSSheng      << "  uint64_t CurFieldValue = 0;\n"
2335*df3765bfSSheng      << "  DecodeStatus S = MCDisassembler::Success;\n"
2336*df3765bfSSheng      << "  while (true) {\n"
2337*df3765bfSSheng      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
2338*df3765bfSSheng      << "    switch (*Ptr) {\n"
2339*df3765bfSSheng      << "    default:\n"
2340*df3765bfSSheng      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2341*df3765bfSSheng      << "      return MCDisassembler::Fail;\n"
2342*df3765bfSSheng      << "    case MCD::OPC_ExtractField: {\n"
2343*df3765bfSSheng      << "      unsigned Start = *++Ptr;\n"
2344*df3765bfSSheng      << "      unsigned Len = *++Ptr;\n"
2345*df3765bfSSheng      << "      ++Ptr;\n";
2346*df3765bfSSheng   if (IsVarLenInst)
2347*df3765bfSSheng     OS << "      makeUp(insn, Start + Len);\n";
2348*df3765bfSSheng   OS << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2349*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2350*df3765bfSSheng         "\", \"\n"
2351*df3765bfSSheng      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2352*df3765bfSSheng      << "      break;\n"
2353*df3765bfSSheng      << "    }\n"
2354*df3765bfSSheng      << "    case MCD::OPC_FilterValue: {\n"
2355*df3765bfSSheng      << "      // Decode the field value.\n"
2356*df3765bfSSheng      << "      unsigned Len;\n"
2357*df3765bfSSheng      << "      uint64_t Val = decodeULEB128(++Ptr, &Len);\n"
2358*df3765bfSSheng      << "      Ptr += Len;\n"
2359*df3765bfSSheng      << "      // NumToSkip is a plain 24-bit integer.\n"
2360*df3765bfSSheng      << "      unsigned NumToSkip = *Ptr++;\n"
2361*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 8;\n"
2362*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 16;\n"
2363*df3765bfSSheng      << "\n"
2364*df3765bfSSheng      << "      // Perform the filter operation.\n"
2365*df3765bfSSheng      << "      if (Val != CurFieldValue)\n"
2366*df3765bfSSheng      << "        Ptr += NumToSkip;\n"
2367*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2368*df3765bfSSheng         "\", \" << NumToSkip\n"
2369*df3765bfSSheng      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2370*df3765bfSSheng         ": \"PASS:\")\n"
2371*df3765bfSSheng      << "                   << \" continuing at \" << (Ptr - DecodeTable) << "
2372*df3765bfSSheng         "\"\\n\");\n"
2373*df3765bfSSheng      << "\n"
2374*df3765bfSSheng      << "      break;\n"
2375*df3765bfSSheng      << "    }\n"
2376*df3765bfSSheng      << "    case MCD::OPC_CheckField: {\n"
2377*df3765bfSSheng      << "      unsigned Start = *++Ptr;\n"
2378*df3765bfSSheng      << "      unsigned Len = *++Ptr;\n";
2379*df3765bfSSheng   if (IsVarLenInst)
2380*df3765bfSSheng     OS << "      makeUp(insn, Start + Len);\n";
2381*df3765bfSSheng   OS << "      uint64_t FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2382*df3765bfSSheng      << "      // Decode the field value.\n"
2383*df3765bfSSheng      << "      unsigned PtrLen = 0;\n"
2384*df3765bfSSheng      << "      uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen);\n"
2385*df3765bfSSheng      << "      Ptr += PtrLen;\n"
2386*df3765bfSSheng      << "      // NumToSkip is a plain 24-bit integer.\n"
2387*df3765bfSSheng      << "      unsigned NumToSkip = *Ptr++;\n"
2388*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 8;\n"
2389*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 16;\n"
2390*df3765bfSSheng      << "\n"
2391*df3765bfSSheng      << "      // If the actual and expected values don't match, skip.\n"
2392*df3765bfSSheng      << "      if (ExpectedValue != FieldValue)\n"
2393*df3765bfSSheng      << "        Ptr += NumToSkip;\n"
2394*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2395*df3765bfSSheng         "\", \"\n"
2396*df3765bfSSheng      << "                   << Len << \", \" << ExpectedValue << \", \" << "
2397*df3765bfSSheng         "NumToSkip\n"
2398*df3765bfSSheng      << "                   << \"): FieldValue = \" << FieldValue << \", "
2399*df3765bfSSheng         "ExpectedValue = \"\n"
2400*df3765bfSSheng      << "                   << ExpectedValue << \": \"\n"
2401*df3765bfSSheng      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2402*df3765bfSSheng         "\"FAIL\\n\"));\n"
2403*df3765bfSSheng      << "      break;\n"
2404*df3765bfSSheng      << "    }\n"
2405*df3765bfSSheng      << "    case MCD::OPC_CheckPredicate: {\n"
2406*df3765bfSSheng      << "      unsigned Len;\n"
2407*df3765bfSSheng      << "      // Decode the Predicate Index value.\n"
2408*df3765bfSSheng      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2409*df3765bfSSheng      << "      Ptr += Len;\n"
2410*df3765bfSSheng      << "      // NumToSkip is a plain 24-bit integer.\n"
2411*df3765bfSSheng      << "      unsigned NumToSkip = *Ptr++;\n"
2412*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 8;\n"
2413*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 16;\n"
2414*df3765bfSSheng      << "      // Check the predicate.\n"
2415*df3765bfSSheng      << "      bool Pred;\n"
2416*df3765bfSSheng      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2417*df3765bfSSheng      << "        Ptr += NumToSkip;\n"
2418*df3765bfSSheng      << "      (void)Pred;\n"
2419*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2420*df3765bfSSheng         "<< \"): \"\n"
2421*df3765bfSSheng      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2422*df3765bfSSheng      << "\n"
2423*df3765bfSSheng      << "      break;\n"
2424*df3765bfSSheng      << "    }\n"
2425*df3765bfSSheng      << "    case MCD::OPC_Decode: {\n"
2426*df3765bfSSheng      << "      unsigned Len;\n"
2427*df3765bfSSheng      << "      // Decode the Opcode value.\n"
2428*df3765bfSSheng      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2429*df3765bfSSheng      << "      Ptr += Len;\n"
2430*df3765bfSSheng      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2431*df3765bfSSheng      << "      Ptr += Len;\n"
2432*df3765bfSSheng      << "\n"
2433*df3765bfSSheng      << "      MI.clear();\n"
2434*df3765bfSSheng      << "      MI.setOpcode(Opc);\n"
2435*df3765bfSSheng      << "      bool DecodeComplete;\n";
2436*df3765bfSSheng   if (IsVarLenInst) {
2437*df3765bfSSheng     OS << "      Len = InstrLenTable[Opc];\n"
2438*df3765bfSSheng        << "      makeUp(insn, Len);\n";
2439*df3765bfSSheng   }
2440*df3765bfSSheng   OS << "      S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2441*df3765bfSSheng         "DecodeComplete);\n"
2442*df3765bfSSheng      << "      assert(DecodeComplete);\n"
2443*df3765bfSSheng      << "\n"
2444*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2445*df3765bfSSheng      << "                   << \", using decoder \" << DecodeIdx << \": \"\n"
2446*df3765bfSSheng      << "                   << (S != MCDisassembler::Fail ? \"PASS\" : "
2447*df3765bfSSheng         "\"FAIL\") << \"\\n\");\n"
2448*df3765bfSSheng      << "      return S;\n"
2449*df3765bfSSheng      << "    }\n"
2450*df3765bfSSheng      << "    case MCD::OPC_TryDecode: {\n"
2451*df3765bfSSheng      << "      unsigned Len;\n"
2452*df3765bfSSheng      << "      // Decode the Opcode value.\n"
2453*df3765bfSSheng      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2454*df3765bfSSheng      << "      Ptr += Len;\n"
2455*df3765bfSSheng      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2456*df3765bfSSheng      << "      Ptr += Len;\n"
2457*df3765bfSSheng      << "      // NumToSkip is a plain 24-bit integer.\n"
2458*df3765bfSSheng      << "      unsigned NumToSkip = *Ptr++;\n"
2459*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 8;\n"
2460*df3765bfSSheng      << "      NumToSkip |= (*Ptr++) << 16;\n"
2461*df3765bfSSheng      << "\n"
2462*df3765bfSSheng      << "      // Perform the decode operation.\n"
2463*df3765bfSSheng      << "      MCInst TmpMI;\n"
2464*df3765bfSSheng      << "      TmpMI.setOpcode(Opc);\n"
2465*df3765bfSSheng      << "      bool DecodeComplete;\n"
2466*df3765bfSSheng      << "      S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2467*df3765bfSSheng         "DecodeComplete);\n"
2468*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2469*df3765bfSSheng         "Opc\n"
2470*df3765bfSSheng      << "                   << \", using decoder \" << DecodeIdx << \": \");\n"
2471*df3765bfSSheng      << "\n"
2472*df3765bfSSheng      << "      if (DecodeComplete) {\n"
2473*df3765bfSSheng      << "        // Decoding complete.\n"
2474*df3765bfSSheng      << "        LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2475*df3765bfSSheng         "\"FAIL\") << \"\\n\");\n"
2476*df3765bfSSheng      << "        MI = TmpMI;\n"
2477*df3765bfSSheng      << "        return S;\n"
2478*df3765bfSSheng      << "      } else {\n"
2479*df3765bfSSheng      << "        assert(S == MCDisassembler::Fail);\n"
2480*df3765bfSSheng      << "        // If the decoding was incomplete, skip.\n"
2481*df3765bfSSheng      << "        Ptr += NumToSkip;\n"
2482*df3765bfSSheng      << "        LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2483*df3765bfSSheng         "DecodeTable) << \"\\n\");\n"
2484*df3765bfSSheng      << "        // Reset decode status. This also drops a SoftFail status "
2485*df3765bfSSheng         "that could be\n"
2486*df3765bfSSheng      << "        // set before the decode attempt.\n"
2487*df3765bfSSheng      << "        S = MCDisassembler::Success;\n"
2488*df3765bfSSheng      << "      }\n"
2489*df3765bfSSheng      << "      break;\n"
2490*df3765bfSSheng      << "    }\n"
2491*df3765bfSSheng      << "    case MCD::OPC_SoftFail: {\n"
2492*df3765bfSSheng      << "      // Decode the mask values.\n"
2493*df3765bfSSheng      << "      unsigned Len;\n"
2494*df3765bfSSheng      << "      uint64_t PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2495*df3765bfSSheng      << "      Ptr += Len;\n"
2496*df3765bfSSheng      << "      uint64_t NegativeMask = decodeULEB128(Ptr, &Len);\n"
2497*df3765bfSSheng      << "      Ptr += Len;\n"
2498*df3765bfSSheng      << "      bool Fail = (insn & PositiveMask) != 0 || (~insn & "
2499*df3765bfSSheng         "NegativeMask) != 0;\n"
2500*df3765bfSSheng      << "      if (Fail)\n"
2501*df3765bfSSheng      << "        S = MCDisassembler::SoftFail;\n"
2502*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2503*df3765bfSSheng         "\"FAIL\\n\" : \"PASS\\n\"));\n"
2504*df3765bfSSheng      << "      break;\n"
2505*df3765bfSSheng      << "    }\n"
2506*df3765bfSSheng      << "    case MCD::OPC_Fail: {\n"
2507*df3765bfSSheng      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2508*df3765bfSSheng      << "      return MCDisassembler::Fail;\n"
2509*df3765bfSSheng      << "    }\n"
2510*df3765bfSSheng      << "    }\n"
2511*df3765bfSSheng      << "  }\n"
2512*df3765bfSSheng      << "  llvm_unreachable(\"bogosity detected in disassembler state "
2513*df3765bfSSheng         "machine!\");\n"
2514*df3765bfSSheng      << "}\n\n";
2515*df3765bfSSheng }
2516*df3765bfSSheng 
2517*df3765bfSSheng // Emits disassembler code for instruction decoding.
2518*df3765bfSSheng void DecoderEmitter::run(raw_ostream &o) {
2519*df3765bfSSheng   formatted_raw_ostream OS(o);
2520*df3765bfSSheng   OS << "#include \"llvm/MC/MCInst.h\"\n";
2521*df3765bfSSheng   OS << "#include \"llvm/MC/MCSubtargetInfo.h\"\n";
2522*df3765bfSSheng   OS << "#include \"llvm/MC/SubtargetFeature.h\"\n";
2523*df3765bfSSheng   OS << "#include \"llvm/Support/DataTypes.h\"\n";
2524*df3765bfSSheng   OS << "#include \"llvm/Support/Debug.h\"\n";
2525*df3765bfSSheng   OS << "#include \"llvm/Support/LEB128.h\"\n";
2526*df3765bfSSheng   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2527*df3765bfSSheng   OS << "#include <assert.h>\n";
2528*df3765bfSSheng   OS << '\n';
2529*df3765bfSSheng   OS << "namespace llvm {\n\n";
2530*df3765bfSSheng 
2531*df3765bfSSheng   emitFieldFromInstruction(OS);
2532*df3765bfSSheng   emitInsertBits(OS);
2533*df3765bfSSheng 
2534*df3765bfSSheng   Target.reverseBitsForLittleEndianEncoding();
2535*df3765bfSSheng 
2536*df3765bfSSheng   // Parameterize the decoders based on namespace and instruction width.
2537*df3765bfSSheng   std::set<StringRef> HwModeNames;
2538*df3765bfSSheng   const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2539*df3765bfSSheng   NumberedEncodings.reserve(NumberedInstructions.size());
2540*df3765bfSSheng   DenseMap<Record *, unsigned> IndexOfInstruction;
2541*df3765bfSSheng   // First, collect all HwModes referenced by the target.
2542*df3765bfSSheng   for (const auto &NumberedInstruction : NumberedInstructions) {
2543*df3765bfSSheng     IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2544*df3765bfSSheng 
2545*df3765bfSSheng     if (const RecordVal *RV =
2546*df3765bfSSheng             NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2547*df3765bfSSheng       if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2548*df3765bfSSheng         const CodeGenHwModes &HWM = Target.getHwModes();
2549*df3765bfSSheng         EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2550*df3765bfSSheng         for (auto &KV : EBM)
2551*df3765bfSSheng           HwModeNames.insert(HWM.getMode(KV.first).Name);
2552*df3765bfSSheng       }
2553*df3765bfSSheng     }
2554*df3765bfSSheng   }
2555*df3765bfSSheng 
2556*df3765bfSSheng   // If HwModeNames is empty, add the empty string so we always have one HwMode.
2557*df3765bfSSheng   if (HwModeNames.empty())
2558*df3765bfSSheng     HwModeNames.insert("");
2559*df3765bfSSheng 
2560*df3765bfSSheng   for (const auto &NumberedInstruction : NumberedInstructions) {
2561*df3765bfSSheng     IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2562*df3765bfSSheng 
2563*df3765bfSSheng     if (const RecordVal *RV =
2564*df3765bfSSheng             NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2565*df3765bfSSheng       if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2566*df3765bfSSheng         const CodeGenHwModes &HWM = Target.getHwModes();
2567*df3765bfSSheng         EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2568*df3765bfSSheng         for (auto &KV : EBM) {
2569*df3765bfSSheng           NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
2570*df3765bfSSheng                                          HWM.getMode(KV.first).Name);
2571*df3765bfSSheng           HwModeNames.insert(HWM.getMode(KV.first).Name);
2572*df3765bfSSheng         }
2573*df3765bfSSheng         continue;
2574*df3765bfSSheng       }
2575*df3765bfSSheng     }
2576*df3765bfSSheng     // This instruction is encoded the same on all HwModes. Emit it for all
2577*df3765bfSSheng     // HwModes.
2578*df3765bfSSheng     for (StringRef HwModeName : HwModeNames)
2579*df3765bfSSheng       NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
2580*df3765bfSSheng                                      NumberedInstruction, HwModeName);
2581*df3765bfSSheng   }
2582*df3765bfSSheng   for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
2583*df3765bfSSheng     NumberedEncodings.emplace_back(
2584*df3765bfSSheng         NumberedAlias,
2585*df3765bfSSheng         &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
2586*df3765bfSSheng 
2587*df3765bfSSheng   std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
2588*df3765bfSSheng       OpcMap;
2589*df3765bfSSheng   std::map<unsigned, std::vector<OperandInfo>> Operands;
2590*df3765bfSSheng   std::vector<unsigned> InstrLen;
2591*df3765bfSSheng 
2592*df3765bfSSheng   bool IsVarLenInst =
2593*df3765bfSSheng       any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) {
2594*df3765bfSSheng         RecordVal *RV = CGI->TheDef->getValue("Inst");
2595*df3765bfSSheng         return RV && isa<DagInit>(RV->getValue());
2596*df3765bfSSheng       });
2597*df3765bfSSheng   unsigned MaxInstLen = 0;
2598*df3765bfSSheng 
2599*df3765bfSSheng   for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2600*df3765bfSSheng     const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
2601*df3765bfSSheng     const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2602*df3765bfSSheng     const Record *Def = Inst->TheDef;
2603*df3765bfSSheng     unsigned Size = EncodingDef->getValueAsInt("Size");
2604*df3765bfSSheng     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2605*df3765bfSSheng         Def->getValueAsBit("isPseudo") ||
2606*df3765bfSSheng         Def->getValueAsBit("isAsmParserOnly") ||
2607*df3765bfSSheng         Def->getValueAsBit("isCodeGenOnly")) {
2608*df3765bfSSheng       NumEncodingsLackingDisasm++;
2609*df3765bfSSheng       continue;
2610*df3765bfSSheng     }
2611*df3765bfSSheng 
2612*df3765bfSSheng     if (i < NumberedInstructions.size())
2613*df3765bfSSheng       NumInstructions++;
2614*df3765bfSSheng     NumEncodings++;
2615*df3765bfSSheng 
2616*df3765bfSSheng     if (!Size && !IsVarLenInst)
2617*df3765bfSSheng       continue;
2618*df3765bfSSheng 
2619*df3765bfSSheng     if (IsVarLenInst)
2620*df3765bfSSheng       InstrLen.resize(NumberedInstructions.size(), 0);
2621*df3765bfSSheng 
2622*df3765bfSSheng     if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, i,
2623*df3765bfSSheng                                            Operands, IsVarLenInst)) {
2624*df3765bfSSheng       if (IsVarLenInst) {
2625*df3765bfSSheng         MaxInstLen = std::max(MaxInstLen, Len);
2626*df3765bfSSheng         InstrLen[i] = Len;
2627*df3765bfSSheng       }
2628*df3765bfSSheng       std::string DecoderNamespace =
2629*df3765bfSSheng           std::string(EncodingDef->getValueAsString("DecoderNamespace"));
2630*df3765bfSSheng       if (!NumberedEncodings[i].HwModeName.empty())
2631*df3765bfSSheng         DecoderNamespace +=
2632*df3765bfSSheng             std::string("_") + NumberedEncodings[i].HwModeName.str();
2633*df3765bfSSheng       OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
2634*df3765bfSSheng           i, IndexOfInstruction.find(Def)->second);
2635*df3765bfSSheng     } else {
2636*df3765bfSSheng       NumEncodingsOmitted++;
2637*df3765bfSSheng     }
2638*df3765bfSSheng   }
2639*df3765bfSSheng 
2640*df3765bfSSheng   DecoderTableInfo TableInfo;
2641*df3765bfSSheng   for (const auto &Opc : OpcMap) {
2642*df3765bfSSheng     // Emit the decoder for this namespace+width combination.
2643*df3765bfSSheng     ArrayRef<EncodingAndInst> NumberedEncodingsRef(
2644*df3765bfSSheng         NumberedEncodings.data(), NumberedEncodings.size());
2645*df3765bfSSheng     FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2646*df3765bfSSheng                      IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this);
2647*df3765bfSSheng 
2648*df3765bfSSheng     // The decode table is cleared for each top level decoder function. The
2649*df3765bfSSheng     // predicates and decoders themselves, however, are shared across all
2650*df3765bfSSheng     // decoders to give more opportunities for uniqueing.
2651*df3765bfSSheng     TableInfo.Table.clear();
2652*df3765bfSSheng     TableInfo.FixupStack.clear();
2653*df3765bfSSheng     TableInfo.Table.reserve(16384);
2654*df3765bfSSheng     TableInfo.FixupStack.emplace_back();
2655*df3765bfSSheng     FC.emitTableEntries(TableInfo);
2656*df3765bfSSheng     // Any NumToSkip fixups in the top level scope can resolve to the
2657*df3765bfSSheng     // OPC_Fail at the end of the table.
2658*df3765bfSSheng     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2659*df3765bfSSheng     // Resolve any NumToSkip fixups in the current scope.
2660*df3765bfSSheng     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2661*df3765bfSSheng                        TableInfo.Table.size());
2662*df3765bfSSheng     TableInfo.FixupStack.clear();
2663*df3765bfSSheng 
2664*df3765bfSSheng     TableInfo.Table.push_back(MCD::OPC_Fail);
2665*df3765bfSSheng 
2666*df3765bfSSheng     // Print the table to the output stream.
2667*df3765bfSSheng     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2668*df3765bfSSheng     OS.flush();
2669*df3765bfSSheng   }
2670*df3765bfSSheng 
2671*df3765bfSSheng   // For variable instruction, we emit a instruction length table
2672*df3765bfSSheng   // to let the decoder know how long the instructions are.
2673*df3765bfSSheng   // You can see example usage in M68k's disassembler.
2674*df3765bfSSheng   if (IsVarLenInst)
2675*df3765bfSSheng     emitInstrLenTable(OS, InstrLen);
2676*df3765bfSSheng   // Emit the predicate function.
2677*df3765bfSSheng   emitPredicateFunction(OS, TableInfo.Predicates, 0);
2678*df3765bfSSheng 
2679*df3765bfSSheng   // Emit the decoder function.
2680*df3765bfSSheng   emitDecoderFunction(OS, TableInfo.Decoders, 0);
2681*df3765bfSSheng 
2682*df3765bfSSheng   // Emit the main entry point for the decoder, decodeInstruction().
2683*df3765bfSSheng   emitDecodeInstruction(OS, IsVarLenInst);
2684*df3765bfSSheng 
2685*df3765bfSSheng   OS << "\n} // end namespace llvm\n";
2686*df3765bfSSheng }
2687*df3765bfSSheng 
2688*df3765bfSSheng namespace llvm {
2689*df3765bfSSheng 
2690*df3765bfSSheng void EmitDecoder(RecordKeeper &RK, raw_ostream &OS,
2691*df3765bfSSheng                  const std::string &PredicateNamespace,
2692*df3765bfSSheng                  const std::string &GPrefix, const std::string &GPostfix,
2693*df3765bfSSheng                  const std::string &ROK, const std::string &RFail,
2694*df3765bfSSheng                  const std::string &L) {
2695*df3765bfSSheng   DecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L)
2696*df3765bfSSheng       .run(OS);
2697*df3765bfSSheng }
2698*df3765bfSSheng 
2699*df3765bfSSheng } // end namespace llvm
2700