1df3765bfSSheng //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// 2df3765bfSSheng // 3df3765bfSSheng // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4df3765bfSSheng // See https://llvm.org/LICENSE.txt for license information. 5df3765bfSSheng // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6df3765bfSSheng // 7df3765bfSSheng //===----------------------------------------------------------------------===// 8df3765bfSSheng // 9df3765bfSSheng // It contains the tablegen backend that emits the decoder functions for 10df3765bfSSheng // targets with fixed/variable length instruction set. 11df3765bfSSheng // 12df3765bfSSheng //===----------------------------------------------------------------------===// 13df3765bfSSheng 14df3765bfSSheng #include "CodeGenInstruction.h" 15df3765bfSSheng #include "CodeGenTarget.h" 16df3765bfSSheng #include "InfoByHwMode.h" 17df3765bfSSheng #include "VarLenCodeEmitterGen.h" 18df3765bfSSheng #include "llvm/ADT/APInt.h" 19df3765bfSSheng #include "llvm/ADT/ArrayRef.h" 20df3765bfSSheng #include "llvm/ADT/CachedHashString.h" 21df3765bfSSheng #include "llvm/ADT/STLExtras.h" 22df3765bfSSheng #include "llvm/ADT/SetVector.h" 23df3765bfSSheng #include "llvm/ADT/SmallString.h" 24df3765bfSSheng #include "llvm/ADT/Statistic.h" 25df3765bfSSheng #include "llvm/ADT/StringExtras.h" 26df3765bfSSheng #include "llvm/ADT/StringRef.h" 27df3765bfSSheng #include "llvm/MC/MCFixedLenDisassembler.h" 28df3765bfSSheng #include "llvm/Support/Casting.h" 29df3765bfSSheng #include "llvm/Support/Debug.h" 30df3765bfSSheng #include "llvm/Support/ErrorHandling.h" 31df3765bfSSheng #include "llvm/Support/FormattedStream.h" 32df3765bfSSheng #include "llvm/Support/LEB128.h" 33df3765bfSSheng #include "llvm/Support/raw_ostream.h" 34df3765bfSSheng #include "llvm/TableGen/Error.h" 35df3765bfSSheng #include "llvm/TableGen/Record.h" 36df3765bfSSheng #include <algorithm> 37df3765bfSSheng #include <cassert> 38df3765bfSSheng #include <cstddef> 39df3765bfSSheng #include <cstdint> 40df3765bfSSheng #include <map> 41df3765bfSSheng #include <memory> 42df3765bfSSheng #include <set> 43df3765bfSSheng #include <string> 44df3765bfSSheng #include <utility> 45df3765bfSSheng #include <vector> 46df3765bfSSheng 47df3765bfSSheng using namespace llvm; 48df3765bfSSheng 49df3765bfSSheng #define DEBUG_TYPE "decoder-emitter" 50df3765bfSSheng 51df3765bfSSheng namespace { 52df3765bfSSheng 53df3765bfSSheng STATISTIC(NumEncodings, "Number of encodings considered"); 54df3765bfSSheng STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info"); 55df3765bfSSheng STATISTIC(NumInstructions, "Number of instructions considered"); 56df3765bfSSheng STATISTIC(NumEncodingsSupported, "Number of encodings supported"); 57df3765bfSSheng STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); 58df3765bfSSheng 59df3765bfSSheng struct EncodingField { 60df3765bfSSheng unsigned Base, Width, Offset; 61df3765bfSSheng EncodingField(unsigned B, unsigned W, unsigned O) 62df3765bfSSheng : Base(B), Width(W), Offset(O) { } 63df3765bfSSheng }; 64df3765bfSSheng 65df3765bfSSheng struct OperandInfo { 66df3765bfSSheng std::vector<EncodingField> Fields; 67df3765bfSSheng std::string Decoder; 68df3765bfSSheng bool HasCompleteDecoder; 69df3765bfSSheng uint64_t InitValue; 70df3765bfSSheng 71df3765bfSSheng OperandInfo(std::string D, bool HCD) 72df3765bfSSheng : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {} 73df3765bfSSheng 74df3765bfSSheng void addField(unsigned Base, unsigned Width, unsigned Offset) { 75df3765bfSSheng Fields.push_back(EncodingField(Base, Width, Offset)); 76df3765bfSSheng } 77df3765bfSSheng 78df3765bfSSheng unsigned numFields() const { return Fields.size(); } 79df3765bfSSheng 80df3765bfSSheng typedef std::vector<EncodingField>::const_iterator const_iterator; 81df3765bfSSheng 82df3765bfSSheng const_iterator begin() const { return Fields.begin(); } 83df3765bfSSheng const_iterator end() const { return Fields.end(); } 84df3765bfSSheng }; 85df3765bfSSheng 86df3765bfSSheng typedef std::vector<uint8_t> DecoderTable; 87df3765bfSSheng typedef uint32_t DecoderFixup; 88df3765bfSSheng typedef std::vector<DecoderFixup> FixupList; 89df3765bfSSheng typedef std::vector<FixupList> FixupScopeList; 90df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> PredicateSet; 91df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> DecoderSet; 92df3765bfSSheng struct DecoderTableInfo { 93df3765bfSSheng DecoderTable Table; 94df3765bfSSheng FixupScopeList FixupStack; 95df3765bfSSheng PredicateSet Predicates; 96df3765bfSSheng DecoderSet Decoders; 97df3765bfSSheng }; 98df3765bfSSheng 99df3765bfSSheng struct EncodingAndInst { 100df3765bfSSheng const Record *EncodingDef; 101df3765bfSSheng const CodeGenInstruction *Inst; 102df3765bfSSheng StringRef HwModeName; 103df3765bfSSheng 104df3765bfSSheng EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst, 105df3765bfSSheng StringRef HwModeName = "") 106df3765bfSSheng : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {} 107df3765bfSSheng }; 108df3765bfSSheng 109df3765bfSSheng struct EncodingIDAndOpcode { 110df3765bfSSheng unsigned EncodingID; 111df3765bfSSheng unsigned Opcode; 112df3765bfSSheng 113df3765bfSSheng EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {} 114df3765bfSSheng EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode) 115df3765bfSSheng : EncodingID(EncodingID), Opcode(Opcode) {} 116df3765bfSSheng }; 117df3765bfSSheng 118df3765bfSSheng raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) { 119df3765bfSSheng if (Value.EncodingDef != Value.Inst->TheDef) 120df3765bfSSheng OS << Value.EncodingDef->getName() << ":"; 121df3765bfSSheng OS << Value.Inst->TheDef->getName(); 122df3765bfSSheng return OS; 123df3765bfSSheng } 124df3765bfSSheng 125df3765bfSSheng class DecoderEmitter { 126df3765bfSSheng RecordKeeper &RK; 127df3765bfSSheng std::vector<EncodingAndInst> NumberedEncodings; 128df3765bfSSheng 129df3765bfSSheng public: 130df3765bfSSheng // Defaults preserved here for documentation, even though they aren't 131df3765bfSSheng // strictly necessary given the way that this is currently being called. 132df3765bfSSheng DecoderEmitter(RecordKeeper &R, std::string PredicateNamespace, 133df3765bfSSheng std::string GPrefix = "if (", 134df3765bfSSheng std::string GPostfix = " == MCDisassembler::Fail)", 135df3765bfSSheng std::string ROK = "MCDisassembler::Success", 136df3765bfSSheng std::string RFail = "MCDisassembler::Fail", std::string L = "") 137df3765bfSSheng : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)), 138df3765bfSSheng GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)), 139df3765bfSSheng ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)), 140df3765bfSSheng Locals(std::move(L)) {} 141df3765bfSSheng 142df3765bfSSheng // Emit the decoder state machine table. 143df3765bfSSheng void emitTable(formatted_raw_ostream &o, DecoderTable &Table, 144df3765bfSSheng unsigned Indentation, unsigned BitWidth, 145df3765bfSSheng StringRef Namespace) const; 146df3765bfSSheng void emitInstrLenTable(formatted_raw_ostream &OS, 147df3765bfSSheng std::vector<unsigned> &InstrLen) const; 148df3765bfSSheng void emitPredicateFunction(formatted_raw_ostream &OS, 149df3765bfSSheng PredicateSet &Predicates, 150df3765bfSSheng unsigned Indentation) const; 151df3765bfSSheng void emitDecoderFunction(formatted_raw_ostream &OS, 152df3765bfSSheng DecoderSet &Decoders, 153df3765bfSSheng unsigned Indentation) const; 154df3765bfSSheng 155df3765bfSSheng // run - Output the code emitter 156df3765bfSSheng void run(raw_ostream &o); 157df3765bfSSheng 158df3765bfSSheng private: 159df3765bfSSheng CodeGenTarget Target; 160df3765bfSSheng 161df3765bfSSheng public: 162df3765bfSSheng std::string PredicateNamespace; 163df3765bfSSheng std::string GuardPrefix, GuardPostfix; 164df3765bfSSheng std::string ReturnOK, ReturnFail; 165df3765bfSSheng std::string Locals; 166df3765bfSSheng }; 167df3765bfSSheng 168df3765bfSSheng } // end anonymous namespace 169df3765bfSSheng 170df3765bfSSheng // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system 171df3765bfSSheng // for a bit value. 172df3765bfSSheng // 173df3765bfSSheng // BIT_UNFILTERED is used as the init value for a filter position. It is used 174df3765bfSSheng // only for filter processings. 175df3765bfSSheng typedef enum { 176df3765bfSSheng BIT_TRUE, // '1' 177df3765bfSSheng BIT_FALSE, // '0' 178df3765bfSSheng BIT_UNSET, // '?' 179df3765bfSSheng BIT_UNFILTERED // unfiltered 180df3765bfSSheng } bit_value_t; 181df3765bfSSheng 182df3765bfSSheng static bool ValueSet(bit_value_t V) { 183df3765bfSSheng return (V == BIT_TRUE || V == BIT_FALSE); 184df3765bfSSheng } 185df3765bfSSheng 186df3765bfSSheng static bool ValueNotSet(bit_value_t V) { 187df3765bfSSheng return (V == BIT_UNSET); 188df3765bfSSheng } 189df3765bfSSheng 190df3765bfSSheng static int Value(bit_value_t V) { 191df3765bfSSheng return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); 192df3765bfSSheng } 193df3765bfSSheng 194df3765bfSSheng static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { 195df3765bfSSheng if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) 196df3765bfSSheng return bit->getValue() ? BIT_TRUE : BIT_FALSE; 197df3765bfSSheng 198df3765bfSSheng // The bit is uninitialized. 199df3765bfSSheng return BIT_UNSET; 200df3765bfSSheng } 201df3765bfSSheng 202df3765bfSSheng // Prints the bit value for each position. 203df3765bfSSheng static void dumpBits(raw_ostream &o, const BitsInit &bits) { 204df3765bfSSheng for (unsigned index = bits.getNumBits(); index > 0; --index) { 205df3765bfSSheng switch (bitFromBits(bits, index - 1)) { 206df3765bfSSheng case BIT_TRUE: 207df3765bfSSheng o << "1"; 208df3765bfSSheng break; 209df3765bfSSheng case BIT_FALSE: 210df3765bfSSheng o << "0"; 211df3765bfSSheng break; 212df3765bfSSheng case BIT_UNSET: 213df3765bfSSheng o << "_"; 214df3765bfSSheng break; 215df3765bfSSheng default: 216df3765bfSSheng llvm_unreachable("unexpected return value from bitFromBits"); 217df3765bfSSheng } 218df3765bfSSheng } 219df3765bfSSheng } 220df3765bfSSheng 221df3765bfSSheng static BitsInit &getBitsField(const Record &def, StringRef str) { 222df3765bfSSheng const RecordVal *RV = def.getValue(str); 223df3765bfSSheng if (BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue())) 224df3765bfSSheng return *Bits; 225df3765bfSSheng 226df3765bfSSheng // variable length instruction 227df3765bfSSheng VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV); 228df3765bfSSheng SmallVector<Init *, 16> Bits; 229df3765bfSSheng 230df3765bfSSheng for (auto &SI : VLI) { 231df3765bfSSheng if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) { 232df3765bfSSheng for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) { 233df3765bfSSheng Bits.push_back(BI->getBit(Idx)); 234df3765bfSSheng } 235df3765bfSSheng } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) { 236df3765bfSSheng Bits.push_back(const_cast<BitInit *>(BI)); 237df3765bfSSheng } else { 238df3765bfSSheng for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx) 239*2ac3cd20SRiver Riddle Bits.push_back(UnsetInit::get(def.getRecords())); 240df3765bfSSheng } 241df3765bfSSheng } 242df3765bfSSheng 243*2ac3cd20SRiver Riddle return *BitsInit::get(def.getRecords(), Bits); 244df3765bfSSheng } 245df3765bfSSheng 246df3765bfSSheng // Representation of the instruction to work on. 247df3765bfSSheng typedef std::vector<bit_value_t> insn_t; 248df3765bfSSheng 249df3765bfSSheng namespace { 250df3765bfSSheng 251df3765bfSSheng static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL; 252df3765bfSSheng 253df3765bfSSheng class FilterChooser; 254df3765bfSSheng 255df3765bfSSheng /// Filter - Filter works with FilterChooser to produce the decoding tree for 256df3765bfSSheng /// the ISA. 257df3765bfSSheng /// 258df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the 259df3765bfSSheng /// decoding tree in a certain level. Each case stmt delegates to an inferior 260df3765bfSSheng /// FilterChooser to decide what further decoding logic to employ, or in another 261df3765bfSSheng /// words, what other remaining bits to look at. The FilterChooser eventually 262df3765bfSSheng /// chooses a best Filter to do its job. 263df3765bfSSheng /// 264df3765bfSSheng /// This recursive scheme ends when the number of Opcodes assigned to the 265df3765bfSSheng /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when 266df3765bfSSheng /// the Filter/FilterChooser combo does not know how to distinguish among the 267df3765bfSSheng /// Opcodes assigned. 268df3765bfSSheng /// 269df3765bfSSheng /// An example of a conflict is 270df3765bfSSheng /// 271df3765bfSSheng /// Conflict: 272df3765bfSSheng /// 111101000.00........00010000.... 273df3765bfSSheng /// 111101000.00........0001........ 274df3765bfSSheng /// 1111010...00........0001........ 275df3765bfSSheng /// 1111010...00.................... 276df3765bfSSheng /// 1111010......................... 277df3765bfSSheng /// 1111............................ 278df3765bfSSheng /// ................................ 279df3765bfSSheng /// VST4q8a 111101000_00________00010000____ 280df3765bfSSheng /// VST4q8b 111101000_00________00010000____ 281df3765bfSSheng /// 282df3765bfSSheng /// The Debug output shows the path that the decoding tree follows to reach the 283df3765bfSSheng /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced 284df3765bfSSheng /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. 285df3765bfSSheng /// 286df3765bfSSheng /// The encoding info in the .td files does not specify this meta information, 287df3765bfSSheng /// which could have been used by the decoder to resolve the conflict. The 288df3765bfSSheng /// decoder could try to decode the even/odd register numbering and assign to 289df3765bfSSheng /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" 290df3765bfSSheng /// version and return the Opcode since the two have the same Asm format string. 291df3765bfSSheng class Filter { 292df3765bfSSheng protected: 293df3765bfSSheng const FilterChooser *Owner;// points to the FilterChooser who owns this filter 294df3765bfSSheng unsigned StartBit; // the starting bit position 295df3765bfSSheng unsigned NumBits; // number of bits to filter 296df3765bfSSheng bool Mixed; // a mixed region contains both set and unset bits 297df3765bfSSheng 298df3765bfSSheng // Map of well-known segment value to the set of uid's with that value. 299df3765bfSSheng std::map<uint64_t, std::vector<EncodingIDAndOpcode>> 300df3765bfSSheng FilteredInstructions; 301df3765bfSSheng 302df3765bfSSheng // Set of uid's with non-constant segment values. 303df3765bfSSheng std::vector<EncodingIDAndOpcode> VariableInstructions; 304df3765bfSSheng 305df3765bfSSheng // Map of well-known segment value to its delegate. 306df3765bfSSheng std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap; 307df3765bfSSheng 308df3765bfSSheng // Number of instructions which fall under FilteredInstructions category. 309df3765bfSSheng unsigned NumFiltered; 310df3765bfSSheng 311df3765bfSSheng // Keeps track of the last opcode in the filtered bucket. 312df3765bfSSheng EncodingIDAndOpcode LastOpcFiltered; 313df3765bfSSheng 314df3765bfSSheng public: 315df3765bfSSheng Filter(Filter &&f); 316df3765bfSSheng Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); 317df3765bfSSheng 318df3765bfSSheng ~Filter() = default; 319df3765bfSSheng 320df3765bfSSheng unsigned getNumFiltered() const { return NumFiltered; } 321df3765bfSSheng 322df3765bfSSheng EncodingIDAndOpcode getSingletonOpc() const { 323df3765bfSSheng assert(NumFiltered == 1); 324df3765bfSSheng return LastOpcFiltered; 325df3765bfSSheng } 326df3765bfSSheng 327df3765bfSSheng // Return the filter chooser for the group of instructions without constant 328df3765bfSSheng // segment values. 329df3765bfSSheng const FilterChooser &getVariableFC() const { 330df3765bfSSheng assert(NumFiltered == 1); 331df3765bfSSheng assert(FilterChooserMap.size() == 1); 332df3765bfSSheng return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second); 333df3765bfSSheng } 334df3765bfSSheng 335df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the 336df3765bfSSheng // inferior FilterChooser's. 337df3765bfSSheng // 338df3765bfSSheng // A special case arises when there's only one entry in the filtered 339df3765bfSSheng // instructions. In order to unambiguously decode the singleton, we need to 340df3765bfSSheng // match the remaining undecoded encoding bits against the singleton. 341df3765bfSSheng void recurse(); 342df3765bfSSheng 343df3765bfSSheng // Emit table entries to decode instructions given a segment or segments of 344df3765bfSSheng // bits. 345df3765bfSSheng void emitTableEntry(DecoderTableInfo &TableInfo) const; 346df3765bfSSheng 347df3765bfSSheng // Returns the number of fanout produced by the filter. More fanout implies 348df3765bfSSheng // the filter distinguishes more categories of instructions. 349df3765bfSSheng unsigned usefulness() const; 350df3765bfSSheng }; // end class Filter 351df3765bfSSheng 352df3765bfSSheng } // end anonymous namespace 353df3765bfSSheng 354df3765bfSSheng // These are states of our finite state machines used in FilterChooser's 355df3765bfSSheng // filterProcessor() which produces the filter candidates to use. 356df3765bfSSheng typedef enum { 357df3765bfSSheng ATTR_NONE, 358df3765bfSSheng ATTR_FILTERED, 359df3765bfSSheng ATTR_ALL_SET, 360df3765bfSSheng ATTR_ALL_UNSET, 361df3765bfSSheng ATTR_MIXED 362df3765bfSSheng } bitAttr_t; 363df3765bfSSheng 364df3765bfSSheng /// FilterChooser - FilterChooser chooses the best filter among a set of Filters 365df3765bfSSheng /// in order to perform the decoding of instructions at the current level. 366df3765bfSSheng /// 367df3765bfSSheng /// Decoding proceeds from the top down. Based on the well-known encoding bits 368df3765bfSSheng /// of instructions available, FilterChooser builds up the possible Filters that 369df3765bfSSheng /// can further the task of decoding by distinguishing among the remaining 370df3765bfSSheng /// candidate instructions. 371df3765bfSSheng /// 372df3765bfSSheng /// Once a filter has been chosen, it is called upon to divide the decoding task 373df3765bfSSheng /// into sub-tasks and delegates them to its inferior FilterChoosers for further 374df3765bfSSheng /// processings. 375df3765bfSSheng /// 376df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the 377df3765bfSSheng /// decoding tree. And each case is delegated to an inferior FilterChooser to 378df3765bfSSheng /// decide what further remaining bits to look at. 379df3765bfSSheng namespace { 380df3765bfSSheng 381df3765bfSSheng class FilterChooser { 382df3765bfSSheng protected: 383df3765bfSSheng friend class Filter; 384df3765bfSSheng 385df3765bfSSheng // Vector of codegen instructions to choose our filter. 386df3765bfSSheng ArrayRef<EncodingAndInst> AllInstructions; 387df3765bfSSheng 388df3765bfSSheng // Vector of uid's for this filter chooser to work on. 389df3765bfSSheng // The first member of the pair is the opcode id being decoded, the second is 390df3765bfSSheng // the opcode id that should be emitted. 391df3765bfSSheng const std::vector<EncodingIDAndOpcode> &Opcodes; 392df3765bfSSheng 393df3765bfSSheng // Lookup table for the operand decoding of instructions. 394df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Operands; 395df3765bfSSheng 396df3765bfSSheng // Vector of candidate filters. 397df3765bfSSheng std::vector<Filter> Filters; 398df3765bfSSheng 399df3765bfSSheng // Array of bit values passed down from our parent. 400df3765bfSSheng // Set to all BIT_UNFILTERED's for Parent == NULL. 401df3765bfSSheng std::vector<bit_value_t> FilterBitValues; 402df3765bfSSheng 403df3765bfSSheng // Links to the FilterChooser above us in the decoding tree. 404df3765bfSSheng const FilterChooser *Parent; 405df3765bfSSheng 406df3765bfSSheng // Index of the best filter from Filters. 407df3765bfSSheng int BestIndex; 408df3765bfSSheng 409df3765bfSSheng // Width of instructions 410df3765bfSSheng unsigned BitWidth; 411df3765bfSSheng 412df3765bfSSheng // Parent emitter 413df3765bfSSheng const DecoderEmitter *Emitter; 414df3765bfSSheng 415df3765bfSSheng public: 416df3765bfSSheng FilterChooser(ArrayRef<EncodingAndInst> Insts, 417df3765bfSSheng const std::vector<EncodingIDAndOpcode> &IDs, 418df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Ops, 419df3765bfSSheng unsigned BW, const DecoderEmitter *E) 420df3765bfSSheng : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 421df3765bfSSheng FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), 422df3765bfSSheng BitWidth(BW), Emitter(E) { 423df3765bfSSheng doFilter(); 424df3765bfSSheng } 425df3765bfSSheng 426df3765bfSSheng FilterChooser(ArrayRef<EncodingAndInst> Insts, 427df3765bfSSheng const std::vector<EncodingIDAndOpcode> &IDs, 428df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Ops, 429df3765bfSSheng const std::vector<bit_value_t> &ParentFilterBitValues, 430df3765bfSSheng const FilterChooser &parent) 431df3765bfSSheng : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 432df3765bfSSheng FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), 433df3765bfSSheng BitWidth(parent.BitWidth), Emitter(parent.Emitter) { 434df3765bfSSheng doFilter(); 435df3765bfSSheng } 436df3765bfSSheng 437df3765bfSSheng FilterChooser(const FilterChooser &) = delete; 438df3765bfSSheng void operator=(const FilterChooser &) = delete; 439df3765bfSSheng 440df3765bfSSheng unsigned getBitWidth() const { return BitWidth; } 441df3765bfSSheng 442df3765bfSSheng protected: 443df3765bfSSheng // Populates the insn given the uid. 444df3765bfSSheng void insnWithID(insn_t &Insn, unsigned Opcode) const { 445df3765bfSSheng BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst"); 446df3765bfSSheng Insn.resize(BitWidth > Bits.getNumBits() ? BitWidth : Bits.getNumBits(), 447df3765bfSSheng BIT_UNSET); 448df3765bfSSheng // We may have a SoftFail bitmask, which specifies a mask where an encoding 449df3765bfSSheng // may differ from the value in "Inst" and yet still be valid, but the 450df3765bfSSheng // disassembler should return SoftFail instead of Success. 451df3765bfSSheng // 452df3765bfSSheng // This is used for marking UNPREDICTABLE instructions in the ARM world. 453df3765bfSSheng const RecordVal *RV = 454df3765bfSSheng AllInstructions[Opcode].EncodingDef->getValue("SoftFail"); 455df3765bfSSheng const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr; 456df3765bfSSheng for (unsigned i = 0; i < Bits.getNumBits(); ++i) { 457df3765bfSSheng if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) 458df3765bfSSheng Insn[i] = BIT_UNSET; 459df3765bfSSheng else 460df3765bfSSheng Insn[i] = bitFromBits(Bits, i); 461df3765bfSSheng } 462df3765bfSSheng } 463df3765bfSSheng 464df3765bfSSheng // Emit the name of the encoding/instruction pair. 465df3765bfSSheng void emitNameWithID(raw_ostream &OS, unsigned Opcode) const { 466df3765bfSSheng const Record *EncodingDef = AllInstructions[Opcode].EncodingDef; 467df3765bfSSheng const Record *InstDef = AllInstructions[Opcode].Inst->TheDef; 468df3765bfSSheng if (EncodingDef != InstDef) 469df3765bfSSheng OS << EncodingDef->getName() << ":"; 470df3765bfSSheng OS << InstDef->getName(); 471df3765bfSSheng } 472df3765bfSSheng 473df3765bfSSheng // Populates the field of the insn given the start position and the number of 474df3765bfSSheng // consecutive bits to scan for. 475df3765bfSSheng // 476df3765bfSSheng // Returns false if there exists any uninitialized bit value in the range. 477df3765bfSSheng // Returns true, otherwise. 478df3765bfSSheng bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, 479df3765bfSSheng unsigned NumBits) const; 480df3765bfSSheng 481df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 482df3765bfSSheng /// filter array as a series of chars. 483df3765bfSSheng void dumpFilterArray(raw_ostream &o, 484df3765bfSSheng const std::vector<bit_value_t> & filter) const; 485df3765bfSSheng 486df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls 487df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one. 488df3765bfSSheng void dumpStack(raw_ostream &o, const char *prefix) const; 489df3765bfSSheng 490df3765bfSSheng Filter &bestFilter() { 491df3765bfSSheng assert(BestIndex != -1 && "BestIndex not set"); 492df3765bfSSheng return Filters[BestIndex]; 493df3765bfSSheng } 494df3765bfSSheng 495df3765bfSSheng bool PositionFiltered(unsigned i) const { 496df3765bfSSheng return ValueSet(FilterBitValues[i]); 497df3765bfSSheng } 498df3765bfSSheng 499df3765bfSSheng // Calculates the island(s) needed to decode the instruction. 500df3765bfSSheng // This returns a lit of undecoded bits of an instructions, for example, 501df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 502df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode. 503df3765bfSSheng unsigned getIslands(std::vector<unsigned> &StartBits, 504df3765bfSSheng std::vector<unsigned> &EndBits, 505df3765bfSSheng std::vector<uint64_t> &FieldVals, 506df3765bfSSheng const insn_t &Insn) const; 507df3765bfSSheng 508df3765bfSSheng // Emits code to check the Predicates member of an instruction are true. 509df3765bfSSheng // Returns true if predicate matches were emitted, false otherwise. 510df3765bfSSheng bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation, 511df3765bfSSheng unsigned Opc) const; 512df3765bfSSheng 513df3765bfSSheng bool doesOpcodeNeedPredicate(unsigned Opc) const; 514df3765bfSSheng unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; 515df3765bfSSheng void emitPredicateTableEntry(DecoderTableInfo &TableInfo, 516df3765bfSSheng unsigned Opc) const; 517df3765bfSSheng 518df3765bfSSheng void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 519df3765bfSSheng unsigned Opc) const; 520df3765bfSSheng 521df3765bfSSheng // Emits table entries to decode the singleton. 522df3765bfSSheng void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 523df3765bfSSheng EncodingIDAndOpcode Opc) const; 524df3765bfSSheng 525df3765bfSSheng // Emits code to decode the singleton, and then to decode the rest. 526df3765bfSSheng void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 527df3765bfSSheng const Filter &Best) const; 528df3765bfSSheng 529df3765bfSSheng void emitBinaryParser(raw_ostream &o, unsigned &Indentation, 530df3765bfSSheng const OperandInfo &OpInfo, 531df3765bfSSheng bool &OpHasCompleteDecoder) const; 532df3765bfSSheng 533df3765bfSSheng void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc, 534df3765bfSSheng bool &HasCompleteDecoder) const; 535df3765bfSSheng unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc, 536df3765bfSSheng bool &HasCompleteDecoder) const; 537df3765bfSSheng 538df3765bfSSheng // Assign a single filter and run with it. 539df3765bfSSheng void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); 540df3765bfSSheng 541df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as 542df3765bfSSheng // eligible for use as a filter region. 543df3765bfSSheng void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, 544df3765bfSSheng bool AllowMixed); 545df3765bfSSheng 546df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and 547df3765bfSSheng // builds up a list of candidate filters. It chooses the best filter and 548df3765bfSSheng // recursively descends down the decoding tree. 549df3765bfSSheng bool filterProcessor(bool AllowMixed, bool Greedy = true); 550df3765bfSSheng 551df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode 552df3765bfSSheng // the instructions. A conflict of instructions may occur, in which case we 553df3765bfSSheng // dump the conflict set to the standard error. 554df3765bfSSheng void doFilter(); 555df3765bfSSheng 556df3765bfSSheng public: 557df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of 558df3765bfSSheng // instructions. 559df3765bfSSheng void emitTableEntries(DecoderTableInfo &TableInfo) const; 560df3765bfSSheng }; 561df3765bfSSheng 562df3765bfSSheng } // end anonymous namespace 563df3765bfSSheng 564df3765bfSSheng /////////////////////////// 565df3765bfSSheng // // 566df3765bfSSheng // Filter Implementation // 567df3765bfSSheng // // 568df3765bfSSheng /////////////////////////// 569df3765bfSSheng 570df3765bfSSheng Filter::Filter(Filter &&f) 571df3765bfSSheng : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), 572df3765bfSSheng FilteredInstructions(std::move(f.FilteredInstructions)), 573df3765bfSSheng VariableInstructions(std::move(f.VariableInstructions)), 574df3765bfSSheng FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered), 575df3765bfSSheng LastOpcFiltered(f.LastOpcFiltered) { 576df3765bfSSheng } 577df3765bfSSheng 578df3765bfSSheng Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, 579df3765bfSSheng bool mixed) 580df3765bfSSheng : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { 581df3765bfSSheng assert(StartBit + NumBits - 1 < Owner->BitWidth); 582df3765bfSSheng 583df3765bfSSheng NumFiltered = 0; 584df3765bfSSheng LastOpcFiltered = {0, 0}; 585df3765bfSSheng 586df3765bfSSheng for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { 587df3765bfSSheng insn_t Insn; 588df3765bfSSheng 589df3765bfSSheng // Populates the insn given the uid. 590df3765bfSSheng Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID); 591df3765bfSSheng 592df3765bfSSheng uint64_t Field; 593df3765bfSSheng // Scans the segment for possibly well-specified encoding bits. 594df3765bfSSheng bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); 595df3765bfSSheng 596df3765bfSSheng if (ok) { 597df3765bfSSheng // The encoding bits are well-known. Lets add the uid of the 598df3765bfSSheng // instruction into the bucket keyed off the constant field value. 599df3765bfSSheng LastOpcFiltered = Owner->Opcodes[i]; 600df3765bfSSheng FilteredInstructions[Field].push_back(LastOpcFiltered); 601df3765bfSSheng ++NumFiltered; 602df3765bfSSheng } else { 603df3765bfSSheng // Some of the encoding bit(s) are unspecified. This contributes to 604df3765bfSSheng // one additional member of "Variable" instructions. 605df3765bfSSheng VariableInstructions.push_back(Owner->Opcodes[i]); 606df3765bfSSheng } 607df3765bfSSheng } 608df3765bfSSheng 609df3765bfSSheng assert((FilteredInstructions.size() + VariableInstructions.size() > 0) 610df3765bfSSheng && "Filter returns no instruction categories"); 611df3765bfSSheng } 612df3765bfSSheng 613df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the 614df3765bfSSheng // inferior FilterChooser's. 615df3765bfSSheng // 616df3765bfSSheng // A special case arises when there's only one entry in the filtered 617df3765bfSSheng // instructions. In order to unambiguously decode the singleton, we need to 618df3765bfSSheng // match the remaining undecoded encoding bits against the singleton. 619df3765bfSSheng void Filter::recurse() { 620df3765bfSSheng // Starts by inheriting our parent filter chooser's filter bit values. 621df3765bfSSheng std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); 622df3765bfSSheng 623df3765bfSSheng if (!VariableInstructions.empty()) { 624df3765bfSSheng // Conservatively marks each segment position as BIT_UNSET. 625df3765bfSSheng for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) 626df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_UNSET; 627df3765bfSSheng 628df3765bfSSheng // Delegates to an inferior filter chooser for further processing on this 629df3765bfSSheng // group of instructions whose segment values are variable. 630df3765bfSSheng FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL, 631df3765bfSSheng std::make_unique<FilterChooser>(Owner->AllInstructions, 632df3765bfSSheng VariableInstructions, Owner->Operands, BitValueArray, *Owner))); 633df3765bfSSheng } 634df3765bfSSheng 635df3765bfSSheng // No need to recurse for a singleton filtered instruction. 636df3765bfSSheng // See also Filter::emit*(). 637df3765bfSSheng if (getNumFiltered() == 1) { 638df3765bfSSheng assert(FilterChooserMap.size() == 1); 639df3765bfSSheng return; 640df3765bfSSheng } 641df3765bfSSheng 642df3765bfSSheng // Otherwise, create sub choosers. 643df3765bfSSheng for (const auto &Inst : FilteredInstructions) { 644df3765bfSSheng 645df3765bfSSheng // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. 646df3765bfSSheng for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { 647df3765bfSSheng if (Inst.first & (1ULL << bitIndex)) 648df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_TRUE; 649df3765bfSSheng else 650df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_FALSE; 651df3765bfSSheng } 652df3765bfSSheng 653df3765bfSSheng // Delegates to an inferior filter chooser for further processing on this 654df3765bfSSheng // category of instructions. 655df3765bfSSheng FilterChooserMap.insert(std::make_pair( 656df3765bfSSheng Inst.first, std::make_unique<FilterChooser>( 657df3765bfSSheng Owner->AllInstructions, Inst.second, 658df3765bfSSheng Owner->Operands, BitValueArray, *Owner))); 659df3765bfSSheng } 660df3765bfSSheng } 661df3765bfSSheng 662df3765bfSSheng static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, 663df3765bfSSheng uint32_t DestIdx) { 664df3765bfSSheng // Any NumToSkip fixups in the current scope can resolve to the 665df3765bfSSheng // current location. 666df3765bfSSheng for (FixupList::const_reverse_iterator I = Fixups.rbegin(), 667df3765bfSSheng E = Fixups.rend(); 668df3765bfSSheng I != E; ++I) { 669df3765bfSSheng // Calculate the distance from the byte following the fixup entry byte 670df3765bfSSheng // to the destination. The Target is calculated from after the 16-bit 671df3765bfSSheng // NumToSkip entry itself, so subtract two from the displacement here 672df3765bfSSheng // to account for that. 673df3765bfSSheng uint32_t FixupIdx = *I; 674df3765bfSSheng uint32_t Delta = DestIdx - FixupIdx - 3; 675df3765bfSSheng // Our NumToSkip entries are 24-bits. Make sure our table isn't too 676df3765bfSSheng // big. 677df3765bfSSheng assert(Delta < (1u << 24)); 678df3765bfSSheng Table[FixupIdx] = (uint8_t)Delta; 679df3765bfSSheng Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); 680df3765bfSSheng Table[FixupIdx + 2] = (uint8_t)(Delta >> 16); 681df3765bfSSheng } 682df3765bfSSheng } 683df3765bfSSheng 684df3765bfSSheng // Emit table entries to decode instructions given a segment or segments 685df3765bfSSheng // of bits. 686df3765bfSSheng void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { 687df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_ExtractField); 688df3765bfSSheng TableInfo.Table.push_back(StartBit); 689df3765bfSSheng TableInfo.Table.push_back(NumBits); 690df3765bfSSheng 691df3765bfSSheng // A new filter entry begins a new scope for fixup resolution. 692df3765bfSSheng TableInfo.FixupStack.emplace_back(); 693df3765bfSSheng 694df3765bfSSheng DecoderTable &Table = TableInfo.Table; 695df3765bfSSheng 696df3765bfSSheng size_t PrevFilter = 0; 697df3765bfSSheng bool HasFallthrough = false; 698df3765bfSSheng for (auto &Filter : FilterChooserMap) { 699df3765bfSSheng // Field value -1 implies a non-empty set of variable instructions. 700df3765bfSSheng // See also recurse(). 701df3765bfSSheng if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) { 702df3765bfSSheng HasFallthrough = true; 703df3765bfSSheng 704df3765bfSSheng // Each scope should always have at least one filter value to check 705df3765bfSSheng // for. 706df3765bfSSheng assert(PrevFilter != 0 && "empty filter set!"); 707df3765bfSSheng FixupList &CurScope = TableInfo.FixupStack.back(); 708df3765bfSSheng // Resolve any NumToSkip fixups in the current scope. 709df3765bfSSheng resolveTableFixups(Table, CurScope, Table.size()); 710df3765bfSSheng CurScope.clear(); 711df3765bfSSheng PrevFilter = 0; // Don't re-process the filter's fallthrough. 712df3765bfSSheng } else { 713df3765bfSSheng Table.push_back(MCD::OPC_FilterValue); 714df3765bfSSheng // Encode and emit the value to filter against. 715df3765bfSSheng uint8_t Buffer[16]; 716df3765bfSSheng unsigned Len = encodeULEB128(Filter.first, Buffer); 717df3765bfSSheng Table.insert(Table.end(), Buffer, Buffer + Len); 718df3765bfSSheng // Reserve space for the NumToSkip entry. We'll backpatch the value 719df3765bfSSheng // later. 720df3765bfSSheng PrevFilter = Table.size(); 721df3765bfSSheng Table.push_back(0); 722df3765bfSSheng Table.push_back(0); 723df3765bfSSheng Table.push_back(0); 724df3765bfSSheng } 725df3765bfSSheng 726df3765bfSSheng // We arrive at a category of instructions with the same segment value. 727df3765bfSSheng // Now delegate to the sub filter chooser for further decodings. 728df3765bfSSheng // The case may fallthrough, which happens if the remaining well-known 729df3765bfSSheng // encoding bits do not match exactly. 730df3765bfSSheng Filter.second->emitTableEntries(TableInfo); 731df3765bfSSheng 732df3765bfSSheng // Now that we've emitted the body of the handler, update the NumToSkip 733df3765bfSSheng // of the filter itself to be able to skip forward when false. Subtract 734df3765bfSSheng // two as to account for the width of the NumToSkip field itself. 735df3765bfSSheng if (PrevFilter) { 736df3765bfSSheng uint32_t NumToSkip = Table.size() - PrevFilter - 3; 737df3765bfSSheng assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!"); 738df3765bfSSheng Table[PrevFilter] = (uint8_t)NumToSkip; 739df3765bfSSheng Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); 740df3765bfSSheng Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16); 741df3765bfSSheng } 742df3765bfSSheng } 743df3765bfSSheng 744df3765bfSSheng // Any remaining unresolved fixups bubble up to the parent fixup scope. 745df3765bfSSheng assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); 746df3765bfSSheng FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; 747df3765bfSSheng FixupScopeList::iterator Dest = Source - 1; 748df3765bfSSheng llvm::append_range(*Dest, *Source); 749df3765bfSSheng TableInfo.FixupStack.pop_back(); 750df3765bfSSheng 751df3765bfSSheng // If there is no fallthrough, then the final filter should get fixed 752df3765bfSSheng // up according to the enclosing scope rather than the current position. 753df3765bfSSheng if (!HasFallthrough) 754df3765bfSSheng TableInfo.FixupStack.back().push_back(PrevFilter); 755df3765bfSSheng } 756df3765bfSSheng 757df3765bfSSheng // Returns the number of fanout produced by the filter. More fanout implies 758df3765bfSSheng // the filter distinguishes more categories of instructions. 759df3765bfSSheng unsigned Filter::usefulness() const { 760df3765bfSSheng if (!VariableInstructions.empty()) 761df3765bfSSheng return FilteredInstructions.size(); 762df3765bfSSheng else 763df3765bfSSheng return FilteredInstructions.size() + 1; 764df3765bfSSheng } 765df3765bfSSheng 766df3765bfSSheng ////////////////////////////////// 767df3765bfSSheng // // 768df3765bfSSheng // Filterchooser Implementation // 769df3765bfSSheng // // 770df3765bfSSheng ////////////////////////////////// 771df3765bfSSheng 772df3765bfSSheng // Emit the decoder state machine table. 773df3765bfSSheng void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, 774df3765bfSSheng unsigned Indentation, unsigned BitWidth, 775df3765bfSSheng StringRef Namespace) const { 776df3765bfSSheng OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace 777df3765bfSSheng << BitWidth << "[] = {\n"; 778df3765bfSSheng 779df3765bfSSheng Indentation += 2; 780df3765bfSSheng 781df3765bfSSheng // FIXME: We may be able to use the NumToSkip values to recover 782df3765bfSSheng // appropriate indentation levels. 783df3765bfSSheng DecoderTable::const_iterator I = Table.begin(); 784df3765bfSSheng DecoderTable::const_iterator E = Table.end(); 785df3765bfSSheng while (I != E) { 786df3765bfSSheng assert (I < E && "incomplete decode table entry!"); 787df3765bfSSheng 788df3765bfSSheng uint64_t Pos = I - Table.begin(); 789df3765bfSSheng OS << "/* " << Pos << " */"; 790df3765bfSSheng OS.PadToColumn(12); 791df3765bfSSheng 792df3765bfSSheng switch (*I) { 793df3765bfSSheng default: 794df3765bfSSheng PrintFatalError("invalid decode table opcode"); 795df3765bfSSheng case MCD::OPC_ExtractField: { 796df3765bfSSheng ++I; 797df3765bfSSheng unsigned Start = *I++; 798df3765bfSSheng unsigned Len = *I++; 799df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", " 800df3765bfSSheng << Len << ", // Inst{"; 801df3765bfSSheng if (Len > 1) 802df3765bfSSheng OS << (Start + Len - 1) << "-"; 803df3765bfSSheng OS << Start << "} ...\n"; 804df3765bfSSheng break; 805df3765bfSSheng } 806df3765bfSSheng case MCD::OPC_FilterValue: { 807df3765bfSSheng ++I; 808df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_FilterValue, "; 809df3765bfSSheng // The filter value is ULEB128 encoded. 810df3765bfSSheng while (*I >= 128) 811df3765bfSSheng OS << (unsigned)*I++ << ", "; 812df3765bfSSheng OS << (unsigned)*I++ << ", "; 813df3765bfSSheng 814df3765bfSSheng // 24-bit numtoskip value. 815df3765bfSSheng uint8_t Byte = *I++; 816df3765bfSSheng uint32_t NumToSkip = Byte; 817df3765bfSSheng OS << (unsigned)Byte << ", "; 818df3765bfSSheng Byte = *I++; 819df3765bfSSheng OS << (unsigned)Byte << ", "; 820df3765bfSSheng NumToSkip |= Byte << 8; 821df3765bfSSheng Byte = *I++; 822df3765bfSSheng OS << utostr(Byte) << ", "; 823df3765bfSSheng NumToSkip |= Byte << 16; 824df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 825df3765bfSSheng break; 826df3765bfSSheng } 827df3765bfSSheng case MCD::OPC_CheckField: { 828df3765bfSSheng ++I; 829df3765bfSSheng unsigned Start = *I++; 830df3765bfSSheng unsigned Len = *I++; 831df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", " 832df3765bfSSheng << Len << ", ";// << Val << ", " << NumToSkip << ",\n"; 833df3765bfSSheng // ULEB128 encoded field value. 834df3765bfSSheng for (; *I >= 128; ++I) 835df3765bfSSheng OS << (unsigned)*I << ", "; 836df3765bfSSheng OS << (unsigned)*I++ << ", "; 837df3765bfSSheng // 24-bit numtoskip value. 838df3765bfSSheng uint8_t Byte = *I++; 839df3765bfSSheng uint32_t NumToSkip = Byte; 840df3765bfSSheng OS << (unsigned)Byte << ", "; 841df3765bfSSheng Byte = *I++; 842df3765bfSSheng OS << (unsigned)Byte << ", "; 843df3765bfSSheng NumToSkip |= Byte << 8; 844df3765bfSSheng Byte = *I++; 845df3765bfSSheng OS << utostr(Byte) << ", "; 846df3765bfSSheng NumToSkip |= Byte << 16; 847df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 848df3765bfSSheng break; 849df3765bfSSheng } 850df3765bfSSheng case MCD::OPC_CheckPredicate: { 851df3765bfSSheng ++I; 852df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_CheckPredicate, "; 853df3765bfSSheng for (; *I >= 128; ++I) 854df3765bfSSheng OS << (unsigned)*I << ", "; 855df3765bfSSheng OS << (unsigned)*I++ << ", "; 856df3765bfSSheng 857df3765bfSSheng // 24-bit numtoskip value. 858df3765bfSSheng uint8_t Byte = *I++; 859df3765bfSSheng uint32_t NumToSkip = Byte; 860df3765bfSSheng OS << (unsigned)Byte << ", "; 861df3765bfSSheng Byte = *I++; 862df3765bfSSheng OS << (unsigned)Byte << ", "; 863df3765bfSSheng NumToSkip |= Byte << 8; 864df3765bfSSheng Byte = *I++; 865df3765bfSSheng OS << utostr(Byte) << ", "; 866df3765bfSSheng NumToSkip |= Byte << 16; 867df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 868df3765bfSSheng break; 869df3765bfSSheng } 870df3765bfSSheng case MCD::OPC_Decode: 871df3765bfSSheng case MCD::OPC_TryDecode: { 872df3765bfSSheng bool IsTry = *I == MCD::OPC_TryDecode; 873df3765bfSSheng ++I; 874df3765bfSSheng // Extract the ULEB128 encoded Opcode to a buffer. 875df3765bfSSheng uint8_t Buffer[16], *p = Buffer; 876df3765bfSSheng while ((*p++ = *I++) >= 128) 877df3765bfSSheng assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer) 878df3765bfSSheng && "ULEB128 value too large!"); 879df3765bfSSheng // Decode the Opcode value. 880df3765bfSSheng unsigned Opc = decodeULEB128(Buffer); 881df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "") 882df3765bfSSheng << "Decode, "; 883df3765bfSSheng for (p = Buffer; *p >= 128; ++p) 884df3765bfSSheng OS << (unsigned)*p << ", "; 885df3765bfSSheng OS << (unsigned)*p << ", "; 886df3765bfSSheng 887df3765bfSSheng // Decoder index. 888df3765bfSSheng for (; *I >= 128; ++I) 889df3765bfSSheng OS << (unsigned)*I << ", "; 890df3765bfSSheng OS << (unsigned)*I++ << ", "; 891df3765bfSSheng 892df3765bfSSheng if (!IsTry) { 893df3765bfSSheng OS << "// Opcode: " << NumberedEncodings[Opc] << "\n"; 894df3765bfSSheng break; 895df3765bfSSheng } 896df3765bfSSheng 897df3765bfSSheng // Fallthrough for OPC_TryDecode. 898df3765bfSSheng 899df3765bfSSheng // 24-bit numtoskip value. 900df3765bfSSheng uint8_t Byte = *I++; 901df3765bfSSheng uint32_t NumToSkip = Byte; 902df3765bfSSheng OS << (unsigned)Byte << ", "; 903df3765bfSSheng Byte = *I++; 904df3765bfSSheng OS << (unsigned)Byte << ", "; 905df3765bfSSheng NumToSkip |= Byte << 8; 906df3765bfSSheng Byte = *I++; 907df3765bfSSheng OS << utostr(Byte) << ", "; 908df3765bfSSheng NumToSkip |= Byte << 16; 909df3765bfSSheng 910df3765bfSSheng OS << "// Opcode: " << NumberedEncodings[Opc] 911df3765bfSSheng << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 912df3765bfSSheng break; 913df3765bfSSheng } 914df3765bfSSheng case MCD::OPC_SoftFail: { 915df3765bfSSheng ++I; 916df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_SoftFail"; 917df3765bfSSheng // Positive mask 918df3765bfSSheng uint64_t Value = 0; 919df3765bfSSheng unsigned Shift = 0; 920df3765bfSSheng do { 921df3765bfSSheng OS << ", " << (unsigned)*I; 922df3765bfSSheng Value += (*I & 0x7f) << Shift; 923df3765bfSSheng Shift += 7; 924df3765bfSSheng } while (*I++ >= 128); 925df3765bfSSheng if (Value > 127) { 926df3765bfSSheng OS << " /* 0x"; 927df3765bfSSheng OS.write_hex(Value); 928df3765bfSSheng OS << " */"; 929df3765bfSSheng } 930df3765bfSSheng // Negative mask 931df3765bfSSheng Value = 0; 932df3765bfSSheng Shift = 0; 933df3765bfSSheng do { 934df3765bfSSheng OS << ", " << (unsigned)*I; 935df3765bfSSheng Value += (*I & 0x7f) << Shift; 936df3765bfSSheng Shift += 7; 937df3765bfSSheng } while (*I++ >= 128); 938df3765bfSSheng if (Value > 127) { 939df3765bfSSheng OS << " /* 0x"; 940df3765bfSSheng OS.write_hex(Value); 941df3765bfSSheng OS << " */"; 942df3765bfSSheng } 943df3765bfSSheng OS << ",\n"; 944df3765bfSSheng break; 945df3765bfSSheng } 946df3765bfSSheng case MCD::OPC_Fail: { 947df3765bfSSheng ++I; 948df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_Fail,\n"; 949df3765bfSSheng break; 950df3765bfSSheng } 951df3765bfSSheng } 952df3765bfSSheng } 953df3765bfSSheng OS.indent(Indentation) << "0\n"; 954df3765bfSSheng 955df3765bfSSheng Indentation -= 2; 956df3765bfSSheng 957df3765bfSSheng OS.indent(Indentation) << "};\n\n"; 958df3765bfSSheng } 959df3765bfSSheng 960df3765bfSSheng void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, 961df3765bfSSheng std::vector<unsigned> &InstrLen) const { 962df3765bfSSheng OS << "static const uint8_t InstrLenTable[] = {\n"; 963df3765bfSSheng for (unsigned &Len : InstrLen) { 964df3765bfSSheng OS << Len << ",\n"; 965df3765bfSSheng } 966df3765bfSSheng OS << "};\n\n"; 967df3765bfSSheng } 968df3765bfSSheng 969df3765bfSSheng void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, 970df3765bfSSheng PredicateSet &Predicates, 971df3765bfSSheng unsigned Indentation) const { 972df3765bfSSheng // The predicate function is just a big switch statement based on the 973df3765bfSSheng // input predicate index. 974df3765bfSSheng OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, " 975df3765bfSSheng << "const FeatureBitset &Bits) {\n"; 976df3765bfSSheng Indentation += 2; 977df3765bfSSheng if (!Predicates.empty()) { 978df3765bfSSheng OS.indent(Indentation) << "switch (Idx) {\n"; 979df3765bfSSheng OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; 980df3765bfSSheng unsigned Index = 0; 981df3765bfSSheng for (const auto &Predicate : Predicates) { 982df3765bfSSheng OS.indent(Indentation) << "case " << Index++ << ":\n"; 983df3765bfSSheng OS.indent(Indentation+2) << "return (" << Predicate << ");\n"; 984df3765bfSSheng } 985df3765bfSSheng OS.indent(Indentation) << "}\n"; 986df3765bfSSheng } else { 987df3765bfSSheng // No case statement to emit 988df3765bfSSheng OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n"; 989df3765bfSSheng } 990df3765bfSSheng Indentation -= 2; 991df3765bfSSheng OS.indent(Indentation) << "}\n\n"; 992df3765bfSSheng } 993df3765bfSSheng 994df3765bfSSheng void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, 995df3765bfSSheng DecoderSet &Decoders, 996df3765bfSSheng unsigned Indentation) const { 997df3765bfSSheng // The decoder function is just a big switch statement based on the 998df3765bfSSheng // input decoder index. 999df3765bfSSheng OS.indent(Indentation) << "template <typename InsnType>\n"; 1000df3765bfSSheng OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S," 1001df3765bfSSheng << " unsigned Idx, InsnType insn, MCInst &MI,\n"; 1002df3765bfSSheng OS.indent(Indentation) 1003df3765bfSSheng << " uint64_t " 1004df3765bfSSheng << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n"; 1005df3765bfSSheng Indentation += 2; 1006df3765bfSSheng OS.indent(Indentation) << "DecodeComplete = true;\n"; 1007df3765bfSSheng // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits 1008df3765bfSSheng // It would be better for emitBinaryParser to use a 64-bit tmp whenever 1009df3765bfSSheng // possible but fall back to an InsnType-sized tmp for truly large fields. 1010df3765bfSSheng OS.indent(Indentation) << "using TmpType = " 1011df3765bfSSheng "std::conditional_t<std::is_integral<InsnType>::" 1012df3765bfSSheng "value, InsnType, uint64_t>;\n"; 1013df3765bfSSheng OS.indent(Indentation) << "TmpType tmp;\n"; 1014df3765bfSSheng OS.indent(Indentation) << "switch (Idx) {\n"; 1015df3765bfSSheng OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; 1016df3765bfSSheng unsigned Index = 0; 1017df3765bfSSheng for (const auto &Decoder : Decoders) { 1018df3765bfSSheng OS.indent(Indentation) << "case " << Index++ << ":\n"; 1019df3765bfSSheng OS << Decoder; 1020df3765bfSSheng OS.indent(Indentation+2) << "return S;\n"; 1021df3765bfSSheng } 1022df3765bfSSheng OS.indent(Indentation) << "}\n"; 1023df3765bfSSheng Indentation -= 2; 1024df3765bfSSheng OS.indent(Indentation) << "}\n\n"; 1025df3765bfSSheng } 1026df3765bfSSheng 1027df3765bfSSheng // Populates the field of the insn given the start position and the number of 1028df3765bfSSheng // consecutive bits to scan for. 1029df3765bfSSheng // 1030df3765bfSSheng // Returns false if and on the first uninitialized bit value encountered. 1031df3765bfSSheng // Returns true, otherwise. 1032df3765bfSSheng bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, 1033df3765bfSSheng unsigned StartBit, unsigned NumBits) const { 1034df3765bfSSheng Field = 0; 1035df3765bfSSheng 1036df3765bfSSheng for (unsigned i = 0; i < NumBits; ++i) { 1037df3765bfSSheng if (Insn[StartBit + i] == BIT_UNSET) 1038df3765bfSSheng return false; 1039df3765bfSSheng 1040df3765bfSSheng if (Insn[StartBit + i] == BIT_TRUE) 1041df3765bfSSheng Field = Field | (1ULL << i); 1042df3765bfSSheng } 1043df3765bfSSheng 1044df3765bfSSheng return true; 1045df3765bfSSheng } 1046df3765bfSSheng 1047df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 1048df3765bfSSheng /// filter array as a series of chars. 1049df3765bfSSheng void FilterChooser::dumpFilterArray(raw_ostream &o, 1050df3765bfSSheng const std::vector<bit_value_t> &filter) const { 1051df3765bfSSheng for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { 1052df3765bfSSheng switch (filter[bitIndex - 1]) { 1053df3765bfSSheng case BIT_UNFILTERED: 1054df3765bfSSheng o << "."; 1055df3765bfSSheng break; 1056df3765bfSSheng case BIT_UNSET: 1057df3765bfSSheng o << "_"; 1058df3765bfSSheng break; 1059df3765bfSSheng case BIT_TRUE: 1060df3765bfSSheng o << "1"; 1061df3765bfSSheng break; 1062df3765bfSSheng case BIT_FALSE: 1063df3765bfSSheng o << "0"; 1064df3765bfSSheng break; 1065df3765bfSSheng } 1066df3765bfSSheng } 1067df3765bfSSheng } 1068df3765bfSSheng 1069df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls 1070df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one. 1071df3765bfSSheng void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const { 1072df3765bfSSheng const FilterChooser *current = this; 1073df3765bfSSheng 1074df3765bfSSheng while (current) { 1075df3765bfSSheng o << prefix; 1076df3765bfSSheng dumpFilterArray(o, current->FilterBitValues); 1077df3765bfSSheng o << '\n'; 1078df3765bfSSheng current = current->Parent; 1079df3765bfSSheng } 1080df3765bfSSheng } 1081df3765bfSSheng 1082df3765bfSSheng // Calculates the island(s) needed to decode the instruction. 1083df3765bfSSheng // This returns a list of undecoded bits of an instructions, for example, 1084df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 1085df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode. 1086df3765bfSSheng unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, 1087df3765bfSSheng std::vector<unsigned> &EndBits, 1088df3765bfSSheng std::vector<uint64_t> &FieldVals, 1089df3765bfSSheng const insn_t &Insn) const { 1090df3765bfSSheng unsigned Num, BitNo; 1091df3765bfSSheng Num = BitNo = 0; 1092df3765bfSSheng 1093df3765bfSSheng uint64_t FieldVal = 0; 1094df3765bfSSheng 1095df3765bfSSheng // 0: Init 1096df3765bfSSheng // 1: Water (the bit value does not affect decoding) 1097df3765bfSSheng // 2: Island (well-known bit value needed for decoding) 1098df3765bfSSheng int State = 0; 1099df3765bfSSheng 1100df3765bfSSheng for (unsigned i = 0; i < BitWidth; ++i) { 1101df3765bfSSheng int64_t Val = Value(Insn[i]); 1102df3765bfSSheng bool Filtered = PositionFiltered(i); 1103df3765bfSSheng switch (State) { 1104df3765bfSSheng default: llvm_unreachable("Unreachable code!"); 1105df3765bfSSheng case 0: 1106df3765bfSSheng case 1: 1107df3765bfSSheng if (Filtered || Val == -1) 1108df3765bfSSheng State = 1; // Still in Water 1109df3765bfSSheng else { 1110df3765bfSSheng State = 2; // Into the Island 1111df3765bfSSheng BitNo = 0; 1112df3765bfSSheng StartBits.push_back(i); 1113df3765bfSSheng FieldVal = Val; 1114df3765bfSSheng } 1115df3765bfSSheng break; 1116df3765bfSSheng case 2: 1117df3765bfSSheng if (Filtered || Val == -1) { 1118df3765bfSSheng State = 1; // Into the Water 1119df3765bfSSheng EndBits.push_back(i - 1); 1120df3765bfSSheng FieldVals.push_back(FieldVal); 1121df3765bfSSheng ++Num; 1122df3765bfSSheng } else { 1123df3765bfSSheng State = 2; // Still in Island 1124df3765bfSSheng ++BitNo; 1125df3765bfSSheng FieldVal = FieldVal | Val << BitNo; 1126df3765bfSSheng } 1127df3765bfSSheng break; 1128df3765bfSSheng } 1129df3765bfSSheng } 1130df3765bfSSheng // If we are still in Island after the loop, do some housekeeping. 1131df3765bfSSheng if (State == 2) { 1132df3765bfSSheng EndBits.push_back(BitWidth - 1); 1133df3765bfSSheng FieldVals.push_back(FieldVal); 1134df3765bfSSheng ++Num; 1135df3765bfSSheng } 1136df3765bfSSheng 1137df3765bfSSheng assert(StartBits.size() == Num && EndBits.size() == Num && 1138df3765bfSSheng FieldVals.size() == Num); 1139df3765bfSSheng return Num; 1140df3765bfSSheng } 1141df3765bfSSheng 1142df3765bfSSheng void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, 1143df3765bfSSheng const OperandInfo &OpInfo, 1144df3765bfSSheng bool &OpHasCompleteDecoder) const { 1145df3765bfSSheng const std::string &Decoder = OpInfo.Decoder; 1146df3765bfSSheng 1147df3765bfSSheng bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0; 1148df3765bfSSheng 1149df3765bfSSheng if (UseInsertBits) { 1150df3765bfSSheng o.indent(Indentation) << "tmp = 0x"; 1151df3765bfSSheng o.write_hex(OpInfo.InitValue); 1152df3765bfSSheng o << ";\n"; 1153df3765bfSSheng } 1154df3765bfSSheng 1155df3765bfSSheng for (const EncodingField &EF : OpInfo) { 1156df3765bfSSheng o.indent(Indentation); 1157df3765bfSSheng if (UseInsertBits) 1158df3765bfSSheng o << "insertBits(tmp, "; 1159df3765bfSSheng else 1160df3765bfSSheng o << "tmp = "; 1161df3765bfSSheng o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')'; 1162df3765bfSSheng if (UseInsertBits) 1163df3765bfSSheng o << ", " << EF.Offset << ", " << EF.Width << ')'; 1164df3765bfSSheng else if (EF.Offset != 0) 1165df3765bfSSheng o << " << " << EF.Offset; 1166df3765bfSSheng o << ";\n"; 1167df3765bfSSheng } 1168df3765bfSSheng 1169df3765bfSSheng if (Decoder != "") { 1170df3765bfSSheng OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; 1171df3765bfSSheng o.indent(Indentation) << Emitter->GuardPrefix << Decoder 1172df3765bfSSheng << "(MI, tmp, Address, Decoder)" 1173df3765bfSSheng << Emitter->GuardPostfix 1174df3765bfSSheng << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ") 1175df3765bfSSheng << "return MCDisassembler::Fail; }\n"; 1176df3765bfSSheng } else { 1177df3765bfSSheng OpHasCompleteDecoder = true; 1178df3765bfSSheng o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n"; 1179df3765bfSSheng } 1180df3765bfSSheng } 1181df3765bfSSheng 1182df3765bfSSheng void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation, 1183df3765bfSSheng unsigned Opc, bool &HasCompleteDecoder) const { 1184df3765bfSSheng HasCompleteDecoder = true; 1185df3765bfSSheng 1186df3765bfSSheng for (const auto &Op : Operands.find(Opc)->second) { 1187df3765bfSSheng // If a custom instruction decoder was specified, use that. 1188df3765bfSSheng if (Op.numFields() == 0 && !Op.Decoder.empty()) { 1189df3765bfSSheng HasCompleteDecoder = Op.HasCompleteDecoder; 1190df3765bfSSheng OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder 1191df3765bfSSheng << "(MI, insn, Address, Decoder)" 1192df3765bfSSheng << Emitter->GuardPostfix 1193df3765bfSSheng << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ") 1194df3765bfSSheng << "return MCDisassembler::Fail; }\n"; 1195df3765bfSSheng break; 1196df3765bfSSheng } 1197df3765bfSSheng 1198df3765bfSSheng bool OpHasCompleteDecoder; 1199df3765bfSSheng emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder); 1200df3765bfSSheng if (!OpHasCompleteDecoder) 1201df3765bfSSheng HasCompleteDecoder = false; 1202df3765bfSSheng } 1203df3765bfSSheng } 1204df3765bfSSheng 1205df3765bfSSheng unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, 1206df3765bfSSheng unsigned Opc, 1207df3765bfSSheng bool &HasCompleteDecoder) const { 1208df3765bfSSheng // Build up the predicate string. 1209df3765bfSSheng SmallString<256> Decoder; 1210df3765bfSSheng // FIXME: emitDecoder() function can take a buffer directly rather than 1211df3765bfSSheng // a stream. 1212df3765bfSSheng raw_svector_ostream S(Decoder); 1213df3765bfSSheng unsigned I = 4; 1214df3765bfSSheng emitDecoder(S, I, Opc, HasCompleteDecoder); 1215df3765bfSSheng 1216df3765bfSSheng // Using the full decoder string as the key value here is a bit 1217df3765bfSSheng // heavyweight, but is effective. If the string comparisons become a 1218df3765bfSSheng // performance concern, we can implement a mangling of the predicate 1219df3765bfSSheng // data easily enough with a map back to the actual string. That's 1220df3765bfSSheng // overkill for now, though. 1221df3765bfSSheng 1222df3765bfSSheng // Make sure the predicate is in the table. 1223df3765bfSSheng Decoders.insert(CachedHashString(Decoder)); 1224df3765bfSSheng // Now figure out the index for when we write out the table. 1225df3765bfSSheng DecoderSet::const_iterator P = find(Decoders, Decoder.str()); 1226df3765bfSSheng return (unsigned)(P - Decoders.begin()); 1227df3765bfSSheng } 1228df3765bfSSheng 1229df3765bfSSheng bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, 1230df3765bfSSheng unsigned Opc) const { 1231df3765bfSSheng ListInit *Predicates = 1232df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); 1233df3765bfSSheng bool IsFirstEmission = true; 1234df3765bfSSheng for (unsigned i = 0; i < Predicates->size(); ++i) { 1235df3765bfSSheng Record *Pred = Predicates->getElementAsRecord(i); 1236df3765bfSSheng if (!Pred->getValue("AssemblerMatcherPredicate")) 1237df3765bfSSheng continue; 1238df3765bfSSheng 1239df3765bfSSheng if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue())) 1240df3765bfSSheng continue; 1241df3765bfSSheng 1242df3765bfSSheng const DagInit *D = Pred->getValueAsDag("AssemblerCondDag"); 1243df3765bfSSheng std::string CombineType = D->getOperator()->getAsString(); 1244df3765bfSSheng if (CombineType != "any_of" && CombineType != "all_of") 1245df3765bfSSheng PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); 1246df3765bfSSheng if (D->getNumArgs() == 0) 1247df3765bfSSheng PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); 1248df3765bfSSheng bool IsOr = CombineType == "any_of"; 1249df3765bfSSheng 1250df3765bfSSheng if (!IsFirstEmission) 1251df3765bfSSheng o << " && "; 1252df3765bfSSheng 1253df3765bfSSheng if (IsOr) 1254df3765bfSSheng o << "("; 1255df3765bfSSheng 1256df3765bfSSheng ListSeparator LS(IsOr ? " || " : " && "); 1257df3765bfSSheng for (auto *Arg : D->getArgs()) { 1258df3765bfSSheng o << LS; 1259df3765bfSSheng if (auto *NotArg = dyn_cast<DagInit>(Arg)) { 1260df3765bfSSheng if (NotArg->getOperator()->getAsString() != "not" || 1261df3765bfSSheng NotArg->getNumArgs() != 1) 1262df3765bfSSheng PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); 1263df3765bfSSheng Arg = NotArg->getArg(0); 1264df3765bfSSheng o << "!"; 1265df3765bfSSheng } 1266df3765bfSSheng if (!isa<DefInit>(Arg) || 1267df3765bfSSheng !cast<DefInit>(Arg)->getDef()->isSubClassOf("SubtargetFeature")) 1268df3765bfSSheng PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!"); 1269df3765bfSSheng o << "Bits[" << Emitter->PredicateNamespace << "::" << Arg->getAsString() 1270df3765bfSSheng << "]"; 1271df3765bfSSheng } 1272df3765bfSSheng 1273df3765bfSSheng if (IsOr) 1274df3765bfSSheng o << ")"; 1275df3765bfSSheng 1276df3765bfSSheng IsFirstEmission = false; 1277df3765bfSSheng } 1278df3765bfSSheng return !Predicates->empty(); 1279df3765bfSSheng } 1280df3765bfSSheng 1281df3765bfSSheng bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { 1282df3765bfSSheng ListInit *Predicates = 1283df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates"); 1284df3765bfSSheng for (unsigned i = 0; i < Predicates->size(); ++i) { 1285df3765bfSSheng Record *Pred = Predicates->getElementAsRecord(i); 1286df3765bfSSheng if (!Pred->getValue("AssemblerMatcherPredicate")) 1287df3765bfSSheng continue; 1288df3765bfSSheng 1289df3765bfSSheng if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue())) 1290df3765bfSSheng return true; 1291df3765bfSSheng } 1292df3765bfSSheng return false; 1293df3765bfSSheng } 1294df3765bfSSheng 1295df3765bfSSheng unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, 1296df3765bfSSheng StringRef Predicate) const { 1297df3765bfSSheng // Using the full predicate string as the key value here is a bit 1298df3765bfSSheng // heavyweight, but is effective. If the string comparisons become a 1299df3765bfSSheng // performance concern, we can implement a mangling of the predicate 1300df3765bfSSheng // data easily enough with a map back to the actual string. That's 1301df3765bfSSheng // overkill for now, though. 1302df3765bfSSheng 1303df3765bfSSheng // Make sure the predicate is in the table. 1304df3765bfSSheng TableInfo.Predicates.insert(CachedHashString(Predicate)); 1305df3765bfSSheng // Now figure out the index for when we write out the table. 1306df3765bfSSheng PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); 1307df3765bfSSheng return (unsigned)(P - TableInfo.Predicates.begin()); 1308df3765bfSSheng } 1309df3765bfSSheng 1310df3765bfSSheng void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, 1311df3765bfSSheng unsigned Opc) const { 1312df3765bfSSheng if (!doesOpcodeNeedPredicate(Opc)) 1313df3765bfSSheng return; 1314df3765bfSSheng 1315df3765bfSSheng // Build up the predicate string. 1316df3765bfSSheng SmallString<256> Predicate; 1317df3765bfSSheng // FIXME: emitPredicateMatch() functions can take a buffer directly rather 1318df3765bfSSheng // than a stream. 1319df3765bfSSheng raw_svector_ostream PS(Predicate); 1320df3765bfSSheng unsigned I = 0; 1321df3765bfSSheng emitPredicateMatch(PS, I, Opc); 1322df3765bfSSheng 1323df3765bfSSheng // Figure out the index into the predicate table for the predicate just 1324df3765bfSSheng // computed. 1325df3765bfSSheng unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); 1326df3765bfSSheng SmallString<16> PBytes; 1327df3765bfSSheng raw_svector_ostream S(PBytes); 1328df3765bfSSheng encodeULEB128(PIdx, S); 1329df3765bfSSheng 1330df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_CheckPredicate); 1331df3765bfSSheng // Predicate index 1332df3765bfSSheng for (unsigned i = 0, e = PBytes.size(); i != e; ++i) 1333df3765bfSSheng TableInfo.Table.push_back(PBytes[i]); 1334df3765bfSSheng // Push location for NumToSkip backpatching. 1335df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1336df3765bfSSheng TableInfo.Table.push_back(0); 1337df3765bfSSheng TableInfo.Table.push_back(0); 1338df3765bfSSheng TableInfo.Table.push_back(0); 1339df3765bfSSheng } 1340df3765bfSSheng 1341df3765bfSSheng void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 1342df3765bfSSheng unsigned Opc) const { 1343df3765bfSSheng const RecordVal *RV = AllInstructions[Opc].EncodingDef->getValue("SoftFail"); 1344df3765bfSSheng BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr; 1345df3765bfSSheng 1346df3765bfSSheng if (!SFBits) return; 1347df3765bfSSheng BitsInit *InstBits = 1348df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst"); 1349df3765bfSSheng 1350df3765bfSSheng APInt PositiveMask(BitWidth, 0ULL); 1351df3765bfSSheng APInt NegativeMask(BitWidth, 0ULL); 1352df3765bfSSheng for (unsigned i = 0; i < BitWidth; ++i) { 1353df3765bfSSheng bit_value_t B = bitFromBits(*SFBits, i); 1354df3765bfSSheng bit_value_t IB = bitFromBits(*InstBits, i); 1355df3765bfSSheng 1356df3765bfSSheng if (B != BIT_TRUE) continue; 1357df3765bfSSheng 1358df3765bfSSheng switch (IB) { 1359df3765bfSSheng case BIT_FALSE: 1360df3765bfSSheng // The bit is meant to be false, so emit a check to see if it is true. 1361df3765bfSSheng PositiveMask.setBit(i); 1362df3765bfSSheng break; 1363df3765bfSSheng case BIT_TRUE: 1364df3765bfSSheng // The bit is meant to be true, so emit a check to see if it is false. 1365df3765bfSSheng NegativeMask.setBit(i); 1366df3765bfSSheng break; 1367df3765bfSSheng default: 1368df3765bfSSheng // The bit is not set; this must be an error! 1369df3765bfSSheng errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " 1370df3765bfSSheng << AllInstructions[Opc] << " is set but Inst{" << i 1371df3765bfSSheng << "} is unset!\n" 1372df3765bfSSheng << " - You can only mark a bit as SoftFail if it is fully defined" 1373df3765bfSSheng << " (1/0 - not '?') in Inst\n"; 1374df3765bfSSheng return; 1375df3765bfSSheng } 1376df3765bfSSheng } 1377df3765bfSSheng 1378df3765bfSSheng bool NeedPositiveMask = PositiveMask.getBoolValue(); 1379df3765bfSSheng bool NeedNegativeMask = NegativeMask.getBoolValue(); 1380df3765bfSSheng 1381df3765bfSSheng if (!NeedPositiveMask && !NeedNegativeMask) 1382df3765bfSSheng return; 1383df3765bfSSheng 1384df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_SoftFail); 1385df3765bfSSheng 1386df3765bfSSheng SmallString<16> MaskBytes; 1387df3765bfSSheng raw_svector_ostream S(MaskBytes); 1388df3765bfSSheng if (NeedPositiveMask) { 1389df3765bfSSheng encodeULEB128(PositiveMask.getZExtValue(), S); 1390df3765bfSSheng for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1391df3765bfSSheng TableInfo.Table.push_back(MaskBytes[i]); 1392df3765bfSSheng } else 1393df3765bfSSheng TableInfo.Table.push_back(0); 1394df3765bfSSheng if (NeedNegativeMask) { 1395df3765bfSSheng MaskBytes.clear(); 1396df3765bfSSheng encodeULEB128(NegativeMask.getZExtValue(), S); 1397df3765bfSSheng for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1398df3765bfSSheng TableInfo.Table.push_back(MaskBytes[i]); 1399df3765bfSSheng } else 1400df3765bfSSheng TableInfo.Table.push_back(0); 1401df3765bfSSheng } 1402df3765bfSSheng 1403df3765bfSSheng // Emits table entries to decode the singleton. 1404df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1405df3765bfSSheng EncodingIDAndOpcode Opc) const { 1406df3765bfSSheng std::vector<unsigned> StartBits; 1407df3765bfSSheng std::vector<unsigned> EndBits; 1408df3765bfSSheng std::vector<uint64_t> FieldVals; 1409df3765bfSSheng insn_t Insn; 1410df3765bfSSheng insnWithID(Insn, Opc.EncodingID); 1411df3765bfSSheng 1412df3765bfSSheng // Look for islands of undecoded bits of the singleton. 1413df3765bfSSheng getIslands(StartBits, EndBits, FieldVals, Insn); 1414df3765bfSSheng 1415df3765bfSSheng unsigned Size = StartBits.size(); 1416df3765bfSSheng 1417df3765bfSSheng // Emit the predicate table entry if one is needed. 1418df3765bfSSheng emitPredicateTableEntry(TableInfo, Opc.EncodingID); 1419df3765bfSSheng 1420df3765bfSSheng // Check any additional encoding fields needed. 1421df3765bfSSheng for (unsigned I = Size; I != 0; --I) { 1422df3765bfSSheng unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1; 1423df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_CheckField); 1424df3765bfSSheng TableInfo.Table.push_back(StartBits[I-1]); 1425df3765bfSSheng TableInfo.Table.push_back(NumBits); 1426df3765bfSSheng uint8_t Buffer[16], *p; 1427df3765bfSSheng encodeULEB128(FieldVals[I-1], Buffer); 1428df3765bfSSheng for (p = Buffer; *p >= 128 ; ++p) 1429df3765bfSSheng TableInfo.Table.push_back(*p); 1430df3765bfSSheng TableInfo.Table.push_back(*p); 1431df3765bfSSheng // Push location for NumToSkip backpatching. 1432df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1433df3765bfSSheng // The fixup is always 24-bits, so go ahead and allocate the space 1434df3765bfSSheng // in the table so all our relative position calculations work OK even 1435df3765bfSSheng // before we fully resolve the real value here. 1436df3765bfSSheng TableInfo.Table.push_back(0); 1437df3765bfSSheng TableInfo.Table.push_back(0); 1438df3765bfSSheng TableInfo.Table.push_back(0); 1439df3765bfSSheng } 1440df3765bfSSheng 1441df3765bfSSheng // Check for soft failure of the match. 1442df3765bfSSheng emitSoftFailTableEntry(TableInfo, Opc.EncodingID); 1443df3765bfSSheng 1444df3765bfSSheng bool HasCompleteDecoder; 1445df3765bfSSheng unsigned DIdx = 1446df3765bfSSheng getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder); 1447df3765bfSSheng 1448df3765bfSSheng // Produce OPC_Decode or OPC_TryDecode opcode based on the information 1449df3765bfSSheng // whether the instruction decoder is complete or not. If it is complete 1450df3765bfSSheng // then it handles all possible values of remaining variable/unfiltered bits 1451df3765bfSSheng // and for any value can determine if the bitpattern is a valid instruction 1452df3765bfSSheng // or not. This means OPC_Decode will be the final step in the decoding 1453df3765bfSSheng // process. If it is not complete, then the Fail return code from the 1454df3765bfSSheng // decoder method indicates that additional processing should be done to see 1455df3765bfSSheng // if there is any other instruction that also matches the bitpattern and 1456df3765bfSSheng // can decode it. 1457df3765bfSSheng TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode : 1458df3765bfSSheng MCD::OPC_TryDecode); 1459df3765bfSSheng NumEncodingsSupported++; 1460df3765bfSSheng uint8_t Buffer[16], *p; 1461df3765bfSSheng encodeULEB128(Opc.Opcode, Buffer); 1462df3765bfSSheng for (p = Buffer; *p >= 128 ; ++p) 1463df3765bfSSheng TableInfo.Table.push_back(*p); 1464df3765bfSSheng TableInfo.Table.push_back(*p); 1465df3765bfSSheng 1466df3765bfSSheng SmallString<16> Bytes; 1467df3765bfSSheng raw_svector_ostream S(Bytes); 1468df3765bfSSheng encodeULEB128(DIdx, S); 1469df3765bfSSheng 1470df3765bfSSheng // Decoder index 1471df3765bfSSheng for (unsigned i = 0, e = Bytes.size(); i != e; ++i) 1472df3765bfSSheng TableInfo.Table.push_back(Bytes[i]); 1473df3765bfSSheng 1474df3765bfSSheng if (!HasCompleteDecoder) { 1475df3765bfSSheng // Push location for NumToSkip backpatching. 1476df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1477df3765bfSSheng // Allocate the space for the fixup. 1478df3765bfSSheng TableInfo.Table.push_back(0); 1479df3765bfSSheng TableInfo.Table.push_back(0); 1480df3765bfSSheng TableInfo.Table.push_back(0); 1481df3765bfSSheng } 1482df3765bfSSheng } 1483df3765bfSSheng 1484df3765bfSSheng // Emits table entries to decode the singleton, and then to decode the rest. 1485df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1486df3765bfSSheng const Filter &Best) const { 1487df3765bfSSheng EncodingIDAndOpcode Opc = Best.getSingletonOpc(); 1488df3765bfSSheng 1489df3765bfSSheng // complex singletons need predicate checks from the first singleton 1490df3765bfSSheng // to refer forward to the variable filterchooser that follows. 1491df3765bfSSheng TableInfo.FixupStack.emplace_back(); 1492df3765bfSSheng 1493df3765bfSSheng emitSingletonTableEntry(TableInfo, Opc); 1494df3765bfSSheng 1495df3765bfSSheng resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 1496df3765bfSSheng TableInfo.Table.size()); 1497df3765bfSSheng TableInfo.FixupStack.pop_back(); 1498df3765bfSSheng 1499df3765bfSSheng Best.getVariableFC().emitTableEntries(TableInfo); 1500df3765bfSSheng } 1501df3765bfSSheng 1502df3765bfSSheng // Assign a single filter and run with it. Top level API client can initialize 1503df3765bfSSheng // with a single filter to start the filtering process. 1504df3765bfSSheng void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, 1505df3765bfSSheng bool mixed) { 1506df3765bfSSheng Filters.clear(); 1507df3765bfSSheng Filters.emplace_back(*this, startBit, numBit, true); 1508df3765bfSSheng BestIndex = 0; // Sole Filter instance to choose from. 1509df3765bfSSheng bestFilter().recurse(); 1510df3765bfSSheng } 1511df3765bfSSheng 1512df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as 1513df3765bfSSheng // eligible for use as a filter region. 1514df3765bfSSheng void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, 1515df3765bfSSheng unsigned BitIndex, bool AllowMixed) { 1516df3765bfSSheng if (RA == ATTR_MIXED && AllowMixed) 1517df3765bfSSheng Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); 1518df3765bfSSheng else if (RA == ATTR_ALL_SET && !AllowMixed) 1519df3765bfSSheng Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); 1520df3765bfSSheng } 1521df3765bfSSheng 1522df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and 1523df3765bfSSheng // builds up a list of candidate filters. It chooses the best filter and 1524df3765bfSSheng // recursively descends down the decoding tree. 1525df3765bfSSheng bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { 1526df3765bfSSheng Filters.clear(); 1527df3765bfSSheng BestIndex = -1; 1528df3765bfSSheng unsigned numInstructions = Opcodes.size(); 1529df3765bfSSheng 1530df3765bfSSheng assert(numInstructions && "Filter created with no instructions"); 1531df3765bfSSheng 1532df3765bfSSheng // No further filtering is necessary. 1533df3765bfSSheng if (numInstructions == 1) 1534df3765bfSSheng return true; 1535df3765bfSSheng 1536df3765bfSSheng // Heuristics. See also doFilter()'s "Heuristics" comment when num of 1537df3765bfSSheng // instructions is 3. 1538df3765bfSSheng if (AllowMixed && !Greedy) { 1539df3765bfSSheng assert(numInstructions == 3); 1540df3765bfSSheng 1541df3765bfSSheng for (auto Opcode : Opcodes) { 1542df3765bfSSheng std::vector<unsigned> StartBits; 1543df3765bfSSheng std::vector<unsigned> EndBits; 1544df3765bfSSheng std::vector<uint64_t> FieldVals; 1545df3765bfSSheng insn_t Insn; 1546df3765bfSSheng 1547df3765bfSSheng insnWithID(Insn, Opcode.EncodingID); 1548df3765bfSSheng 1549df3765bfSSheng // Look for islands of undecoded bits of any instruction. 1550df3765bfSSheng if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { 1551df3765bfSSheng // Found an instruction with island(s). Now just assign a filter. 1552df3765bfSSheng runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); 1553df3765bfSSheng return true; 1554df3765bfSSheng } 1555df3765bfSSheng } 1556df3765bfSSheng } 1557df3765bfSSheng 1558df3765bfSSheng unsigned BitIndex; 1559df3765bfSSheng 1560df3765bfSSheng // We maintain BIT_WIDTH copies of the bitAttrs automaton. 1561df3765bfSSheng // The automaton consumes the corresponding bit from each 1562df3765bfSSheng // instruction. 1563df3765bfSSheng // 1564df3765bfSSheng // Input symbols: 0, 1, and _ (unset). 1565df3765bfSSheng // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. 1566df3765bfSSheng // Initial state: NONE. 1567df3765bfSSheng // 1568df3765bfSSheng // (NONE) ------- [01] -> (ALL_SET) 1569df3765bfSSheng // (NONE) ------- _ ----> (ALL_UNSET) 1570df3765bfSSheng // (ALL_SET) ---- [01] -> (ALL_SET) 1571df3765bfSSheng // (ALL_SET) ---- _ ----> (MIXED) 1572df3765bfSSheng // (ALL_UNSET) -- [01] -> (MIXED) 1573df3765bfSSheng // (ALL_UNSET) -- _ ----> (ALL_UNSET) 1574df3765bfSSheng // (MIXED) ------ . ----> (MIXED) 1575df3765bfSSheng // (FILTERED)---- . ----> (FILTERED) 1576df3765bfSSheng 1577df3765bfSSheng std::vector<bitAttr_t> bitAttrs; 1578df3765bfSSheng 1579df3765bfSSheng // FILTERED bit positions provide no entropy and are not worthy of pursuing. 1580df3765bfSSheng // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. 1581df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) 1582df3765bfSSheng if (FilterBitValues[BitIndex] == BIT_TRUE || 1583df3765bfSSheng FilterBitValues[BitIndex] == BIT_FALSE) 1584df3765bfSSheng bitAttrs.push_back(ATTR_FILTERED); 1585df3765bfSSheng else 1586df3765bfSSheng bitAttrs.push_back(ATTR_NONE); 1587df3765bfSSheng 1588df3765bfSSheng for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { 1589df3765bfSSheng insn_t insn; 1590df3765bfSSheng 1591df3765bfSSheng insnWithID(insn, Opcodes[InsnIndex].EncodingID); 1592df3765bfSSheng 1593df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1594df3765bfSSheng switch (bitAttrs[BitIndex]) { 1595df3765bfSSheng case ATTR_NONE: 1596df3765bfSSheng if (insn[BitIndex] == BIT_UNSET) 1597df3765bfSSheng bitAttrs[BitIndex] = ATTR_ALL_UNSET; 1598df3765bfSSheng else 1599df3765bfSSheng bitAttrs[BitIndex] = ATTR_ALL_SET; 1600df3765bfSSheng break; 1601df3765bfSSheng case ATTR_ALL_SET: 1602df3765bfSSheng if (insn[BitIndex] == BIT_UNSET) 1603df3765bfSSheng bitAttrs[BitIndex] = ATTR_MIXED; 1604df3765bfSSheng break; 1605df3765bfSSheng case ATTR_ALL_UNSET: 1606df3765bfSSheng if (insn[BitIndex] != BIT_UNSET) 1607df3765bfSSheng bitAttrs[BitIndex] = ATTR_MIXED; 1608df3765bfSSheng break; 1609df3765bfSSheng case ATTR_MIXED: 1610df3765bfSSheng case ATTR_FILTERED: 1611df3765bfSSheng break; 1612df3765bfSSheng } 1613df3765bfSSheng } 1614df3765bfSSheng } 1615df3765bfSSheng 1616df3765bfSSheng // The regionAttr automaton consumes the bitAttrs automatons' state, 1617df3765bfSSheng // lowest-to-highest. 1618df3765bfSSheng // 1619df3765bfSSheng // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) 1620df3765bfSSheng // States: NONE, ALL_SET, MIXED 1621df3765bfSSheng // Initial state: NONE 1622df3765bfSSheng // 1623df3765bfSSheng // (NONE) ----- F --> (NONE) 1624df3765bfSSheng // (NONE) ----- S --> (ALL_SET) ; and set region start 1625df3765bfSSheng // (NONE) ----- U --> (NONE) 1626df3765bfSSheng // (NONE) ----- M --> (MIXED) ; and set region start 1627df3765bfSSheng // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region 1628df3765bfSSheng // (ALL_SET) -- S --> (ALL_SET) 1629df3765bfSSheng // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region 1630df3765bfSSheng // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region 1631df3765bfSSheng // (MIXED) ---- F --> (NONE) ; and report a MIXED region 1632df3765bfSSheng // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region 1633df3765bfSSheng // (MIXED) ---- U --> (NONE) ; and report a MIXED region 1634df3765bfSSheng // (MIXED) ---- M --> (MIXED) 1635df3765bfSSheng 1636df3765bfSSheng bitAttr_t RA = ATTR_NONE; 1637df3765bfSSheng unsigned StartBit = 0; 1638df3765bfSSheng 1639df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1640df3765bfSSheng bitAttr_t bitAttr = bitAttrs[BitIndex]; 1641df3765bfSSheng 1642df3765bfSSheng assert(bitAttr != ATTR_NONE && "Bit without attributes"); 1643df3765bfSSheng 1644df3765bfSSheng switch (RA) { 1645df3765bfSSheng case ATTR_NONE: 1646df3765bfSSheng switch (bitAttr) { 1647df3765bfSSheng case ATTR_FILTERED: 1648df3765bfSSheng break; 1649df3765bfSSheng case ATTR_ALL_SET: 1650df3765bfSSheng StartBit = BitIndex; 1651df3765bfSSheng RA = ATTR_ALL_SET; 1652df3765bfSSheng break; 1653df3765bfSSheng case ATTR_ALL_UNSET: 1654df3765bfSSheng break; 1655df3765bfSSheng case ATTR_MIXED: 1656df3765bfSSheng StartBit = BitIndex; 1657df3765bfSSheng RA = ATTR_MIXED; 1658df3765bfSSheng break; 1659df3765bfSSheng default: 1660df3765bfSSheng llvm_unreachable("Unexpected bitAttr!"); 1661df3765bfSSheng } 1662df3765bfSSheng break; 1663df3765bfSSheng case ATTR_ALL_SET: 1664df3765bfSSheng switch (bitAttr) { 1665df3765bfSSheng case ATTR_FILTERED: 1666df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1667df3765bfSSheng RA = ATTR_NONE; 1668df3765bfSSheng break; 1669df3765bfSSheng case ATTR_ALL_SET: 1670df3765bfSSheng break; 1671df3765bfSSheng case ATTR_ALL_UNSET: 1672df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1673df3765bfSSheng RA = ATTR_NONE; 1674df3765bfSSheng break; 1675df3765bfSSheng case ATTR_MIXED: 1676df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1677df3765bfSSheng StartBit = BitIndex; 1678df3765bfSSheng RA = ATTR_MIXED; 1679df3765bfSSheng break; 1680df3765bfSSheng default: 1681df3765bfSSheng llvm_unreachable("Unexpected bitAttr!"); 1682df3765bfSSheng } 1683df3765bfSSheng break; 1684df3765bfSSheng case ATTR_MIXED: 1685df3765bfSSheng switch (bitAttr) { 1686df3765bfSSheng case ATTR_FILTERED: 1687df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1688df3765bfSSheng StartBit = BitIndex; 1689df3765bfSSheng RA = ATTR_NONE; 1690df3765bfSSheng break; 1691df3765bfSSheng case ATTR_ALL_SET: 1692df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1693df3765bfSSheng StartBit = BitIndex; 1694df3765bfSSheng RA = ATTR_ALL_SET; 1695df3765bfSSheng break; 1696df3765bfSSheng case ATTR_ALL_UNSET: 1697df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1698df3765bfSSheng RA = ATTR_NONE; 1699df3765bfSSheng break; 1700df3765bfSSheng case ATTR_MIXED: 1701df3765bfSSheng break; 1702df3765bfSSheng default: 1703df3765bfSSheng llvm_unreachable("Unexpected bitAttr!"); 1704df3765bfSSheng } 1705df3765bfSSheng break; 1706df3765bfSSheng case ATTR_ALL_UNSET: 1707df3765bfSSheng llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); 1708df3765bfSSheng case ATTR_FILTERED: 1709df3765bfSSheng llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); 1710df3765bfSSheng } 1711df3765bfSSheng } 1712df3765bfSSheng 1713df3765bfSSheng // At the end, if we're still in ALL_SET or MIXED states, report a region 1714df3765bfSSheng switch (RA) { 1715df3765bfSSheng case ATTR_NONE: 1716df3765bfSSheng break; 1717df3765bfSSheng case ATTR_FILTERED: 1718df3765bfSSheng break; 1719df3765bfSSheng case ATTR_ALL_SET: 1720df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1721df3765bfSSheng break; 1722df3765bfSSheng case ATTR_ALL_UNSET: 1723df3765bfSSheng break; 1724df3765bfSSheng case ATTR_MIXED: 1725df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed); 1726df3765bfSSheng break; 1727df3765bfSSheng } 1728df3765bfSSheng 1729df3765bfSSheng // We have finished with the filter processings. Now it's time to choose 1730df3765bfSSheng // the best performing filter. 1731df3765bfSSheng BestIndex = 0; 1732df3765bfSSheng bool AllUseless = true; 1733df3765bfSSheng unsigned BestScore = 0; 1734df3765bfSSheng 1735df3765bfSSheng for (unsigned i = 0, e = Filters.size(); i != e; ++i) { 1736df3765bfSSheng unsigned Usefulness = Filters[i].usefulness(); 1737df3765bfSSheng 1738df3765bfSSheng if (Usefulness) 1739df3765bfSSheng AllUseless = false; 1740df3765bfSSheng 1741df3765bfSSheng if (Usefulness > BestScore) { 1742df3765bfSSheng BestIndex = i; 1743df3765bfSSheng BestScore = Usefulness; 1744df3765bfSSheng } 1745df3765bfSSheng } 1746df3765bfSSheng 1747df3765bfSSheng if (!AllUseless) 1748df3765bfSSheng bestFilter().recurse(); 1749df3765bfSSheng 1750df3765bfSSheng return !AllUseless; 1751df3765bfSSheng } // end of FilterChooser::filterProcessor(bool) 1752df3765bfSSheng 1753df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode 1754df3765bfSSheng // the instructions. A conflict of instructions may occur, in which case we 1755df3765bfSSheng // dump the conflict set to the standard error. 1756df3765bfSSheng void FilterChooser::doFilter() { 1757df3765bfSSheng unsigned Num = Opcodes.size(); 1758df3765bfSSheng assert(Num && "FilterChooser created with no instructions"); 1759df3765bfSSheng 1760df3765bfSSheng // Try regions of consecutive known bit values first. 1761df3765bfSSheng if (filterProcessor(false)) 1762df3765bfSSheng return; 1763df3765bfSSheng 1764df3765bfSSheng // Then regions of mixed bits (both known and unitialized bit values allowed). 1765df3765bfSSheng if (filterProcessor(true)) 1766df3765bfSSheng return; 1767df3765bfSSheng 1768df3765bfSSheng // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where 1769df3765bfSSheng // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a 1770df3765bfSSheng // well-known encoding pattern. In such case, we backtrack and scan for the 1771df3765bfSSheng // the very first consecutive ATTR_ALL_SET region and assign a filter to it. 1772df3765bfSSheng if (Num == 3 && filterProcessor(true, false)) 1773df3765bfSSheng return; 1774df3765bfSSheng 1775df3765bfSSheng // If we come to here, the instruction decoding has failed. 1776df3765bfSSheng // Set the BestIndex to -1 to indicate so. 1777df3765bfSSheng BestIndex = -1; 1778df3765bfSSheng } 1779df3765bfSSheng 1780df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of 1781df3765bfSSheng // instructions. 1782df3765bfSSheng void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { 1783df3765bfSSheng if (Opcodes.size() == 1) { 1784df3765bfSSheng // There is only one instruction in the set, which is great! 1785df3765bfSSheng // Call emitSingletonDecoder() to see whether there are any remaining 1786df3765bfSSheng // encodings bits. 1787df3765bfSSheng emitSingletonTableEntry(TableInfo, Opcodes[0]); 1788df3765bfSSheng return; 1789df3765bfSSheng } 1790df3765bfSSheng 1791df3765bfSSheng // Choose the best filter to do the decodings! 1792df3765bfSSheng if (BestIndex != -1) { 1793df3765bfSSheng const Filter &Best = Filters[BestIndex]; 1794df3765bfSSheng if (Best.getNumFiltered() == 1) 1795df3765bfSSheng emitSingletonTableEntry(TableInfo, Best); 1796df3765bfSSheng else 1797df3765bfSSheng Best.emitTableEntry(TableInfo); 1798df3765bfSSheng return; 1799df3765bfSSheng } 1800df3765bfSSheng 1801df3765bfSSheng // We don't know how to decode these instructions! Dump the 1802df3765bfSSheng // conflict set and bail. 1803df3765bfSSheng 1804df3765bfSSheng // Print out useful conflict information for postmortem analysis. 1805df3765bfSSheng errs() << "Decoding Conflict:\n"; 1806df3765bfSSheng 1807df3765bfSSheng dumpStack(errs(), "\t\t"); 1808df3765bfSSheng 1809df3765bfSSheng for (auto Opcode : Opcodes) { 1810df3765bfSSheng errs() << '\t'; 1811df3765bfSSheng emitNameWithID(errs(), Opcode.EncodingID); 1812df3765bfSSheng errs() << " "; 1813df3765bfSSheng dumpBits( 1814df3765bfSSheng errs(), 1815df3765bfSSheng getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst")); 1816df3765bfSSheng errs() << '\n'; 1817df3765bfSSheng } 1818df3765bfSSheng } 1819df3765bfSSheng 1820df3765bfSSheng static std::string findOperandDecoderMethod(Record *Record) { 1821df3765bfSSheng std::string Decoder; 1822df3765bfSSheng 1823df3765bfSSheng RecordVal *DecoderString = Record->getValue("DecoderMethod"); 1824df3765bfSSheng StringInit *String = DecoderString ? 1825df3765bfSSheng dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1826df3765bfSSheng if (String) { 1827df3765bfSSheng Decoder = std::string(String->getValue()); 1828df3765bfSSheng if (!Decoder.empty()) 1829df3765bfSSheng return Decoder; 1830df3765bfSSheng } 1831df3765bfSSheng 1832df3765bfSSheng if (Record->isSubClassOf("RegisterOperand")) 1833df3765bfSSheng Record = Record->getValueAsDef("RegClass"); 1834df3765bfSSheng 1835df3765bfSSheng if (Record->isSubClassOf("RegisterClass")) { 1836df3765bfSSheng Decoder = "Decode" + Record->getName().str() + "RegisterClass"; 1837df3765bfSSheng } else if (Record->isSubClassOf("PointerLikeRegClass")) { 1838df3765bfSSheng Decoder = "DecodePointerLikeRegClass" + 1839df3765bfSSheng utostr(Record->getValueAsInt("RegClassKind")); 1840df3765bfSSheng } 1841df3765bfSSheng 1842df3765bfSSheng return Decoder; 1843df3765bfSSheng } 1844df3765bfSSheng 1845df3765bfSSheng OperandInfo getOpInfo(Record *TypeRecord) { 1846df3765bfSSheng std::string Decoder = findOperandDecoderMethod(TypeRecord); 1847df3765bfSSheng 1848df3765bfSSheng RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder"); 1849df3765bfSSheng BitInit *HasCompleteDecoderBit = 1850df3765bfSSheng HasCompleteDecoderVal 1851df3765bfSSheng ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) 1852df3765bfSSheng : nullptr; 1853df3765bfSSheng bool HasCompleteDecoder = 1854df3765bfSSheng HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true; 1855df3765bfSSheng 1856df3765bfSSheng return OperandInfo(Decoder, HasCompleteDecoder); 1857df3765bfSSheng } 1858df3765bfSSheng 1859df3765bfSSheng void parseVarLenInstOperand(const Record &Def, 1860df3765bfSSheng std::vector<OperandInfo> &Operands, 1861df3765bfSSheng const CodeGenInstruction &CGI) { 1862df3765bfSSheng 1863df3765bfSSheng const RecordVal *RV = Def.getValue("Inst"); 1864df3765bfSSheng VarLenInst VLI(cast<DagInit>(RV->getValue()), RV); 1865df3765bfSSheng SmallVector<int> TiedTo; 1866df3765bfSSheng 1867df3765bfSSheng for (unsigned Idx = 0; Idx < CGI.Operands.size(); ++Idx) { 1868df3765bfSSheng auto &Op = CGI.Operands[Idx]; 1869df3765bfSSheng if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0) 1870df3765bfSSheng for (auto *Arg : Op.MIOperandInfo->getArgs()) 1871df3765bfSSheng Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef())); 1872df3765bfSSheng else 1873df3765bfSSheng Operands.push_back(getOpInfo(Op.Rec)); 1874df3765bfSSheng 1875df3765bfSSheng int TiedReg = Op.getTiedRegister(); 1876df3765bfSSheng TiedTo.push_back(-1); 1877df3765bfSSheng if (TiedReg != -1) { 1878df3765bfSSheng TiedTo[Idx] = TiedReg; 1879df3765bfSSheng TiedTo[TiedReg] = Idx; 1880df3765bfSSheng } 1881df3765bfSSheng } 1882df3765bfSSheng 1883df3765bfSSheng unsigned CurrBitPos = 0; 1884df3765bfSSheng for (auto &EncodingSegment : VLI) { 1885df3765bfSSheng unsigned Offset = 0; 1886df3765bfSSheng StringRef OpName; 1887df3765bfSSheng 1888df3765bfSSheng if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) { 1889df3765bfSSheng OpName = SI->getValue(); 1890df3765bfSSheng } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) { 1891df3765bfSSheng OpName = cast<StringInit>(DI->getArg(0))->getValue(); 1892df3765bfSSheng Offset = cast<IntInit>(DI->getArg(2))->getValue(); 1893df3765bfSSheng } 1894df3765bfSSheng 1895df3765bfSSheng if (!OpName.empty()) { 1896df3765bfSSheng auto OpSubOpPair = 1897df3765bfSSheng const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName( 1898df3765bfSSheng OpName); 1899df3765bfSSheng unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair); 1900df3765bfSSheng Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); 1901df3765bfSSheng 1902df3765bfSSheng int TiedReg = TiedTo[OpSubOpPair.first]; 1903df3765bfSSheng if (TiedReg != -1) { 1904df3765bfSSheng unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber( 1905df3765bfSSheng std::make_pair(TiedReg, OpSubOpPair.second)); 1906df3765bfSSheng Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset); 1907df3765bfSSheng } 1908df3765bfSSheng } 1909df3765bfSSheng 1910df3765bfSSheng CurrBitPos += EncodingSegment.BitWidth; 1911df3765bfSSheng } 1912df3765bfSSheng } 1913df3765bfSSheng 1914df3765bfSSheng static unsigned 1915df3765bfSSheng populateInstruction(CodeGenTarget &Target, const Record &EncodingDef, 1916df3765bfSSheng const CodeGenInstruction &CGI, unsigned Opc, 1917df3765bfSSheng std::map<unsigned, std::vector<OperandInfo>> &Operands, 1918df3765bfSSheng bool IsVarLenInst) { 1919df3765bfSSheng const Record &Def = *CGI.TheDef; 1920df3765bfSSheng // If all the bit positions are not specified; do not decode this instruction. 1921df3765bfSSheng // We are bound to fail! For proper disassembly, the well-known encoding bits 1922df3765bfSSheng // of the instruction must be fully specified. 1923df3765bfSSheng 1924df3765bfSSheng BitsInit &Bits = getBitsField(EncodingDef, "Inst"); 1925df3765bfSSheng if (Bits.allInComplete()) 1926df3765bfSSheng return 0; 1927df3765bfSSheng 1928df3765bfSSheng std::vector<OperandInfo> InsnOperands; 1929df3765bfSSheng 1930df3765bfSSheng // If the instruction has specified a custom decoding hook, use that instead 1931df3765bfSSheng // of trying to auto-generate the decoder. 1932df3765bfSSheng StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod"); 1933df3765bfSSheng if (InstDecoder != "") { 1934df3765bfSSheng bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder"); 1935df3765bfSSheng InsnOperands.push_back( 1936df3765bfSSheng OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder)); 1937df3765bfSSheng Operands[Opc] = InsnOperands; 1938df3765bfSSheng return Bits.getNumBits(); 1939df3765bfSSheng } 1940df3765bfSSheng 1941df3765bfSSheng // Generate a description of the operand of the instruction that we know 1942df3765bfSSheng // how to decode automatically. 1943df3765bfSSheng // FIXME: We'll need to have a way to manually override this as needed. 1944df3765bfSSheng 1945df3765bfSSheng // Gather the outputs/inputs of the instruction, so we can find their 1946df3765bfSSheng // positions in the encoding. This assumes for now that they appear in the 1947df3765bfSSheng // MCInst in the order that they're listed. 1948df3765bfSSheng std::vector<std::pair<Init*, StringRef>> InOutOperands; 1949df3765bfSSheng DagInit *Out = Def.getValueAsDag("OutOperandList"); 1950df3765bfSSheng DagInit *In = Def.getValueAsDag("InOperandList"); 1951df3765bfSSheng for (unsigned i = 0; i < Out->getNumArgs(); ++i) 1952df3765bfSSheng InOutOperands.push_back( 1953df3765bfSSheng std::make_pair(Out->getArg(i), Out->getArgNameStr(i))); 1954df3765bfSSheng for (unsigned i = 0; i < In->getNumArgs(); ++i) 1955df3765bfSSheng InOutOperands.push_back( 1956df3765bfSSheng std::make_pair(In->getArg(i), In->getArgNameStr(i))); 1957df3765bfSSheng 1958df3765bfSSheng // Search for tied operands, so that we can correctly instantiate 1959df3765bfSSheng // operands that are not explicitly represented in the encoding. 1960df3765bfSSheng std::map<std::string, std::string> TiedNames; 1961df3765bfSSheng for (unsigned i = 0; i < CGI.Operands.size(); ++i) { 1962df3765bfSSheng int tiedTo = CGI.Operands[i].getTiedRegister(); 1963df3765bfSSheng if (tiedTo != -1) { 1964df3765bfSSheng std::pair<unsigned, unsigned> SO = 1965df3765bfSSheng CGI.Operands.getSubOperandNumber(tiedTo); 1966df3765bfSSheng TiedNames[std::string(InOutOperands[i].second)] = 1967df3765bfSSheng std::string(InOutOperands[SO.first].second); 1968df3765bfSSheng TiedNames[std::string(InOutOperands[SO.first].second)] = 1969df3765bfSSheng std::string(InOutOperands[i].second); 1970df3765bfSSheng } 1971df3765bfSSheng } 1972df3765bfSSheng 1973df3765bfSSheng if (IsVarLenInst) { 1974df3765bfSSheng parseVarLenInstOperand(EncodingDef, InsnOperands, CGI); 1975df3765bfSSheng } else { 1976df3765bfSSheng std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands; 1977df3765bfSSheng std::set<std::string> NumberedInsnOperandsNoTie; 1978df3765bfSSheng if (Target.getInstructionSet()->getValueAsBit( 1979df3765bfSSheng "decodePositionallyEncodedOperands")) { 1980df3765bfSSheng const std::vector<RecordVal> &Vals = Def.getValues(); 1981df3765bfSSheng unsigned NumberedOp = 0; 1982df3765bfSSheng 1983df3765bfSSheng std::set<unsigned> NamedOpIndices; 1984df3765bfSSheng if (Target.getInstructionSet()->getValueAsBit( 1985df3765bfSSheng "noNamedPositionallyEncodedOperands")) 1986df3765bfSSheng // Collect the set of operand indices that might correspond to named 1987df3765bfSSheng // operand, and skip these when assigning operands based on position. 1988df3765bfSSheng for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1989df3765bfSSheng unsigned OpIdx; 1990df3765bfSSheng if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 1991df3765bfSSheng continue; 1992df3765bfSSheng 1993df3765bfSSheng NamedOpIndices.insert(OpIdx); 1994df3765bfSSheng } 1995df3765bfSSheng 1996df3765bfSSheng for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1997df3765bfSSheng // Ignore fixed fields in the record, we're looking for values like: 1998df3765bfSSheng // bits<5> RST = { ?, ?, ?, ?, ? }; 1999df3765bfSSheng if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete()) 2000df3765bfSSheng continue; 2001df3765bfSSheng 2002df3765bfSSheng // Determine if Vals[i] actually contributes to the Inst encoding. 2003df3765bfSSheng unsigned bi = 0; 2004df3765bfSSheng for (; bi < Bits.getNumBits(); ++bi) { 2005df3765bfSSheng VarInit *Var = nullptr; 2006df3765bfSSheng VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 2007df3765bfSSheng if (BI) 2008df3765bfSSheng Var = dyn_cast<VarInit>(BI->getBitVar()); 2009df3765bfSSheng else 2010df3765bfSSheng Var = dyn_cast<VarInit>(Bits.getBit(bi)); 2011df3765bfSSheng 2012df3765bfSSheng if (Var && Var->getName() == Vals[i].getName()) 2013df3765bfSSheng break; 2014df3765bfSSheng } 2015df3765bfSSheng 2016df3765bfSSheng if (bi == Bits.getNumBits()) 2017df3765bfSSheng continue; 2018df3765bfSSheng 2019df3765bfSSheng // Skip variables that correspond to explicitly-named operands. 2020df3765bfSSheng unsigned OpIdx; 2021df3765bfSSheng if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 2022df3765bfSSheng continue; 2023df3765bfSSheng 2024df3765bfSSheng // Get the bit range for this operand: 2025df3765bfSSheng unsigned bitStart = bi++, bitWidth = 1; 2026df3765bfSSheng for (; bi < Bits.getNumBits(); ++bi) { 2027df3765bfSSheng VarInit *Var = nullptr; 2028df3765bfSSheng VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 2029df3765bfSSheng if (BI) 2030df3765bfSSheng Var = dyn_cast<VarInit>(BI->getBitVar()); 2031df3765bfSSheng else 2032df3765bfSSheng Var = dyn_cast<VarInit>(Bits.getBit(bi)); 2033df3765bfSSheng 2034df3765bfSSheng if (!Var) 2035df3765bfSSheng break; 2036df3765bfSSheng 2037df3765bfSSheng if (Var->getName() != Vals[i].getName()) 2038df3765bfSSheng break; 2039df3765bfSSheng 2040df3765bfSSheng ++bitWidth; 2041df3765bfSSheng } 2042df3765bfSSheng 2043df3765bfSSheng unsigned NumberOps = CGI.Operands.size(); 2044df3765bfSSheng while (NumberedOp < NumberOps && 2045df3765bfSSheng (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || 2046df3765bfSSheng (!NamedOpIndices.empty() && 2047df3765bfSSheng NamedOpIndices.count( 2048df3765bfSSheng CGI.Operands.getSubOperandNumber(NumberedOp).first)))) 2049df3765bfSSheng ++NumberedOp; 2050df3765bfSSheng 2051df3765bfSSheng OpIdx = NumberedOp++; 2052df3765bfSSheng 2053df3765bfSSheng // OpIdx now holds the ordered operand number of Vals[i]. 2054df3765bfSSheng std::pair<unsigned, unsigned> SO = 2055df3765bfSSheng CGI.Operands.getSubOperandNumber(OpIdx); 2056df3765bfSSheng const std::string &Name = CGI.Operands[SO.first].Name; 2057df3765bfSSheng 2058df3765bfSSheng LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() 2059df3765bfSSheng << ": " << Name << "(" << SO.first << ", " 2060df3765bfSSheng << SO.second << ") => " << Vals[i].getName() << "\n"); 2061df3765bfSSheng 2062df3765bfSSheng std::string Decoder; 2063df3765bfSSheng Record *TypeRecord = CGI.Operands[SO.first].Rec; 2064df3765bfSSheng 2065df3765bfSSheng RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); 2066df3765bfSSheng StringInit *String = 2067df3765bfSSheng DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) 2068df3765bfSSheng : nullptr; 2069df3765bfSSheng if (String && String->getValue() != "") 2070df3765bfSSheng Decoder = std::string(String->getValue()); 2071df3765bfSSheng 2072df3765bfSSheng if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo && 2073df3765bfSSheng CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) { 2074df3765bfSSheng Init *Arg = CGI.Operands[SO.first].MIOperandInfo->getArg(SO.second); 2075df3765bfSSheng if (DefInit *DI = cast<DefInit>(Arg)) 2076df3765bfSSheng TypeRecord = DI->getDef(); 2077df3765bfSSheng } 2078df3765bfSSheng 2079df3765bfSSheng bool isReg = false; 2080df3765bfSSheng if (TypeRecord->isSubClassOf("RegisterOperand")) 2081df3765bfSSheng TypeRecord = TypeRecord->getValueAsDef("RegClass"); 2082df3765bfSSheng if (TypeRecord->isSubClassOf("RegisterClass")) { 2083df3765bfSSheng Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass"; 2084df3765bfSSheng isReg = true; 2085df3765bfSSheng } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { 2086df3765bfSSheng Decoder = "DecodePointerLikeRegClass" + 2087df3765bfSSheng utostr(TypeRecord->getValueAsInt("RegClassKind")); 2088df3765bfSSheng isReg = true; 2089df3765bfSSheng } 2090df3765bfSSheng 2091df3765bfSSheng DecoderString = TypeRecord->getValue("DecoderMethod"); 2092df3765bfSSheng String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) 2093df3765bfSSheng : nullptr; 2094df3765bfSSheng if (!isReg && String && String->getValue() != "") 2095df3765bfSSheng Decoder = std::string(String->getValue()); 2096df3765bfSSheng 2097df3765bfSSheng RecordVal *HasCompleteDecoderVal = 2098df3765bfSSheng TypeRecord->getValue("hasCompleteDecoder"); 2099df3765bfSSheng BitInit *HasCompleteDecoderBit = 2100df3765bfSSheng HasCompleteDecoderVal 2101df3765bfSSheng ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) 2102df3765bfSSheng : nullptr; 2103df3765bfSSheng bool HasCompleteDecoder = 2104df3765bfSSheng HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true; 2105df3765bfSSheng 2106df3765bfSSheng OperandInfo OpInfo(Decoder, HasCompleteDecoder); 2107df3765bfSSheng OpInfo.addField(bitStart, bitWidth, 0); 2108df3765bfSSheng 2109df3765bfSSheng NumberedInsnOperands[Name].push_back(OpInfo); 2110df3765bfSSheng 2111df3765bfSSheng // FIXME: For complex operands with custom decoders we can't handle tied 2112df3765bfSSheng // sub-operands automatically. Skip those here and assume that this is 2113df3765bfSSheng // fixed up elsewhere. 2114df3765bfSSheng if (CGI.Operands[SO.first].MIOperandInfo && 2115df3765bfSSheng CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String && 2116df3765bfSSheng String->getValue() != "") 2117df3765bfSSheng NumberedInsnOperandsNoTie.insert(Name); 2118df3765bfSSheng } 2119df3765bfSSheng } 2120df3765bfSSheng 2121df3765bfSSheng // For each operand, see if we can figure out where it is encoded. 2122df3765bfSSheng for (const auto &Op : InOutOperands) { 2123df3765bfSSheng if (!NumberedInsnOperands[std::string(Op.second)].empty()) { 2124df3765bfSSheng llvm::append_range(InsnOperands, 2125df3765bfSSheng NumberedInsnOperands[std::string(Op.second)]); 2126df3765bfSSheng continue; 2127df3765bfSSheng } 2128df3765bfSSheng if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) { 2129df3765bfSSheng if (!NumberedInsnOperandsNoTie.count( 2130df3765bfSSheng TiedNames[std::string(Op.second)])) { 2131df3765bfSSheng // Figure out to which (sub)operand we're tied. 2132df3765bfSSheng unsigned i = 2133df3765bfSSheng CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]); 2134df3765bfSSheng int tiedTo = CGI.Operands[i].getTiedRegister(); 2135df3765bfSSheng if (tiedTo == -1) { 2136df3765bfSSheng i = CGI.Operands.getOperandNamed(Op.second); 2137df3765bfSSheng tiedTo = CGI.Operands[i].getTiedRegister(); 2138df3765bfSSheng } 2139df3765bfSSheng 2140df3765bfSSheng if (tiedTo != -1) { 2141df3765bfSSheng std::pair<unsigned, unsigned> SO = 2142df3765bfSSheng CGI.Operands.getSubOperandNumber(tiedTo); 2143df3765bfSSheng 2144df3765bfSSheng InsnOperands.push_back( 2145df3765bfSSheng NumberedInsnOperands[TiedNames[std::string(Op.second)]] 2146df3765bfSSheng [SO.second]); 2147df3765bfSSheng } 2148df3765bfSSheng } 2149df3765bfSSheng continue; 2150df3765bfSSheng } 2151df3765bfSSheng 2152df3765bfSSheng // At this point, we can locate the decoder field, but we need to know how 2153df3765bfSSheng // to interpret it. As a first step, require the target to provide 2154df3765bfSSheng // callbacks for decoding register classes. 2155df3765bfSSheng 2156df3765bfSSheng OperandInfo OpInfo = getOpInfo(cast<DefInit>(Op.first)->getDef()); 2157df3765bfSSheng 2158df3765bfSSheng // Some bits of the operand may be required to be 1 depending on the 2159df3765bfSSheng // instruction's encoding. Collect those bits. 2160df3765bfSSheng if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second)) 2161df3765bfSSheng if (const BitsInit *OpBits = 2162df3765bfSSheng dyn_cast<BitsInit>(EncodedValue->getValue())) 2163df3765bfSSheng for (unsigned I = 0; I < OpBits->getNumBits(); ++I) 2164df3765bfSSheng if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I))) 2165df3765bfSSheng if (OpBit->getValue()) 2166df3765bfSSheng OpInfo.InitValue |= 1ULL << I; 2167df3765bfSSheng 2168df3765bfSSheng unsigned Base = ~0U; 2169df3765bfSSheng unsigned Width = 0; 2170df3765bfSSheng unsigned Offset = 0; 2171df3765bfSSheng 2172df3765bfSSheng for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { 2173df3765bfSSheng VarInit *Var = nullptr; 2174df3765bfSSheng VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 2175df3765bfSSheng if (BI) 2176df3765bfSSheng Var = dyn_cast<VarInit>(BI->getBitVar()); 2177df3765bfSSheng else 2178df3765bfSSheng Var = dyn_cast<VarInit>(Bits.getBit(bi)); 2179df3765bfSSheng 2180df3765bfSSheng if (!Var) { 2181df3765bfSSheng if (Base != ~0U) { 2182df3765bfSSheng OpInfo.addField(Base, Width, Offset); 2183df3765bfSSheng Base = ~0U; 2184df3765bfSSheng Width = 0; 2185df3765bfSSheng Offset = 0; 2186df3765bfSSheng } 2187df3765bfSSheng continue; 2188df3765bfSSheng } 2189df3765bfSSheng 2190df3765bfSSheng if ((Var->getName() != Op.second && 2191df3765bfSSheng Var->getName() != TiedNames[std::string(Op.second)])) { 2192df3765bfSSheng if (Base != ~0U) { 2193df3765bfSSheng OpInfo.addField(Base, Width, Offset); 2194df3765bfSSheng Base = ~0U; 2195df3765bfSSheng Width = 0; 2196df3765bfSSheng Offset = 0; 2197df3765bfSSheng } 2198df3765bfSSheng continue; 2199df3765bfSSheng } 2200df3765bfSSheng 2201df3765bfSSheng if (Base == ~0U) { 2202df3765bfSSheng Base = bi; 2203df3765bfSSheng Width = 1; 2204df3765bfSSheng Offset = BI ? BI->getBitNum() : 0; 2205df3765bfSSheng } else if (BI && BI->getBitNum() != Offset + Width) { 2206df3765bfSSheng OpInfo.addField(Base, Width, Offset); 2207df3765bfSSheng Base = bi; 2208df3765bfSSheng Width = 1; 2209df3765bfSSheng Offset = BI->getBitNum(); 2210df3765bfSSheng } else { 2211df3765bfSSheng ++Width; 2212df3765bfSSheng } 2213df3765bfSSheng } 2214df3765bfSSheng 2215df3765bfSSheng if (Base != ~0U) 2216df3765bfSSheng OpInfo.addField(Base, Width, Offset); 2217df3765bfSSheng 2218df3765bfSSheng if (OpInfo.numFields() > 0) 2219df3765bfSSheng InsnOperands.push_back(OpInfo); 2220df3765bfSSheng } 2221df3765bfSSheng } 2222df3765bfSSheng 2223df3765bfSSheng Operands[Opc] = InsnOperands; 2224df3765bfSSheng 2225df3765bfSSheng #if 0 2226df3765bfSSheng LLVM_DEBUG({ 2227df3765bfSSheng // Dumps the instruction encoding bits. 2228df3765bfSSheng dumpBits(errs(), Bits); 2229df3765bfSSheng 2230df3765bfSSheng errs() << '\n'; 2231df3765bfSSheng 2232df3765bfSSheng // Dumps the list of operand info. 2233df3765bfSSheng for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { 2234df3765bfSSheng const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; 2235df3765bfSSheng const std::string &OperandName = Info.Name; 2236df3765bfSSheng const Record &OperandDef = *Info.Rec; 2237df3765bfSSheng 2238df3765bfSSheng errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; 2239df3765bfSSheng } 2240df3765bfSSheng }); 2241df3765bfSSheng #endif 2242df3765bfSSheng 2243df3765bfSSheng return Bits.getNumBits(); 2244df3765bfSSheng } 2245df3765bfSSheng 2246df3765bfSSheng // emitFieldFromInstruction - Emit the templated helper function 2247df3765bfSSheng // fieldFromInstruction(). 2248df3765bfSSheng // On Windows we make sure that this function is not inlined when 2249df3765bfSSheng // using the VS compiler. It has a bug which causes the function 2250df3765bfSSheng // to be optimized out in some circustances. See llvm.org/pr38292 2251df3765bfSSheng static void emitFieldFromInstruction(formatted_raw_ostream &OS) { 2252df3765bfSSheng OS << "// Helper functions for extracting fields from encoded instructions.\n" 2253df3765bfSSheng << "// InsnType must either be integral or an APInt-like object that " 2254df3765bfSSheng "must:\n" 2255df3765bfSSheng << "// * be default-constructible and copy-constructible\n" 2256df3765bfSSheng << "// * be constructible from an APInt (this can be private)\n" 2257df3765bfSSheng << "// * Support insertBits(bits, startBit, numBits)\n" 2258df3765bfSSheng << "// * Support extractBitsAsZExtValue(numBits, startBit)\n" 2259df3765bfSSheng << "// * Support the ~, &, ==, and != operators with other objects of " 2260df3765bfSSheng "the same type\n" 22611284ce91SSheng << "// * Support the != and bitwise & with uint64_t\n" 2262df3765bfSSheng << "// * Support put (<<) to raw_ostream&\n" 2263df3765bfSSheng << "template <typename InsnType>\n" 2264df3765bfSSheng << "#if defined(_MSC_VER) && !defined(__clang__)\n" 2265df3765bfSSheng << "__declspec(noinline)\n" 2266df3765bfSSheng << "#endif\n" 2267df3765bfSSheng << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n" 2268df3765bfSSheng << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n" 2269df3765bfSSheng << " unsigned numBits) {\n" 2270df3765bfSSheng << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit " 2271df3765bfSSheng "extractions!\");\n" 2272df3765bfSSheng << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n" 2273df3765bfSSheng << " \"Instruction field out of bounds!\");\n" 2274df3765bfSSheng << " InsnType fieldMask;\n" 2275df3765bfSSheng << " if (numBits == sizeof(InsnType) * 8)\n" 2276df3765bfSSheng << " fieldMask = (InsnType)(-1LL);\n" 2277df3765bfSSheng << " else\n" 2278df3765bfSSheng << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n" 2279df3765bfSSheng << " return (insn & fieldMask) >> startBit;\n" 2280df3765bfSSheng << "}\n" 2281df3765bfSSheng << "\n" 2282df3765bfSSheng << "template <typename InsnType>\n" 2283df3765bfSSheng << "static std::enable_if_t<!std::is_integral<InsnType>::value, " 2284df3765bfSSheng "uint64_t>\n" 2285df3765bfSSheng << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n" 2286df3765bfSSheng << " unsigned numBits) {\n" 2287df3765bfSSheng << " return insn.extractBitsAsZExtValue(numBits, startBit);\n" 2288df3765bfSSheng << "}\n\n"; 2289df3765bfSSheng } 2290df3765bfSSheng 2291df3765bfSSheng // emitInsertBits - Emit the templated helper function insertBits(). 2292df3765bfSSheng static void emitInsertBits(formatted_raw_ostream &OS) { 2293df3765bfSSheng OS << "// Helper function for inserting bits extracted from an encoded " 2294df3765bfSSheng "instruction into\n" 2295df3765bfSSheng << "// a field.\n" 2296df3765bfSSheng << "template <typename InsnType>\n" 2297df3765bfSSheng << "static std::enable_if_t<std::is_integral<InsnType>::value>\n" 2298df3765bfSSheng << "insertBits(InsnType &field, InsnType bits, unsigned startBit, " 2299df3765bfSSheng "unsigned numBits) {\n" 2300df3765bfSSheng << " assert(startBit + numBits <= sizeof field * 8);\n" 2301df3765bfSSheng << " field |= (InsnType)bits << startBit;\n" 2302df3765bfSSheng << "}\n" 2303df3765bfSSheng << "\n" 2304df3765bfSSheng << "template <typename InsnType>\n" 2305df3765bfSSheng << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n" 2306df3765bfSSheng << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, " 2307df3765bfSSheng "unsigned numBits) {\n" 2308df3765bfSSheng << " field.insertBits(bits, startBit, numBits);\n" 2309df3765bfSSheng << "}\n\n"; 2310df3765bfSSheng } 2311df3765bfSSheng 2312df3765bfSSheng // emitDecodeInstruction - Emit the templated helper function 2313df3765bfSSheng // decodeInstruction(). 2314df3765bfSSheng static void emitDecodeInstruction(formatted_raw_ostream &OS, 2315df3765bfSSheng bool IsVarLenInst) { 2316df3765bfSSheng OS << "template <typename InsnType>\n" 2317df3765bfSSheng << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], " 2318df3765bfSSheng "MCInst &MI,\n" 2319df3765bfSSheng << " InsnType insn, uint64_t " 2320df3765bfSSheng "Address,\n" 2321df3765bfSSheng << " const MCDisassembler *DisAsm,\n" 2322df3765bfSSheng << " const MCSubtargetInfo &STI"; 2323df3765bfSSheng if (IsVarLenInst) { 2324df3765bfSSheng OS << ",\n" 2325df3765bfSSheng << " llvm::function_ref<void(APInt " 2326df3765bfSSheng "&," 2327df3765bfSSheng << " uint64_t)> makeUp"; 2328df3765bfSSheng } 2329df3765bfSSheng OS << ") {\n" 2330df3765bfSSheng << " const FeatureBitset &Bits = STI.getFeatureBits();\n" 2331df3765bfSSheng << "\n" 2332df3765bfSSheng << " const uint8_t *Ptr = DecodeTable;\n" 2333df3765bfSSheng << " uint64_t CurFieldValue = 0;\n" 2334df3765bfSSheng << " DecodeStatus S = MCDisassembler::Success;\n" 2335df3765bfSSheng << " while (true) {\n" 2336df3765bfSSheng << " ptrdiff_t Loc = Ptr - DecodeTable;\n" 2337df3765bfSSheng << " switch (*Ptr) {\n" 2338df3765bfSSheng << " default:\n" 2339df3765bfSSheng << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n" 2340df3765bfSSheng << " return MCDisassembler::Fail;\n" 2341df3765bfSSheng << " case MCD::OPC_ExtractField: {\n" 2342df3765bfSSheng << " unsigned Start = *++Ptr;\n" 2343df3765bfSSheng << " unsigned Len = *++Ptr;\n" 2344df3765bfSSheng << " ++Ptr;\n"; 2345df3765bfSSheng if (IsVarLenInst) 2346df3765bfSSheng OS << " makeUp(insn, Start + Len);\n"; 2347df3765bfSSheng OS << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n" 2348df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << " 2349df3765bfSSheng "\", \"\n" 2350df3765bfSSheng << " << Len << \"): \" << CurFieldValue << \"\\n\");\n" 2351df3765bfSSheng << " break;\n" 2352df3765bfSSheng << " }\n" 2353df3765bfSSheng << " case MCD::OPC_FilterValue: {\n" 2354df3765bfSSheng << " // Decode the field value.\n" 2355df3765bfSSheng << " unsigned Len;\n" 2356df3765bfSSheng << " uint64_t Val = decodeULEB128(++Ptr, &Len);\n" 2357df3765bfSSheng << " Ptr += Len;\n" 2358df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n" 2359df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n" 2360df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n" 2361df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n" 2362df3765bfSSheng << "\n" 2363df3765bfSSheng << " // Perform the filter operation.\n" 2364df3765bfSSheng << " if (Val != CurFieldValue)\n" 2365df3765bfSSheng << " Ptr += NumToSkip;\n" 2366df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << " 2367df3765bfSSheng "\", \" << NumToSkip\n" 2368df3765bfSSheng << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" " 2369df3765bfSSheng ": \"PASS:\")\n" 2370df3765bfSSheng << " << \" continuing at \" << (Ptr - DecodeTable) << " 2371df3765bfSSheng "\"\\n\");\n" 2372df3765bfSSheng << "\n" 2373df3765bfSSheng << " break;\n" 2374df3765bfSSheng << " }\n" 2375df3765bfSSheng << " case MCD::OPC_CheckField: {\n" 2376df3765bfSSheng << " unsigned Start = *++Ptr;\n" 2377df3765bfSSheng << " unsigned Len = *++Ptr;\n"; 2378df3765bfSSheng if (IsVarLenInst) 2379df3765bfSSheng OS << " makeUp(insn, Start + Len);\n"; 2380df3765bfSSheng OS << " uint64_t FieldValue = fieldFromInstruction(insn, Start, Len);\n" 2381df3765bfSSheng << " // Decode the field value.\n" 2382df3765bfSSheng << " unsigned PtrLen = 0;\n" 2383df3765bfSSheng << " uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen);\n" 2384df3765bfSSheng << " Ptr += PtrLen;\n" 2385df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n" 2386df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n" 2387df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n" 2388df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n" 2389df3765bfSSheng << "\n" 2390df3765bfSSheng << " // If the actual and expected values don't match, skip.\n" 2391df3765bfSSheng << " if (ExpectedValue != FieldValue)\n" 2392df3765bfSSheng << " Ptr += NumToSkip;\n" 2393df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << " 2394df3765bfSSheng "\", \"\n" 2395df3765bfSSheng << " << Len << \", \" << ExpectedValue << \", \" << " 2396df3765bfSSheng "NumToSkip\n" 2397df3765bfSSheng << " << \"): FieldValue = \" << FieldValue << \", " 2398df3765bfSSheng "ExpectedValue = \"\n" 2399df3765bfSSheng << " << ExpectedValue << \": \"\n" 2400df3765bfSSheng << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : " 2401df3765bfSSheng "\"FAIL\\n\"));\n" 2402df3765bfSSheng << " break;\n" 2403df3765bfSSheng << " }\n" 2404df3765bfSSheng << " case MCD::OPC_CheckPredicate: {\n" 2405df3765bfSSheng << " unsigned Len;\n" 2406df3765bfSSheng << " // Decode the Predicate Index value.\n" 2407df3765bfSSheng << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n" 2408df3765bfSSheng << " Ptr += Len;\n" 2409df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n" 2410df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n" 2411df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n" 2412df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n" 2413df3765bfSSheng << " // Check the predicate.\n" 2414df3765bfSSheng << " bool Pred;\n" 2415df3765bfSSheng << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n" 2416df3765bfSSheng << " Ptr += NumToSkip;\n" 2417df3765bfSSheng << " (void)Pred;\n" 2418df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx " 2419df3765bfSSheng "<< \"): \"\n" 2420df3765bfSSheng << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n" 2421df3765bfSSheng << "\n" 2422df3765bfSSheng << " break;\n" 2423df3765bfSSheng << " }\n" 2424df3765bfSSheng << " case MCD::OPC_Decode: {\n" 2425df3765bfSSheng << " unsigned Len;\n" 2426df3765bfSSheng << " // Decode the Opcode value.\n" 2427df3765bfSSheng << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" 2428df3765bfSSheng << " Ptr += Len;\n" 2429df3765bfSSheng << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" 2430df3765bfSSheng << " Ptr += Len;\n" 2431df3765bfSSheng << "\n" 2432df3765bfSSheng << " MI.clear();\n" 2433df3765bfSSheng << " MI.setOpcode(Opc);\n" 2434df3765bfSSheng << " bool DecodeComplete;\n"; 2435df3765bfSSheng if (IsVarLenInst) { 2436df3765bfSSheng OS << " Len = InstrLenTable[Opc];\n" 2437df3765bfSSheng << " makeUp(insn, Len);\n"; 2438df3765bfSSheng } 2439df3765bfSSheng OS << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, " 2440df3765bfSSheng "DecodeComplete);\n" 2441df3765bfSSheng << " assert(DecodeComplete);\n" 2442df3765bfSSheng << "\n" 2443df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n" 2444df3765bfSSheng << " << \", using decoder \" << DecodeIdx << \": \"\n" 2445df3765bfSSheng << " << (S != MCDisassembler::Fail ? \"PASS\" : " 2446df3765bfSSheng "\"FAIL\") << \"\\n\");\n" 2447df3765bfSSheng << " return S;\n" 2448df3765bfSSheng << " }\n" 2449df3765bfSSheng << " case MCD::OPC_TryDecode: {\n" 2450df3765bfSSheng << " unsigned Len;\n" 2451df3765bfSSheng << " // Decode the Opcode value.\n" 2452df3765bfSSheng << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" 2453df3765bfSSheng << " Ptr += Len;\n" 2454df3765bfSSheng << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" 2455df3765bfSSheng << " Ptr += Len;\n" 2456df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n" 2457df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n" 2458df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n" 2459df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n" 2460df3765bfSSheng << "\n" 2461df3765bfSSheng << " // Perform the decode operation.\n" 2462df3765bfSSheng << " MCInst TmpMI;\n" 2463df3765bfSSheng << " TmpMI.setOpcode(Opc);\n" 2464df3765bfSSheng << " bool DecodeComplete;\n" 2465df3765bfSSheng << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, " 2466df3765bfSSheng "DecodeComplete);\n" 2467df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << " 2468df3765bfSSheng "Opc\n" 2469df3765bfSSheng << " << \", using decoder \" << DecodeIdx << \": \");\n" 2470df3765bfSSheng << "\n" 2471df3765bfSSheng << " if (DecodeComplete) {\n" 2472df3765bfSSheng << " // Decoding complete.\n" 2473df3765bfSSheng << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : " 2474df3765bfSSheng "\"FAIL\") << \"\\n\");\n" 2475df3765bfSSheng << " MI = TmpMI;\n" 2476df3765bfSSheng << " return S;\n" 2477df3765bfSSheng << " } else {\n" 2478df3765bfSSheng << " assert(S == MCDisassembler::Fail);\n" 2479df3765bfSSheng << " // If the decoding was incomplete, skip.\n" 2480df3765bfSSheng << " Ptr += NumToSkip;\n" 2481df3765bfSSheng << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - " 2482df3765bfSSheng "DecodeTable) << \"\\n\");\n" 2483df3765bfSSheng << " // Reset decode status. This also drops a SoftFail status " 2484df3765bfSSheng "that could be\n" 2485df3765bfSSheng << " // set before the decode attempt.\n" 2486df3765bfSSheng << " S = MCDisassembler::Success;\n" 2487df3765bfSSheng << " }\n" 2488df3765bfSSheng << " break;\n" 2489df3765bfSSheng << " }\n" 2490df3765bfSSheng << " case MCD::OPC_SoftFail: {\n" 2491df3765bfSSheng << " // Decode the mask values.\n" 2492df3765bfSSheng << " unsigned Len;\n" 2493df3765bfSSheng << " uint64_t PositiveMask = decodeULEB128(++Ptr, &Len);\n" 2494df3765bfSSheng << " Ptr += Len;\n" 2495df3765bfSSheng << " uint64_t NegativeMask = decodeULEB128(Ptr, &Len);\n" 2496df3765bfSSheng << " Ptr += Len;\n" 2497df3765bfSSheng << " bool Fail = (insn & PositiveMask) != 0 || (~insn & " 2498df3765bfSSheng "NegativeMask) != 0;\n" 2499df3765bfSSheng << " if (Fail)\n" 2500df3765bfSSheng << " S = MCDisassembler::SoftFail;\n" 2501df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? " 2502df3765bfSSheng "\"FAIL\\n\" : \"PASS\\n\"));\n" 2503df3765bfSSheng << " break;\n" 2504df3765bfSSheng << " }\n" 2505df3765bfSSheng << " case MCD::OPC_Fail: {\n" 2506df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n" 2507df3765bfSSheng << " return MCDisassembler::Fail;\n" 2508df3765bfSSheng << " }\n" 2509df3765bfSSheng << " }\n" 2510df3765bfSSheng << " }\n" 2511df3765bfSSheng << " llvm_unreachable(\"bogosity detected in disassembler state " 2512df3765bfSSheng "machine!\");\n" 2513df3765bfSSheng << "}\n\n"; 2514df3765bfSSheng } 2515df3765bfSSheng 2516df3765bfSSheng // Emits disassembler code for instruction decoding. 2517df3765bfSSheng void DecoderEmitter::run(raw_ostream &o) { 2518df3765bfSSheng formatted_raw_ostream OS(o); 2519df3765bfSSheng OS << "#include \"llvm/MC/MCInst.h\"\n"; 2520df3765bfSSheng OS << "#include \"llvm/MC/MCSubtargetInfo.h\"\n"; 2521df3765bfSSheng OS << "#include \"llvm/MC/SubtargetFeature.h\"\n"; 2522df3765bfSSheng OS << "#include \"llvm/Support/DataTypes.h\"\n"; 2523df3765bfSSheng OS << "#include \"llvm/Support/Debug.h\"\n"; 2524df3765bfSSheng OS << "#include \"llvm/Support/LEB128.h\"\n"; 2525df3765bfSSheng OS << "#include \"llvm/Support/raw_ostream.h\"\n"; 2526df3765bfSSheng OS << "#include <assert.h>\n"; 2527df3765bfSSheng OS << '\n'; 2528df3765bfSSheng OS << "namespace llvm {\n\n"; 2529df3765bfSSheng 2530df3765bfSSheng emitFieldFromInstruction(OS); 2531df3765bfSSheng emitInsertBits(OS); 2532df3765bfSSheng 2533df3765bfSSheng Target.reverseBitsForLittleEndianEncoding(); 2534df3765bfSSheng 2535df3765bfSSheng // Parameterize the decoders based on namespace and instruction width. 2536df3765bfSSheng std::set<StringRef> HwModeNames; 2537df3765bfSSheng const auto &NumberedInstructions = Target.getInstructionsByEnumValue(); 2538df3765bfSSheng NumberedEncodings.reserve(NumberedInstructions.size()); 2539df3765bfSSheng DenseMap<Record *, unsigned> IndexOfInstruction; 2540df3765bfSSheng // First, collect all HwModes referenced by the target. 2541df3765bfSSheng for (const auto &NumberedInstruction : NumberedInstructions) { 2542df3765bfSSheng IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size(); 2543df3765bfSSheng 2544df3765bfSSheng if (const RecordVal *RV = 2545df3765bfSSheng NumberedInstruction->TheDef->getValue("EncodingInfos")) { 2546df3765bfSSheng if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 2547df3765bfSSheng const CodeGenHwModes &HWM = Target.getHwModes(); 2548df3765bfSSheng EncodingInfoByHwMode EBM(DI->getDef(), HWM); 2549df3765bfSSheng for (auto &KV : EBM) 2550df3765bfSSheng HwModeNames.insert(HWM.getMode(KV.first).Name); 2551df3765bfSSheng } 2552df3765bfSSheng } 2553df3765bfSSheng } 2554df3765bfSSheng 2555df3765bfSSheng // If HwModeNames is empty, add the empty string so we always have one HwMode. 2556df3765bfSSheng if (HwModeNames.empty()) 2557df3765bfSSheng HwModeNames.insert(""); 2558df3765bfSSheng 2559df3765bfSSheng for (const auto &NumberedInstruction : NumberedInstructions) { 2560df3765bfSSheng IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size(); 2561df3765bfSSheng 2562df3765bfSSheng if (const RecordVal *RV = 2563df3765bfSSheng NumberedInstruction->TheDef->getValue("EncodingInfos")) { 2564df3765bfSSheng if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 2565df3765bfSSheng const CodeGenHwModes &HWM = Target.getHwModes(); 2566df3765bfSSheng EncodingInfoByHwMode EBM(DI->getDef(), HWM); 2567df3765bfSSheng for (auto &KV : EBM) { 2568df3765bfSSheng NumberedEncodings.emplace_back(KV.second, NumberedInstruction, 2569df3765bfSSheng HWM.getMode(KV.first).Name); 2570df3765bfSSheng HwModeNames.insert(HWM.getMode(KV.first).Name); 2571df3765bfSSheng } 2572df3765bfSSheng continue; 2573df3765bfSSheng } 2574df3765bfSSheng } 2575df3765bfSSheng // This instruction is encoded the same on all HwModes. Emit it for all 2576df3765bfSSheng // HwModes. 2577df3765bfSSheng for (StringRef HwModeName : HwModeNames) 2578df3765bfSSheng NumberedEncodings.emplace_back(NumberedInstruction->TheDef, 2579df3765bfSSheng NumberedInstruction, HwModeName); 2580df3765bfSSheng } 2581df3765bfSSheng for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding")) 2582df3765bfSSheng NumberedEncodings.emplace_back( 2583df3765bfSSheng NumberedAlias, 2584df3765bfSSheng &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf"))); 2585df3765bfSSheng 2586df3765bfSSheng std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>> 2587df3765bfSSheng OpcMap; 2588df3765bfSSheng std::map<unsigned, std::vector<OperandInfo>> Operands; 2589df3765bfSSheng std::vector<unsigned> InstrLen; 2590df3765bfSSheng 2591df3765bfSSheng bool IsVarLenInst = 2592df3765bfSSheng any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) { 2593df3765bfSSheng RecordVal *RV = CGI->TheDef->getValue("Inst"); 2594df3765bfSSheng return RV && isa<DagInit>(RV->getValue()); 2595df3765bfSSheng }); 2596df3765bfSSheng unsigned MaxInstLen = 0; 2597df3765bfSSheng 2598df3765bfSSheng for (unsigned i = 0; i < NumberedEncodings.size(); ++i) { 2599df3765bfSSheng const Record *EncodingDef = NumberedEncodings[i].EncodingDef; 2600df3765bfSSheng const CodeGenInstruction *Inst = NumberedEncodings[i].Inst; 2601df3765bfSSheng const Record *Def = Inst->TheDef; 2602df3765bfSSheng unsigned Size = EncodingDef->getValueAsInt("Size"); 2603df3765bfSSheng if (Def->getValueAsString("Namespace") == "TargetOpcode" || 2604df3765bfSSheng Def->getValueAsBit("isPseudo") || 2605df3765bfSSheng Def->getValueAsBit("isAsmParserOnly") || 2606df3765bfSSheng Def->getValueAsBit("isCodeGenOnly")) { 2607df3765bfSSheng NumEncodingsLackingDisasm++; 2608df3765bfSSheng continue; 2609df3765bfSSheng } 2610df3765bfSSheng 2611df3765bfSSheng if (i < NumberedInstructions.size()) 2612df3765bfSSheng NumInstructions++; 2613df3765bfSSheng NumEncodings++; 2614df3765bfSSheng 2615df3765bfSSheng if (!Size && !IsVarLenInst) 2616df3765bfSSheng continue; 2617df3765bfSSheng 2618df3765bfSSheng if (IsVarLenInst) 2619df3765bfSSheng InstrLen.resize(NumberedInstructions.size(), 0); 2620df3765bfSSheng 2621df3765bfSSheng if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, i, 2622df3765bfSSheng Operands, IsVarLenInst)) { 2623df3765bfSSheng if (IsVarLenInst) { 2624df3765bfSSheng MaxInstLen = std::max(MaxInstLen, Len); 2625df3765bfSSheng InstrLen[i] = Len; 2626df3765bfSSheng } 2627df3765bfSSheng std::string DecoderNamespace = 2628df3765bfSSheng std::string(EncodingDef->getValueAsString("DecoderNamespace")); 2629df3765bfSSheng if (!NumberedEncodings[i].HwModeName.empty()) 2630df3765bfSSheng DecoderNamespace += 2631df3765bfSSheng std::string("_") + NumberedEncodings[i].HwModeName.str(); 2632df3765bfSSheng OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back( 2633df3765bfSSheng i, IndexOfInstruction.find(Def)->second); 2634df3765bfSSheng } else { 2635df3765bfSSheng NumEncodingsOmitted++; 2636df3765bfSSheng } 2637df3765bfSSheng } 2638df3765bfSSheng 2639df3765bfSSheng DecoderTableInfo TableInfo; 2640df3765bfSSheng for (const auto &Opc : OpcMap) { 2641df3765bfSSheng // Emit the decoder for this namespace+width combination. 2642df3765bfSSheng ArrayRef<EncodingAndInst> NumberedEncodingsRef( 2643df3765bfSSheng NumberedEncodings.data(), NumberedEncodings.size()); 2644df3765bfSSheng FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands, 2645df3765bfSSheng IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this); 2646df3765bfSSheng 2647df3765bfSSheng // The decode table is cleared for each top level decoder function. The 2648df3765bfSSheng // predicates and decoders themselves, however, are shared across all 2649df3765bfSSheng // decoders to give more opportunities for uniqueing. 2650df3765bfSSheng TableInfo.Table.clear(); 2651df3765bfSSheng TableInfo.FixupStack.clear(); 2652df3765bfSSheng TableInfo.Table.reserve(16384); 2653df3765bfSSheng TableInfo.FixupStack.emplace_back(); 2654df3765bfSSheng FC.emitTableEntries(TableInfo); 2655df3765bfSSheng // Any NumToSkip fixups in the top level scope can resolve to the 2656df3765bfSSheng // OPC_Fail at the end of the table. 2657df3765bfSSheng assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); 2658df3765bfSSheng // Resolve any NumToSkip fixups in the current scope. 2659df3765bfSSheng resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 2660df3765bfSSheng TableInfo.Table.size()); 2661df3765bfSSheng TableInfo.FixupStack.clear(); 2662df3765bfSSheng 2663df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_Fail); 2664df3765bfSSheng 2665df3765bfSSheng // Print the table to the output stream. 2666df3765bfSSheng emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first); 2667df3765bfSSheng OS.flush(); 2668df3765bfSSheng } 2669df3765bfSSheng 2670df3765bfSSheng // For variable instruction, we emit a instruction length table 2671df3765bfSSheng // to let the decoder know how long the instructions are. 2672df3765bfSSheng // You can see example usage in M68k's disassembler. 2673df3765bfSSheng if (IsVarLenInst) 2674df3765bfSSheng emitInstrLenTable(OS, InstrLen); 2675df3765bfSSheng // Emit the predicate function. 2676df3765bfSSheng emitPredicateFunction(OS, TableInfo.Predicates, 0); 2677df3765bfSSheng 2678df3765bfSSheng // Emit the decoder function. 2679df3765bfSSheng emitDecoderFunction(OS, TableInfo.Decoders, 0); 2680df3765bfSSheng 2681df3765bfSSheng // Emit the main entry point for the decoder, decodeInstruction(). 2682df3765bfSSheng emitDecodeInstruction(OS, IsVarLenInst); 2683df3765bfSSheng 2684df3765bfSSheng OS << "\n} // end namespace llvm\n"; 2685df3765bfSSheng } 2686df3765bfSSheng 2687df3765bfSSheng namespace llvm { 2688df3765bfSSheng 2689df3765bfSSheng void EmitDecoder(RecordKeeper &RK, raw_ostream &OS, 2690df3765bfSSheng const std::string &PredicateNamespace, 2691df3765bfSSheng const std::string &GPrefix, const std::string &GPostfix, 2692df3765bfSSheng const std::string &ROK, const std::string &RFail, 2693df3765bfSSheng const std::string &L) { 2694df3765bfSSheng DecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L) 2695df3765bfSSheng .run(OS); 2696df3765bfSSheng } 2697df3765bfSSheng 2698df3765bfSSheng } // end namespace llvm 2699