1 //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // It contains the tablegen backend that emits the decoder functions for
10 // targets with fixed/variable length instruction set.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "InfoByHwMode.h"
17 #include "VarLenCodeEmitterGen.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/CachedHashString.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/MC/MCDecoderOps.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/LEB128.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/TableGen/Error.h"
35 #include "llvm/TableGen/Record.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <map>
41 #include <memory>
42 #include <set>
43 #include <string>
44 #include <utility>
45 #include <vector>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "decoder-emitter"
50
51 namespace {
52
53 STATISTIC(NumEncodings, "Number of encodings considered");
54 STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
55 STATISTIC(NumInstructions, "Number of instructions considered");
56 STATISTIC(NumEncodingsSupported, "Number of encodings supported");
57 STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
58
59 struct EncodingField {
60 unsigned Base, Width, Offset;
EncodingField__anoncf345abb0111::EncodingField61 EncodingField(unsigned B, unsigned W, unsigned O)
62 : Base(B), Width(W), Offset(O) { }
63 };
64
65 struct OperandInfo {
66 std::vector<EncodingField> Fields;
67 std::string Decoder;
68 bool HasCompleteDecoder;
69 uint64_t InitValue;
70
OperandInfo__anoncf345abb0111::OperandInfo71 OperandInfo(std::string D, bool HCD)
72 : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}
73
addField__anoncf345abb0111::OperandInfo74 void addField(unsigned Base, unsigned Width, unsigned Offset) {
75 Fields.push_back(EncodingField(Base, Width, Offset));
76 }
77
numFields__anoncf345abb0111::OperandInfo78 unsigned numFields() const { return Fields.size(); }
79
80 typedef std::vector<EncodingField>::const_iterator const_iterator;
81
begin__anoncf345abb0111::OperandInfo82 const_iterator begin() const { return Fields.begin(); }
end__anoncf345abb0111::OperandInfo83 const_iterator end() const { return Fields.end(); }
84 };
85
86 typedef std::vector<uint8_t> DecoderTable;
87 typedef uint32_t DecoderFixup;
88 typedef std::vector<DecoderFixup> FixupList;
89 typedef std::vector<FixupList> FixupScopeList;
90 typedef SmallSetVector<CachedHashString, 16> PredicateSet;
91 typedef SmallSetVector<CachedHashString, 16> DecoderSet;
92 struct DecoderTableInfo {
93 DecoderTable Table;
94 FixupScopeList FixupStack;
95 PredicateSet Predicates;
96 DecoderSet Decoders;
97 };
98
99 struct EncodingAndInst {
100 const Record *EncodingDef;
101 const CodeGenInstruction *Inst;
102 StringRef HwModeName;
103
EncodingAndInst__anoncf345abb0111::EncodingAndInst104 EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
105 StringRef HwModeName = "")
106 : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
107 };
108
109 struct EncodingIDAndOpcode {
110 unsigned EncodingID;
111 unsigned Opcode;
112
EncodingIDAndOpcode__anoncf345abb0111::EncodingIDAndOpcode113 EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
EncodingIDAndOpcode__anoncf345abb0111::EncodingIDAndOpcode114 EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
115 : EncodingID(EncodingID), Opcode(Opcode) {}
116 };
117
operator <<(raw_ostream & OS,const EncodingAndInst & Value)118 raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
119 if (Value.EncodingDef != Value.Inst->TheDef)
120 OS << Value.EncodingDef->getName() << ":";
121 OS << Value.Inst->TheDef->getName();
122 return OS;
123 }
124
125 class DecoderEmitter {
126 RecordKeeper &RK;
127 std::vector<EncodingAndInst> NumberedEncodings;
128
129 public:
130 // Defaults preserved here for documentation, even though they aren't
131 // strictly necessary given the way that this is currently being called.
DecoderEmitter(RecordKeeper & R,std::string PredicateNamespace,std::string GPrefix="if (",std::string GPostfix=" == MCDisassembler::Fail)",std::string ROK="MCDisassembler::Success",std::string RFail="MCDisassembler::Fail",std::string L="")132 DecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
133 std::string GPrefix = "if (",
134 std::string GPostfix = " == MCDisassembler::Fail)",
135 std::string ROK = "MCDisassembler::Success",
136 std::string RFail = "MCDisassembler::Fail", std::string L = "")
137 : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
138 GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
139 ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
140 Locals(std::move(L)) {}
141
142 // Emit the decoder state machine table.
143 void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
144 unsigned Indentation, unsigned BitWidth,
145 StringRef Namespace) const;
146 void emitInstrLenTable(formatted_raw_ostream &OS,
147 std::vector<unsigned> &InstrLen) const;
148 void emitPredicateFunction(formatted_raw_ostream &OS,
149 PredicateSet &Predicates,
150 unsigned Indentation) const;
151 void emitDecoderFunction(formatted_raw_ostream &OS,
152 DecoderSet &Decoders,
153 unsigned Indentation) const;
154
155 // run - Output the code emitter
156 void run(raw_ostream &o);
157
158 private:
159 CodeGenTarget Target;
160
161 public:
162 std::string PredicateNamespace;
163 std::string GuardPrefix, GuardPostfix;
164 std::string ReturnOK, ReturnFail;
165 std::string Locals;
166 };
167
168 } // end anonymous namespace
169
170 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
171 // for a bit value.
172 //
173 // BIT_UNFILTERED is used as the init value for a filter position. It is used
174 // only for filter processings.
175 typedef enum {
176 BIT_TRUE, // '1'
177 BIT_FALSE, // '0'
178 BIT_UNSET, // '?'
179 BIT_UNFILTERED // unfiltered
180 } bit_value_t;
181
ValueSet(bit_value_t V)182 static bool ValueSet(bit_value_t V) {
183 return (V == BIT_TRUE || V == BIT_FALSE);
184 }
185
ValueNotSet(bit_value_t V)186 static bool ValueNotSet(bit_value_t V) {
187 return (V == BIT_UNSET);
188 }
189
Value(bit_value_t V)190 static int Value(bit_value_t V) {
191 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
192 }
193
bitFromBits(const BitsInit & bits,unsigned index)194 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
195 if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
196 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
197
198 // The bit is uninitialized.
199 return BIT_UNSET;
200 }
201
202 // Prints the bit value for each position.
dumpBits(raw_ostream & o,const BitsInit & bits)203 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
204 for (unsigned index = bits.getNumBits(); index > 0; --index) {
205 switch (bitFromBits(bits, index - 1)) {
206 case BIT_TRUE:
207 o << "1";
208 break;
209 case BIT_FALSE:
210 o << "0";
211 break;
212 case BIT_UNSET:
213 o << "_";
214 break;
215 default:
216 llvm_unreachable("unexpected return value from bitFromBits");
217 }
218 }
219 }
220
getBitsField(const Record & def,StringRef str)221 static BitsInit &getBitsField(const Record &def, StringRef str) {
222 const RecordVal *RV = def.getValue(str);
223 if (BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue()))
224 return *Bits;
225
226 // variable length instruction
227 VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV);
228 SmallVector<Init *, 16> Bits;
229
230 for (auto &SI : VLI) {
231 if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) {
232 for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) {
233 Bits.push_back(BI->getBit(Idx));
234 }
235 } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) {
236 Bits.push_back(const_cast<BitInit *>(BI));
237 } else {
238 for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx)
239 Bits.push_back(UnsetInit::get(def.getRecords()));
240 }
241 }
242
243 return *BitsInit::get(def.getRecords(), Bits);
244 }
245
246 // Representation of the instruction to work on.
247 typedef std::vector<bit_value_t> insn_t;
248
249 namespace {
250
251 static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;
252
253 class FilterChooser;
254
255 /// Filter - Filter works with FilterChooser to produce the decoding tree for
256 /// the ISA.
257 ///
258 /// It is useful to think of a Filter as governing the switch stmts of the
259 /// decoding tree in a certain level. Each case stmt delegates to an inferior
260 /// FilterChooser to decide what further decoding logic to employ, or in another
261 /// words, what other remaining bits to look at. The FilterChooser eventually
262 /// chooses a best Filter to do its job.
263 ///
264 /// This recursive scheme ends when the number of Opcodes assigned to the
265 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
266 /// the Filter/FilterChooser combo does not know how to distinguish among the
267 /// Opcodes assigned.
268 ///
269 /// An example of a conflict is
270 ///
271 /// Conflict:
272 /// 111101000.00........00010000....
273 /// 111101000.00........0001........
274 /// 1111010...00........0001........
275 /// 1111010...00....................
276 /// 1111010.........................
277 /// 1111............................
278 /// ................................
279 /// VST4q8a 111101000_00________00010000____
280 /// VST4q8b 111101000_00________00010000____
281 ///
282 /// The Debug output shows the path that the decoding tree follows to reach the
283 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
284 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
285 ///
286 /// The encoding info in the .td files does not specify this meta information,
287 /// which could have been used by the decoder to resolve the conflict. The
288 /// decoder could try to decode the even/odd register numbering and assign to
289 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
290 /// version and return the Opcode since the two have the same Asm format string.
291 class Filter {
292 protected:
293 const FilterChooser *Owner;// points to the FilterChooser who owns this filter
294 unsigned StartBit; // the starting bit position
295 unsigned NumBits; // number of bits to filter
296 bool Mixed; // a mixed region contains both set and unset bits
297
298 // Map of well-known segment value to the set of uid's with that value.
299 std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
300 FilteredInstructions;
301
302 // Set of uid's with non-constant segment values.
303 std::vector<EncodingIDAndOpcode> VariableInstructions;
304
305 // Map of well-known segment value to its delegate.
306 std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;
307
308 // Number of instructions which fall under FilteredInstructions category.
309 unsigned NumFiltered;
310
311 // Keeps track of the last opcode in the filtered bucket.
312 EncodingIDAndOpcode LastOpcFiltered;
313
314 public:
315 Filter(Filter &&f);
316 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
317
318 ~Filter() = default;
319
getNumFiltered() const320 unsigned getNumFiltered() const { return NumFiltered; }
321
getSingletonOpc() const322 EncodingIDAndOpcode getSingletonOpc() const {
323 assert(NumFiltered == 1);
324 return LastOpcFiltered;
325 }
326
327 // Return the filter chooser for the group of instructions without constant
328 // segment values.
getVariableFC() const329 const FilterChooser &getVariableFC() const {
330 assert(NumFiltered == 1);
331 assert(FilterChooserMap.size() == 1);
332 return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
333 }
334
335 // Divides the decoding task into sub tasks and delegates them to the
336 // inferior FilterChooser's.
337 //
338 // A special case arises when there's only one entry in the filtered
339 // instructions. In order to unambiguously decode the singleton, we need to
340 // match the remaining undecoded encoding bits against the singleton.
341 void recurse();
342
343 // Emit table entries to decode instructions given a segment or segments of
344 // bits.
345 void emitTableEntry(DecoderTableInfo &TableInfo) const;
346
347 // Returns the number of fanout produced by the filter. More fanout implies
348 // the filter distinguishes more categories of instructions.
349 unsigned usefulness() const;
350 }; // end class Filter
351
352 } // end anonymous namespace
353
354 // These are states of our finite state machines used in FilterChooser's
355 // filterProcessor() which produces the filter candidates to use.
356 typedef enum {
357 ATTR_NONE,
358 ATTR_FILTERED,
359 ATTR_ALL_SET,
360 ATTR_ALL_UNSET,
361 ATTR_MIXED
362 } bitAttr_t;
363
364 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
365 /// in order to perform the decoding of instructions at the current level.
366 ///
367 /// Decoding proceeds from the top down. Based on the well-known encoding bits
368 /// of instructions available, FilterChooser builds up the possible Filters that
369 /// can further the task of decoding by distinguishing among the remaining
370 /// candidate instructions.
371 ///
372 /// Once a filter has been chosen, it is called upon to divide the decoding task
373 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
374 /// processings.
375 ///
376 /// It is useful to think of a Filter as governing the switch stmts of the
377 /// decoding tree. And each case is delegated to an inferior FilterChooser to
378 /// decide what further remaining bits to look at.
379 namespace {
380
381 class FilterChooser {
382 protected:
383 friend class Filter;
384
385 // Vector of codegen instructions to choose our filter.
386 ArrayRef<EncodingAndInst> AllInstructions;
387
388 // Vector of uid's for this filter chooser to work on.
389 // The first member of the pair is the opcode id being decoded, the second is
390 // the opcode id that should be emitted.
391 const std::vector<EncodingIDAndOpcode> &Opcodes;
392
393 // Lookup table for the operand decoding of instructions.
394 const std::map<unsigned, std::vector<OperandInfo>> &Operands;
395
396 // Vector of candidate filters.
397 std::vector<Filter> Filters;
398
399 // Array of bit values passed down from our parent.
400 // Set to all BIT_UNFILTERED's for Parent == NULL.
401 std::vector<bit_value_t> FilterBitValues;
402
403 // Links to the FilterChooser above us in the decoding tree.
404 const FilterChooser *Parent;
405
406 // Index of the best filter from Filters.
407 int BestIndex;
408
409 // Width of instructions
410 unsigned BitWidth;
411
412 // Parent emitter
413 const DecoderEmitter *Emitter;
414
415 public:
FilterChooser(ArrayRef<EncodingAndInst> Insts,const std::vector<EncodingIDAndOpcode> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,unsigned BW,const DecoderEmitter * E)416 FilterChooser(ArrayRef<EncodingAndInst> Insts,
417 const std::vector<EncodingIDAndOpcode> &IDs,
418 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
419 unsigned BW, const DecoderEmitter *E)
420 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
421 FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
422 BitWidth(BW), Emitter(E) {
423 doFilter();
424 }
425
FilterChooser(ArrayRef<EncodingAndInst> Insts,const std::vector<EncodingIDAndOpcode> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,const std::vector<bit_value_t> & ParentFilterBitValues,const FilterChooser & parent)426 FilterChooser(ArrayRef<EncodingAndInst> Insts,
427 const std::vector<EncodingIDAndOpcode> &IDs,
428 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
429 const std::vector<bit_value_t> &ParentFilterBitValues,
430 const FilterChooser &parent)
431 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
432 FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
433 BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
434 doFilter();
435 }
436
437 FilterChooser(const FilterChooser &) = delete;
438 void operator=(const FilterChooser &) = delete;
439
getBitWidth() const440 unsigned getBitWidth() const { return BitWidth; }
441
442 protected:
443 // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const444 void insnWithID(insn_t &Insn, unsigned Opcode) const {
445 BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
446 Insn.resize(BitWidth > Bits.getNumBits() ? BitWidth : Bits.getNumBits(),
447 BIT_UNSET);
448 // We may have a SoftFail bitmask, which specifies a mask where an encoding
449 // may differ from the value in "Inst" and yet still be valid, but the
450 // disassembler should return SoftFail instead of Success.
451 //
452 // This is used for marking UNPREDICTABLE instructions in the ARM world.
453 const RecordVal *RV =
454 AllInstructions[Opcode].EncodingDef->getValue("SoftFail");
455 const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
456 for (unsigned i = 0; i < Bits.getNumBits(); ++i) {
457 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
458 Insn[i] = BIT_UNSET;
459 else
460 Insn[i] = bitFromBits(Bits, i);
461 }
462 }
463
464 // Emit the name of the encoding/instruction pair.
emitNameWithID(raw_ostream & OS,unsigned Opcode) const465 void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
466 const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
467 const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
468 if (EncodingDef != InstDef)
469 OS << EncodingDef->getName() << ":";
470 OS << InstDef->getName();
471 }
472
473 // Populates the field of the insn given the start position and the number of
474 // consecutive bits to scan for.
475 //
476 // Returns false if there exists any uninitialized bit value in the range.
477 // Returns true, otherwise.
478 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
479 unsigned NumBits) const;
480
481 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
482 /// filter array as a series of chars.
483 void dumpFilterArray(raw_ostream &o,
484 const std::vector<bit_value_t> & filter) const;
485
486 /// dumpStack - dumpStack traverses the filter chooser chain and calls
487 /// dumpFilterArray on each filter chooser up to the top level one.
488 void dumpStack(raw_ostream &o, const char *prefix) const;
489
bestFilter()490 Filter &bestFilter() {
491 assert(BestIndex != -1 && "BestIndex not set");
492 return Filters[BestIndex];
493 }
494
PositionFiltered(unsigned i) const495 bool PositionFiltered(unsigned i) const {
496 return ValueSet(FilterBitValues[i]);
497 }
498
499 // Calculates the island(s) needed to decode the instruction.
500 // This returns a lit of undecoded bits of an instructions, for example,
501 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
502 // decoded bits in order to verify that the instruction matches the Opcode.
503 unsigned getIslands(std::vector<unsigned> &StartBits,
504 std::vector<unsigned> &EndBits,
505 std::vector<uint64_t> &FieldVals,
506 const insn_t &Insn) const;
507
508 // Emits code to check the Predicates member of an instruction are true.
509 // Returns true if predicate matches were emitted, false otherwise.
510 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
511 unsigned Opc) const;
512 bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp,
513 raw_ostream &OS) const;
514
515 bool doesOpcodeNeedPredicate(unsigned Opc) const;
516 unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
517 void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
518 unsigned Opc) const;
519
520 void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
521 unsigned Opc) const;
522
523 // Emits table entries to decode the singleton.
524 void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
525 EncodingIDAndOpcode Opc) const;
526
527 // Emits code to decode the singleton, and then to decode the rest.
528 void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
529 const Filter &Best) const;
530
531 void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
532 const OperandInfo &OpInfo,
533 bool &OpHasCompleteDecoder) const;
534
535 void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
536 bool &HasCompleteDecoder) const;
537 unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
538 bool &HasCompleteDecoder) const;
539
540 // Assign a single filter and run with it.
541 void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
542
543 // reportRegion is a helper function for filterProcessor to mark a region as
544 // eligible for use as a filter region.
545 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
546 bool AllowMixed);
547
548 // FilterProcessor scans the well-known encoding bits of the instructions and
549 // builds up a list of candidate filters. It chooses the best filter and
550 // recursively descends down the decoding tree.
551 bool filterProcessor(bool AllowMixed, bool Greedy = true);
552
553 // Decides on the best configuration of filter(s) to use in order to decode
554 // the instructions. A conflict of instructions may occur, in which case we
555 // dump the conflict set to the standard error.
556 void doFilter();
557
558 public:
559 // emitTableEntries - Emit state machine entries to decode our share of
560 // instructions.
561 void emitTableEntries(DecoderTableInfo &TableInfo) const;
562 };
563
564 } // end anonymous namespace
565
566 ///////////////////////////
567 // //
568 // Filter Implementation //
569 // //
570 ///////////////////////////
571
Filter(Filter && f)572 Filter::Filter(Filter &&f)
573 : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
574 FilteredInstructions(std::move(f.FilteredInstructions)),
575 VariableInstructions(std::move(f.VariableInstructions)),
576 FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
577 LastOpcFiltered(f.LastOpcFiltered) {
578 }
579
Filter(FilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)580 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
581 bool mixed)
582 : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
583 assert(StartBit + NumBits - 1 < Owner->BitWidth);
584
585 NumFiltered = 0;
586 LastOpcFiltered = {0, 0};
587
588 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
589 insn_t Insn;
590
591 // Populates the insn given the uid.
592 Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
593
594 uint64_t Field;
595 // Scans the segment for possibly well-specified encoding bits.
596 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
597
598 if (ok) {
599 // The encoding bits are well-known. Lets add the uid of the
600 // instruction into the bucket keyed off the constant field value.
601 LastOpcFiltered = Owner->Opcodes[i];
602 FilteredInstructions[Field].push_back(LastOpcFiltered);
603 ++NumFiltered;
604 } else {
605 // Some of the encoding bit(s) are unspecified. This contributes to
606 // one additional member of "Variable" instructions.
607 VariableInstructions.push_back(Owner->Opcodes[i]);
608 }
609 }
610
611 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
612 && "Filter returns no instruction categories");
613 }
614
615 // Divides the decoding task into sub tasks and delegates them to the
616 // inferior FilterChooser's.
617 //
618 // A special case arises when there's only one entry in the filtered
619 // instructions. In order to unambiguously decode the singleton, we need to
620 // match the remaining undecoded encoding bits against the singleton.
recurse()621 void Filter::recurse() {
622 // Starts by inheriting our parent filter chooser's filter bit values.
623 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
624
625 if (!VariableInstructions.empty()) {
626 // Conservatively marks each segment position as BIT_UNSET.
627 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
628 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
629
630 // Delegates to an inferior filter chooser for further processing on this
631 // group of instructions whose segment values are variable.
632 FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
633 std::make_unique<FilterChooser>(Owner->AllInstructions,
634 VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
635 }
636
637 // No need to recurse for a singleton filtered instruction.
638 // See also Filter::emit*().
639 if (getNumFiltered() == 1) {
640 assert(FilterChooserMap.size() == 1);
641 return;
642 }
643
644 // Otherwise, create sub choosers.
645 for (const auto &Inst : FilteredInstructions) {
646
647 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
648 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
649 if (Inst.first & (1ULL << bitIndex))
650 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
651 else
652 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
653 }
654
655 // Delegates to an inferior filter chooser for further processing on this
656 // category of instructions.
657 FilterChooserMap.insert(std::make_pair(
658 Inst.first, std::make_unique<FilterChooser>(
659 Owner->AllInstructions, Inst.second,
660 Owner->Operands, BitValueArray, *Owner)));
661 }
662 }
663
resolveTableFixups(DecoderTable & Table,const FixupList & Fixups,uint32_t DestIdx)664 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
665 uint32_t DestIdx) {
666 // Any NumToSkip fixups in the current scope can resolve to the
667 // current location.
668 for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
669 E = Fixups.rend();
670 I != E; ++I) {
671 // Calculate the distance from the byte following the fixup entry byte
672 // to the destination. The Target is calculated from after the 16-bit
673 // NumToSkip entry itself, so subtract two from the displacement here
674 // to account for that.
675 uint32_t FixupIdx = *I;
676 uint32_t Delta = DestIdx - FixupIdx - 3;
677 // Our NumToSkip entries are 24-bits. Make sure our table isn't too
678 // big.
679 assert(Delta < (1u << 24));
680 Table[FixupIdx] = (uint8_t)Delta;
681 Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
682 Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
683 }
684 }
685
686 // Emit table entries to decode instructions given a segment or segments
687 // of bits.
emitTableEntry(DecoderTableInfo & TableInfo) const688 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
689 TableInfo.Table.push_back(MCD::OPC_ExtractField);
690 TableInfo.Table.push_back(StartBit);
691 TableInfo.Table.push_back(NumBits);
692
693 // A new filter entry begins a new scope for fixup resolution.
694 TableInfo.FixupStack.emplace_back();
695
696 DecoderTable &Table = TableInfo.Table;
697
698 size_t PrevFilter = 0;
699 bool HasFallthrough = false;
700 for (auto &Filter : FilterChooserMap) {
701 // Field value -1 implies a non-empty set of variable instructions.
702 // See also recurse().
703 if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
704 HasFallthrough = true;
705
706 // Each scope should always have at least one filter value to check
707 // for.
708 assert(PrevFilter != 0 && "empty filter set!");
709 FixupList &CurScope = TableInfo.FixupStack.back();
710 // Resolve any NumToSkip fixups in the current scope.
711 resolveTableFixups(Table, CurScope, Table.size());
712 CurScope.clear();
713 PrevFilter = 0; // Don't re-process the filter's fallthrough.
714 } else {
715 Table.push_back(MCD::OPC_FilterValue);
716 // Encode and emit the value to filter against.
717 uint8_t Buffer[16];
718 unsigned Len = encodeULEB128(Filter.first, Buffer);
719 Table.insert(Table.end(), Buffer, Buffer + Len);
720 // Reserve space for the NumToSkip entry. We'll backpatch the value
721 // later.
722 PrevFilter = Table.size();
723 Table.push_back(0);
724 Table.push_back(0);
725 Table.push_back(0);
726 }
727
728 // We arrive at a category of instructions with the same segment value.
729 // Now delegate to the sub filter chooser for further decodings.
730 // The case may fallthrough, which happens if the remaining well-known
731 // encoding bits do not match exactly.
732 Filter.second->emitTableEntries(TableInfo);
733
734 // Now that we've emitted the body of the handler, update the NumToSkip
735 // of the filter itself to be able to skip forward when false. Subtract
736 // two as to account for the width of the NumToSkip field itself.
737 if (PrevFilter) {
738 uint32_t NumToSkip = Table.size() - PrevFilter - 3;
739 assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
740 Table[PrevFilter] = (uint8_t)NumToSkip;
741 Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
742 Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
743 }
744 }
745
746 // Any remaining unresolved fixups bubble up to the parent fixup scope.
747 assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
748 FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
749 FixupScopeList::iterator Dest = Source - 1;
750 llvm::append_range(*Dest, *Source);
751 TableInfo.FixupStack.pop_back();
752
753 // If there is no fallthrough, then the final filter should get fixed
754 // up according to the enclosing scope rather than the current position.
755 if (!HasFallthrough)
756 TableInfo.FixupStack.back().push_back(PrevFilter);
757 }
758
759 // Returns the number of fanout produced by the filter. More fanout implies
760 // the filter distinguishes more categories of instructions.
usefulness() const761 unsigned Filter::usefulness() const {
762 if (!VariableInstructions.empty())
763 return FilteredInstructions.size();
764 else
765 return FilteredInstructions.size() + 1;
766 }
767
768 //////////////////////////////////
769 // //
770 // Filterchooser Implementation //
771 // //
772 //////////////////////////////////
773
774 // Emit the decoder state machine table.
emitTable(formatted_raw_ostream & OS,DecoderTable & Table,unsigned Indentation,unsigned BitWidth,StringRef Namespace) const775 void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table,
776 unsigned Indentation, unsigned BitWidth,
777 StringRef Namespace) const {
778 OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
779 << BitWidth << "[] = {\n";
780
781 Indentation += 2;
782
783 // FIXME: We may be able to use the NumToSkip values to recover
784 // appropriate indentation levels.
785 DecoderTable::const_iterator I = Table.begin();
786 DecoderTable::const_iterator E = Table.end();
787 while (I != E) {
788 assert (I < E && "incomplete decode table entry!");
789
790 uint64_t Pos = I - Table.begin();
791 OS << "/* " << Pos << " */";
792 OS.PadToColumn(12);
793
794 switch (*I) {
795 default:
796 PrintFatalError("invalid decode table opcode");
797 case MCD::OPC_ExtractField: {
798 ++I;
799 unsigned Start = *I++;
800 unsigned Len = *I++;
801 OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
802 << Len << ", // Inst{";
803 if (Len > 1)
804 OS << (Start + Len - 1) << "-";
805 OS << Start << "} ...\n";
806 break;
807 }
808 case MCD::OPC_FilterValue: {
809 ++I;
810 OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
811 // The filter value is ULEB128 encoded.
812 while (*I >= 128)
813 OS << (unsigned)*I++ << ", ";
814 OS << (unsigned)*I++ << ", ";
815
816 // 24-bit numtoskip value.
817 uint8_t Byte = *I++;
818 uint32_t NumToSkip = Byte;
819 OS << (unsigned)Byte << ", ";
820 Byte = *I++;
821 OS << (unsigned)Byte << ", ";
822 NumToSkip |= Byte << 8;
823 Byte = *I++;
824 OS << utostr(Byte) << ", ";
825 NumToSkip |= Byte << 16;
826 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
827 break;
828 }
829 case MCD::OPC_CheckField: {
830 ++I;
831 unsigned Start = *I++;
832 unsigned Len = *I++;
833 OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
834 << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
835 // ULEB128 encoded field value.
836 for (; *I >= 128; ++I)
837 OS << (unsigned)*I << ", ";
838 OS << (unsigned)*I++ << ", ";
839 // 24-bit numtoskip value.
840 uint8_t Byte = *I++;
841 uint32_t NumToSkip = Byte;
842 OS << (unsigned)Byte << ", ";
843 Byte = *I++;
844 OS << (unsigned)Byte << ", ";
845 NumToSkip |= Byte << 8;
846 Byte = *I++;
847 OS << utostr(Byte) << ", ";
848 NumToSkip |= Byte << 16;
849 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
850 break;
851 }
852 case MCD::OPC_CheckPredicate: {
853 ++I;
854 OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
855 for (; *I >= 128; ++I)
856 OS << (unsigned)*I << ", ";
857 OS << (unsigned)*I++ << ", ";
858
859 // 24-bit numtoskip value.
860 uint8_t Byte = *I++;
861 uint32_t NumToSkip = Byte;
862 OS << (unsigned)Byte << ", ";
863 Byte = *I++;
864 OS << (unsigned)Byte << ", ";
865 NumToSkip |= Byte << 8;
866 Byte = *I++;
867 OS << utostr(Byte) << ", ";
868 NumToSkip |= Byte << 16;
869 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
870 break;
871 }
872 case MCD::OPC_Decode:
873 case MCD::OPC_TryDecode: {
874 bool IsTry = *I == MCD::OPC_TryDecode;
875 ++I;
876 // Extract the ULEB128 encoded Opcode to a buffer.
877 uint8_t Buffer[16], *p = Buffer;
878 while ((*p++ = *I++) >= 128)
879 assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
880 && "ULEB128 value too large!");
881 // Decode the Opcode value.
882 unsigned Opc = decodeULEB128(Buffer);
883 OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
884 << "Decode, ";
885 for (p = Buffer; *p >= 128; ++p)
886 OS << (unsigned)*p << ", ";
887 OS << (unsigned)*p << ", ";
888
889 // Decoder index.
890 for (; *I >= 128; ++I)
891 OS << (unsigned)*I << ", ";
892 OS << (unsigned)*I++ << ", ";
893
894 if (!IsTry) {
895 OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
896 break;
897 }
898
899 // Fallthrough for OPC_TryDecode.
900
901 // 24-bit numtoskip value.
902 uint8_t Byte = *I++;
903 uint32_t NumToSkip = Byte;
904 OS << (unsigned)Byte << ", ";
905 Byte = *I++;
906 OS << (unsigned)Byte << ", ";
907 NumToSkip |= Byte << 8;
908 Byte = *I++;
909 OS << utostr(Byte) << ", ";
910 NumToSkip |= Byte << 16;
911
912 OS << "// Opcode: " << NumberedEncodings[Opc]
913 << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
914 break;
915 }
916 case MCD::OPC_SoftFail: {
917 ++I;
918 OS.indent(Indentation) << "MCD::OPC_SoftFail";
919 // Positive mask
920 uint64_t Value = 0;
921 unsigned Shift = 0;
922 do {
923 OS << ", " << (unsigned)*I;
924 Value += (*I & 0x7f) << Shift;
925 Shift += 7;
926 } while (*I++ >= 128);
927 if (Value > 127) {
928 OS << " /* 0x";
929 OS.write_hex(Value);
930 OS << " */";
931 }
932 // Negative mask
933 Value = 0;
934 Shift = 0;
935 do {
936 OS << ", " << (unsigned)*I;
937 Value += (*I & 0x7f) << Shift;
938 Shift += 7;
939 } while (*I++ >= 128);
940 if (Value > 127) {
941 OS << " /* 0x";
942 OS.write_hex(Value);
943 OS << " */";
944 }
945 OS << ",\n";
946 break;
947 }
948 case MCD::OPC_Fail: {
949 ++I;
950 OS.indent(Indentation) << "MCD::OPC_Fail,\n";
951 break;
952 }
953 }
954 }
955 OS.indent(Indentation) << "0\n";
956
957 Indentation -= 2;
958
959 OS.indent(Indentation) << "};\n\n";
960 }
961
emitInstrLenTable(formatted_raw_ostream & OS,std::vector<unsigned> & InstrLen) const962 void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS,
963 std::vector<unsigned> &InstrLen) const {
964 OS << "static const uint8_t InstrLenTable[] = {\n";
965 for (unsigned &Len : InstrLen) {
966 OS << Len << ",\n";
967 }
968 OS << "};\n\n";
969 }
970
emitPredicateFunction(formatted_raw_ostream & OS,PredicateSet & Predicates,unsigned Indentation) const971 void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS,
972 PredicateSet &Predicates,
973 unsigned Indentation) const {
974 // The predicate function is just a big switch statement based on the
975 // input predicate index.
976 OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
977 << "const FeatureBitset &Bits) {\n";
978 Indentation += 2;
979 if (!Predicates.empty()) {
980 OS.indent(Indentation) << "switch (Idx) {\n";
981 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
982 unsigned Index = 0;
983 for (const auto &Predicate : Predicates) {
984 OS.indent(Indentation) << "case " << Index++ << ":\n";
985 OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
986 }
987 OS.indent(Indentation) << "}\n";
988 } else {
989 // No case statement to emit
990 OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
991 }
992 Indentation -= 2;
993 OS.indent(Indentation) << "}\n\n";
994 }
995
emitDecoderFunction(formatted_raw_ostream & OS,DecoderSet & Decoders,unsigned Indentation) const996 void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS,
997 DecoderSet &Decoders,
998 unsigned Indentation) const {
999 // The decoder function is just a big switch statement based on the
1000 // input decoder index.
1001 OS.indent(Indentation) << "template <typename InsnType>\n";
1002 OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
1003 << " unsigned Idx, InsnType insn, MCInst &MI,\n";
1004 OS.indent(Indentation)
1005 << " uint64_t "
1006 << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n";
1007 Indentation += 2;
1008 OS.indent(Indentation) << "DecodeComplete = true;\n";
1009 // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
1010 // It would be better for emitBinaryParser to use a 64-bit tmp whenever
1011 // possible but fall back to an InsnType-sized tmp for truly large fields.
1012 OS.indent(Indentation) << "using TmpType = "
1013 "std::conditional_t<std::is_integral<InsnType>::"
1014 "value, InsnType, uint64_t>;\n";
1015 OS.indent(Indentation) << "TmpType tmp;\n";
1016 OS.indent(Indentation) << "switch (Idx) {\n";
1017 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
1018 unsigned Index = 0;
1019 for (const auto &Decoder : Decoders) {
1020 OS.indent(Indentation) << "case " << Index++ << ":\n";
1021 OS << Decoder;
1022 OS.indent(Indentation+2) << "return S;\n";
1023 }
1024 OS.indent(Indentation) << "}\n";
1025 Indentation -= 2;
1026 OS.indent(Indentation) << "}\n\n";
1027 }
1028
1029 // Populates the field of the insn given the start position and the number of
1030 // consecutive bits to scan for.
1031 //
1032 // Returns false if and on the first uninitialized bit value encountered.
1033 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const1034 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
1035 unsigned StartBit, unsigned NumBits) const {
1036 Field = 0;
1037
1038 for (unsigned i = 0; i < NumBits; ++i) {
1039 if (Insn[StartBit + i] == BIT_UNSET)
1040 return false;
1041
1042 if (Insn[StartBit + i] == BIT_TRUE)
1043 Field = Field | (1ULL << i);
1044 }
1045
1046 return true;
1047 }
1048
1049 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1050 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,const std::vector<bit_value_t> & filter) const1051 void FilterChooser::dumpFilterArray(raw_ostream &o,
1052 const std::vector<bit_value_t> &filter) const {
1053 for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
1054 switch (filter[bitIndex - 1]) {
1055 case BIT_UNFILTERED:
1056 o << ".";
1057 break;
1058 case BIT_UNSET:
1059 o << "_";
1060 break;
1061 case BIT_TRUE:
1062 o << "1";
1063 break;
1064 case BIT_FALSE:
1065 o << "0";
1066 break;
1067 }
1068 }
1069 }
1070
1071 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1072 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix) const1073 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1074 const FilterChooser *current = this;
1075
1076 while (current) {
1077 o << prefix;
1078 dumpFilterArray(o, current->FilterBitValues);
1079 o << '\n';
1080 current = current->Parent;
1081 }
1082 }
1083
1084 // Calculates the island(s) needed to decode the instruction.
1085 // This returns a list of undecoded bits of an instructions, for example,
1086 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1087 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,const insn_t & Insn) const1088 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1089 std::vector<unsigned> &EndBits,
1090 std::vector<uint64_t> &FieldVals,
1091 const insn_t &Insn) const {
1092 unsigned Num, BitNo;
1093 Num = BitNo = 0;
1094
1095 uint64_t FieldVal = 0;
1096
1097 // 0: Init
1098 // 1: Water (the bit value does not affect decoding)
1099 // 2: Island (well-known bit value needed for decoding)
1100 int State = 0;
1101
1102 for (unsigned i = 0; i < BitWidth; ++i) {
1103 int64_t Val = Value(Insn[i]);
1104 bool Filtered = PositionFiltered(i);
1105 switch (State) {
1106 default: llvm_unreachable("Unreachable code!");
1107 case 0:
1108 case 1:
1109 if (Filtered || Val == -1)
1110 State = 1; // Still in Water
1111 else {
1112 State = 2; // Into the Island
1113 BitNo = 0;
1114 StartBits.push_back(i);
1115 FieldVal = Val;
1116 }
1117 break;
1118 case 2:
1119 if (Filtered || Val == -1) {
1120 State = 1; // Into the Water
1121 EndBits.push_back(i - 1);
1122 FieldVals.push_back(FieldVal);
1123 ++Num;
1124 } else {
1125 State = 2; // Still in Island
1126 ++BitNo;
1127 FieldVal = FieldVal | Val << BitNo;
1128 }
1129 break;
1130 }
1131 }
1132 // If we are still in Island after the loop, do some housekeeping.
1133 if (State == 2) {
1134 EndBits.push_back(BitWidth - 1);
1135 FieldVals.push_back(FieldVal);
1136 ++Num;
1137 }
1138
1139 assert(StartBits.size() == Num && EndBits.size() == Num &&
1140 FieldVals.size() == Num);
1141 return Num;
1142 }
1143
emitBinaryParser(raw_ostream & o,unsigned & Indentation,const OperandInfo & OpInfo,bool & OpHasCompleteDecoder) const1144 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1145 const OperandInfo &OpInfo,
1146 bool &OpHasCompleteDecoder) const {
1147 const std::string &Decoder = OpInfo.Decoder;
1148
1149 bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;
1150
1151 if (UseInsertBits) {
1152 o.indent(Indentation) << "tmp = 0x";
1153 o.write_hex(OpInfo.InitValue);
1154 o << ";\n";
1155 }
1156
1157 for (const EncodingField &EF : OpInfo) {
1158 o.indent(Indentation);
1159 if (UseInsertBits)
1160 o << "insertBits(tmp, ";
1161 else
1162 o << "tmp = ";
1163 o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
1164 if (UseInsertBits)
1165 o << ", " << EF.Offset << ", " << EF.Width << ')';
1166 else if (EF.Offset != 0)
1167 o << " << " << EF.Offset;
1168 o << ";\n";
1169 }
1170
1171 if (Decoder != "") {
1172 OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1173 o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1174 << "(MI, tmp, Address, Decoder)"
1175 << Emitter->GuardPostfix
1176 << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1177 << "return MCDisassembler::Fail; }\n";
1178 } else {
1179 OpHasCompleteDecoder = true;
1180 o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1181 }
1182 }
1183
emitDecoder(raw_ostream & OS,unsigned Indentation,unsigned Opc,bool & HasCompleteDecoder) const1184 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1185 unsigned Opc, bool &HasCompleteDecoder) const {
1186 HasCompleteDecoder = true;
1187
1188 for (const auto &Op : Operands.find(Opc)->second) {
1189 // If a custom instruction decoder was specified, use that.
1190 if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1191 HasCompleteDecoder = Op.HasCompleteDecoder;
1192 OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1193 << "(MI, insn, Address, Decoder)"
1194 << Emitter->GuardPostfix
1195 << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1196 << "return MCDisassembler::Fail; }\n";
1197 break;
1198 }
1199
1200 bool OpHasCompleteDecoder;
1201 emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1202 if (!OpHasCompleteDecoder)
1203 HasCompleteDecoder = false;
1204 }
1205 }
1206
getDecoderIndex(DecoderSet & Decoders,unsigned Opc,bool & HasCompleteDecoder) const1207 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1208 unsigned Opc,
1209 bool &HasCompleteDecoder) const {
1210 // Build up the predicate string.
1211 SmallString<256> Decoder;
1212 // FIXME: emitDecoder() function can take a buffer directly rather than
1213 // a stream.
1214 raw_svector_ostream S(Decoder);
1215 unsigned I = 4;
1216 emitDecoder(S, I, Opc, HasCompleteDecoder);
1217
1218 // Using the full decoder string as the key value here is a bit
1219 // heavyweight, but is effective. If the string comparisons become a
1220 // performance concern, we can implement a mangling of the predicate
1221 // data easily enough with a map back to the actual string. That's
1222 // overkill for now, though.
1223
1224 // Make sure the predicate is in the table.
1225 Decoders.insert(CachedHashString(Decoder));
1226 // Now figure out the index for when we write out the table.
1227 DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1228 return (unsigned)(P - Decoders.begin());
1229 }
1230
1231 // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||.
emitPredicateMatchAux(const Init & Val,bool ParenIfBinOp,raw_ostream & OS) const1232 bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp,
1233 raw_ostream &OS) const {
1234 if (auto *D = dyn_cast<DefInit>(&Val)) {
1235 if (!D->getDef()->isSubClassOf("SubtargetFeature"))
1236 return true;
1237 OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString()
1238 << "]";
1239 return false;
1240 }
1241 if (auto *D = dyn_cast<DagInit>(&Val)) {
1242 std::string Op = D->getOperator()->getAsString();
1243 if (Op == "not" && D->getNumArgs() == 1) {
1244 OS << '!';
1245 return emitPredicateMatchAux(*D->getArg(0), true, OS);
1246 }
1247 if ((Op == "any_of" || Op == "all_of") && D->getNumArgs() > 0) {
1248 bool Paren = D->getNumArgs() > 1 && std::exchange(ParenIfBinOp, true);
1249 if (Paren)
1250 OS << '(';
1251 ListSeparator LS(Op == "any_of" ? " || " : " && ");
1252 for (auto *Arg : D->getArgs()) {
1253 OS << LS;
1254 if (emitPredicateMatchAux(*Arg, ParenIfBinOp, OS))
1255 return true;
1256 }
1257 if (Paren)
1258 OS << ')';
1259 return false;
1260 }
1261 }
1262 return true;
1263 }
1264
emitPredicateMatch(raw_ostream & o,unsigned & Indentation,unsigned Opc) const1265 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1266 unsigned Opc) const {
1267 ListInit *Predicates =
1268 AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1269 bool IsFirstEmission = true;
1270 for (unsigned i = 0; i < Predicates->size(); ++i) {
1271 Record *Pred = Predicates->getElementAsRecord(i);
1272 if (!Pred->getValue("AssemblerMatcherPredicate"))
1273 continue;
1274
1275 if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1276 continue;
1277
1278 if (!IsFirstEmission)
1279 o << " && ";
1280 if (emitPredicateMatchAux(*Pred->getValueAsDag("AssemblerCondDag"),
1281 Predicates->size() > 1, o))
1282 PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1283 IsFirstEmission = false;
1284 }
1285 return !Predicates->empty();
1286 }
1287
doesOpcodeNeedPredicate(unsigned Opc) const1288 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1289 ListInit *Predicates =
1290 AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1291 for (unsigned i = 0; i < Predicates->size(); ++i) {
1292 Record *Pred = Predicates->getElementAsRecord(i);
1293 if (!Pred->getValue("AssemblerMatcherPredicate"))
1294 continue;
1295
1296 if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1297 return true;
1298 }
1299 return false;
1300 }
1301
getPredicateIndex(DecoderTableInfo & TableInfo,StringRef Predicate) const1302 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1303 StringRef Predicate) const {
1304 // Using the full predicate string as the key value here is a bit
1305 // heavyweight, but is effective. If the string comparisons become a
1306 // performance concern, we can implement a mangling of the predicate
1307 // data easily enough with a map back to the actual string. That's
1308 // overkill for now, though.
1309
1310 // Make sure the predicate is in the table.
1311 TableInfo.Predicates.insert(CachedHashString(Predicate));
1312 // Now figure out the index for when we write out the table.
1313 PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1314 return (unsigned)(P - TableInfo.Predicates.begin());
1315 }
1316
emitPredicateTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1317 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1318 unsigned Opc) const {
1319 if (!doesOpcodeNeedPredicate(Opc))
1320 return;
1321
1322 // Build up the predicate string.
1323 SmallString<256> Predicate;
1324 // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1325 // than a stream.
1326 raw_svector_ostream PS(Predicate);
1327 unsigned I = 0;
1328 emitPredicateMatch(PS, I, Opc);
1329
1330 // Figure out the index into the predicate table for the predicate just
1331 // computed.
1332 unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1333 SmallString<16> PBytes;
1334 raw_svector_ostream S(PBytes);
1335 encodeULEB128(PIdx, S);
1336
1337 TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1338 // Predicate index
1339 for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1340 TableInfo.Table.push_back(PBytes[i]);
1341 // Push location for NumToSkip backpatching.
1342 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1343 TableInfo.Table.push_back(0);
1344 TableInfo.Table.push_back(0);
1345 TableInfo.Table.push_back(0);
1346 }
1347
emitSoftFailTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1348 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1349 unsigned Opc) const {
1350 const RecordVal *RV = AllInstructions[Opc].EncodingDef->getValue("SoftFail");
1351 BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
1352
1353 if (!SFBits) return;
1354 BitsInit *InstBits =
1355 AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1356
1357 APInt PositiveMask(BitWidth, 0ULL);
1358 APInt NegativeMask(BitWidth, 0ULL);
1359 for (unsigned i = 0; i < BitWidth; ++i) {
1360 bit_value_t B = bitFromBits(*SFBits, i);
1361 bit_value_t IB = bitFromBits(*InstBits, i);
1362
1363 if (B != BIT_TRUE) continue;
1364
1365 switch (IB) {
1366 case BIT_FALSE:
1367 // The bit is meant to be false, so emit a check to see if it is true.
1368 PositiveMask.setBit(i);
1369 break;
1370 case BIT_TRUE:
1371 // The bit is meant to be true, so emit a check to see if it is false.
1372 NegativeMask.setBit(i);
1373 break;
1374 default:
1375 // The bit is not set; this must be an error!
1376 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1377 << AllInstructions[Opc] << " is set but Inst{" << i
1378 << "} is unset!\n"
1379 << " - You can only mark a bit as SoftFail if it is fully defined"
1380 << " (1/0 - not '?') in Inst\n";
1381 return;
1382 }
1383 }
1384
1385 bool NeedPositiveMask = PositiveMask.getBoolValue();
1386 bool NeedNegativeMask = NegativeMask.getBoolValue();
1387
1388 if (!NeedPositiveMask && !NeedNegativeMask)
1389 return;
1390
1391 TableInfo.Table.push_back(MCD::OPC_SoftFail);
1392
1393 SmallString<16> MaskBytes;
1394 raw_svector_ostream S(MaskBytes);
1395 if (NeedPositiveMask) {
1396 encodeULEB128(PositiveMask.getZExtValue(), S);
1397 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1398 TableInfo.Table.push_back(MaskBytes[i]);
1399 } else
1400 TableInfo.Table.push_back(0);
1401 if (NeedNegativeMask) {
1402 MaskBytes.clear();
1403 encodeULEB128(NegativeMask.getZExtValue(), S);
1404 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1405 TableInfo.Table.push_back(MaskBytes[i]);
1406 } else
1407 TableInfo.Table.push_back(0);
1408 }
1409
1410 // Emits table entries to decode the singleton.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,EncodingIDAndOpcode Opc) const1411 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1412 EncodingIDAndOpcode Opc) const {
1413 std::vector<unsigned> StartBits;
1414 std::vector<unsigned> EndBits;
1415 std::vector<uint64_t> FieldVals;
1416 insn_t Insn;
1417 insnWithID(Insn, Opc.EncodingID);
1418
1419 // Look for islands of undecoded bits of the singleton.
1420 getIslands(StartBits, EndBits, FieldVals, Insn);
1421
1422 unsigned Size = StartBits.size();
1423
1424 // Emit the predicate table entry if one is needed.
1425 emitPredicateTableEntry(TableInfo, Opc.EncodingID);
1426
1427 // Check any additional encoding fields needed.
1428 for (unsigned I = Size; I != 0; --I) {
1429 unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1430 TableInfo.Table.push_back(MCD::OPC_CheckField);
1431 TableInfo.Table.push_back(StartBits[I-1]);
1432 TableInfo.Table.push_back(NumBits);
1433 uint8_t Buffer[16], *p;
1434 encodeULEB128(FieldVals[I-1], Buffer);
1435 for (p = Buffer; *p >= 128 ; ++p)
1436 TableInfo.Table.push_back(*p);
1437 TableInfo.Table.push_back(*p);
1438 // Push location for NumToSkip backpatching.
1439 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1440 // The fixup is always 24-bits, so go ahead and allocate the space
1441 // in the table so all our relative position calculations work OK even
1442 // before we fully resolve the real value here.
1443 TableInfo.Table.push_back(0);
1444 TableInfo.Table.push_back(0);
1445 TableInfo.Table.push_back(0);
1446 }
1447
1448 // Check for soft failure of the match.
1449 emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
1450
1451 bool HasCompleteDecoder;
1452 unsigned DIdx =
1453 getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
1454
1455 // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1456 // whether the instruction decoder is complete or not. If it is complete
1457 // then it handles all possible values of remaining variable/unfiltered bits
1458 // and for any value can determine if the bitpattern is a valid instruction
1459 // or not. This means OPC_Decode will be the final step in the decoding
1460 // process. If it is not complete, then the Fail return code from the
1461 // decoder method indicates that additional processing should be done to see
1462 // if there is any other instruction that also matches the bitpattern and
1463 // can decode it.
1464 TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1465 MCD::OPC_TryDecode);
1466 NumEncodingsSupported++;
1467 uint8_t Buffer[16], *p;
1468 encodeULEB128(Opc.Opcode, Buffer);
1469 for (p = Buffer; *p >= 128 ; ++p)
1470 TableInfo.Table.push_back(*p);
1471 TableInfo.Table.push_back(*p);
1472
1473 SmallString<16> Bytes;
1474 raw_svector_ostream S(Bytes);
1475 encodeULEB128(DIdx, S);
1476
1477 // Decoder index
1478 for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1479 TableInfo.Table.push_back(Bytes[i]);
1480
1481 if (!HasCompleteDecoder) {
1482 // Push location for NumToSkip backpatching.
1483 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1484 // Allocate the space for the fixup.
1485 TableInfo.Table.push_back(0);
1486 TableInfo.Table.push_back(0);
1487 TableInfo.Table.push_back(0);
1488 }
1489 }
1490
1491 // Emits table entries to decode the singleton, and then to decode the rest.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,const Filter & Best) const1492 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1493 const Filter &Best) const {
1494 EncodingIDAndOpcode Opc = Best.getSingletonOpc();
1495
1496 // complex singletons need predicate checks from the first singleton
1497 // to refer forward to the variable filterchooser that follows.
1498 TableInfo.FixupStack.emplace_back();
1499
1500 emitSingletonTableEntry(TableInfo, Opc);
1501
1502 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1503 TableInfo.Table.size());
1504 TableInfo.FixupStack.pop_back();
1505
1506 Best.getVariableFC().emitTableEntries(TableInfo);
1507 }
1508
1509 // Assign a single filter and run with it. Top level API client can initialize
1510 // with a single filter to start the filtering process.
runSingleFilter(unsigned startBit,unsigned numBit,bool mixed)1511 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1512 bool mixed) {
1513 Filters.clear();
1514 Filters.emplace_back(*this, startBit, numBit, true);
1515 BestIndex = 0; // Sole Filter instance to choose from.
1516 bestFilter().recurse();
1517 }
1518
1519 // reportRegion is a helper function for filterProcessor to mark a region as
1520 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1521 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1522 unsigned BitIndex, bool AllowMixed) {
1523 if (RA == ATTR_MIXED && AllowMixed)
1524 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1525 else if (RA == ATTR_ALL_SET && !AllowMixed)
1526 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1527 }
1528
1529 // FilterProcessor scans the well-known encoding bits of the instructions and
1530 // builds up a list of candidate filters. It chooses the best filter and
1531 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1532 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1533 Filters.clear();
1534 BestIndex = -1;
1535 unsigned numInstructions = Opcodes.size();
1536
1537 assert(numInstructions && "Filter created with no instructions");
1538
1539 // No further filtering is necessary.
1540 if (numInstructions == 1)
1541 return true;
1542
1543 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1544 // instructions is 3.
1545 if (AllowMixed && !Greedy) {
1546 assert(numInstructions == 3);
1547
1548 for (auto Opcode : Opcodes) {
1549 std::vector<unsigned> StartBits;
1550 std::vector<unsigned> EndBits;
1551 std::vector<uint64_t> FieldVals;
1552 insn_t Insn;
1553
1554 insnWithID(Insn, Opcode.EncodingID);
1555
1556 // Look for islands of undecoded bits of any instruction.
1557 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1558 // Found an instruction with island(s). Now just assign a filter.
1559 runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1560 return true;
1561 }
1562 }
1563 }
1564
1565 unsigned BitIndex;
1566
1567 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1568 // The automaton consumes the corresponding bit from each
1569 // instruction.
1570 //
1571 // Input symbols: 0, 1, and _ (unset).
1572 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1573 // Initial state: NONE.
1574 //
1575 // (NONE) ------- [01] -> (ALL_SET)
1576 // (NONE) ------- _ ----> (ALL_UNSET)
1577 // (ALL_SET) ---- [01] -> (ALL_SET)
1578 // (ALL_SET) ---- _ ----> (MIXED)
1579 // (ALL_UNSET) -- [01] -> (MIXED)
1580 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1581 // (MIXED) ------ . ----> (MIXED)
1582 // (FILTERED)---- . ----> (FILTERED)
1583
1584 std::vector<bitAttr_t> bitAttrs;
1585
1586 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1587 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1588 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1589 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1590 FilterBitValues[BitIndex] == BIT_FALSE)
1591 bitAttrs.push_back(ATTR_FILTERED);
1592 else
1593 bitAttrs.push_back(ATTR_NONE);
1594
1595 for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1596 insn_t insn;
1597
1598 insnWithID(insn, Opcodes[InsnIndex].EncodingID);
1599
1600 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1601 switch (bitAttrs[BitIndex]) {
1602 case ATTR_NONE:
1603 if (insn[BitIndex] == BIT_UNSET)
1604 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1605 else
1606 bitAttrs[BitIndex] = ATTR_ALL_SET;
1607 break;
1608 case ATTR_ALL_SET:
1609 if (insn[BitIndex] == BIT_UNSET)
1610 bitAttrs[BitIndex] = ATTR_MIXED;
1611 break;
1612 case ATTR_ALL_UNSET:
1613 if (insn[BitIndex] != BIT_UNSET)
1614 bitAttrs[BitIndex] = ATTR_MIXED;
1615 break;
1616 case ATTR_MIXED:
1617 case ATTR_FILTERED:
1618 break;
1619 }
1620 }
1621 }
1622
1623 // The regionAttr automaton consumes the bitAttrs automatons' state,
1624 // lowest-to-highest.
1625 //
1626 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1627 // States: NONE, ALL_SET, MIXED
1628 // Initial state: NONE
1629 //
1630 // (NONE) ----- F --> (NONE)
1631 // (NONE) ----- S --> (ALL_SET) ; and set region start
1632 // (NONE) ----- U --> (NONE)
1633 // (NONE) ----- M --> (MIXED) ; and set region start
1634 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1635 // (ALL_SET) -- S --> (ALL_SET)
1636 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1637 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1638 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1639 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1640 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1641 // (MIXED) ---- M --> (MIXED)
1642
1643 bitAttr_t RA = ATTR_NONE;
1644 unsigned StartBit = 0;
1645
1646 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1647 bitAttr_t bitAttr = bitAttrs[BitIndex];
1648
1649 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1650
1651 switch (RA) {
1652 case ATTR_NONE:
1653 switch (bitAttr) {
1654 case ATTR_FILTERED:
1655 break;
1656 case ATTR_ALL_SET:
1657 StartBit = BitIndex;
1658 RA = ATTR_ALL_SET;
1659 break;
1660 case ATTR_ALL_UNSET:
1661 break;
1662 case ATTR_MIXED:
1663 StartBit = BitIndex;
1664 RA = ATTR_MIXED;
1665 break;
1666 default:
1667 llvm_unreachable("Unexpected bitAttr!");
1668 }
1669 break;
1670 case ATTR_ALL_SET:
1671 switch (bitAttr) {
1672 case ATTR_FILTERED:
1673 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1674 RA = ATTR_NONE;
1675 break;
1676 case ATTR_ALL_SET:
1677 break;
1678 case ATTR_ALL_UNSET:
1679 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1680 RA = ATTR_NONE;
1681 break;
1682 case ATTR_MIXED:
1683 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1684 StartBit = BitIndex;
1685 RA = ATTR_MIXED;
1686 break;
1687 default:
1688 llvm_unreachable("Unexpected bitAttr!");
1689 }
1690 break;
1691 case ATTR_MIXED:
1692 switch (bitAttr) {
1693 case ATTR_FILTERED:
1694 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1695 StartBit = BitIndex;
1696 RA = ATTR_NONE;
1697 break;
1698 case ATTR_ALL_SET:
1699 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1700 StartBit = BitIndex;
1701 RA = ATTR_ALL_SET;
1702 break;
1703 case ATTR_ALL_UNSET:
1704 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1705 RA = ATTR_NONE;
1706 break;
1707 case ATTR_MIXED:
1708 break;
1709 default:
1710 llvm_unreachable("Unexpected bitAttr!");
1711 }
1712 break;
1713 case ATTR_ALL_UNSET:
1714 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1715 case ATTR_FILTERED:
1716 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1717 }
1718 }
1719
1720 // At the end, if we're still in ALL_SET or MIXED states, report a region
1721 switch (RA) {
1722 case ATTR_NONE:
1723 break;
1724 case ATTR_FILTERED:
1725 break;
1726 case ATTR_ALL_SET:
1727 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1728 break;
1729 case ATTR_ALL_UNSET:
1730 break;
1731 case ATTR_MIXED:
1732 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1733 break;
1734 }
1735
1736 // We have finished with the filter processings. Now it's time to choose
1737 // the best performing filter.
1738 BestIndex = 0;
1739 bool AllUseless = true;
1740 unsigned BestScore = 0;
1741
1742 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1743 unsigned Usefulness = Filters[i].usefulness();
1744
1745 if (Usefulness)
1746 AllUseless = false;
1747
1748 if (Usefulness > BestScore) {
1749 BestIndex = i;
1750 BestScore = Usefulness;
1751 }
1752 }
1753
1754 if (!AllUseless)
1755 bestFilter().recurse();
1756
1757 return !AllUseless;
1758 } // end of FilterChooser::filterProcessor(bool)
1759
1760 // Decides on the best configuration of filter(s) to use in order to decode
1761 // the instructions. A conflict of instructions may occur, in which case we
1762 // dump the conflict set to the standard error.
doFilter()1763 void FilterChooser::doFilter() {
1764 unsigned Num = Opcodes.size();
1765 assert(Num && "FilterChooser created with no instructions");
1766
1767 // Try regions of consecutive known bit values first.
1768 if (filterProcessor(false))
1769 return;
1770
1771 // Then regions of mixed bits (both known and unitialized bit values allowed).
1772 if (filterProcessor(true))
1773 return;
1774
1775 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1776 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1777 // well-known encoding pattern. In such case, we backtrack and scan for the
1778 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1779 if (Num == 3 && filterProcessor(true, false))
1780 return;
1781
1782 // If we come to here, the instruction decoding has failed.
1783 // Set the BestIndex to -1 to indicate so.
1784 BestIndex = -1;
1785 }
1786
1787 // emitTableEntries - Emit state machine entries to decode our share of
1788 // instructions.
emitTableEntries(DecoderTableInfo & TableInfo) const1789 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1790 if (Opcodes.size() == 1) {
1791 // There is only one instruction in the set, which is great!
1792 // Call emitSingletonDecoder() to see whether there are any remaining
1793 // encodings bits.
1794 emitSingletonTableEntry(TableInfo, Opcodes[0]);
1795 return;
1796 }
1797
1798 // Choose the best filter to do the decodings!
1799 if (BestIndex != -1) {
1800 const Filter &Best = Filters[BestIndex];
1801 if (Best.getNumFiltered() == 1)
1802 emitSingletonTableEntry(TableInfo, Best);
1803 else
1804 Best.emitTableEntry(TableInfo);
1805 return;
1806 }
1807
1808 // We don't know how to decode these instructions! Dump the
1809 // conflict set and bail.
1810
1811 // Print out useful conflict information for postmortem analysis.
1812 errs() << "Decoding Conflict:\n";
1813
1814 dumpStack(errs(), "\t\t");
1815
1816 for (auto Opcode : Opcodes) {
1817 errs() << '\t';
1818 emitNameWithID(errs(), Opcode.EncodingID);
1819 errs() << " ";
1820 dumpBits(
1821 errs(),
1822 getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
1823 errs() << '\n';
1824 }
1825 }
1826
findOperandDecoderMethod(Record * Record)1827 static std::string findOperandDecoderMethod(Record *Record) {
1828 std::string Decoder;
1829
1830 RecordVal *DecoderString = Record->getValue("DecoderMethod");
1831 StringInit *String = DecoderString ?
1832 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1833 if (String) {
1834 Decoder = std::string(String->getValue());
1835 if (!Decoder.empty())
1836 return Decoder;
1837 }
1838
1839 if (Record->isSubClassOf("RegisterOperand"))
1840 Record = Record->getValueAsDef("RegClass");
1841
1842 if (Record->isSubClassOf("RegisterClass")) {
1843 Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1844 } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1845 Decoder = "DecodePointerLikeRegClass" +
1846 utostr(Record->getValueAsInt("RegClassKind"));
1847 }
1848
1849 return Decoder;
1850 }
1851
getOpInfo(Record * TypeRecord)1852 OperandInfo getOpInfo(Record *TypeRecord) {
1853 std::string Decoder = findOperandDecoderMethod(TypeRecord);
1854
1855 RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder");
1856 BitInit *HasCompleteDecoderBit =
1857 HasCompleteDecoderVal
1858 ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
1859 : nullptr;
1860 bool HasCompleteDecoder =
1861 HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
1862
1863 return OperandInfo(Decoder, HasCompleteDecoder);
1864 }
1865
parseVarLenInstOperand(const Record & Def,std::vector<OperandInfo> & Operands,const CodeGenInstruction & CGI)1866 void parseVarLenInstOperand(const Record &Def,
1867 std::vector<OperandInfo> &Operands,
1868 const CodeGenInstruction &CGI) {
1869
1870 const RecordVal *RV = Def.getValue("Inst");
1871 VarLenInst VLI(cast<DagInit>(RV->getValue()), RV);
1872 SmallVector<int> TiedTo;
1873
1874 for (unsigned Idx = 0; Idx < CGI.Operands.size(); ++Idx) {
1875 auto &Op = CGI.Operands[Idx];
1876 if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0)
1877 for (auto *Arg : Op.MIOperandInfo->getArgs())
1878 Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef()));
1879 else
1880 Operands.push_back(getOpInfo(Op.Rec));
1881
1882 int TiedReg = Op.getTiedRegister();
1883 TiedTo.push_back(-1);
1884 if (TiedReg != -1) {
1885 TiedTo[Idx] = TiedReg;
1886 TiedTo[TiedReg] = Idx;
1887 }
1888 }
1889
1890 unsigned CurrBitPos = 0;
1891 for (auto &EncodingSegment : VLI) {
1892 unsigned Offset = 0;
1893 StringRef OpName;
1894
1895 if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) {
1896 OpName = SI->getValue();
1897 } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) {
1898 OpName = cast<StringInit>(DI->getArg(0))->getValue();
1899 Offset = cast<IntInit>(DI->getArg(2))->getValue();
1900 }
1901
1902 if (!OpName.empty()) {
1903 auto OpSubOpPair =
1904 const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName(
1905 OpName);
1906 unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair);
1907 Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1908
1909 int TiedReg = TiedTo[OpSubOpPair.first];
1910 if (TiedReg != -1) {
1911 unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(
1912 std::make_pair(TiedReg, OpSubOpPair.second));
1913 Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1914 }
1915 }
1916
1917 CurrBitPos += EncodingSegment.BitWidth;
1918 }
1919 }
1920
1921 static unsigned
populateInstruction(CodeGenTarget & Target,const Record & EncodingDef,const CodeGenInstruction & CGI,unsigned Opc,std::map<unsigned,std::vector<OperandInfo>> & Operands,bool IsVarLenInst)1922 populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
1923 const CodeGenInstruction &CGI, unsigned Opc,
1924 std::map<unsigned, std::vector<OperandInfo>> &Operands,
1925 bool IsVarLenInst) {
1926 const Record &Def = *CGI.TheDef;
1927 // If all the bit positions are not specified; do not decode this instruction.
1928 // We are bound to fail! For proper disassembly, the well-known encoding bits
1929 // of the instruction must be fully specified.
1930
1931 BitsInit &Bits = getBitsField(EncodingDef, "Inst");
1932 if (Bits.allInComplete())
1933 return 0;
1934
1935 std::vector<OperandInfo> InsnOperands;
1936
1937 // If the instruction has specified a custom decoding hook, use that instead
1938 // of trying to auto-generate the decoder.
1939 StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
1940 if (InstDecoder != "") {
1941 bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
1942 InsnOperands.push_back(
1943 OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
1944 Operands[Opc] = InsnOperands;
1945 return Bits.getNumBits();
1946 }
1947
1948 // Generate a description of the operand of the instruction that we know
1949 // how to decode automatically.
1950 // FIXME: We'll need to have a way to manually override this as needed.
1951
1952 // Gather the outputs/inputs of the instruction, so we can find their
1953 // positions in the encoding. This assumes for now that they appear in the
1954 // MCInst in the order that they're listed.
1955 std::vector<std::pair<Init*, StringRef>> InOutOperands;
1956 DagInit *Out = Def.getValueAsDag("OutOperandList");
1957 DagInit *In = Def.getValueAsDag("InOperandList");
1958 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1959 InOutOperands.push_back(
1960 std::make_pair(Out->getArg(i), Out->getArgNameStr(i)));
1961 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1962 InOutOperands.push_back(
1963 std::make_pair(In->getArg(i), In->getArgNameStr(i)));
1964
1965 // Search for tied operands, so that we can correctly instantiate
1966 // operands that are not explicitly represented in the encoding.
1967 std::map<std::string, std::string> TiedNames;
1968 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1969 int tiedTo = CGI.Operands[i].getTiedRegister();
1970 if (tiedTo != -1) {
1971 std::pair<unsigned, unsigned> SO =
1972 CGI.Operands.getSubOperandNumber(tiedTo);
1973 TiedNames[std::string(InOutOperands[i].second)] =
1974 std::string(InOutOperands[SO.first].second);
1975 TiedNames[std::string(InOutOperands[SO.first].second)] =
1976 std::string(InOutOperands[i].second);
1977 }
1978 }
1979
1980 if (IsVarLenInst) {
1981 parseVarLenInstOperand(EncodingDef, InsnOperands, CGI);
1982 } else {
1983 std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
1984 std::set<std::string> NumberedInsnOperandsNoTie;
1985 if (Target.getInstructionSet()->getValueAsBit(
1986 "decodePositionallyEncodedOperands")) {
1987 const std::vector<RecordVal> &Vals = Def.getValues();
1988 unsigned NumberedOp = 0;
1989
1990 std::set<unsigned> NamedOpIndices;
1991 if (Target.getInstructionSet()->getValueAsBit(
1992 "noNamedPositionallyEncodedOperands"))
1993 // Collect the set of operand indices that might correspond to named
1994 // operand, and skip these when assigning operands based on position.
1995 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1996 unsigned OpIdx;
1997 if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1998 continue;
1999
2000 NamedOpIndices.insert(OpIdx);
2001 }
2002
2003 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2004 // Ignore fixed fields in the record, we're looking for values like:
2005 // bits<5> RST = { ?, ?, ?, ?, ? };
2006 if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
2007 continue;
2008
2009 // Determine if Vals[i] actually contributes to the Inst encoding.
2010 unsigned bi = 0;
2011 for (; bi < Bits.getNumBits(); ++bi) {
2012 VarInit *Var = nullptr;
2013 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2014 if (BI)
2015 Var = dyn_cast<VarInit>(BI->getBitVar());
2016 else
2017 Var = dyn_cast<VarInit>(Bits.getBit(bi));
2018
2019 if (Var && Var->getName() == Vals[i].getName())
2020 break;
2021 }
2022
2023 if (bi == Bits.getNumBits())
2024 continue;
2025
2026 // Skip variables that correspond to explicitly-named operands.
2027 unsigned OpIdx;
2028 if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
2029 continue;
2030
2031 // Get the bit range for this operand:
2032 unsigned bitStart = bi++, bitWidth = 1;
2033 for (; bi < Bits.getNumBits(); ++bi) {
2034 VarInit *Var = nullptr;
2035 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2036 if (BI)
2037 Var = dyn_cast<VarInit>(BI->getBitVar());
2038 else
2039 Var = dyn_cast<VarInit>(Bits.getBit(bi));
2040
2041 if (!Var)
2042 break;
2043
2044 if (Var->getName() != Vals[i].getName())
2045 break;
2046
2047 ++bitWidth;
2048 }
2049
2050 unsigned NumberOps = CGI.Operands.size();
2051 while (NumberedOp < NumberOps &&
2052 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
2053 (!NamedOpIndices.empty() &&
2054 NamedOpIndices.count(
2055 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
2056 ++NumberedOp;
2057
2058 OpIdx = NumberedOp++;
2059
2060 // OpIdx now holds the ordered operand number of Vals[i].
2061 std::pair<unsigned, unsigned> SO =
2062 CGI.Operands.getSubOperandNumber(OpIdx);
2063 const std::string &Name = CGI.Operands[SO.first].Name;
2064
2065 LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
2066 << ": " << Name << "(" << SO.first << ", "
2067 << SO.second << ") => " << Vals[i].getName() << "\n");
2068
2069 std::string Decoder;
2070 Record *TypeRecord = CGI.Operands[SO.first].Rec;
2071
2072 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
2073 StringInit *String =
2074 DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2075 : nullptr;
2076 if (String && String->getValue() != "")
2077 Decoder = std::string(String->getValue());
2078
2079 if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo &&
2080 CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
2081 Init *Arg = CGI.Operands[SO.first].MIOperandInfo->getArg(SO.second);
2082 if (DefInit *DI = cast<DefInit>(Arg))
2083 TypeRecord = DI->getDef();
2084 }
2085
2086 bool isReg = false;
2087 if (TypeRecord->isSubClassOf("RegisterOperand"))
2088 TypeRecord = TypeRecord->getValueAsDef("RegClass");
2089 if (TypeRecord->isSubClassOf("RegisterClass")) {
2090 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
2091 isReg = true;
2092 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
2093 Decoder = "DecodePointerLikeRegClass" +
2094 utostr(TypeRecord->getValueAsInt("RegClassKind"));
2095 isReg = true;
2096 }
2097
2098 DecoderString = TypeRecord->getValue("DecoderMethod");
2099 String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2100 : nullptr;
2101 if (!isReg && String && String->getValue() != "")
2102 Decoder = std::string(String->getValue());
2103
2104 RecordVal *HasCompleteDecoderVal =
2105 TypeRecord->getValue("hasCompleteDecoder");
2106 BitInit *HasCompleteDecoderBit =
2107 HasCompleteDecoderVal
2108 ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
2109 : nullptr;
2110 bool HasCompleteDecoder =
2111 HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
2112
2113 OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2114 OpInfo.addField(bitStart, bitWidth, 0);
2115
2116 NumberedInsnOperands[Name].push_back(OpInfo);
2117
2118 // FIXME: For complex operands with custom decoders we can't handle tied
2119 // sub-operands automatically. Skip those here and assume that this is
2120 // fixed up elsewhere.
2121 if (CGI.Operands[SO.first].MIOperandInfo &&
2122 CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String &&
2123 String->getValue() != "")
2124 NumberedInsnOperandsNoTie.insert(Name);
2125 }
2126 }
2127
2128 // For each operand, see if we can figure out where it is encoded.
2129 for (const auto &Op : InOutOperands) {
2130 if (!NumberedInsnOperands[std::string(Op.second)].empty()) {
2131 llvm::append_range(InsnOperands,
2132 NumberedInsnOperands[std::string(Op.second)]);
2133 continue;
2134 }
2135 if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) {
2136 if (!NumberedInsnOperandsNoTie.count(
2137 TiedNames[std::string(Op.second)])) {
2138 // Figure out to which (sub)operand we're tied.
2139 unsigned i =
2140 CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]);
2141 int tiedTo = CGI.Operands[i].getTiedRegister();
2142 if (tiedTo == -1) {
2143 i = CGI.Operands.getOperandNamed(Op.second);
2144 tiedTo = CGI.Operands[i].getTiedRegister();
2145 }
2146
2147 if (tiedTo != -1) {
2148 std::pair<unsigned, unsigned> SO =
2149 CGI.Operands.getSubOperandNumber(tiedTo);
2150
2151 InsnOperands.push_back(
2152 NumberedInsnOperands[TiedNames[std::string(Op.second)]]
2153 [SO.second]);
2154 }
2155 }
2156 continue;
2157 }
2158
2159 // At this point, we can locate the decoder field, but we need to know how
2160 // to interpret it. As a first step, require the target to provide
2161 // callbacks for decoding register classes.
2162
2163 OperandInfo OpInfo = getOpInfo(cast<DefInit>(Op.first)->getDef());
2164
2165 // Some bits of the operand may be required to be 1 depending on the
2166 // instruction's encoding. Collect those bits.
2167 if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second))
2168 if (const BitsInit *OpBits =
2169 dyn_cast<BitsInit>(EncodedValue->getValue()))
2170 for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
2171 if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
2172 if (OpBit->getValue())
2173 OpInfo.InitValue |= 1ULL << I;
2174
2175 unsigned Base = ~0U;
2176 unsigned Width = 0;
2177 unsigned Offset = 0;
2178
2179 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
2180 VarInit *Var = nullptr;
2181 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2182 if (BI)
2183 Var = dyn_cast<VarInit>(BI->getBitVar());
2184 else
2185 Var = dyn_cast<VarInit>(Bits.getBit(bi));
2186
2187 if (!Var) {
2188 if (Base != ~0U) {
2189 OpInfo.addField(Base, Width, Offset);
2190 Base = ~0U;
2191 Width = 0;
2192 Offset = 0;
2193 }
2194 continue;
2195 }
2196
2197 if ((Var->getName() != Op.second &&
2198 Var->getName() != TiedNames[std::string(Op.second)])) {
2199 if (Base != ~0U) {
2200 OpInfo.addField(Base, Width, Offset);
2201 Base = ~0U;
2202 Width = 0;
2203 Offset = 0;
2204 }
2205 continue;
2206 }
2207
2208 if (Base == ~0U) {
2209 Base = bi;
2210 Width = 1;
2211 Offset = BI ? BI->getBitNum() : 0;
2212 } else if (BI && BI->getBitNum() != Offset + Width) {
2213 OpInfo.addField(Base, Width, Offset);
2214 Base = bi;
2215 Width = 1;
2216 Offset = BI->getBitNum();
2217 } else {
2218 ++Width;
2219 }
2220 }
2221
2222 if (Base != ~0U)
2223 OpInfo.addField(Base, Width, Offset);
2224
2225 if (OpInfo.numFields() > 0)
2226 InsnOperands.push_back(OpInfo);
2227 }
2228 }
2229
2230 Operands[Opc] = InsnOperands;
2231
2232 #if 0
2233 LLVM_DEBUG({
2234 // Dumps the instruction encoding bits.
2235 dumpBits(errs(), Bits);
2236
2237 errs() << '\n';
2238
2239 // Dumps the list of operand info.
2240 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2241 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2242 const std::string &OperandName = Info.Name;
2243 const Record &OperandDef = *Info.Rec;
2244
2245 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2246 }
2247 });
2248 #endif
2249
2250 return Bits.getNumBits();
2251 }
2252
2253 // emitFieldFromInstruction - Emit the templated helper function
2254 // fieldFromInstruction().
2255 // On Windows we make sure that this function is not inlined when
2256 // using the VS compiler. It has a bug which causes the function
2257 // to be optimized out in some circustances. See llvm.org/pr38292
emitFieldFromInstruction(formatted_raw_ostream & OS)2258 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2259 OS << "// Helper functions for extracting fields from encoded instructions.\n"
2260 << "// InsnType must either be integral or an APInt-like object that "
2261 "must:\n"
2262 << "// * be default-constructible and copy-constructible\n"
2263 << "// * be constructible from an APInt (this can be private)\n"
2264 << "// * Support insertBits(bits, startBit, numBits)\n"
2265 << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
2266 << "// * Support the ~, &, ==, and != operators with other objects of "
2267 "the same type\n"
2268 << "// * Support the != and bitwise & with uint64_t\n"
2269 << "// * Support put (<<) to raw_ostream&\n"
2270 << "template <typename InsnType>\n"
2271 << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2272 << "__declspec(noinline)\n"
2273 << "#endif\n"
2274 << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
2275 << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2276 << " unsigned numBits) {\n"
2277 << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2278 "extractions!\");\n"
2279 << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2280 << " \"Instruction field out of bounds!\");\n"
2281 << " InsnType fieldMask;\n"
2282 << " if (numBits == sizeof(InsnType) * 8)\n"
2283 << " fieldMask = (InsnType)(-1LL);\n"
2284 << " else\n"
2285 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2286 << " return (insn & fieldMask) >> startBit;\n"
2287 << "}\n"
2288 << "\n"
2289 << "template <typename InsnType>\n"
2290 << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
2291 "uint64_t>\n"
2292 << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2293 << " unsigned numBits) {\n"
2294 << " return insn.extractBitsAsZExtValue(numBits, startBit);\n"
2295 << "}\n\n";
2296 }
2297
2298 // emitInsertBits - Emit the templated helper function insertBits().
emitInsertBits(formatted_raw_ostream & OS)2299 static void emitInsertBits(formatted_raw_ostream &OS) {
2300 OS << "// Helper function for inserting bits extracted from an encoded "
2301 "instruction into\n"
2302 << "// a field.\n"
2303 << "template <typename InsnType>\n"
2304 << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
2305 << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
2306 "unsigned numBits) {\n"
2307 << " assert(startBit + numBits <= sizeof field * 8);\n"
2308 << " field |= (InsnType)bits << startBit;\n"
2309 << "}\n"
2310 << "\n"
2311 << "template <typename InsnType>\n"
2312 << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
2313 << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
2314 "unsigned numBits) {\n"
2315 << " field.insertBits(bits, startBit, numBits);\n"
2316 << "}\n\n";
2317 }
2318
2319 // emitDecodeInstruction - Emit the templated helper function
2320 // decodeInstruction().
emitDecodeInstruction(formatted_raw_ostream & OS,bool IsVarLenInst)2321 static void emitDecodeInstruction(formatted_raw_ostream &OS,
2322 bool IsVarLenInst) {
2323 OS << "template <typename InsnType>\n"
2324 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2325 "MCInst &MI,\n"
2326 << " InsnType insn, uint64_t "
2327 "Address,\n"
2328 << " const MCDisassembler *DisAsm,\n"
2329 << " const MCSubtargetInfo &STI";
2330 if (IsVarLenInst) {
2331 OS << ",\n"
2332 << " llvm::function_ref<void(APInt "
2333 "&,"
2334 << " uint64_t)> makeUp";
2335 }
2336 OS << ") {\n"
2337 << " const FeatureBitset &Bits = STI.getFeatureBits();\n"
2338 << "\n"
2339 << " const uint8_t *Ptr = DecodeTable;\n"
2340 << " uint64_t CurFieldValue = 0;\n"
2341 << " DecodeStatus S = MCDisassembler::Success;\n"
2342 << " while (true) {\n"
2343 << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2344 << " switch (*Ptr) {\n"
2345 << " default:\n"
2346 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2347 << " return MCDisassembler::Fail;\n"
2348 << " case MCD::OPC_ExtractField: {\n"
2349 << " unsigned Start = *++Ptr;\n"
2350 << " unsigned Len = *++Ptr;\n"
2351 << " ++Ptr;\n";
2352 if (IsVarLenInst)
2353 OS << " makeUp(insn, Start + Len);\n";
2354 OS << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2355 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2356 "\", \"\n"
2357 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2358 << " break;\n"
2359 << " }\n"
2360 << " case MCD::OPC_FilterValue: {\n"
2361 << " // Decode the field value.\n"
2362 << " unsigned Len;\n"
2363 << " uint64_t Val = decodeULEB128(++Ptr, &Len);\n"
2364 << " Ptr += Len;\n"
2365 << " // NumToSkip is a plain 24-bit integer.\n"
2366 << " unsigned NumToSkip = *Ptr++;\n"
2367 << " NumToSkip |= (*Ptr++) << 8;\n"
2368 << " NumToSkip |= (*Ptr++) << 16;\n"
2369 << "\n"
2370 << " // Perform the filter operation.\n"
2371 << " if (Val != CurFieldValue)\n"
2372 << " Ptr += NumToSkip;\n"
2373 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2374 "\", \" << NumToSkip\n"
2375 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2376 ": \"PASS:\")\n"
2377 << " << \" continuing at \" << (Ptr - DecodeTable) << "
2378 "\"\\n\");\n"
2379 << "\n"
2380 << " break;\n"
2381 << " }\n"
2382 << " case MCD::OPC_CheckField: {\n"
2383 << " unsigned Start = *++Ptr;\n"
2384 << " unsigned Len = *++Ptr;\n";
2385 if (IsVarLenInst)
2386 OS << " makeUp(insn, Start + Len);\n";
2387 OS << " uint64_t FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2388 << " // Decode the field value.\n"
2389 << " unsigned PtrLen = 0;\n"
2390 << " uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen);\n"
2391 << " Ptr += PtrLen;\n"
2392 << " // NumToSkip is a plain 24-bit integer.\n"
2393 << " unsigned NumToSkip = *Ptr++;\n"
2394 << " NumToSkip |= (*Ptr++) << 8;\n"
2395 << " NumToSkip |= (*Ptr++) << 16;\n"
2396 << "\n"
2397 << " // If the actual and expected values don't match, skip.\n"
2398 << " if (ExpectedValue != FieldValue)\n"
2399 << " Ptr += NumToSkip;\n"
2400 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2401 "\", \"\n"
2402 << " << Len << \", \" << ExpectedValue << \", \" << "
2403 "NumToSkip\n"
2404 << " << \"): FieldValue = \" << FieldValue << \", "
2405 "ExpectedValue = \"\n"
2406 << " << ExpectedValue << \": \"\n"
2407 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2408 "\"FAIL\\n\"));\n"
2409 << " break;\n"
2410 << " }\n"
2411 << " case MCD::OPC_CheckPredicate: {\n"
2412 << " unsigned Len;\n"
2413 << " // Decode the Predicate Index value.\n"
2414 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2415 << " Ptr += Len;\n"
2416 << " // NumToSkip is a plain 24-bit integer.\n"
2417 << " unsigned NumToSkip = *Ptr++;\n"
2418 << " NumToSkip |= (*Ptr++) << 8;\n"
2419 << " NumToSkip |= (*Ptr++) << 16;\n"
2420 << " // Check the predicate.\n"
2421 << " bool Pred;\n"
2422 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2423 << " Ptr += NumToSkip;\n"
2424 << " (void)Pred;\n"
2425 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2426 "<< \"): \"\n"
2427 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2428 << "\n"
2429 << " break;\n"
2430 << " }\n"
2431 << " case MCD::OPC_Decode: {\n"
2432 << " unsigned Len;\n"
2433 << " // Decode the Opcode value.\n"
2434 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2435 << " Ptr += Len;\n"
2436 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2437 << " Ptr += Len;\n"
2438 << "\n"
2439 << " MI.clear();\n"
2440 << " MI.setOpcode(Opc);\n"
2441 << " bool DecodeComplete;\n";
2442 if (IsVarLenInst) {
2443 OS << " Len = InstrLenTable[Opc];\n"
2444 << " makeUp(insn, Len);\n";
2445 }
2446 OS << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2447 "DecodeComplete);\n"
2448 << " assert(DecodeComplete);\n"
2449 << "\n"
2450 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2451 << " << \", using decoder \" << DecodeIdx << \": \"\n"
2452 << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2453 "\"FAIL\") << \"\\n\");\n"
2454 << " return S;\n"
2455 << " }\n"
2456 << " case MCD::OPC_TryDecode: {\n"
2457 << " unsigned Len;\n"
2458 << " // Decode the Opcode value.\n"
2459 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2460 << " Ptr += Len;\n"
2461 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2462 << " Ptr += Len;\n"
2463 << " // NumToSkip is a plain 24-bit integer.\n"
2464 << " unsigned NumToSkip = *Ptr++;\n"
2465 << " NumToSkip |= (*Ptr++) << 8;\n"
2466 << " NumToSkip |= (*Ptr++) << 16;\n"
2467 << "\n"
2468 << " // Perform the decode operation.\n"
2469 << " MCInst TmpMI;\n"
2470 << " TmpMI.setOpcode(Opc);\n"
2471 << " bool DecodeComplete;\n"
2472 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2473 "DecodeComplete);\n"
2474 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2475 "Opc\n"
2476 << " << \", using decoder \" << DecodeIdx << \": \");\n"
2477 << "\n"
2478 << " if (DecodeComplete) {\n"
2479 << " // Decoding complete.\n"
2480 << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2481 "\"FAIL\") << \"\\n\");\n"
2482 << " MI = TmpMI;\n"
2483 << " return S;\n"
2484 << " } else {\n"
2485 << " assert(S == MCDisassembler::Fail);\n"
2486 << " // If the decoding was incomplete, skip.\n"
2487 << " Ptr += NumToSkip;\n"
2488 << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2489 "DecodeTable) << \"\\n\");\n"
2490 << " // Reset decode status. This also drops a SoftFail status "
2491 "that could be\n"
2492 << " // set before the decode attempt.\n"
2493 << " S = MCDisassembler::Success;\n"
2494 << " }\n"
2495 << " break;\n"
2496 << " }\n"
2497 << " case MCD::OPC_SoftFail: {\n"
2498 << " // Decode the mask values.\n"
2499 << " unsigned Len;\n"
2500 << " uint64_t PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2501 << " Ptr += Len;\n"
2502 << " uint64_t NegativeMask = decodeULEB128(Ptr, &Len);\n"
2503 << " Ptr += Len;\n"
2504 << " bool Fail = (insn & PositiveMask) != 0 || (~insn & "
2505 "NegativeMask) != 0;\n"
2506 << " if (Fail)\n"
2507 << " S = MCDisassembler::SoftFail;\n"
2508 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2509 "\"FAIL\\n\" : \"PASS\\n\"));\n"
2510 << " break;\n"
2511 << " }\n"
2512 << " case MCD::OPC_Fail: {\n"
2513 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2514 << " return MCDisassembler::Fail;\n"
2515 << " }\n"
2516 << " }\n"
2517 << " }\n"
2518 << " llvm_unreachable(\"bogosity detected in disassembler state "
2519 "machine!\");\n"
2520 << "}\n\n";
2521 }
2522
2523 // Emits disassembler code for instruction decoding.
run(raw_ostream & o)2524 void DecoderEmitter::run(raw_ostream &o) {
2525 formatted_raw_ostream OS(o);
2526 OS << "#include \"llvm/MC/MCInst.h\"\n";
2527 OS << "#include \"llvm/MC/MCSubtargetInfo.h\"\n";
2528 OS << "#include \"llvm/MC/SubtargetFeature.h\"\n";
2529 OS << "#include \"llvm/Support/DataTypes.h\"\n";
2530 OS << "#include \"llvm/Support/Debug.h\"\n";
2531 OS << "#include \"llvm/Support/LEB128.h\"\n";
2532 OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2533 OS << "#include <assert.h>\n";
2534 OS << '\n';
2535 OS << "namespace llvm {\n\n";
2536
2537 emitFieldFromInstruction(OS);
2538 emitInsertBits(OS);
2539
2540 Target.reverseBitsForLittleEndianEncoding();
2541
2542 // Parameterize the decoders based on namespace and instruction width.
2543 std::set<StringRef> HwModeNames;
2544 const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2545 NumberedEncodings.reserve(NumberedInstructions.size());
2546 DenseMap<Record *, unsigned> IndexOfInstruction;
2547 // First, collect all HwModes referenced by the target.
2548 for (const auto &NumberedInstruction : NumberedInstructions) {
2549 IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2550
2551 if (const RecordVal *RV =
2552 NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2553 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2554 const CodeGenHwModes &HWM = Target.getHwModes();
2555 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2556 for (auto &KV : EBM)
2557 HwModeNames.insert(HWM.getMode(KV.first).Name);
2558 }
2559 }
2560 }
2561
2562 // If HwModeNames is empty, add the empty string so we always have one HwMode.
2563 if (HwModeNames.empty())
2564 HwModeNames.insert("");
2565
2566 for (const auto &NumberedInstruction : NumberedInstructions) {
2567 IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2568
2569 if (const RecordVal *RV =
2570 NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2571 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2572 const CodeGenHwModes &HWM = Target.getHwModes();
2573 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2574 for (auto &KV : EBM) {
2575 NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
2576 HWM.getMode(KV.first).Name);
2577 HwModeNames.insert(HWM.getMode(KV.first).Name);
2578 }
2579 continue;
2580 }
2581 }
2582 // This instruction is encoded the same on all HwModes. Emit it for all
2583 // HwModes.
2584 for (StringRef HwModeName : HwModeNames)
2585 NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
2586 NumberedInstruction, HwModeName);
2587 }
2588 for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
2589 NumberedEncodings.emplace_back(
2590 NumberedAlias,
2591 &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
2592
2593 std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
2594 OpcMap;
2595 std::map<unsigned, std::vector<OperandInfo>> Operands;
2596 std::vector<unsigned> InstrLen;
2597
2598 bool IsVarLenInst =
2599 any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) {
2600 RecordVal *RV = CGI->TheDef->getValue("Inst");
2601 return RV && isa<DagInit>(RV->getValue());
2602 });
2603 unsigned MaxInstLen = 0;
2604
2605 for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2606 const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
2607 const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2608 const Record *Def = Inst->TheDef;
2609 unsigned Size = EncodingDef->getValueAsInt("Size");
2610 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2611 Def->getValueAsBit("isPseudo") ||
2612 Def->getValueAsBit("isAsmParserOnly") ||
2613 Def->getValueAsBit("isCodeGenOnly")) {
2614 NumEncodingsLackingDisasm++;
2615 continue;
2616 }
2617
2618 if (i < NumberedInstructions.size())
2619 NumInstructions++;
2620 NumEncodings++;
2621
2622 if (!Size && !IsVarLenInst)
2623 continue;
2624
2625 if (IsVarLenInst)
2626 InstrLen.resize(NumberedInstructions.size(), 0);
2627
2628 if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, i,
2629 Operands, IsVarLenInst)) {
2630 if (IsVarLenInst) {
2631 MaxInstLen = std::max(MaxInstLen, Len);
2632 InstrLen[i] = Len;
2633 }
2634 std::string DecoderNamespace =
2635 std::string(EncodingDef->getValueAsString("DecoderNamespace"));
2636 if (!NumberedEncodings[i].HwModeName.empty())
2637 DecoderNamespace +=
2638 std::string("_") + NumberedEncodings[i].HwModeName.str();
2639 OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
2640 i, IndexOfInstruction.find(Def)->second);
2641 } else {
2642 NumEncodingsOmitted++;
2643 }
2644 }
2645
2646 DecoderTableInfo TableInfo;
2647 for (const auto &Opc : OpcMap) {
2648 // Emit the decoder for this namespace+width combination.
2649 ArrayRef<EncodingAndInst> NumberedEncodingsRef(
2650 NumberedEncodings.data(), NumberedEncodings.size());
2651 FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2652 IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this);
2653
2654 // The decode table is cleared for each top level decoder function. The
2655 // predicates and decoders themselves, however, are shared across all
2656 // decoders to give more opportunities for uniqueing.
2657 TableInfo.Table.clear();
2658 TableInfo.FixupStack.clear();
2659 TableInfo.Table.reserve(16384);
2660 TableInfo.FixupStack.emplace_back();
2661 FC.emitTableEntries(TableInfo);
2662 // Any NumToSkip fixups in the top level scope can resolve to the
2663 // OPC_Fail at the end of the table.
2664 assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2665 // Resolve any NumToSkip fixups in the current scope.
2666 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2667 TableInfo.Table.size());
2668 TableInfo.FixupStack.clear();
2669
2670 TableInfo.Table.push_back(MCD::OPC_Fail);
2671
2672 // Print the table to the output stream.
2673 emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2674 OS.flush();
2675 }
2676
2677 // For variable instruction, we emit a instruction length table
2678 // to let the decoder know how long the instructions are.
2679 // You can see example usage in M68k's disassembler.
2680 if (IsVarLenInst)
2681 emitInstrLenTable(OS, InstrLen);
2682 // Emit the predicate function.
2683 emitPredicateFunction(OS, TableInfo.Predicates, 0);
2684
2685 // Emit the decoder function.
2686 emitDecoderFunction(OS, TableInfo.Decoders, 0);
2687
2688 // Emit the main entry point for the decoder, decodeInstruction().
2689 emitDecodeInstruction(OS, IsVarLenInst);
2690
2691 OS << "\n} // end namespace llvm\n";
2692 }
2693
2694 namespace llvm {
2695
EmitDecoder(RecordKeeper & RK,raw_ostream & OS,const std::string & PredicateNamespace,const std::string & GPrefix,const std::string & GPostfix,const std::string & ROK,const std::string & RFail,const std::string & L)2696 void EmitDecoder(RecordKeeper &RK, raw_ostream &OS,
2697 const std::string &PredicateNamespace,
2698 const std::string &GPrefix, const std::string &GPostfix,
2699 const std::string &ROK, const std::string &RFail,
2700 const std::string &L) {
2701 DecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L)
2702 .run(OS);
2703 }
2704
2705 } // end namespace llvm
2706