1df3765bfSSheng //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===//
2df3765bfSSheng //
3df3765bfSSheng // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4df3765bfSSheng // See https://llvm.org/LICENSE.txt for license information.
5df3765bfSSheng // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6df3765bfSSheng //
7df3765bfSSheng //===----------------------------------------------------------------------===//
8df3765bfSSheng //
9df3765bfSSheng // It contains the tablegen backend that emits the decoder functions for
10df3765bfSSheng // targets with fixed/variable length instruction set.
11df3765bfSSheng //
12df3765bfSSheng //===----------------------------------------------------------------------===//
13df3765bfSSheng
14df3765bfSSheng #include "CodeGenInstruction.h"
15df3765bfSSheng #include "CodeGenTarget.h"
16df3765bfSSheng #include "InfoByHwMode.h"
17df3765bfSSheng #include "VarLenCodeEmitterGen.h"
18df3765bfSSheng #include "llvm/ADT/APInt.h"
19df3765bfSSheng #include "llvm/ADT/ArrayRef.h"
20df3765bfSSheng #include "llvm/ADT/CachedHashString.h"
21df3765bfSSheng #include "llvm/ADT/STLExtras.h"
22df3765bfSSheng #include "llvm/ADT/SetVector.h"
23df3765bfSSheng #include "llvm/ADT/SmallString.h"
24df3765bfSSheng #include "llvm/ADT/Statistic.h"
25df3765bfSSheng #include "llvm/ADT/StringExtras.h"
26df3765bfSSheng #include "llvm/ADT/StringRef.h"
27c644488aSSheng #include "llvm/MC/MCDecoderOps.h"
28df3765bfSSheng #include "llvm/Support/Casting.h"
29df3765bfSSheng #include "llvm/Support/Debug.h"
30df3765bfSSheng #include "llvm/Support/ErrorHandling.h"
31df3765bfSSheng #include "llvm/Support/FormattedStream.h"
32df3765bfSSheng #include "llvm/Support/LEB128.h"
33df3765bfSSheng #include "llvm/Support/raw_ostream.h"
34df3765bfSSheng #include "llvm/TableGen/Error.h"
35df3765bfSSheng #include "llvm/TableGen/Record.h"
36df3765bfSSheng #include <algorithm>
37df3765bfSSheng #include <cassert>
38df3765bfSSheng #include <cstddef>
39df3765bfSSheng #include <cstdint>
40df3765bfSSheng #include <map>
41df3765bfSSheng #include <memory>
42df3765bfSSheng #include <set>
43df3765bfSSheng #include <string>
44df3765bfSSheng #include <utility>
45df3765bfSSheng #include <vector>
46df3765bfSSheng
47df3765bfSSheng using namespace llvm;
48df3765bfSSheng
49df3765bfSSheng #define DEBUG_TYPE "decoder-emitter"
50df3765bfSSheng
51df3765bfSSheng namespace {
52df3765bfSSheng
53df3765bfSSheng STATISTIC(NumEncodings, "Number of encodings considered");
54df3765bfSSheng STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
55df3765bfSSheng STATISTIC(NumInstructions, "Number of instructions considered");
56df3765bfSSheng STATISTIC(NumEncodingsSupported, "Number of encodings supported");
57df3765bfSSheng STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
58df3765bfSSheng
59df3765bfSSheng struct EncodingField {
60df3765bfSSheng unsigned Base, Width, Offset;
EncodingField__anoncf345abb0111::EncodingField61df3765bfSSheng EncodingField(unsigned B, unsigned W, unsigned O)
62df3765bfSSheng : Base(B), Width(W), Offset(O) { }
63df3765bfSSheng };
64df3765bfSSheng
65df3765bfSSheng struct OperandInfo {
66df3765bfSSheng std::vector<EncodingField> Fields;
67df3765bfSSheng std::string Decoder;
68df3765bfSSheng bool HasCompleteDecoder;
69df3765bfSSheng uint64_t InitValue;
70df3765bfSSheng
OperandInfo__anoncf345abb0111::OperandInfo71df3765bfSSheng OperandInfo(std::string D, bool HCD)
72df3765bfSSheng : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}
73df3765bfSSheng
addField__anoncf345abb0111::OperandInfo74df3765bfSSheng void addField(unsigned Base, unsigned Width, unsigned Offset) {
75df3765bfSSheng Fields.push_back(EncodingField(Base, Width, Offset));
76df3765bfSSheng }
77df3765bfSSheng
numFields__anoncf345abb0111::OperandInfo78df3765bfSSheng unsigned numFields() const { return Fields.size(); }
79df3765bfSSheng
80df3765bfSSheng typedef std::vector<EncodingField>::const_iterator const_iterator;
81df3765bfSSheng
begin__anoncf345abb0111::OperandInfo82df3765bfSSheng const_iterator begin() const { return Fields.begin(); }
end__anoncf345abb0111::OperandInfo83df3765bfSSheng const_iterator end() const { return Fields.end(); }
84df3765bfSSheng };
85df3765bfSSheng
86df3765bfSSheng typedef std::vector<uint8_t> DecoderTable;
87df3765bfSSheng typedef uint32_t DecoderFixup;
88df3765bfSSheng typedef std::vector<DecoderFixup> FixupList;
89df3765bfSSheng typedef std::vector<FixupList> FixupScopeList;
90df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> PredicateSet;
91df3765bfSSheng typedef SmallSetVector<CachedHashString, 16> DecoderSet;
92df3765bfSSheng struct DecoderTableInfo {
93df3765bfSSheng DecoderTable Table;
94df3765bfSSheng FixupScopeList FixupStack;
95df3765bfSSheng PredicateSet Predicates;
96df3765bfSSheng DecoderSet Decoders;
97df3765bfSSheng };
98df3765bfSSheng
99df3765bfSSheng struct EncodingAndInst {
100df3765bfSSheng const Record *EncodingDef;
101df3765bfSSheng const CodeGenInstruction *Inst;
102df3765bfSSheng StringRef HwModeName;
103df3765bfSSheng
EncodingAndInst__anoncf345abb0111::EncodingAndInst104df3765bfSSheng EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
105df3765bfSSheng StringRef HwModeName = "")
106df3765bfSSheng : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
107df3765bfSSheng };
108df3765bfSSheng
109df3765bfSSheng struct EncodingIDAndOpcode {
110df3765bfSSheng unsigned EncodingID;
111df3765bfSSheng unsigned Opcode;
112df3765bfSSheng
EncodingIDAndOpcode__anoncf345abb0111::EncodingIDAndOpcode113df3765bfSSheng EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
EncodingIDAndOpcode__anoncf345abb0111::EncodingIDAndOpcode114df3765bfSSheng EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
115df3765bfSSheng : EncodingID(EncodingID), Opcode(Opcode) {}
116df3765bfSSheng };
117df3765bfSSheng
operator <<(raw_ostream & OS,const EncodingAndInst & Value)118df3765bfSSheng raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
119df3765bfSSheng if (Value.EncodingDef != Value.Inst->TheDef)
120df3765bfSSheng OS << Value.EncodingDef->getName() << ":";
121df3765bfSSheng OS << Value.Inst->TheDef->getName();
122df3765bfSSheng return OS;
123df3765bfSSheng }
124df3765bfSSheng
125df3765bfSSheng class DecoderEmitter {
126df3765bfSSheng RecordKeeper &RK;
127df3765bfSSheng std::vector<EncodingAndInst> NumberedEncodings;
128df3765bfSSheng
129df3765bfSSheng public:
130df3765bfSSheng // Defaults preserved here for documentation, even though they aren't
131df3765bfSSheng // strictly necessary given the way that this is currently being called.
DecoderEmitter(RecordKeeper & R,std::string PredicateNamespace,std::string GPrefix="if (",std::string GPostfix=" == MCDisassembler::Fail)",std::string ROK="MCDisassembler::Success",std::string RFail="MCDisassembler::Fail",std::string L="")132df3765bfSSheng DecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
133df3765bfSSheng std::string GPrefix = "if (",
134df3765bfSSheng std::string GPostfix = " == MCDisassembler::Fail)",
135df3765bfSSheng std::string ROK = "MCDisassembler::Success",
136df3765bfSSheng std::string RFail = "MCDisassembler::Fail", std::string L = "")
137df3765bfSSheng : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
138df3765bfSSheng GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
139df3765bfSSheng ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
140df3765bfSSheng Locals(std::move(L)) {}
141df3765bfSSheng
142df3765bfSSheng // Emit the decoder state machine table.
143df3765bfSSheng void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
144df3765bfSSheng unsigned Indentation, unsigned BitWidth,
145df3765bfSSheng StringRef Namespace) const;
146df3765bfSSheng void emitInstrLenTable(formatted_raw_ostream &OS,
147df3765bfSSheng std::vector<unsigned> &InstrLen) const;
148df3765bfSSheng void emitPredicateFunction(formatted_raw_ostream &OS,
149df3765bfSSheng PredicateSet &Predicates,
150df3765bfSSheng unsigned Indentation) const;
151df3765bfSSheng void emitDecoderFunction(formatted_raw_ostream &OS,
152df3765bfSSheng DecoderSet &Decoders,
153df3765bfSSheng unsigned Indentation) const;
154df3765bfSSheng
155df3765bfSSheng // run - Output the code emitter
156df3765bfSSheng void run(raw_ostream &o);
157df3765bfSSheng
158df3765bfSSheng private:
159df3765bfSSheng CodeGenTarget Target;
160df3765bfSSheng
161df3765bfSSheng public:
162df3765bfSSheng std::string PredicateNamespace;
163df3765bfSSheng std::string GuardPrefix, GuardPostfix;
164df3765bfSSheng std::string ReturnOK, ReturnFail;
165df3765bfSSheng std::string Locals;
166df3765bfSSheng };
167df3765bfSSheng
168df3765bfSSheng } // end anonymous namespace
169df3765bfSSheng
170df3765bfSSheng // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
171df3765bfSSheng // for a bit value.
172df3765bfSSheng //
173df3765bfSSheng // BIT_UNFILTERED is used as the init value for a filter position. It is used
174df3765bfSSheng // only for filter processings.
175df3765bfSSheng typedef enum {
176df3765bfSSheng BIT_TRUE, // '1'
177df3765bfSSheng BIT_FALSE, // '0'
178df3765bfSSheng BIT_UNSET, // '?'
179df3765bfSSheng BIT_UNFILTERED // unfiltered
180df3765bfSSheng } bit_value_t;
181df3765bfSSheng
ValueSet(bit_value_t V)182df3765bfSSheng static bool ValueSet(bit_value_t V) {
183df3765bfSSheng return (V == BIT_TRUE || V == BIT_FALSE);
184df3765bfSSheng }
185df3765bfSSheng
ValueNotSet(bit_value_t V)186df3765bfSSheng static bool ValueNotSet(bit_value_t V) {
187df3765bfSSheng return (V == BIT_UNSET);
188df3765bfSSheng }
189df3765bfSSheng
Value(bit_value_t V)190df3765bfSSheng static int Value(bit_value_t V) {
191df3765bfSSheng return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
192df3765bfSSheng }
193df3765bfSSheng
bitFromBits(const BitsInit & bits,unsigned index)194df3765bfSSheng static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
195df3765bfSSheng if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
196df3765bfSSheng return bit->getValue() ? BIT_TRUE : BIT_FALSE;
197df3765bfSSheng
198df3765bfSSheng // The bit is uninitialized.
199df3765bfSSheng return BIT_UNSET;
200df3765bfSSheng }
201df3765bfSSheng
202df3765bfSSheng // Prints the bit value for each position.
dumpBits(raw_ostream & o,const BitsInit & bits)203df3765bfSSheng static void dumpBits(raw_ostream &o, const BitsInit &bits) {
204df3765bfSSheng for (unsigned index = bits.getNumBits(); index > 0; --index) {
205df3765bfSSheng switch (bitFromBits(bits, index - 1)) {
206df3765bfSSheng case BIT_TRUE:
207df3765bfSSheng o << "1";
208df3765bfSSheng break;
209df3765bfSSheng case BIT_FALSE:
210df3765bfSSheng o << "0";
211df3765bfSSheng break;
212df3765bfSSheng case BIT_UNSET:
213df3765bfSSheng o << "_";
214df3765bfSSheng break;
215df3765bfSSheng default:
216df3765bfSSheng llvm_unreachable("unexpected return value from bitFromBits");
217df3765bfSSheng }
218df3765bfSSheng }
219df3765bfSSheng }
220df3765bfSSheng
getBitsField(const Record & def,StringRef str)221df3765bfSSheng static BitsInit &getBitsField(const Record &def, StringRef str) {
222df3765bfSSheng const RecordVal *RV = def.getValue(str);
223df3765bfSSheng if (BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue()))
224df3765bfSSheng return *Bits;
225df3765bfSSheng
226df3765bfSSheng // variable length instruction
227df3765bfSSheng VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV);
228df3765bfSSheng SmallVector<Init *, 16> Bits;
229df3765bfSSheng
230df3765bfSSheng for (auto &SI : VLI) {
231df3765bfSSheng if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) {
232df3765bfSSheng for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) {
233df3765bfSSheng Bits.push_back(BI->getBit(Idx));
234df3765bfSSheng }
235df3765bfSSheng } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) {
236df3765bfSSheng Bits.push_back(const_cast<BitInit *>(BI));
237df3765bfSSheng } else {
238df3765bfSSheng for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx)
2392ac3cd20SRiver Riddle Bits.push_back(UnsetInit::get(def.getRecords()));
240df3765bfSSheng }
241df3765bfSSheng }
242df3765bfSSheng
2432ac3cd20SRiver Riddle return *BitsInit::get(def.getRecords(), Bits);
244df3765bfSSheng }
245df3765bfSSheng
246df3765bfSSheng // Representation of the instruction to work on.
247df3765bfSSheng typedef std::vector<bit_value_t> insn_t;
248df3765bfSSheng
249df3765bfSSheng namespace {
250df3765bfSSheng
251df3765bfSSheng static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;
252df3765bfSSheng
253df3765bfSSheng class FilterChooser;
254df3765bfSSheng
255df3765bfSSheng /// Filter - Filter works with FilterChooser to produce the decoding tree for
256df3765bfSSheng /// the ISA.
257df3765bfSSheng ///
258df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the
259df3765bfSSheng /// decoding tree in a certain level. Each case stmt delegates to an inferior
260df3765bfSSheng /// FilterChooser to decide what further decoding logic to employ, or in another
261df3765bfSSheng /// words, what other remaining bits to look at. The FilterChooser eventually
262df3765bfSSheng /// chooses a best Filter to do its job.
263df3765bfSSheng ///
264df3765bfSSheng /// This recursive scheme ends when the number of Opcodes assigned to the
265df3765bfSSheng /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
266df3765bfSSheng /// the Filter/FilterChooser combo does not know how to distinguish among the
267df3765bfSSheng /// Opcodes assigned.
268df3765bfSSheng ///
269df3765bfSSheng /// An example of a conflict is
270df3765bfSSheng ///
271df3765bfSSheng /// Conflict:
272df3765bfSSheng /// 111101000.00........00010000....
273df3765bfSSheng /// 111101000.00........0001........
274df3765bfSSheng /// 1111010...00........0001........
275df3765bfSSheng /// 1111010...00....................
276df3765bfSSheng /// 1111010.........................
277df3765bfSSheng /// 1111............................
278df3765bfSSheng /// ................................
279df3765bfSSheng /// VST4q8a 111101000_00________00010000____
280df3765bfSSheng /// VST4q8b 111101000_00________00010000____
281df3765bfSSheng ///
282df3765bfSSheng /// The Debug output shows the path that the decoding tree follows to reach the
283df3765bfSSheng /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
284df3765bfSSheng /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
285df3765bfSSheng ///
286df3765bfSSheng /// The encoding info in the .td files does not specify this meta information,
287df3765bfSSheng /// which could have been used by the decoder to resolve the conflict. The
288df3765bfSSheng /// decoder could try to decode the even/odd register numbering and assign to
289df3765bfSSheng /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
290df3765bfSSheng /// version and return the Opcode since the two have the same Asm format string.
291df3765bfSSheng class Filter {
292df3765bfSSheng protected:
293df3765bfSSheng const FilterChooser *Owner;// points to the FilterChooser who owns this filter
294df3765bfSSheng unsigned StartBit; // the starting bit position
295df3765bfSSheng unsigned NumBits; // number of bits to filter
296df3765bfSSheng bool Mixed; // a mixed region contains both set and unset bits
297df3765bfSSheng
298df3765bfSSheng // Map of well-known segment value to the set of uid's with that value.
299df3765bfSSheng std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
300df3765bfSSheng FilteredInstructions;
301df3765bfSSheng
302df3765bfSSheng // Set of uid's with non-constant segment values.
303df3765bfSSheng std::vector<EncodingIDAndOpcode> VariableInstructions;
304df3765bfSSheng
305df3765bfSSheng // Map of well-known segment value to its delegate.
306df3765bfSSheng std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;
307df3765bfSSheng
308df3765bfSSheng // Number of instructions which fall under FilteredInstructions category.
309df3765bfSSheng unsigned NumFiltered;
310df3765bfSSheng
311df3765bfSSheng // Keeps track of the last opcode in the filtered bucket.
312df3765bfSSheng EncodingIDAndOpcode LastOpcFiltered;
313df3765bfSSheng
314df3765bfSSheng public:
315df3765bfSSheng Filter(Filter &&f);
316df3765bfSSheng Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
317df3765bfSSheng
318df3765bfSSheng ~Filter() = default;
319df3765bfSSheng
getNumFiltered() const320df3765bfSSheng unsigned getNumFiltered() const { return NumFiltered; }
321df3765bfSSheng
getSingletonOpc() const322df3765bfSSheng EncodingIDAndOpcode getSingletonOpc() const {
323df3765bfSSheng assert(NumFiltered == 1);
324df3765bfSSheng return LastOpcFiltered;
325df3765bfSSheng }
326df3765bfSSheng
327df3765bfSSheng // Return the filter chooser for the group of instructions without constant
328df3765bfSSheng // segment values.
getVariableFC() const329df3765bfSSheng const FilterChooser &getVariableFC() const {
330df3765bfSSheng assert(NumFiltered == 1);
331df3765bfSSheng assert(FilterChooserMap.size() == 1);
332df3765bfSSheng return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
333df3765bfSSheng }
334df3765bfSSheng
335df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the
336df3765bfSSheng // inferior FilterChooser's.
337df3765bfSSheng //
338df3765bfSSheng // A special case arises when there's only one entry in the filtered
339df3765bfSSheng // instructions. In order to unambiguously decode the singleton, we need to
340df3765bfSSheng // match the remaining undecoded encoding bits against the singleton.
341df3765bfSSheng void recurse();
342df3765bfSSheng
343df3765bfSSheng // Emit table entries to decode instructions given a segment or segments of
344df3765bfSSheng // bits.
345df3765bfSSheng void emitTableEntry(DecoderTableInfo &TableInfo) const;
346df3765bfSSheng
347df3765bfSSheng // Returns the number of fanout produced by the filter. More fanout implies
348df3765bfSSheng // the filter distinguishes more categories of instructions.
349df3765bfSSheng unsigned usefulness() const;
350df3765bfSSheng }; // end class Filter
351df3765bfSSheng
352df3765bfSSheng } // end anonymous namespace
353df3765bfSSheng
354df3765bfSSheng // These are states of our finite state machines used in FilterChooser's
355df3765bfSSheng // filterProcessor() which produces the filter candidates to use.
356df3765bfSSheng typedef enum {
357df3765bfSSheng ATTR_NONE,
358df3765bfSSheng ATTR_FILTERED,
359df3765bfSSheng ATTR_ALL_SET,
360df3765bfSSheng ATTR_ALL_UNSET,
361df3765bfSSheng ATTR_MIXED
362df3765bfSSheng } bitAttr_t;
363df3765bfSSheng
364df3765bfSSheng /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
365df3765bfSSheng /// in order to perform the decoding of instructions at the current level.
366df3765bfSSheng ///
367df3765bfSSheng /// Decoding proceeds from the top down. Based on the well-known encoding bits
368df3765bfSSheng /// of instructions available, FilterChooser builds up the possible Filters that
369df3765bfSSheng /// can further the task of decoding by distinguishing among the remaining
370df3765bfSSheng /// candidate instructions.
371df3765bfSSheng ///
372df3765bfSSheng /// Once a filter has been chosen, it is called upon to divide the decoding task
373df3765bfSSheng /// into sub-tasks and delegates them to its inferior FilterChoosers for further
374df3765bfSSheng /// processings.
375df3765bfSSheng ///
376df3765bfSSheng /// It is useful to think of a Filter as governing the switch stmts of the
377df3765bfSSheng /// decoding tree. And each case is delegated to an inferior FilterChooser to
378df3765bfSSheng /// decide what further remaining bits to look at.
379df3765bfSSheng namespace {
380df3765bfSSheng
381df3765bfSSheng class FilterChooser {
382df3765bfSSheng protected:
383df3765bfSSheng friend class Filter;
384df3765bfSSheng
385df3765bfSSheng // Vector of codegen instructions to choose our filter.
386df3765bfSSheng ArrayRef<EncodingAndInst> AllInstructions;
387df3765bfSSheng
388df3765bfSSheng // Vector of uid's for this filter chooser to work on.
389df3765bfSSheng // The first member of the pair is the opcode id being decoded, the second is
390df3765bfSSheng // the opcode id that should be emitted.
391df3765bfSSheng const std::vector<EncodingIDAndOpcode> &Opcodes;
392df3765bfSSheng
393df3765bfSSheng // Lookup table for the operand decoding of instructions.
394df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Operands;
395df3765bfSSheng
396df3765bfSSheng // Vector of candidate filters.
397df3765bfSSheng std::vector<Filter> Filters;
398df3765bfSSheng
399df3765bfSSheng // Array of bit values passed down from our parent.
400df3765bfSSheng // Set to all BIT_UNFILTERED's for Parent == NULL.
401df3765bfSSheng std::vector<bit_value_t> FilterBitValues;
402df3765bfSSheng
403df3765bfSSheng // Links to the FilterChooser above us in the decoding tree.
404df3765bfSSheng const FilterChooser *Parent;
405df3765bfSSheng
406df3765bfSSheng // Index of the best filter from Filters.
407df3765bfSSheng int BestIndex;
408df3765bfSSheng
409df3765bfSSheng // Width of instructions
410df3765bfSSheng unsigned BitWidth;
411df3765bfSSheng
412df3765bfSSheng // Parent emitter
413df3765bfSSheng const DecoderEmitter *Emitter;
414df3765bfSSheng
415df3765bfSSheng public:
FilterChooser(ArrayRef<EncodingAndInst> Insts,const std::vector<EncodingIDAndOpcode> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,unsigned BW,const DecoderEmitter * E)416df3765bfSSheng FilterChooser(ArrayRef<EncodingAndInst> Insts,
417df3765bfSSheng const std::vector<EncodingIDAndOpcode> &IDs,
418df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Ops,
419df3765bfSSheng unsigned BW, const DecoderEmitter *E)
420df3765bfSSheng : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
421df3765bfSSheng FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
422df3765bfSSheng BitWidth(BW), Emitter(E) {
423df3765bfSSheng doFilter();
424df3765bfSSheng }
425df3765bfSSheng
FilterChooser(ArrayRef<EncodingAndInst> Insts,const std::vector<EncodingIDAndOpcode> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,const std::vector<bit_value_t> & ParentFilterBitValues,const FilterChooser & parent)426df3765bfSSheng FilterChooser(ArrayRef<EncodingAndInst> Insts,
427df3765bfSSheng const std::vector<EncodingIDAndOpcode> &IDs,
428df3765bfSSheng const std::map<unsigned, std::vector<OperandInfo>> &Ops,
429df3765bfSSheng const std::vector<bit_value_t> &ParentFilterBitValues,
430df3765bfSSheng const FilterChooser &parent)
431df3765bfSSheng : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
432df3765bfSSheng FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
433df3765bfSSheng BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
434df3765bfSSheng doFilter();
435df3765bfSSheng }
436df3765bfSSheng
437df3765bfSSheng FilterChooser(const FilterChooser &) = delete;
438df3765bfSSheng void operator=(const FilterChooser &) = delete;
439df3765bfSSheng
getBitWidth() const440df3765bfSSheng unsigned getBitWidth() const { return BitWidth; }
441df3765bfSSheng
442df3765bfSSheng protected:
443df3765bfSSheng // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const444df3765bfSSheng void insnWithID(insn_t &Insn, unsigned Opcode) const {
445df3765bfSSheng BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
446df3765bfSSheng Insn.resize(BitWidth > Bits.getNumBits() ? BitWidth : Bits.getNumBits(),
447df3765bfSSheng BIT_UNSET);
448df3765bfSSheng // We may have a SoftFail bitmask, which specifies a mask where an encoding
449df3765bfSSheng // may differ from the value in "Inst" and yet still be valid, but the
450df3765bfSSheng // disassembler should return SoftFail instead of Success.
451df3765bfSSheng //
452df3765bfSSheng // This is used for marking UNPREDICTABLE instructions in the ARM world.
453df3765bfSSheng const RecordVal *RV =
454df3765bfSSheng AllInstructions[Opcode].EncodingDef->getValue("SoftFail");
455df3765bfSSheng const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
456df3765bfSSheng for (unsigned i = 0; i < Bits.getNumBits(); ++i) {
457df3765bfSSheng if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
458df3765bfSSheng Insn[i] = BIT_UNSET;
459df3765bfSSheng else
460df3765bfSSheng Insn[i] = bitFromBits(Bits, i);
461df3765bfSSheng }
462df3765bfSSheng }
463df3765bfSSheng
464df3765bfSSheng // Emit the name of the encoding/instruction pair.
emitNameWithID(raw_ostream & OS,unsigned Opcode) const465df3765bfSSheng void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
466df3765bfSSheng const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
467df3765bfSSheng const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
468df3765bfSSheng if (EncodingDef != InstDef)
469df3765bfSSheng OS << EncodingDef->getName() << ":";
470df3765bfSSheng OS << InstDef->getName();
471df3765bfSSheng }
472df3765bfSSheng
473df3765bfSSheng // Populates the field of the insn given the start position and the number of
474df3765bfSSheng // consecutive bits to scan for.
475df3765bfSSheng //
476df3765bfSSheng // Returns false if there exists any uninitialized bit value in the range.
477df3765bfSSheng // Returns true, otherwise.
478df3765bfSSheng bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
479df3765bfSSheng unsigned NumBits) const;
480df3765bfSSheng
481df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
482df3765bfSSheng /// filter array as a series of chars.
483df3765bfSSheng void dumpFilterArray(raw_ostream &o,
484df3765bfSSheng const std::vector<bit_value_t> & filter) const;
485df3765bfSSheng
486df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls
487df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one.
488df3765bfSSheng void dumpStack(raw_ostream &o, const char *prefix) const;
489df3765bfSSheng
bestFilter()490df3765bfSSheng Filter &bestFilter() {
491df3765bfSSheng assert(BestIndex != -1 && "BestIndex not set");
492df3765bfSSheng return Filters[BestIndex];
493df3765bfSSheng }
494df3765bfSSheng
PositionFiltered(unsigned i) const495df3765bfSSheng bool PositionFiltered(unsigned i) const {
496df3765bfSSheng return ValueSet(FilterBitValues[i]);
497df3765bfSSheng }
498df3765bfSSheng
499df3765bfSSheng // Calculates the island(s) needed to decode the instruction.
500df3765bfSSheng // This returns a lit of undecoded bits of an instructions, for example,
501df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
502df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode.
503df3765bfSSheng unsigned getIslands(std::vector<unsigned> &StartBits,
504df3765bfSSheng std::vector<unsigned> &EndBits,
505df3765bfSSheng std::vector<uint64_t> &FieldVals,
506df3765bfSSheng const insn_t &Insn) const;
507df3765bfSSheng
508df3765bfSSheng // Emits code to check the Predicates member of an instruction are true.
509df3765bfSSheng // Returns true if predicate matches were emitted, false otherwise.
510df3765bfSSheng bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
511df3765bfSSheng unsigned Opc) const;
512*45f3a5aaSFangrui Song bool emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp,
513*45f3a5aaSFangrui Song raw_ostream &OS) const;
514df3765bfSSheng
515df3765bfSSheng bool doesOpcodeNeedPredicate(unsigned Opc) const;
516df3765bfSSheng unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
517df3765bfSSheng void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
518df3765bfSSheng unsigned Opc) const;
519df3765bfSSheng
520df3765bfSSheng void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
521df3765bfSSheng unsigned Opc) const;
522df3765bfSSheng
523df3765bfSSheng // Emits table entries to decode the singleton.
524df3765bfSSheng void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
525df3765bfSSheng EncodingIDAndOpcode Opc) const;
526df3765bfSSheng
527df3765bfSSheng // Emits code to decode the singleton, and then to decode the rest.
528df3765bfSSheng void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
529df3765bfSSheng const Filter &Best) const;
530df3765bfSSheng
531df3765bfSSheng void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
532df3765bfSSheng const OperandInfo &OpInfo,
533df3765bfSSheng bool &OpHasCompleteDecoder) const;
534df3765bfSSheng
535df3765bfSSheng void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
536df3765bfSSheng bool &HasCompleteDecoder) const;
537df3765bfSSheng unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
538df3765bfSSheng bool &HasCompleteDecoder) const;
539df3765bfSSheng
540df3765bfSSheng // Assign a single filter and run with it.
541df3765bfSSheng void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
542df3765bfSSheng
543df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as
544df3765bfSSheng // eligible for use as a filter region.
545df3765bfSSheng void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
546df3765bfSSheng bool AllowMixed);
547df3765bfSSheng
548df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and
549df3765bfSSheng // builds up a list of candidate filters. It chooses the best filter and
550df3765bfSSheng // recursively descends down the decoding tree.
551df3765bfSSheng bool filterProcessor(bool AllowMixed, bool Greedy = true);
552df3765bfSSheng
553df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode
554df3765bfSSheng // the instructions. A conflict of instructions may occur, in which case we
555df3765bfSSheng // dump the conflict set to the standard error.
556df3765bfSSheng void doFilter();
557df3765bfSSheng
558df3765bfSSheng public:
559df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of
560df3765bfSSheng // instructions.
561df3765bfSSheng void emitTableEntries(DecoderTableInfo &TableInfo) const;
562df3765bfSSheng };
563df3765bfSSheng
564df3765bfSSheng } // end anonymous namespace
565df3765bfSSheng
566df3765bfSSheng ///////////////////////////
567df3765bfSSheng // //
568df3765bfSSheng // Filter Implementation //
569df3765bfSSheng // //
570df3765bfSSheng ///////////////////////////
571df3765bfSSheng
Filter(Filter && f)572df3765bfSSheng Filter::Filter(Filter &&f)
573df3765bfSSheng : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
574df3765bfSSheng FilteredInstructions(std::move(f.FilteredInstructions)),
575df3765bfSSheng VariableInstructions(std::move(f.VariableInstructions)),
576df3765bfSSheng FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
577df3765bfSSheng LastOpcFiltered(f.LastOpcFiltered) {
578df3765bfSSheng }
579df3765bfSSheng
Filter(FilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)580df3765bfSSheng Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
581df3765bfSSheng bool mixed)
582df3765bfSSheng : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
583df3765bfSSheng assert(StartBit + NumBits - 1 < Owner->BitWidth);
584df3765bfSSheng
585df3765bfSSheng NumFiltered = 0;
586df3765bfSSheng LastOpcFiltered = {0, 0};
587df3765bfSSheng
588df3765bfSSheng for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
589df3765bfSSheng insn_t Insn;
590df3765bfSSheng
591df3765bfSSheng // Populates the insn given the uid.
592df3765bfSSheng Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
593df3765bfSSheng
594df3765bfSSheng uint64_t Field;
595df3765bfSSheng // Scans the segment for possibly well-specified encoding bits.
596df3765bfSSheng bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
597df3765bfSSheng
598df3765bfSSheng if (ok) {
599df3765bfSSheng // The encoding bits are well-known. Lets add the uid of the
600df3765bfSSheng // instruction into the bucket keyed off the constant field value.
601df3765bfSSheng LastOpcFiltered = Owner->Opcodes[i];
602df3765bfSSheng FilteredInstructions[Field].push_back(LastOpcFiltered);
603df3765bfSSheng ++NumFiltered;
604df3765bfSSheng } else {
605df3765bfSSheng // Some of the encoding bit(s) are unspecified. This contributes to
606df3765bfSSheng // one additional member of "Variable" instructions.
607df3765bfSSheng VariableInstructions.push_back(Owner->Opcodes[i]);
608df3765bfSSheng }
609df3765bfSSheng }
610df3765bfSSheng
611df3765bfSSheng assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
612df3765bfSSheng && "Filter returns no instruction categories");
613df3765bfSSheng }
614df3765bfSSheng
615df3765bfSSheng // Divides the decoding task into sub tasks and delegates them to the
616df3765bfSSheng // inferior FilterChooser's.
617df3765bfSSheng //
618df3765bfSSheng // A special case arises when there's only one entry in the filtered
619df3765bfSSheng // instructions. In order to unambiguously decode the singleton, we need to
620df3765bfSSheng // match the remaining undecoded encoding bits against the singleton.
recurse()621df3765bfSSheng void Filter::recurse() {
622df3765bfSSheng // Starts by inheriting our parent filter chooser's filter bit values.
623df3765bfSSheng std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
624df3765bfSSheng
625df3765bfSSheng if (!VariableInstructions.empty()) {
626df3765bfSSheng // Conservatively marks each segment position as BIT_UNSET.
627df3765bfSSheng for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
628df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_UNSET;
629df3765bfSSheng
630df3765bfSSheng // Delegates to an inferior filter chooser for further processing on this
631df3765bfSSheng // group of instructions whose segment values are variable.
632df3765bfSSheng FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
633df3765bfSSheng std::make_unique<FilterChooser>(Owner->AllInstructions,
634df3765bfSSheng VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
635df3765bfSSheng }
636df3765bfSSheng
637df3765bfSSheng // No need to recurse for a singleton filtered instruction.
638df3765bfSSheng // See also Filter::emit*().
639df3765bfSSheng if (getNumFiltered() == 1) {
640df3765bfSSheng assert(FilterChooserMap.size() == 1);
641df3765bfSSheng return;
642df3765bfSSheng }
643df3765bfSSheng
644df3765bfSSheng // Otherwise, create sub choosers.
645df3765bfSSheng for (const auto &Inst : FilteredInstructions) {
646df3765bfSSheng
647df3765bfSSheng // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
648df3765bfSSheng for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
649df3765bfSSheng if (Inst.first & (1ULL << bitIndex))
650df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_TRUE;
651df3765bfSSheng else
652df3765bfSSheng BitValueArray[StartBit + bitIndex] = BIT_FALSE;
653df3765bfSSheng }
654df3765bfSSheng
655df3765bfSSheng // Delegates to an inferior filter chooser for further processing on this
656df3765bfSSheng // category of instructions.
657df3765bfSSheng FilterChooserMap.insert(std::make_pair(
658df3765bfSSheng Inst.first, std::make_unique<FilterChooser>(
659df3765bfSSheng Owner->AllInstructions, Inst.second,
660df3765bfSSheng Owner->Operands, BitValueArray, *Owner)));
661df3765bfSSheng }
662df3765bfSSheng }
663df3765bfSSheng
resolveTableFixups(DecoderTable & Table,const FixupList & Fixups,uint32_t DestIdx)664df3765bfSSheng static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
665df3765bfSSheng uint32_t DestIdx) {
666df3765bfSSheng // Any NumToSkip fixups in the current scope can resolve to the
667df3765bfSSheng // current location.
668df3765bfSSheng for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
669df3765bfSSheng E = Fixups.rend();
670df3765bfSSheng I != E; ++I) {
671df3765bfSSheng // Calculate the distance from the byte following the fixup entry byte
672df3765bfSSheng // to the destination. The Target is calculated from after the 16-bit
673df3765bfSSheng // NumToSkip entry itself, so subtract two from the displacement here
674df3765bfSSheng // to account for that.
675df3765bfSSheng uint32_t FixupIdx = *I;
676df3765bfSSheng uint32_t Delta = DestIdx - FixupIdx - 3;
677df3765bfSSheng // Our NumToSkip entries are 24-bits. Make sure our table isn't too
678df3765bfSSheng // big.
679df3765bfSSheng assert(Delta < (1u << 24));
680df3765bfSSheng Table[FixupIdx] = (uint8_t)Delta;
681df3765bfSSheng Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
682df3765bfSSheng Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
683df3765bfSSheng }
684df3765bfSSheng }
685df3765bfSSheng
686df3765bfSSheng // Emit table entries to decode instructions given a segment or segments
687df3765bfSSheng // of bits.
emitTableEntry(DecoderTableInfo & TableInfo) const688df3765bfSSheng void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
689df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_ExtractField);
690df3765bfSSheng TableInfo.Table.push_back(StartBit);
691df3765bfSSheng TableInfo.Table.push_back(NumBits);
692df3765bfSSheng
693df3765bfSSheng // A new filter entry begins a new scope for fixup resolution.
694df3765bfSSheng TableInfo.FixupStack.emplace_back();
695df3765bfSSheng
696df3765bfSSheng DecoderTable &Table = TableInfo.Table;
697df3765bfSSheng
698df3765bfSSheng size_t PrevFilter = 0;
699df3765bfSSheng bool HasFallthrough = false;
700df3765bfSSheng for (auto &Filter : FilterChooserMap) {
701df3765bfSSheng // Field value -1 implies a non-empty set of variable instructions.
702df3765bfSSheng // See also recurse().
703df3765bfSSheng if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
704df3765bfSSheng HasFallthrough = true;
705df3765bfSSheng
706df3765bfSSheng // Each scope should always have at least one filter value to check
707df3765bfSSheng // for.
708df3765bfSSheng assert(PrevFilter != 0 && "empty filter set!");
709df3765bfSSheng FixupList &CurScope = TableInfo.FixupStack.back();
710df3765bfSSheng // Resolve any NumToSkip fixups in the current scope.
711df3765bfSSheng resolveTableFixups(Table, CurScope, Table.size());
712df3765bfSSheng CurScope.clear();
713df3765bfSSheng PrevFilter = 0; // Don't re-process the filter's fallthrough.
714df3765bfSSheng } else {
715df3765bfSSheng Table.push_back(MCD::OPC_FilterValue);
716df3765bfSSheng // Encode and emit the value to filter against.
717df3765bfSSheng uint8_t Buffer[16];
718df3765bfSSheng unsigned Len = encodeULEB128(Filter.first, Buffer);
719df3765bfSSheng Table.insert(Table.end(), Buffer, Buffer + Len);
720df3765bfSSheng // Reserve space for the NumToSkip entry. We'll backpatch the value
721df3765bfSSheng // later.
722df3765bfSSheng PrevFilter = Table.size();
723df3765bfSSheng Table.push_back(0);
724df3765bfSSheng Table.push_back(0);
725df3765bfSSheng Table.push_back(0);
726df3765bfSSheng }
727df3765bfSSheng
728df3765bfSSheng // We arrive at a category of instructions with the same segment value.
729df3765bfSSheng // Now delegate to the sub filter chooser for further decodings.
730df3765bfSSheng // The case may fallthrough, which happens if the remaining well-known
731df3765bfSSheng // encoding bits do not match exactly.
732df3765bfSSheng Filter.second->emitTableEntries(TableInfo);
733df3765bfSSheng
734df3765bfSSheng // Now that we've emitted the body of the handler, update the NumToSkip
735df3765bfSSheng // of the filter itself to be able to skip forward when false. Subtract
736df3765bfSSheng // two as to account for the width of the NumToSkip field itself.
737df3765bfSSheng if (PrevFilter) {
738df3765bfSSheng uint32_t NumToSkip = Table.size() - PrevFilter - 3;
739df3765bfSSheng assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
740df3765bfSSheng Table[PrevFilter] = (uint8_t)NumToSkip;
741df3765bfSSheng Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
742df3765bfSSheng Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
743df3765bfSSheng }
744df3765bfSSheng }
745df3765bfSSheng
746df3765bfSSheng // Any remaining unresolved fixups bubble up to the parent fixup scope.
747df3765bfSSheng assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
748df3765bfSSheng FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
749df3765bfSSheng FixupScopeList::iterator Dest = Source - 1;
750df3765bfSSheng llvm::append_range(*Dest, *Source);
751df3765bfSSheng TableInfo.FixupStack.pop_back();
752df3765bfSSheng
753df3765bfSSheng // If there is no fallthrough, then the final filter should get fixed
754df3765bfSSheng // up according to the enclosing scope rather than the current position.
755df3765bfSSheng if (!HasFallthrough)
756df3765bfSSheng TableInfo.FixupStack.back().push_back(PrevFilter);
757df3765bfSSheng }
758df3765bfSSheng
759df3765bfSSheng // Returns the number of fanout produced by the filter. More fanout implies
760df3765bfSSheng // the filter distinguishes more categories of instructions.
usefulness() const761df3765bfSSheng unsigned Filter::usefulness() const {
762df3765bfSSheng if (!VariableInstructions.empty())
763df3765bfSSheng return FilteredInstructions.size();
764df3765bfSSheng else
765df3765bfSSheng return FilteredInstructions.size() + 1;
766df3765bfSSheng }
767df3765bfSSheng
768df3765bfSSheng //////////////////////////////////
769df3765bfSSheng // //
770df3765bfSSheng // Filterchooser Implementation //
771df3765bfSSheng // //
772df3765bfSSheng //////////////////////////////////
773df3765bfSSheng
774df3765bfSSheng // Emit the decoder state machine table.
emitTable(formatted_raw_ostream & OS,DecoderTable & Table,unsigned Indentation,unsigned BitWidth,StringRef Namespace) const775df3765bfSSheng void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table,
776df3765bfSSheng unsigned Indentation, unsigned BitWidth,
777df3765bfSSheng StringRef Namespace) const {
778df3765bfSSheng OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
779df3765bfSSheng << BitWidth << "[] = {\n";
780df3765bfSSheng
781df3765bfSSheng Indentation += 2;
782df3765bfSSheng
783df3765bfSSheng // FIXME: We may be able to use the NumToSkip values to recover
784df3765bfSSheng // appropriate indentation levels.
785df3765bfSSheng DecoderTable::const_iterator I = Table.begin();
786df3765bfSSheng DecoderTable::const_iterator E = Table.end();
787df3765bfSSheng while (I != E) {
788df3765bfSSheng assert (I < E && "incomplete decode table entry!");
789df3765bfSSheng
790df3765bfSSheng uint64_t Pos = I - Table.begin();
791df3765bfSSheng OS << "/* " << Pos << " */";
792df3765bfSSheng OS.PadToColumn(12);
793df3765bfSSheng
794df3765bfSSheng switch (*I) {
795df3765bfSSheng default:
796df3765bfSSheng PrintFatalError("invalid decode table opcode");
797df3765bfSSheng case MCD::OPC_ExtractField: {
798df3765bfSSheng ++I;
799df3765bfSSheng unsigned Start = *I++;
800df3765bfSSheng unsigned Len = *I++;
801df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
802df3765bfSSheng << Len << ", // Inst{";
803df3765bfSSheng if (Len > 1)
804df3765bfSSheng OS << (Start + Len - 1) << "-";
805df3765bfSSheng OS << Start << "} ...\n";
806df3765bfSSheng break;
807df3765bfSSheng }
808df3765bfSSheng case MCD::OPC_FilterValue: {
809df3765bfSSheng ++I;
810df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
811df3765bfSSheng // The filter value is ULEB128 encoded.
812df3765bfSSheng while (*I >= 128)
813df3765bfSSheng OS << (unsigned)*I++ << ", ";
814df3765bfSSheng OS << (unsigned)*I++ << ", ";
815df3765bfSSheng
816df3765bfSSheng // 24-bit numtoskip value.
817df3765bfSSheng uint8_t Byte = *I++;
818df3765bfSSheng uint32_t NumToSkip = Byte;
819df3765bfSSheng OS << (unsigned)Byte << ", ";
820df3765bfSSheng Byte = *I++;
821df3765bfSSheng OS << (unsigned)Byte << ", ";
822df3765bfSSheng NumToSkip |= Byte << 8;
823df3765bfSSheng Byte = *I++;
824df3765bfSSheng OS << utostr(Byte) << ", ";
825df3765bfSSheng NumToSkip |= Byte << 16;
826df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
827df3765bfSSheng break;
828df3765bfSSheng }
829df3765bfSSheng case MCD::OPC_CheckField: {
830df3765bfSSheng ++I;
831df3765bfSSheng unsigned Start = *I++;
832df3765bfSSheng unsigned Len = *I++;
833df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
834df3765bfSSheng << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
835df3765bfSSheng // ULEB128 encoded field value.
836df3765bfSSheng for (; *I >= 128; ++I)
837df3765bfSSheng OS << (unsigned)*I << ", ";
838df3765bfSSheng OS << (unsigned)*I++ << ", ";
839df3765bfSSheng // 24-bit numtoskip value.
840df3765bfSSheng uint8_t Byte = *I++;
841df3765bfSSheng uint32_t NumToSkip = Byte;
842df3765bfSSheng OS << (unsigned)Byte << ", ";
843df3765bfSSheng Byte = *I++;
844df3765bfSSheng OS << (unsigned)Byte << ", ";
845df3765bfSSheng NumToSkip |= Byte << 8;
846df3765bfSSheng Byte = *I++;
847df3765bfSSheng OS << utostr(Byte) << ", ";
848df3765bfSSheng NumToSkip |= Byte << 16;
849df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
850df3765bfSSheng break;
851df3765bfSSheng }
852df3765bfSSheng case MCD::OPC_CheckPredicate: {
853df3765bfSSheng ++I;
854df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
855df3765bfSSheng for (; *I >= 128; ++I)
856df3765bfSSheng OS << (unsigned)*I << ", ";
857df3765bfSSheng OS << (unsigned)*I++ << ", ";
858df3765bfSSheng
859df3765bfSSheng // 24-bit numtoskip value.
860df3765bfSSheng uint8_t Byte = *I++;
861df3765bfSSheng uint32_t NumToSkip = Byte;
862df3765bfSSheng OS << (unsigned)Byte << ", ";
863df3765bfSSheng Byte = *I++;
864df3765bfSSheng OS << (unsigned)Byte << ", ";
865df3765bfSSheng NumToSkip |= Byte << 8;
866df3765bfSSheng Byte = *I++;
867df3765bfSSheng OS << utostr(Byte) << ", ";
868df3765bfSSheng NumToSkip |= Byte << 16;
869df3765bfSSheng OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
870df3765bfSSheng break;
871df3765bfSSheng }
872df3765bfSSheng case MCD::OPC_Decode:
873df3765bfSSheng case MCD::OPC_TryDecode: {
874df3765bfSSheng bool IsTry = *I == MCD::OPC_TryDecode;
875df3765bfSSheng ++I;
876df3765bfSSheng // Extract the ULEB128 encoded Opcode to a buffer.
877df3765bfSSheng uint8_t Buffer[16], *p = Buffer;
878df3765bfSSheng while ((*p++ = *I++) >= 128)
879df3765bfSSheng assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
880df3765bfSSheng && "ULEB128 value too large!");
881df3765bfSSheng // Decode the Opcode value.
882df3765bfSSheng unsigned Opc = decodeULEB128(Buffer);
883df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
884df3765bfSSheng << "Decode, ";
885df3765bfSSheng for (p = Buffer; *p >= 128; ++p)
886df3765bfSSheng OS << (unsigned)*p << ", ";
887df3765bfSSheng OS << (unsigned)*p << ", ";
888df3765bfSSheng
889df3765bfSSheng // Decoder index.
890df3765bfSSheng for (; *I >= 128; ++I)
891df3765bfSSheng OS << (unsigned)*I << ", ";
892df3765bfSSheng OS << (unsigned)*I++ << ", ";
893df3765bfSSheng
894df3765bfSSheng if (!IsTry) {
895df3765bfSSheng OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
896df3765bfSSheng break;
897df3765bfSSheng }
898df3765bfSSheng
899df3765bfSSheng // Fallthrough for OPC_TryDecode.
900df3765bfSSheng
901df3765bfSSheng // 24-bit numtoskip value.
902df3765bfSSheng uint8_t Byte = *I++;
903df3765bfSSheng uint32_t NumToSkip = Byte;
904df3765bfSSheng OS << (unsigned)Byte << ", ";
905df3765bfSSheng Byte = *I++;
906df3765bfSSheng OS << (unsigned)Byte << ", ";
907df3765bfSSheng NumToSkip |= Byte << 8;
908df3765bfSSheng Byte = *I++;
909df3765bfSSheng OS << utostr(Byte) << ", ";
910df3765bfSSheng NumToSkip |= Byte << 16;
911df3765bfSSheng
912df3765bfSSheng OS << "// Opcode: " << NumberedEncodings[Opc]
913df3765bfSSheng << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
914df3765bfSSheng break;
915df3765bfSSheng }
916df3765bfSSheng case MCD::OPC_SoftFail: {
917df3765bfSSheng ++I;
918df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_SoftFail";
919df3765bfSSheng // Positive mask
920df3765bfSSheng uint64_t Value = 0;
921df3765bfSSheng unsigned Shift = 0;
922df3765bfSSheng do {
923df3765bfSSheng OS << ", " << (unsigned)*I;
924df3765bfSSheng Value += (*I & 0x7f) << Shift;
925df3765bfSSheng Shift += 7;
926df3765bfSSheng } while (*I++ >= 128);
927df3765bfSSheng if (Value > 127) {
928df3765bfSSheng OS << " /* 0x";
929df3765bfSSheng OS.write_hex(Value);
930df3765bfSSheng OS << " */";
931df3765bfSSheng }
932df3765bfSSheng // Negative mask
933df3765bfSSheng Value = 0;
934df3765bfSSheng Shift = 0;
935df3765bfSSheng do {
936df3765bfSSheng OS << ", " << (unsigned)*I;
937df3765bfSSheng Value += (*I & 0x7f) << Shift;
938df3765bfSSheng Shift += 7;
939df3765bfSSheng } while (*I++ >= 128);
940df3765bfSSheng if (Value > 127) {
941df3765bfSSheng OS << " /* 0x";
942df3765bfSSheng OS.write_hex(Value);
943df3765bfSSheng OS << " */";
944df3765bfSSheng }
945df3765bfSSheng OS << ",\n";
946df3765bfSSheng break;
947df3765bfSSheng }
948df3765bfSSheng case MCD::OPC_Fail: {
949df3765bfSSheng ++I;
950df3765bfSSheng OS.indent(Indentation) << "MCD::OPC_Fail,\n";
951df3765bfSSheng break;
952df3765bfSSheng }
953df3765bfSSheng }
954df3765bfSSheng }
955df3765bfSSheng OS.indent(Indentation) << "0\n";
956df3765bfSSheng
957df3765bfSSheng Indentation -= 2;
958df3765bfSSheng
959df3765bfSSheng OS.indent(Indentation) << "};\n\n";
960df3765bfSSheng }
961df3765bfSSheng
emitInstrLenTable(formatted_raw_ostream & OS,std::vector<unsigned> & InstrLen) const962df3765bfSSheng void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS,
963df3765bfSSheng std::vector<unsigned> &InstrLen) const {
964df3765bfSSheng OS << "static const uint8_t InstrLenTable[] = {\n";
965df3765bfSSheng for (unsigned &Len : InstrLen) {
966df3765bfSSheng OS << Len << ",\n";
967df3765bfSSheng }
968df3765bfSSheng OS << "};\n\n";
969df3765bfSSheng }
970df3765bfSSheng
emitPredicateFunction(formatted_raw_ostream & OS,PredicateSet & Predicates,unsigned Indentation) const971df3765bfSSheng void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS,
972df3765bfSSheng PredicateSet &Predicates,
973df3765bfSSheng unsigned Indentation) const {
974df3765bfSSheng // The predicate function is just a big switch statement based on the
975df3765bfSSheng // input predicate index.
976df3765bfSSheng OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
977df3765bfSSheng << "const FeatureBitset &Bits) {\n";
978df3765bfSSheng Indentation += 2;
979df3765bfSSheng if (!Predicates.empty()) {
980df3765bfSSheng OS.indent(Indentation) << "switch (Idx) {\n";
981df3765bfSSheng OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
982df3765bfSSheng unsigned Index = 0;
983df3765bfSSheng for (const auto &Predicate : Predicates) {
984df3765bfSSheng OS.indent(Indentation) << "case " << Index++ << ":\n";
985df3765bfSSheng OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
986df3765bfSSheng }
987df3765bfSSheng OS.indent(Indentation) << "}\n";
988df3765bfSSheng } else {
989df3765bfSSheng // No case statement to emit
990df3765bfSSheng OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
991df3765bfSSheng }
992df3765bfSSheng Indentation -= 2;
993df3765bfSSheng OS.indent(Indentation) << "}\n\n";
994df3765bfSSheng }
995df3765bfSSheng
emitDecoderFunction(formatted_raw_ostream & OS,DecoderSet & Decoders,unsigned Indentation) const996df3765bfSSheng void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS,
997df3765bfSSheng DecoderSet &Decoders,
998df3765bfSSheng unsigned Indentation) const {
999df3765bfSSheng // The decoder function is just a big switch statement based on the
1000df3765bfSSheng // input decoder index.
1001df3765bfSSheng OS.indent(Indentation) << "template <typename InsnType>\n";
1002df3765bfSSheng OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
1003df3765bfSSheng << " unsigned Idx, InsnType insn, MCInst &MI,\n";
1004df3765bfSSheng OS.indent(Indentation)
1005df3765bfSSheng << " uint64_t "
1006df3765bfSSheng << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n";
1007df3765bfSSheng Indentation += 2;
1008df3765bfSSheng OS.indent(Indentation) << "DecodeComplete = true;\n";
1009df3765bfSSheng // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
1010df3765bfSSheng // It would be better for emitBinaryParser to use a 64-bit tmp whenever
1011df3765bfSSheng // possible but fall back to an InsnType-sized tmp for truly large fields.
1012df3765bfSSheng OS.indent(Indentation) << "using TmpType = "
1013df3765bfSSheng "std::conditional_t<std::is_integral<InsnType>::"
1014df3765bfSSheng "value, InsnType, uint64_t>;\n";
1015df3765bfSSheng OS.indent(Indentation) << "TmpType tmp;\n";
1016df3765bfSSheng OS.indent(Indentation) << "switch (Idx) {\n";
1017df3765bfSSheng OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
1018df3765bfSSheng unsigned Index = 0;
1019df3765bfSSheng for (const auto &Decoder : Decoders) {
1020df3765bfSSheng OS.indent(Indentation) << "case " << Index++ << ":\n";
1021df3765bfSSheng OS << Decoder;
1022df3765bfSSheng OS.indent(Indentation+2) << "return S;\n";
1023df3765bfSSheng }
1024df3765bfSSheng OS.indent(Indentation) << "}\n";
1025df3765bfSSheng Indentation -= 2;
1026df3765bfSSheng OS.indent(Indentation) << "}\n\n";
1027df3765bfSSheng }
1028df3765bfSSheng
1029df3765bfSSheng // Populates the field of the insn given the start position and the number of
1030df3765bfSSheng // consecutive bits to scan for.
1031df3765bfSSheng //
1032df3765bfSSheng // Returns false if and on the first uninitialized bit value encountered.
1033df3765bfSSheng // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const1034df3765bfSSheng bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
1035df3765bfSSheng unsigned StartBit, unsigned NumBits) const {
1036df3765bfSSheng Field = 0;
1037df3765bfSSheng
1038df3765bfSSheng for (unsigned i = 0; i < NumBits; ++i) {
1039df3765bfSSheng if (Insn[StartBit + i] == BIT_UNSET)
1040df3765bfSSheng return false;
1041df3765bfSSheng
1042df3765bfSSheng if (Insn[StartBit + i] == BIT_TRUE)
1043df3765bfSSheng Field = Field | (1ULL << i);
1044df3765bfSSheng }
1045df3765bfSSheng
1046df3765bfSSheng return true;
1047df3765bfSSheng }
1048df3765bfSSheng
1049df3765bfSSheng /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1050df3765bfSSheng /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,const std::vector<bit_value_t> & filter) const1051df3765bfSSheng void FilterChooser::dumpFilterArray(raw_ostream &o,
1052df3765bfSSheng const std::vector<bit_value_t> &filter) const {
1053df3765bfSSheng for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
1054df3765bfSSheng switch (filter[bitIndex - 1]) {
1055df3765bfSSheng case BIT_UNFILTERED:
1056df3765bfSSheng o << ".";
1057df3765bfSSheng break;
1058df3765bfSSheng case BIT_UNSET:
1059df3765bfSSheng o << "_";
1060df3765bfSSheng break;
1061df3765bfSSheng case BIT_TRUE:
1062df3765bfSSheng o << "1";
1063df3765bfSSheng break;
1064df3765bfSSheng case BIT_FALSE:
1065df3765bfSSheng o << "0";
1066df3765bfSSheng break;
1067df3765bfSSheng }
1068df3765bfSSheng }
1069df3765bfSSheng }
1070df3765bfSSheng
1071df3765bfSSheng /// dumpStack - dumpStack traverses the filter chooser chain and calls
1072df3765bfSSheng /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix) const1073df3765bfSSheng void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1074df3765bfSSheng const FilterChooser *current = this;
1075df3765bfSSheng
1076df3765bfSSheng while (current) {
1077df3765bfSSheng o << prefix;
1078df3765bfSSheng dumpFilterArray(o, current->FilterBitValues);
1079df3765bfSSheng o << '\n';
1080df3765bfSSheng current = current->Parent;
1081df3765bfSSheng }
1082df3765bfSSheng }
1083df3765bfSSheng
1084df3765bfSSheng // Calculates the island(s) needed to decode the instruction.
1085df3765bfSSheng // This returns a list of undecoded bits of an instructions, for example,
1086df3765bfSSheng // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1087df3765bfSSheng // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,const insn_t & Insn) const1088df3765bfSSheng unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1089df3765bfSSheng std::vector<unsigned> &EndBits,
1090df3765bfSSheng std::vector<uint64_t> &FieldVals,
1091df3765bfSSheng const insn_t &Insn) const {
1092df3765bfSSheng unsigned Num, BitNo;
1093df3765bfSSheng Num = BitNo = 0;
1094df3765bfSSheng
1095df3765bfSSheng uint64_t FieldVal = 0;
1096df3765bfSSheng
1097df3765bfSSheng // 0: Init
1098df3765bfSSheng // 1: Water (the bit value does not affect decoding)
1099df3765bfSSheng // 2: Island (well-known bit value needed for decoding)
1100df3765bfSSheng int State = 0;
1101df3765bfSSheng
1102df3765bfSSheng for (unsigned i = 0; i < BitWidth; ++i) {
1103df3765bfSSheng int64_t Val = Value(Insn[i]);
1104df3765bfSSheng bool Filtered = PositionFiltered(i);
1105df3765bfSSheng switch (State) {
1106df3765bfSSheng default: llvm_unreachable("Unreachable code!");
1107df3765bfSSheng case 0:
1108df3765bfSSheng case 1:
1109df3765bfSSheng if (Filtered || Val == -1)
1110df3765bfSSheng State = 1; // Still in Water
1111df3765bfSSheng else {
1112df3765bfSSheng State = 2; // Into the Island
1113df3765bfSSheng BitNo = 0;
1114df3765bfSSheng StartBits.push_back(i);
1115df3765bfSSheng FieldVal = Val;
1116df3765bfSSheng }
1117df3765bfSSheng break;
1118df3765bfSSheng case 2:
1119df3765bfSSheng if (Filtered || Val == -1) {
1120df3765bfSSheng State = 1; // Into the Water
1121df3765bfSSheng EndBits.push_back(i - 1);
1122df3765bfSSheng FieldVals.push_back(FieldVal);
1123df3765bfSSheng ++Num;
1124df3765bfSSheng } else {
1125df3765bfSSheng State = 2; // Still in Island
1126df3765bfSSheng ++BitNo;
1127df3765bfSSheng FieldVal = FieldVal | Val << BitNo;
1128df3765bfSSheng }
1129df3765bfSSheng break;
1130df3765bfSSheng }
1131df3765bfSSheng }
1132df3765bfSSheng // If we are still in Island after the loop, do some housekeeping.
1133df3765bfSSheng if (State == 2) {
1134df3765bfSSheng EndBits.push_back(BitWidth - 1);
1135df3765bfSSheng FieldVals.push_back(FieldVal);
1136df3765bfSSheng ++Num;
1137df3765bfSSheng }
1138df3765bfSSheng
1139df3765bfSSheng assert(StartBits.size() == Num && EndBits.size() == Num &&
1140df3765bfSSheng FieldVals.size() == Num);
1141df3765bfSSheng return Num;
1142df3765bfSSheng }
1143df3765bfSSheng
emitBinaryParser(raw_ostream & o,unsigned & Indentation,const OperandInfo & OpInfo,bool & OpHasCompleteDecoder) const1144df3765bfSSheng void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1145df3765bfSSheng const OperandInfo &OpInfo,
1146df3765bfSSheng bool &OpHasCompleteDecoder) const {
1147df3765bfSSheng const std::string &Decoder = OpInfo.Decoder;
1148df3765bfSSheng
1149df3765bfSSheng bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;
1150df3765bfSSheng
1151df3765bfSSheng if (UseInsertBits) {
1152df3765bfSSheng o.indent(Indentation) << "tmp = 0x";
1153df3765bfSSheng o.write_hex(OpInfo.InitValue);
1154df3765bfSSheng o << ";\n";
1155df3765bfSSheng }
1156df3765bfSSheng
1157df3765bfSSheng for (const EncodingField &EF : OpInfo) {
1158df3765bfSSheng o.indent(Indentation);
1159df3765bfSSheng if (UseInsertBits)
1160df3765bfSSheng o << "insertBits(tmp, ";
1161df3765bfSSheng else
1162df3765bfSSheng o << "tmp = ";
1163df3765bfSSheng o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
1164df3765bfSSheng if (UseInsertBits)
1165df3765bfSSheng o << ", " << EF.Offset << ", " << EF.Width << ')';
1166df3765bfSSheng else if (EF.Offset != 0)
1167df3765bfSSheng o << " << " << EF.Offset;
1168df3765bfSSheng o << ";\n";
1169df3765bfSSheng }
1170df3765bfSSheng
1171df3765bfSSheng if (Decoder != "") {
1172df3765bfSSheng OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1173df3765bfSSheng o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1174df3765bfSSheng << "(MI, tmp, Address, Decoder)"
1175df3765bfSSheng << Emitter->GuardPostfix
1176df3765bfSSheng << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1177df3765bfSSheng << "return MCDisassembler::Fail; }\n";
1178df3765bfSSheng } else {
1179df3765bfSSheng OpHasCompleteDecoder = true;
1180df3765bfSSheng o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1181df3765bfSSheng }
1182df3765bfSSheng }
1183df3765bfSSheng
emitDecoder(raw_ostream & OS,unsigned Indentation,unsigned Opc,bool & HasCompleteDecoder) const1184df3765bfSSheng void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1185df3765bfSSheng unsigned Opc, bool &HasCompleteDecoder) const {
1186df3765bfSSheng HasCompleteDecoder = true;
1187df3765bfSSheng
1188df3765bfSSheng for (const auto &Op : Operands.find(Opc)->second) {
1189df3765bfSSheng // If a custom instruction decoder was specified, use that.
1190df3765bfSSheng if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1191df3765bfSSheng HasCompleteDecoder = Op.HasCompleteDecoder;
1192df3765bfSSheng OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1193df3765bfSSheng << "(MI, insn, Address, Decoder)"
1194df3765bfSSheng << Emitter->GuardPostfix
1195df3765bfSSheng << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1196df3765bfSSheng << "return MCDisassembler::Fail; }\n";
1197df3765bfSSheng break;
1198df3765bfSSheng }
1199df3765bfSSheng
1200df3765bfSSheng bool OpHasCompleteDecoder;
1201df3765bfSSheng emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1202df3765bfSSheng if (!OpHasCompleteDecoder)
1203df3765bfSSheng HasCompleteDecoder = false;
1204df3765bfSSheng }
1205df3765bfSSheng }
1206df3765bfSSheng
getDecoderIndex(DecoderSet & Decoders,unsigned Opc,bool & HasCompleteDecoder) const1207df3765bfSSheng unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1208df3765bfSSheng unsigned Opc,
1209df3765bfSSheng bool &HasCompleteDecoder) const {
1210df3765bfSSheng // Build up the predicate string.
1211df3765bfSSheng SmallString<256> Decoder;
1212df3765bfSSheng // FIXME: emitDecoder() function can take a buffer directly rather than
1213df3765bfSSheng // a stream.
1214df3765bfSSheng raw_svector_ostream S(Decoder);
1215df3765bfSSheng unsigned I = 4;
1216df3765bfSSheng emitDecoder(S, I, Opc, HasCompleteDecoder);
1217df3765bfSSheng
1218df3765bfSSheng // Using the full decoder string as the key value here is a bit
1219df3765bfSSheng // heavyweight, but is effective. If the string comparisons become a
1220df3765bfSSheng // performance concern, we can implement a mangling of the predicate
1221df3765bfSSheng // data easily enough with a map back to the actual string. That's
1222df3765bfSSheng // overkill for now, though.
1223df3765bfSSheng
1224df3765bfSSheng // Make sure the predicate is in the table.
1225df3765bfSSheng Decoders.insert(CachedHashString(Decoder));
1226df3765bfSSheng // Now figure out the index for when we write out the table.
1227df3765bfSSheng DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1228df3765bfSSheng return (unsigned)(P - Decoders.begin());
1229df3765bfSSheng }
1230df3765bfSSheng
1231*45f3a5aaSFangrui Song // If ParenIfBinOp is true, print a surrounding () if Val uses && or ||.
emitPredicateMatchAux(const Init & Val,bool ParenIfBinOp,raw_ostream & OS) const1232*45f3a5aaSFangrui Song bool FilterChooser::emitPredicateMatchAux(const Init &Val, bool ParenIfBinOp,
1233*45f3a5aaSFangrui Song raw_ostream &OS) const {
1234*45f3a5aaSFangrui Song if (auto *D = dyn_cast<DefInit>(&Val)) {
1235*45f3a5aaSFangrui Song if (!D->getDef()->isSubClassOf("SubtargetFeature"))
1236*45f3a5aaSFangrui Song return true;
1237*45f3a5aaSFangrui Song OS << "Bits[" << Emitter->PredicateNamespace << "::" << D->getAsString()
1238*45f3a5aaSFangrui Song << "]";
1239*45f3a5aaSFangrui Song return false;
1240*45f3a5aaSFangrui Song }
1241*45f3a5aaSFangrui Song if (auto *D = dyn_cast<DagInit>(&Val)) {
1242*45f3a5aaSFangrui Song std::string Op = D->getOperator()->getAsString();
1243*45f3a5aaSFangrui Song if (Op == "not" && D->getNumArgs() == 1) {
1244*45f3a5aaSFangrui Song OS << '!';
1245*45f3a5aaSFangrui Song return emitPredicateMatchAux(*D->getArg(0), true, OS);
1246*45f3a5aaSFangrui Song }
1247*45f3a5aaSFangrui Song if ((Op == "any_of" || Op == "all_of") && D->getNumArgs() > 0) {
1248*45f3a5aaSFangrui Song bool Paren = D->getNumArgs() > 1 && std::exchange(ParenIfBinOp, true);
1249*45f3a5aaSFangrui Song if (Paren)
1250*45f3a5aaSFangrui Song OS << '(';
1251*45f3a5aaSFangrui Song ListSeparator LS(Op == "any_of" ? " || " : " && ");
1252*45f3a5aaSFangrui Song for (auto *Arg : D->getArgs()) {
1253*45f3a5aaSFangrui Song OS << LS;
1254*45f3a5aaSFangrui Song if (emitPredicateMatchAux(*Arg, ParenIfBinOp, OS))
1255*45f3a5aaSFangrui Song return true;
1256*45f3a5aaSFangrui Song }
1257*45f3a5aaSFangrui Song if (Paren)
1258*45f3a5aaSFangrui Song OS << ')';
1259*45f3a5aaSFangrui Song return false;
1260*45f3a5aaSFangrui Song }
1261*45f3a5aaSFangrui Song }
1262*45f3a5aaSFangrui Song return true;
1263*45f3a5aaSFangrui Song }
1264*45f3a5aaSFangrui Song
emitPredicateMatch(raw_ostream & o,unsigned & Indentation,unsigned Opc) const1265df3765bfSSheng bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1266df3765bfSSheng unsigned Opc) const {
1267df3765bfSSheng ListInit *Predicates =
1268df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1269df3765bfSSheng bool IsFirstEmission = true;
1270df3765bfSSheng for (unsigned i = 0; i < Predicates->size(); ++i) {
1271df3765bfSSheng Record *Pred = Predicates->getElementAsRecord(i);
1272df3765bfSSheng if (!Pred->getValue("AssemblerMatcherPredicate"))
1273df3765bfSSheng continue;
1274df3765bfSSheng
1275df3765bfSSheng if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1276df3765bfSSheng continue;
1277df3765bfSSheng
1278df3765bfSSheng if (!IsFirstEmission)
1279df3765bfSSheng o << " && ";
1280*45f3a5aaSFangrui Song if (emitPredicateMatchAux(*Pred->getValueAsDag("AssemblerCondDag"),
1281*45f3a5aaSFangrui Song Predicates->size() > 1, o))
1282df3765bfSSheng PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1283df3765bfSSheng IsFirstEmission = false;
1284df3765bfSSheng }
1285df3765bfSSheng return !Predicates->empty();
1286df3765bfSSheng }
1287df3765bfSSheng
doesOpcodeNeedPredicate(unsigned Opc) const1288df3765bfSSheng bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1289df3765bfSSheng ListInit *Predicates =
1290df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1291df3765bfSSheng for (unsigned i = 0; i < Predicates->size(); ++i) {
1292df3765bfSSheng Record *Pred = Predicates->getElementAsRecord(i);
1293df3765bfSSheng if (!Pred->getValue("AssemblerMatcherPredicate"))
1294df3765bfSSheng continue;
1295df3765bfSSheng
1296df3765bfSSheng if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1297df3765bfSSheng return true;
1298df3765bfSSheng }
1299df3765bfSSheng return false;
1300df3765bfSSheng }
1301df3765bfSSheng
getPredicateIndex(DecoderTableInfo & TableInfo,StringRef Predicate) const1302df3765bfSSheng unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1303df3765bfSSheng StringRef Predicate) const {
1304df3765bfSSheng // Using the full predicate string as the key value here is a bit
1305df3765bfSSheng // heavyweight, but is effective. If the string comparisons become a
1306df3765bfSSheng // performance concern, we can implement a mangling of the predicate
1307df3765bfSSheng // data easily enough with a map back to the actual string. That's
1308df3765bfSSheng // overkill for now, though.
1309df3765bfSSheng
1310df3765bfSSheng // Make sure the predicate is in the table.
1311df3765bfSSheng TableInfo.Predicates.insert(CachedHashString(Predicate));
1312df3765bfSSheng // Now figure out the index for when we write out the table.
1313df3765bfSSheng PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1314df3765bfSSheng return (unsigned)(P - TableInfo.Predicates.begin());
1315df3765bfSSheng }
1316df3765bfSSheng
emitPredicateTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1317df3765bfSSheng void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1318df3765bfSSheng unsigned Opc) const {
1319df3765bfSSheng if (!doesOpcodeNeedPredicate(Opc))
1320df3765bfSSheng return;
1321df3765bfSSheng
1322df3765bfSSheng // Build up the predicate string.
1323df3765bfSSheng SmallString<256> Predicate;
1324df3765bfSSheng // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1325df3765bfSSheng // than a stream.
1326df3765bfSSheng raw_svector_ostream PS(Predicate);
1327df3765bfSSheng unsigned I = 0;
1328df3765bfSSheng emitPredicateMatch(PS, I, Opc);
1329df3765bfSSheng
1330df3765bfSSheng // Figure out the index into the predicate table for the predicate just
1331df3765bfSSheng // computed.
1332df3765bfSSheng unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1333df3765bfSSheng SmallString<16> PBytes;
1334df3765bfSSheng raw_svector_ostream S(PBytes);
1335df3765bfSSheng encodeULEB128(PIdx, S);
1336df3765bfSSheng
1337df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1338df3765bfSSheng // Predicate index
1339df3765bfSSheng for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1340df3765bfSSheng TableInfo.Table.push_back(PBytes[i]);
1341df3765bfSSheng // Push location for NumToSkip backpatching.
1342df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1343df3765bfSSheng TableInfo.Table.push_back(0);
1344df3765bfSSheng TableInfo.Table.push_back(0);
1345df3765bfSSheng TableInfo.Table.push_back(0);
1346df3765bfSSheng }
1347df3765bfSSheng
emitSoftFailTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1348df3765bfSSheng void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1349df3765bfSSheng unsigned Opc) const {
1350df3765bfSSheng const RecordVal *RV = AllInstructions[Opc].EncodingDef->getValue("SoftFail");
1351df3765bfSSheng BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
1352df3765bfSSheng
1353df3765bfSSheng if (!SFBits) return;
1354df3765bfSSheng BitsInit *InstBits =
1355df3765bfSSheng AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1356df3765bfSSheng
1357df3765bfSSheng APInt PositiveMask(BitWidth, 0ULL);
1358df3765bfSSheng APInt NegativeMask(BitWidth, 0ULL);
1359df3765bfSSheng for (unsigned i = 0; i < BitWidth; ++i) {
1360df3765bfSSheng bit_value_t B = bitFromBits(*SFBits, i);
1361df3765bfSSheng bit_value_t IB = bitFromBits(*InstBits, i);
1362df3765bfSSheng
1363df3765bfSSheng if (B != BIT_TRUE) continue;
1364df3765bfSSheng
1365df3765bfSSheng switch (IB) {
1366df3765bfSSheng case BIT_FALSE:
1367df3765bfSSheng // The bit is meant to be false, so emit a check to see if it is true.
1368df3765bfSSheng PositiveMask.setBit(i);
1369df3765bfSSheng break;
1370df3765bfSSheng case BIT_TRUE:
1371df3765bfSSheng // The bit is meant to be true, so emit a check to see if it is false.
1372df3765bfSSheng NegativeMask.setBit(i);
1373df3765bfSSheng break;
1374df3765bfSSheng default:
1375df3765bfSSheng // The bit is not set; this must be an error!
1376df3765bfSSheng errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1377df3765bfSSheng << AllInstructions[Opc] << " is set but Inst{" << i
1378df3765bfSSheng << "} is unset!\n"
1379df3765bfSSheng << " - You can only mark a bit as SoftFail if it is fully defined"
1380df3765bfSSheng << " (1/0 - not '?') in Inst\n";
1381df3765bfSSheng return;
1382df3765bfSSheng }
1383df3765bfSSheng }
1384df3765bfSSheng
1385df3765bfSSheng bool NeedPositiveMask = PositiveMask.getBoolValue();
1386df3765bfSSheng bool NeedNegativeMask = NegativeMask.getBoolValue();
1387df3765bfSSheng
1388df3765bfSSheng if (!NeedPositiveMask && !NeedNegativeMask)
1389df3765bfSSheng return;
1390df3765bfSSheng
1391df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_SoftFail);
1392df3765bfSSheng
1393df3765bfSSheng SmallString<16> MaskBytes;
1394df3765bfSSheng raw_svector_ostream S(MaskBytes);
1395df3765bfSSheng if (NeedPositiveMask) {
1396df3765bfSSheng encodeULEB128(PositiveMask.getZExtValue(), S);
1397df3765bfSSheng for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1398df3765bfSSheng TableInfo.Table.push_back(MaskBytes[i]);
1399df3765bfSSheng } else
1400df3765bfSSheng TableInfo.Table.push_back(0);
1401df3765bfSSheng if (NeedNegativeMask) {
1402df3765bfSSheng MaskBytes.clear();
1403df3765bfSSheng encodeULEB128(NegativeMask.getZExtValue(), S);
1404df3765bfSSheng for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1405df3765bfSSheng TableInfo.Table.push_back(MaskBytes[i]);
1406df3765bfSSheng } else
1407df3765bfSSheng TableInfo.Table.push_back(0);
1408df3765bfSSheng }
1409df3765bfSSheng
1410df3765bfSSheng // Emits table entries to decode the singleton.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,EncodingIDAndOpcode Opc) const1411df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1412df3765bfSSheng EncodingIDAndOpcode Opc) const {
1413df3765bfSSheng std::vector<unsigned> StartBits;
1414df3765bfSSheng std::vector<unsigned> EndBits;
1415df3765bfSSheng std::vector<uint64_t> FieldVals;
1416df3765bfSSheng insn_t Insn;
1417df3765bfSSheng insnWithID(Insn, Opc.EncodingID);
1418df3765bfSSheng
1419df3765bfSSheng // Look for islands of undecoded bits of the singleton.
1420df3765bfSSheng getIslands(StartBits, EndBits, FieldVals, Insn);
1421df3765bfSSheng
1422df3765bfSSheng unsigned Size = StartBits.size();
1423df3765bfSSheng
1424df3765bfSSheng // Emit the predicate table entry if one is needed.
1425df3765bfSSheng emitPredicateTableEntry(TableInfo, Opc.EncodingID);
1426df3765bfSSheng
1427df3765bfSSheng // Check any additional encoding fields needed.
1428df3765bfSSheng for (unsigned I = Size; I != 0; --I) {
1429df3765bfSSheng unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1430df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_CheckField);
1431df3765bfSSheng TableInfo.Table.push_back(StartBits[I-1]);
1432df3765bfSSheng TableInfo.Table.push_back(NumBits);
1433df3765bfSSheng uint8_t Buffer[16], *p;
1434df3765bfSSheng encodeULEB128(FieldVals[I-1], Buffer);
1435df3765bfSSheng for (p = Buffer; *p >= 128 ; ++p)
1436df3765bfSSheng TableInfo.Table.push_back(*p);
1437df3765bfSSheng TableInfo.Table.push_back(*p);
1438df3765bfSSheng // Push location for NumToSkip backpatching.
1439df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1440df3765bfSSheng // The fixup is always 24-bits, so go ahead and allocate the space
1441df3765bfSSheng // in the table so all our relative position calculations work OK even
1442df3765bfSSheng // before we fully resolve the real value here.
1443df3765bfSSheng TableInfo.Table.push_back(0);
1444df3765bfSSheng TableInfo.Table.push_back(0);
1445df3765bfSSheng TableInfo.Table.push_back(0);
1446df3765bfSSheng }
1447df3765bfSSheng
1448df3765bfSSheng // Check for soft failure of the match.
1449df3765bfSSheng emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
1450df3765bfSSheng
1451df3765bfSSheng bool HasCompleteDecoder;
1452df3765bfSSheng unsigned DIdx =
1453df3765bfSSheng getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
1454df3765bfSSheng
1455df3765bfSSheng // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1456df3765bfSSheng // whether the instruction decoder is complete or not. If it is complete
1457df3765bfSSheng // then it handles all possible values of remaining variable/unfiltered bits
1458df3765bfSSheng // and for any value can determine if the bitpattern is a valid instruction
1459df3765bfSSheng // or not. This means OPC_Decode will be the final step in the decoding
1460df3765bfSSheng // process. If it is not complete, then the Fail return code from the
1461df3765bfSSheng // decoder method indicates that additional processing should be done to see
1462df3765bfSSheng // if there is any other instruction that also matches the bitpattern and
1463df3765bfSSheng // can decode it.
1464df3765bfSSheng TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1465df3765bfSSheng MCD::OPC_TryDecode);
1466df3765bfSSheng NumEncodingsSupported++;
1467df3765bfSSheng uint8_t Buffer[16], *p;
1468df3765bfSSheng encodeULEB128(Opc.Opcode, Buffer);
1469df3765bfSSheng for (p = Buffer; *p >= 128 ; ++p)
1470df3765bfSSheng TableInfo.Table.push_back(*p);
1471df3765bfSSheng TableInfo.Table.push_back(*p);
1472df3765bfSSheng
1473df3765bfSSheng SmallString<16> Bytes;
1474df3765bfSSheng raw_svector_ostream S(Bytes);
1475df3765bfSSheng encodeULEB128(DIdx, S);
1476df3765bfSSheng
1477df3765bfSSheng // Decoder index
1478df3765bfSSheng for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1479df3765bfSSheng TableInfo.Table.push_back(Bytes[i]);
1480df3765bfSSheng
1481df3765bfSSheng if (!HasCompleteDecoder) {
1482df3765bfSSheng // Push location for NumToSkip backpatching.
1483df3765bfSSheng TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1484df3765bfSSheng // Allocate the space for the fixup.
1485df3765bfSSheng TableInfo.Table.push_back(0);
1486df3765bfSSheng TableInfo.Table.push_back(0);
1487df3765bfSSheng TableInfo.Table.push_back(0);
1488df3765bfSSheng }
1489df3765bfSSheng }
1490df3765bfSSheng
1491df3765bfSSheng // Emits table entries to decode the singleton, and then to decode the rest.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,const Filter & Best) const1492df3765bfSSheng void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1493df3765bfSSheng const Filter &Best) const {
1494df3765bfSSheng EncodingIDAndOpcode Opc = Best.getSingletonOpc();
1495df3765bfSSheng
1496df3765bfSSheng // complex singletons need predicate checks from the first singleton
1497df3765bfSSheng // to refer forward to the variable filterchooser that follows.
1498df3765bfSSheng TableInfo.FixupStack.emplace_back();
1499df3765bfSSheng
1500df3765bfSSheng emitSingletonTableEntry(TableInfo, Opc);
1501df3765bfSSheng
1502df3765bfSSheng resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1503df3765bfSSheng TableInfo.Table.size());
1504df3765bfSSheng TableInfo.FixupStack.pop_back();
1505df3765bfSSheng
1506df3765bfSSheng Best.getVariableFC().emitTableEntries(TableInfo);
1507df3765bfSSheng }
1508df3765bfSSheng
1509df3765bfSSheng // Assign a single filter and run with it. Top level API client can initialize
1510df3765bfSSheng // with a single filter to start the filtering process.
runSingleFilter(unsigned startBit,unsigned numBit,bool mixed)1511df3765bfSSheng void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1512df3765bfSSheng bool mixed) {
1513df3765bfSSheng Filters.clear();
1514df3765bfSSheng Filters.emplace_back(*this, startBit, numBit, true);
1515df3765bfSSheng BestIndex = 0; // Sole Filter instance to choose from.
1516df3765bfSSheng bestFilter().recurse();
1517df3765bfSSheng }
1518df3765bfSSheng
1519df3765bfSSheng // reportRegion is a helper function for filterProcessor to mark a region as
1520df3765bfSSheng // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1521df3765bfSSheng void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1522df3765bfSSheng unsigned BitIndex, bool AllowMixed) {
1523df3765bfSSheng if (RA == ATTR_MIXED && AllowMixed)
1524df3765bfSSheng Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1525df3765bfSSheng else if (RA == ATTR_ALL_SET && !AllowMixed)
1526df3765bfSSheng Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1527df3765bfSSheng }
1528df3765bfSSheng
1529df3765bfSSheng // FilterProcessor scans the well-known encoding bits of the instructions and
1530df3765bfSSheng // builds up a list of candidate filters. It chooses the best filter and
1531df3765bfSSheng // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1532df3765bfSSheng bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1533df3765bfSSheng Filters.clear();
1534df3765bfSSheng BestIndex = -1;
1535df3765bfSSheng unsigned numInstructions = Opcodes.size();
1536df3765bfSSheng
1537df3765bfSSheng assert(numInstructions && "Filter created with no instructions");
1538df3765bfSSheng
1539df3765bfSSheng // No further filtering is necessary.
1540df3765bfSSheng if (numInstructions == 1)
1541df3765bfSSheng return true;
1542df3765bfSSheng
1543df3765bfSSheng // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1544df3765bfSSheng // instructions is 3.
1545df3765bfSSheng if (AllowMixed && !Greedy) {
1546df3765bfSSheng assert(numInstructions == 3);
1547df3765bfSSheng
1548df3765bfSSheng for (auto Opcode : Opcodes) {
1549df3765bfSSheng std::vector<unsigned> StartBits;
1550df3765bfSSheng std::vector<unsigned> EndBits;
1551df3765bfSSheng std::vector<uint64_t> FieldVals;
1552df3765bfSSheng insn_t Insn;
1553df3765bfSSheng
1554df3765bfSSheng insnWithID(Insn, Opcode.EncodingID);
1555df3765bfSSheng
1556df3765bfSSheng // Look for islands of undecoded bits of any instruction.
1557df3765bfSSheng if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1558df3765bfSSheng // Found an instruction with island(s). Now just assign a filter.
1559df3765bfSSheng runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1560df3765bfSSheng return true;
1561df3765bfSSheng }
1562df3765bfSSheng }
1563df3765bfSSheng }
1564df3765bfSSheng
1565df3765bfSSheng unsigned BitIndex;
1566df3765bfSSheng
1567df3765bfSSheng // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1568df3765bfSSheng // The automaton consumes the corresponding bit from each
1569df3765bfSSheng // instruction.
1570df3765bfSSheng //
1571df3765bfSSheng // Input symbols: 0, 1, and _ (unset).
1572df3765bfSSheng // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1573df3765bfSSheng // Initial state: NONE.
1574df3765bfSSheng //
1575df3765bfSSheng // (NONE) ------- [01] -> (ALL_SET)
1576df3765bfSSheng // (NONE) ------- _ ----> (ALL_UNSET)
1577df3765bfSSheng // (ALL_SET) ---- [01] -> (ALL_SET)
1578df3765bfSSheng // (ALL_SET) ---- _ ----> (MIXED)
1579df3765bfSSheng // (ALL_UNSET) -- [01] -> (MIXED)
1580df3765bfSSheng // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1581df3765bfSSheng // (MIXED) ------ . ----> (MIXED)
1582df3765bfSSheng // (FILTERED)---- . ----> (FILTERED)
1583df3765bfSSheng
1584df3765bfSSheng std::vector<bitAttr_t> bitAttrs;
1585df3765bfSSheng
1586df3765bfSSheng // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1587df3765bfSSheng // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1588df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1589df3765bfSSheng if (FilterBitValues[BitIndex] == BIT_TRUE ||
1590df3765bfSSheng FilterBitValues[BitIndex] == BIT_FALSE)
1591df3765bfSSheng bitAttrs.push_back(ATTR_FILTERED);
1592df3765bfSSheng else
1593df3765bfSSheng bitAttrs.push_back(ATTR_NONE);
1594df3765bfSSheng
1595df3765bfSSheng for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1596df3765bfSSheng insn_t insn;
1597df3765bfSSheng
1598df3765bfSSheng insnWithID(insn, Opcodes[InsnIndex].EncodingID);
1599df3765bfSSheng
1600df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1601df3765bfSSheng switch (bitAttrs[BitIndex]) {
1602df3765bfSSheng case ATTR_NONE:
1603df3765bfSSheng if (insn[BitIndex] == BIT_UNSET)
1604df3765bfSSheng bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1605df3765bfSSheng else
1606df3765bfSSheng bitAttrs[BitIndex] = ATTR_ALL_SET;
1607df3765bfSSheng break;
1608df3765bfSSheng case ATTR_ALL_SET:
1609df3765bfSSheng if (insn[BitIndex] == BIT_UNSET)
1610df3765bfSSheng bitAttrs[BitIndex] = ATTR_MIXED;
1611df3765bfSSheng break;
1612df3765bfSSheng case ATTR_ALL_UNSET:
1613df3765bfSSheng if (insn[BitIndex] != BIT_UNSET)
1614df3765bfSSheng bitAttrs[BitIndex] = ATTR_MIXED;
1615df3765bfSSheng break;
1616df3765bfSSheng case ATTR_MIXED:
1617df3765bfSSheng case ATTR_FILTERED:
1618df3765bfSSheng break;
1619df3765bfSSheng }
1620df3765bfSSheng }
1621df3765bfSSheng }
1622df3765bfSSheng
1623df3765bfSSheng // The regionAttr automaton consumes the bitAttrs automatons' state,
1624df3765bfSSheng // lowest-to-highest.
1625df3765bfSSheng //
1626df3765bfSSheng // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1627df3765bfSSheng // States: NONE, ALL_SET, MIXED
1628df3765bfSSheng // Initial state: NONE
1629df3765bfSSheng //
1630df3765bfSSheng // (NONE) ----- F --> (NONE)
1631df3765bfSSheng // (NONE) ----- S --> (ALL_SET) ; and set region start
1632df3765bfSSheng // (NONE) ----- U --> (NONE)
1633df3765bfSSheng // (NONE) ----- M --> (MIXED) ; and set region start
1634df3765bfSSheng // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1635df3765bfSSheng // (ALL_SET) -- S --> (ALL_SET)
1636df3765bfSSheng // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1637df3765bfSSheng // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1638df3765bfSSheng // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1639df3765bfSSheng // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1640df3765bfSSheng // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1641df3765bfSSheng // (MIXED) ---- M --> (MIXED)
1642df3765bfSSheng
1643df3765bfSSheng bitAttr_t RA = ATTR_NONE;
1644df3765bfSSheng unsigned StartBit = 0;
1645df3765bfSSheng
1646df3765bfSSheng for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1647df3765bfSSheng bitAttr_t bitAttr = bitAttrs[BitIndex];
1648df3765bfSSheng
1649df3765bfSSheng assert(bitAttr != ATTR_NONE && "Bit without attributes");
1650df3765bfSSheng
1651df3765bfSSheng switch (RA) {
1652df3765bfSSheng case ATTR_NONE:
1653df3765bfSSheng switch (bitAttr) {
1654df3765bfSSheng case ATTR_FILTERED:
1655df3765bfSSheng break;
1656df3765bfSSheng case ATTR_ALL_SET:
1657df3765bfSSheng StartBit = BitIndex;
1658df3765bfSSheng RA = ATTR_ALL_SET;
1659df3765bfSSheng break;
1660df3765bfSSheng case ATTR_ALL_UNSET:
1661df3765bfSSheng break;
1662df3765bfSSheng case ATTR_MIXED:
1663df3765bfSSheng StartBit = BitIndex;
1664df3765bfSSheng RA = ATTR_MIXED;
1665df3765bfSSheng break;
1666df3765bfSSheng default:
1667df3765bfSSheng llvm_unreachable("Unexpected bitAttr!");
1668df3765bfSSheng }
1669df3765bfSSheng break;
1670df3765bfSSheng case ATTR_ALL_SET:
1671df3765bfSSheng switch (bitAttr) {
1672df3765bfSSheng case ATTR_FILTERED:
1673df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1674df3765bfSSheng RA = ATTR_NONE;
1675df3765bfSSheng break;
1676df3765bfSSheng case ATTR_ALL_SET:
1677df3765bfSSheng break;
1678df3765bfSSheng case ATTR_ALL_UNSET:
1679df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1680df3765bfSSheng RA = ATTR_NONE;
1681df3765bfSSheng break;
1682df3765bfSSheng case ATTR_MIXED:
1683df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1684df3765bfSSheng StartBit = BitIndex;
1685df3765bfSSheng RA = ATTR_MIXED;
1686df3765bfSSheng break;
1687df3765bfSSheng default:
1688df3765bfSSheng llvm_unreachable("Unexpected bitAttr!");
1689df3765bfSSheng }
1690df3765bfSSheng break;
1691df3765bfSSheng case ATTR_MIXED:
1692df3765bfSSheng switch (bitAttr) {
1693df3765bfSSheng case ATTR_FILTERED:
1694df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1695df3765bfSSheng StartBit = BitIndex;
1696df3765bfSSheng RA = ATTR_NONE;
1697df3765bfSSheng break;
1698df3765bfSSheng case ATTR_ALL_SET:
1699df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1700df3765bfSSheng StartBit = BitIndex;
1701df3765bfSSheng RA = ATTR_ALL_SET;
1702df3765bfSSheng break;
1703df3765bfSSheng case ATTR_ALL_UNSET:
1704df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1705df3765bfSSheng RA = ATTR_NONE;
1706df3765bfSSheng break;
1707df3765bfSSheng case ATTR_MIXED:
1708df3765bfSSheng break;
1709df3765bfSSheng default:
1710df3765bfSSheng llvm_unreachable("Unexpected bitAttr!");
1711df3765bfSSheng }
1712df3765bfSSheng break;
1713df3765bfSSheng case ATTR_ALL_UNSET:
1714df3765bfSSheng llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1715df3765bfSSheng case ATTR_FILTERED:
1716df3765bfSSheng llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1717df3765bfSSheng }
1718df3765bfSSheng }
1719df3765bfSSheng
1720df3765bfSSheng // At the end, if we're still in ALL_SET or MIXED states, report a region
1721df3765bfSSheng switch (RA) {
1722df3765bfSSheng case ATTR_NONE:
1723df3765bfSSheng break;
1724df3765bfSSheng case ATTR_FILTERED:
1725df3765bfSSheng break;
1726df3765bfSSheng case ATTR_ALL_SET:
1727df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1728df3765bfSSheng break;
1729df3765bfSSheng case ATTR_ALL_UNSET:
1730df3765bfSSheng break;
1731df3765bfSSheng case ATTR_MIXED:
1732df3765bfSSheng reportRegion(RA, StartBit, BitIndex, AllowMixed);
1733df3765bfSSheng break;
1734df3765bfSSheng }
1735df3765bfSSheng
1736df3765bfSSheng // We have finished with the filter processings. Now it's time to choose
1737df3765bfSSheng // the best performing filter.
1738df3765bfSSheng BestIndex = 0;
1739df3765bfSSheng bool AllUseless = true;
1740df3765bfSSheng unsigned BestScore = 0;
1741df3765bfSSheng
1742df3765bfSSheng for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1743df3765bfSSheng unsigned Usefulness = Filters[i].usefulness();
1744df3765bfSSheng
1745df3765bfSSheng if (Usefulness)
1746df3765bfSSheng AllUseless = false;
1747df3765bfSSheng
1748df3765bfSSheng if (Usefulness > BestScore) {
1749df3765bfSSheng BestIndex = i;
1750df3765bfSSheng BestScore = Usefulness;
1751df3765bfSSheng }
1752df3765bfSSheng }
1753df3765bfSSheng
1754df3765bfSSheng if (!AllUseless)
1755df3765bfSSheng bestFilter().recurse();
1756df3765bfSSheng
1757df3765bfSSheng return !AllUseless;
1758df3765bfSSheng } // end of FilterChooser::filterProcessor(bool)
1759df3765bfSSheng
1760df3765bfSSheng // Decides on the best configuration of filter(s) to use in order to decode
1761df3765bfSSheng // the instructions. A conflict of instructions may occur, in which case we
1762df3765bfSSheng // dump the conflict set to the standard error.
doFilter()1763df3765bfSSheng void FilterChooser::doFilter() {
1764df3765bfSSheng unsigned Num = Opcodes.size();
1765df3765bfSSheng assert(Num && "FilterChooser created with no instructions");
1766df3765bfSSheng
1767df3765bfSSheng // Try regions of consecutive known bit values first.
1768df3765bfSSheng if (filterProcessor(false))
1769df3765bfSSheng return;
1770df3765bfSSheng
1771df3765bfSSheng // Then regions of mixed bits (both known and unitialized bit values allowed).
1772df3765bfSSheng if (filterProcessor(true))
1773df3765bfSSheng return;
1774df3765bfSSheng
1775df3765bfSSheng // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1776df3765bfSSheng // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1777df3765bfSSheng // well-known encoding pattern. In such case, we backtrack and scan for the
1778df3765bfSSheng // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1779df3765bfSSheng if (Num == 3 && filterProcessor(true, false))
1780df3765bfSSheng return;
1781df3765bfSSheng
1782df3765bfSSheng // If we come to here, the instruction decoding has failed.
1783df3765bfSSheng // Set the BestIndex to -1 to indicate so.
1784df3765bfSSheng BestIndex = -1;
1785df3765bfSSheng }
1786df3765bfSSheng
1787df3765bfSSheng // emitTableEntries - Emit state machine entries to decode our share of
1788df3765bfSSheng // instructions.
emitTableEntries(DecoderTableInfo & TableInfo) const1789df3765bfSSheng void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1790df3765bfSSheng if (Opcodes.size() == 1) {
1791df3765bfSSheng // There is only one instruction in the set, which is great!
1792df3765bfSSheng // Call emitSingletonDecoder() to see whether there are any remaining
1793df3765bfSSheng // encodings bits.
1794df3765bfSSheng emitSingletonTableEntry(TableInfo, Opcodes[0]);
1795df3765bfSSheng return;
1796df3765bfSSheng }
1797df3765bfSSheng
1798df3765bfSSheng // Choose the best filter to do the decodings!
1799df3765bfSSheng if (BestIndex != -1) {
1800df3765bfSSheng const Filter &Best = Filters[BestIndex];
1801df3765bfSSheng if (Best.getNumFiltered() == 1)
1802df3765bfSSheng emitSingletonTableEntry(TableInfo, Best);
1803df3765bfSSheng else
1804df3765bfSSheng Best.emitTableEntry(TableInfo);
1805df3765bfSSheng return;
1806df3765bfSSheng }
1807df3765bfSSheng
1808df3765bfSSheng // We don't know how to decode these instructions! Dump the
1809df3765bfSSheng // conflict set and bail.
1810df3765bfSSheng
1811df3765bfSSheng // Print out useful conflict information for postmortem analysis.
1812df3765bfSSheng errs() << "Decoding Conflict:\n";
1813df3765bfSSheng
1814df3765bfSSheng dumpStack(errs(), "\t\t");
1815df3765bfSSheng
1816df3765bfSSheng for (auto Opcode : Opcodes) {
1817df3765bfSSheng errs() << '\t';
1818df3765bfSSheng emitNameWithID(errs(), Opcode.EncodingID);
1819df3765bfSSheng errs() << " ";
1820df3765bfSSheng dumpBits(
1821df3765bfSSheng errs(),
1822df3765bfSSheng getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
1823df3765bfSSheng errs() << '\n';
1824df3765bfSSheng }
1825df3765bfSSheng }
1826df3765bfSSheng
findOperandDecoderMethod(Record * Record)1827df3765bfSSheng static std::string findOperandDecoderMethod(Record *Record) {
1828df3765bfSSheng std::string Decoder;
1829df3765bfSSheng
1830df3765bfSSheng RecordVal *DecoderString = Record->getValue("DecoderMethod");
1831df3765bfSSheng StringInit *String = DecoderString ?
1832df3765bfSSheng dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1833df3765bfSSheng if (String) {
1834df3765bfSSheng Decoder = std::string(String->getValue());
1835df3765bfSSheng if (!Decoder.empty())
1836df3765bfSSheng return Decoder;
1837df3765bfSSheng }
1838df3765bfSSheng
1839df3765bfSSheng if (Record->isSubClassOf("RegisterOperand"))
1840df3765bfSSheng Record = Record->getValueAsDef("RegClass");
1841df3765bfSSheng
1842df3765bfSSheng if (Record->isSubClassOf("RegisterClass")) {
1843df3765bfSSheng Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1844df3765bfSSheng } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1845df3765bfSSheng Decoder = "DecodePointerLikeRegClass" +
1846df3765bfSSheng utostr(Record->getValueAsInt("RegClassKind"));
1847df3765bfSSheng }
1848df3765bfSSheng
1849df3765bfSSheng return Decoder;
1850df3765bfSSheng }
1851df3765bfSSheng
getOpInfo(Record * TypeRecord)1852df3765bfSSheng OperandInfo getOpInfo(Record *TypeRecord) {
1853df3765bfSSheng std::string Decoder = findOperandDecoderMethod(TypeRecord);
1854df3765bfSSheng
1855df3765bfSSheng RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder");
1856df3765bfSSheng BitInit *HasCompleteDecoderBit =
1857df3765bfSSheng HasCompleteDecoderVal
1858df3765bfSSheng ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
1859df3765bfSSheng : nullptr;
1860df3765bfSSheng bool HasCompleteDecoder =
1861df3765bfSSheng HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
1862df3765bfSSheng
1863df3765bfSSheng return OperandInfo(Decoder, HasCompleteDecoder);
1864df3765bfSSheng }
1865df3765bfSSheng
parseVarLenInstOperand(const Record & Def,std::vector<OperandInfo> & Operands,const CodeGenInstruction & CGI)1866df3765bfSSheng void parseVarLenInstOperand(const Record &Def,
1867df3765bfSSheng std::vector<OperandInfo> &Operands,
1868df3765bfSSheng const CodeGenInstruction &CGI) {
1869df3765bfSSheng
1870df3765bfSSheng const RecordVal *RV = Def.getValue("Inst");
1871df3765bfSSheng VarLenInst VLI(cast<DagInit>(RV->getValue()), RV);
1872df3765bfSSheng SmallVector<int> TiedTo;
1873df3765bfSSheng
1874df3765bfSSheng for (unsigned Idx = 0; Idx < CGI.Operands.size(); ++Idx) {
1875df3765bfSSheng auto &Op = CGI.Operands[Idx];
1876df3765bfSSheng if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0)
1877df3765bfSSheng for (auto *Arg : Op.MIOperandInfo->getArgs())
1878df3765bfSSheng Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef()));
1879df3765bfSSheng else
1880df3765bfSSheng Operands.push_back(getOpInfo(Op.Rec));
1881df3765bfSSheng
1882df3765bfSSheng int TiedReg = Op.getTiedRegister();
1883df3765bfSSheng TiedTo.push_back(-1);
1884df3765bfSSheng if (TiedReg != -1) {
1885df3765bfSSheng TiedTo[Idx] = TiedReg;
1886df3765bfSSheng TiedTo[TiedReg] = Idx;
1887df3765bfSSheng }
1888df3765bfSSheng }
1889df3765bfSSheng
1890df3765bfSSheng unsigned CurrBitPos = 0;
1891df3765bfSSheng for (auto &EncodingSegment : VLI) {
1892df3765bfSSheng unsigned Offset = 0;
1893df3765bfSSheng StringRef OpName;
1894df3765bfSSheng
1895df3765bfSSheng if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) {
1896df3765bfSSheng OpName = SI->getValue();
1897df3765bfSSheng } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) {
1898df3765bfSSheng OpName = cast<StringInit>(DI->getArg(0))->getValue();
1899df3765bfSSheng Offset = cast<IntInit>(DI->getArg(2))->getValue();
1900df3765bfSSheng }
1901df3765bfSSheng
1902df3765bfSSheng if (!OpName.empty()) {
1903df3765bfSSheng auto OpSubOpPair =
1904df3765bfSSheng const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName(
1905df3765bfSSheng OpName);
1906df3765bfSSheng unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair);
1907df3765bfSSheng Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1908df3765bfSSheng
1909df3765bfSSheng int TiedReg = TiedTo[OpSubOpPair.first];
1910df3765bfSSheng if (TiedReg != -1) {
1911df3765bfSSheng unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(
1912df3765bfSSheng std::make_pair(TiedReg, OpSubOpPair.second));
1913df3765bfSSheng Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
1914df3765bfSSheng }
1915df3765bfSSheng }
1916df3765bfSSheng
1917df3765bfSSheng CurrBitPos += EncodingSegment.BitWidth;
1918df3765bfSSheng }
1919df3765bfSSheng }
1920df3765bfSSheng
1921df3765bfSSheng static unsigned
populateInstruction(CodeGenTarget & Target,const Record & EncodingDef,const CodeGenInstruction & CGI,unsigned Opc,std::map<unsigned,std::vector<OperandInfo>> & Operands,bool IsVarLenInst)1922df3765bfSSheng populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
1923df3765bfSSheng const CodeGenInstruction &CGI, unsigned Opc,
1924df3765bfSSheng std::map<unsigned, std::vector<OperandInfo>> &Operands,
1925df3765bfSSheng bool IsVarLenInst) {
1926df3765bfSSheng const Record &Def = *CGI.TheDef;
1927df3765bfSSheng // If all the bit positions are not specified; do not decode this instruction.
1928df3765bfSSheng // We are bound to fail! For proper disassembly, the well-known encoding bits
1929df3765bfSSheng // of the instruction must be fully specified.
1930df3765bfSSheng
1931df3765bfSSheng BitsInit &Bits = getBitsField(EncodingDef, "Inst");
1932df3765bfSSheng if (Bits.allInComplete())
1933df3765bfSSheng return 0;
1934df3765bfSSheng
1935df3765bfSSheng std::vector<OperandInfo> InsnOperands;
1936df3765bfSSheng
1937df3765bfSSheng // If the instruction has specified a custom decoding hook, use that instead
1938df3765bfSSheng // of trying to auto-generate the decoder.
1939df3765bfSSheng StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
1940df3765bfSSheng if (InstDecoder != "") {
1941df3765bfSSheng bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
1942df3765bfSSheng InsnOperands.push_back(
1943df3765bfSSheng OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
1944df3765bfSSheng Operands[Opc] = InsnOperands;
1945df3765bfSSheng return Bits.getNumBits();
1946df3765bfSSheng }
1947df3765bfSSheng
1948df3765bfSSheng // Generate a description of the operand of the instruction that we know
1949df3765bfSSheng // how to decode automatically.
1950df3765bfSSheng // FIXME: We'll need to have a way to manually override this as needed.
1951df3765bfSSheng
1952df3765bfSSheng // Gather the outputs/inputs of the instruction, so we can find their
1953df3765bfSSheng // positions in the encoding. This assumes for now that they appear in the
1954df3765bfSSheng // MCInst in the order that they're listed.
1955df3765bfSSheng std::vector<std::pair<Init*, StringRef>> InOutOperands;
1956df3765bfSSheng DagInit *Out = Def.getValueAsDag("OutOperandList");
1957df3765bfSSheng DagInit *In = Def.getValueAsDag("InOperandList");
1958df3765bfSSheng for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1959df3765bfSSheng InOutOperands.push_back(
1960df3765bfSSheng std::make_pair(Out->getArg(i), Out->getArgNameStr(i)));
1961df3765bfSSheng for (unsigned i = 0; i < In->getNumArgs(); ++i)
1962df3765bfSSheng InOutOperands.push_back(
1963df3765bfSSheng std::make_pair(In->getArg(i), In->getArgNameStr(i)));
1964df3765bfSSheng
1965df3765bfSSheng // Search for tied operands, so that we can correctly instantiate
1966df3765bfSSheng // operands that are not explicitly represented in the encoding.
1967df3765bfSSheng std::map<std::string, std::string> TiedNames;
1968df3765bfSSheng for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1969df3765bfSSheng int tiedTo = CGI.Operands[i].getTiedRegister();
1970df3765bfSSheng if (tiedTo != -1) {
1971df3765bfSSheng std::pair<unsigned, unsigned> SO =
1972df3765bfSSheng CGI.Operands.getSubOperandNumber(tiedTo);
1973df3765bfSSheng TiedNames[std::string(InOutOperands[i].second)] =
1974df3765bfSSheng std::string(InOutOperands[SO.first].second);
1975df3765bfSSheng TiedNames[std::string(InOutOperands[SO.first].second)] =
1976df3765bfSSheng std::string(InOutOperands[i].second);
1977df3765bfSSheng }
1978df3765bfSSheng }
1979df3765bfSSheng
1980df3765bfSSheng if (IsVarLenInst) {
1981df3765bfSSheng parseVarLenInstOperand(EncodingDef, InsnOperands, CGI);
1982df3765bfSSheng } else {
1983df3765bfSSheng std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
1984df3765bfSSheng std::set<std::string> NumberedInsnOperandsNoTie;
1985df3765bfSSheng if (Target.getInstructionSet()->getValueAsBit(
1986df3765bfSSheng "decodePositionallyEncodedOperands")) {
1987df3765bfSSheng const std::vector<RecordVal> &Vals = Def.getValues();
1988df3765bfSSheng unsigned NumberedOp = 0;
1989df3765bfSSheng
1990df3765bfSSheng std::set<unsigned> NamedOpIndices;
1991df3765bfSSheng if (Target.getInstructionSet()->getValueAsBit(
1992df3765bfSSheng "noNamedPositionallyEncodedOperands"))
1993df3765bfSSheng // Collect the set of operand indices that might correspond to named
1994df3765bfSSheng // operand, and skip these when assigning operands based on position.
1995df3765bfSSheng for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1996df3765bfSSheng unsigned OpIdx;
1997df3765bfSSheng if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1998df3765bfSSheng continue;
1999df3765bfSSheng
2000df3765bfSSheng NamedOpIndices.insert(OpIdx);
2001df3765bfSSheng }
2002df3765bfSSheng
2003df3765bfSSheng for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2004df3765bfSSheng // Ignore fixed fields in the record, we're looking for values like:
2005df3765bfSSheng // bits<5> RST = { ?, ?, ?, ?, ? };
2006df3765bfSSheng if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
2007df3765bfSSheng continue;
2008df3765bfSSheng
2009df3765bfSSheng // Determine if Vals[i] actually contributes to the Inst encoding.
2010df3765bfSSheng unsigned bi = 0;
2011df3765bfSSheng for (; bi < Bits.getNumBits(); ++bi) {
2012df3765bfSSheng VarInit *Var = nullptr;
2013df3765bfSSheng VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2014df3765bfSSheng if (BI)
2015df3765bfSSheng Var = dyn_cast<VarInit>(BI->getBitVar());
2016df3765bfSSheng else
2017df3765bfSSheng Var = dyn_cast<VarInit>(Bits.getBit(bi));
2018df3765bfSSheng
2019df3765bfSSheng if (Var && Var->getName() == Vals[i].getName())
2020df3765bfSSheng break;
2021df3765bfSSheng }
2022df3765bfSSheng
2023df3765bfSSheng if (bi == Bits.getNumBits())
2024df3765bfSSheng continue;
2025df3765bfSSheng
2026df3765bfSSheng // Skip variables that correspond to explicitly-named operands.
2027df3765bfSSheng unsigned OpIdx;
2028df3765bfSSheng if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
2029df3765bfSSheng continue;
2030df3765bfSSheng
2031df3765bfSSheng // Get the bit range for this operand:
2032df3765bfSSheng unsigned bitStart = bi++, bitWidth = 1;
2033df3765bfSSheng for (; bi < Bits.getNumBits(); ++bi) {
2034df3765bfSSheng VarInit *Var = nullptr;
2035df3765bfSSheng VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2036df3765bfSSheng if (BI)
2037df3765bfSSheng Var = dyn_cast<VarInit>(BI->getBitVar());
2038df3765bfSSheng else
2039df3765bfSSheng Var = dyn_cast<VarInit>(Bits.getBit(bi));
2040df3765bfSSheng
2041df3765bfSSheng if (!Var)
2042df3765bfSSheng break;
2043df3765bfSSheng
2044df3765bfSSheng if (Var->getName() != Vals[i].getName())
2045df3765bfSSheng break;
2046df3765bfSSheng
2047df3765bfSSheng ++bitWidth;
2048df3765bfSSheng }
2049df3765bfSSheng
2050df3765bfSSheng unsigned NumberOps = CGI.Operands.size();
2051df3765bfSSheng while (NumberedOp < NumberOps &&
2052df3765bfSSheng (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
2053df3765bfSSheng (!NamedOpIndices.empty() &&
2054df3765bfSSheng NamedOpIndices.count(
2055df3765bfSSheng CGI.Operands.getSubOperandNumber(NumberedOp).first))))
2056df3765bfSSheng ++NumberedOp;
2057df3765bfSSheng
2058df3765bfSSheng OpIdx = NumberedOp++;
2059df3765bfSSheng
2060df3765bfSSheng // OpIdx now holds the ordered operand number of Vals[i].
2061df3765bfSSheng std::pair<unsigned, unsigned> SO =
2062df3765bfSSheng CGI.Operands.getSubOperandNumber(OpIdx);
2063df3765bfSSheng const std::string &Name = CGI.Operands[SO.first].Name;
2064df3765bfSSheng
2065df3765bfSSheng LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
2066df3765bfSSheng << ": " << Name << "(" << SO.first << ", "
2067df3765bfSSheng << SO.second << ") => " << Vals[i].getName() << "\n");
2068df3765bfSSheng
2069df3765bfSSheng std::string Decoder;
2070df3765bfSSheng Record *TypeRecord = CGI.Operands[SO.first].Rec;
2071df3765bfSSheng
2072df3765bfSSheng RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
2073df3765bfSSheng StringInit *String =
2074df3765bfSSheng DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2075df3765bfSSheng : nullptr;
2076df3765bfSSheng if (String && String->getValue() != "")
2077df3765bfSSheng Decoder = std::string(String->getValue());
2078df3765bfSSheng
2079df3765bfSSheng if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo &&
2080df3765bfSSheng CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
2081df3765bfSSheng Init *Arg = CGI.Operands[SO.first].MIOperandInfo->getArg(SO.second);
2082df3765bfSSheng if (DefInit *DI = cast<DefInit>(Arg))
2083df3765bfSSheng TypeRecord = DI->getDef();
2084df3765bfSSheng }
2085df3765bfSSheng
2086df3765bfSSheng bool isReg = false;
2087df3765bfSSheng if (TypeRecord->isSubClassOf("RegisterOperand"))
2088df3765bfSSheng TypeRecord = TypeRecord->getValueAsDef("RegClass");
2089df3765bfSSheng if (TypeRecord->isSubClassOf("RegisterClass")) {
2090df3765bfSSheng Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
2091df3765bfSSheng isReg = true;
2092df3765bfSSheng } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
2093df3765bfSSheng Decoder = "DecodePointerLikeRegClass" +
2094df3765bfSSheng utostr(TypeRecord->getValueAsInt("RegClassKind"));
2095df3765bfSSheng isReg = true;
2096df3765bfSSheng }
2097df3765bfSSheng
2098df3765bfSSheng DecoderString = TypeRecord->getValue("DecoderMethod");
2099df3765bfSSheng String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
2100df3765bfSSheng : nullptr;
2101df3765bfSSheng if (!isReg && String && String->getValue() != "")
2102df3765bfSSheng Decoder = std::string(String->getValue());
2103df3765bfSSheng
2104df3765bfSSheng RecordVal *HasCompleteDecoderVal =
2105df3765bfSSheng TypeRecord->getValue("hasCompleteDecoder");
2106df3765bfSSheng BitInit *HasCompleteDecoderBit =
2107df3765bfSSheng HasCompleteDecoderVal
2108df3765bfSSheng ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
2109df3765bfSSheng : nullptr;
2110df3765bfSSheng bool HasCompleteDecoder =
2111df3765bfSSheng HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
2112df3765bfSSheng
2113df3765bfSSheng OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2114df3765bfSSheng OpInfo.addField(bitStart, bitWidth, 0);
2115df3765bfSSheng
2116df3765bfSSheng NumberedInsnOperands[Name].push_back(OpInfo);
2117df3765bfSSheng
2118df3765bfSSheng // FIXME: For complex operands with custom decoders we can't handle tied
2119df3765bfSSheng // sub-operands automatically. Skip those here and assume that this is
2120df3765bfSSheng // fixed up elsewhere.
2121df3765bfSSheng if (CGI.Operands[SO.first].MIOperandInfo &&
2122df3765bfSSheng CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String &&
2123df3765bfSSheng String->getValue() != "")
2124df3765bfSSheng NumberedInsnOperandsNoTie.insert(Name);
2125df3765bfSSheng }
2126df3765bfSSheng }
2127df3765bfSSheng
2128df3765bfSSheng // For each operand, see if we can figure out where it is encoded.
2129df3765bfSSheng for (const auto &Op : InOutOperands) {
2130df3765bfSSheng if (!NumberedInsnOperands[std::string(Op.second)].empty()) {
2131df3765bfSSheng llvm::append_range(InsnOperands,
2132df3765bfSSheng NumberedInsnOperands[std::string(Op.second)]);
2133df3765bfSSheng continue;
2134df3765bfSSheng }
2135df3765bfSSheng if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) {
2136df3765bfSSheng if (!NumberedInsnOperandsNoTie.count(
2137df3765bfSSheng TiedNames[std::string(Op.second)])) {
2138df3765bfSSheng // Figure out to which (sub)operand we're tied.
2139df3765bfSSheng unsigned i =
2140df3765bfSSheng CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]);
2141df3765bfSSheng int tiedTo = CGI.Operands[i].getTiedRegister();
2142df3765bfSSheng if (tiedTo == -1) {
2143df3765bfSSheng i = CGI.Operands.getOperandNamed(Op.second);
2144df3765bfSSheng tiedTo = CGI.Operands[i].getTiedRegister();
2145df3765bfSSheng }
2146df3765bfSSheng
2147df3765bfSSheng if (tiedTo != -1) {
2148df3765bfSSheng std::pair<unsigned, unsigned> SO =
2149df3765bfSSheng CGI.Operands.getSubOperandNumber(tiedTo);
2150df3765bfSSheng
2151df3765bfSSheng InsnOperands.push_back(
2152df3765bfSSheng NumberedInsnOperands[TiedNames[std::string(Op.second)]]
2153df3765bfSSheng [SO.second]);
2154df3765bfSSheng }
2155df3765bfSSheng }
2156df3765bfSSheng continue;
2157df3765bfSSheng }
2158df3765bfSSheng
2159df3765bfSSheng // At this point, we can locate the decoder field, but we need to know how
2160df3765bfSSheng // to interpret it. As a first step, require the target to provide
2161df3765bfSSheng // callbacks for decoding register classes.
2162df3765bfSSheng
2163df3765bfSSheng OperandInfo OpInfo = getOpInfo(cast<DefInit>(Op.first)->getDef());
2164df3765bfSSheng
2165df3765bfSSheng // Some bits of the operand may be required to be 1 depending on the
2166df3765bfSSheng // instruction's encoding. Collect those bits.
2167df3765bfSSheng if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second))
2168df3765bfSSheng if (const BitsInit *OpBits =
2169df3765bfSSheng dyn_cast<BitsInit>(EncodedValue->getValue()))
2170df3765bfSSheng for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
2171df3765bfSSheng if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
2172df3765bfSSheng if (OpBit->getValue())
2173df3765bfSSheng OpInfo.InitValue |= 1ULL << I;
2174df3765bfSSheng
2175df3765bfSSheng unsigned Base = ~0U;
2176df3765bfSSheng unsigned Width = 0;
2177df3765bfSSheng unsigned Offset = 0;
2178df3765bfSSheng
2179df3765bfSSheng for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
2180df3765bfSSheng VarInit *Var = nullptr;
2181df3765bfSSheng VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2182df3765bfSSheng if (BI)
2183df3765bfSSheng Var = dyn_cast<VarInit>(BI->getBitVar());
2184df3765bfSSheng else
2185df3765bfSSheng Var = dyn_cast<VarInit>(Bits.getBit(bi));
2186df3765bfSSheng
2187df3765bfSSheng if (!Var) {
2188df3765bfSSheng if (Base != ~0U) {
2189df3765bfSSheng OpInfo.addField(Base, Width, Offset);
2190df3765bfSSheng Base = ~0U;
2191df3765bfSSheng Width = 0;
2192df3765bfSSheng Offset = 0;
2193df3765bfSSheng }
2194df3765bfSSheng continue;
2195df3765bfSSheng }
2196df3765bfSSheng
2197df3765bfSSheng if ((Var->getName() != Op.second &&
2198df3765bfSSheng Var->getName() != TiedNames[std::string(Op.second)])) {
2199df3765bfSSheng if (Base != ~0U) {
2200df3765bfSSheng OpInfo.addField(Base, Width, Offset);
2201df3765bfSSheng Base = ~0U;
2202df3765bfSSheng Width = 0;
2203df3765bfSSheng Offset = 0;
2204df3765bfSSheng }
2205df3765bfSSheng continue;
2206df3765bfSSheng }
2207df3765bfSSheng
2208df3765bfSSheng if (Base == ~0U) {
2209df3765bfSSheng Base = bi;
2210df3765bfSSheng Width = 1;
2211df3765bfSSheng Offset = BI ? BI->getBitNum() : 0;
2212df3765bfSSheng } else if (BI && BI->getBitNum() != Offset + Width) {
2213df3765bfSSheng OpInfo.addField(Base, Width, Offset);
2214df3765bfSSheng Base = bi;
2215df3765bfSSheng Width = 1;
2216df3765bfSSheng Offset = BI->getBitNum();
2217df3765bfSSheng } else {
2218df3765bfSSheng ++Width;
2219df3765bfSSheng }
2220df3765bfSSheng }
2221df3765bfSSheng
2222df3765bfSSheng if (Base != ~0U)
2223df3765bfSSheng OpInfo.addField(Base, Width, Offset);
2224df3765bfSSheng
2225df3765bfSSheng if (OpInfo.numFields() > 0)
2226df3765bfSSheng InsnOperands.push_back(OpInfo);
2227df3765bfSSheng }
2228df3765bfSSheng }
2229df3765bfSSheng
2230df3765bfSSheng Operands[Opc] = InsnOperands;
2231df3765bfSSheng
2232df3765bfSSheng #if 0
2233df3765bfSSheng LLVM_DEBUG({
2234df3765bfSSheng // Dumps the instruction encoding bits.
2235df3765bfSSheng dumpBits(errs(), Bits);
2236df3765bfSSheng
2237df3765bfSSheng errs() << '\n';
2238df3765bfSSheng
2239df3765bfSSheng // Dumps the list of operand info.
2240df3765bfSSheng for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2241df3765bfSSheng const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2242df3765bfSSheng const std::string &OperandName = Info.Name;
2243df3765bfSSheng const Record &OperandDef = *Info.Rec;
2244df3765bfSSheng
2245df3765bfSSheng errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2246df3765bfSSheng }
2247df3765bfSSheng });
2248df3765bfSSheng #endif
2249df3765bfSSheng
2250df3765bfSSheng return Bits.getNumBits();
2251df3765bfSSheng }
2252df3765bfSSheng
2253df3765bfSSheng // emitFieldFromInstruction - Emit the templated helper function
2254df3765bfSSheng // fieldFromInstruction().
2255df3765bfSSheng // On Windows we make sure that this function is not inlined when
2256df3765bfSSheng // using the VS compiler. It has a bug which causes the function
2257df3765bfSSheng // to be optimized out in some circustances. See llvm.org/pr38292
emitFieldFromInstruction(formatted_raw_ostream & OS)2258df3765bfSSheng static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2259df3765bfSSheng OS << "// Helper functions for extracting fields from encoded instructions.\n"
2260df3765bfSSheng << "// InsnType must either be integral or an APInt-like object that "
2261df3765bfSSheng "must:\n"
2262df3765bfSSheng << "// * be default-constructible and copy-constructible\n"
2263df3765bfSSheng << "// * be constructible from an APInt (this can be private)\n"
2264df3765bfSSheng << "// * Support insertBits(bits, startBit, numBits)\n"
2265df3765bfSSheng << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
2266df3765bfSSheng << "// * Support the ~, &, ==, and != operators with other objects of "
2267df3765bfSSheng "the same type\n"
22681284ce91SSheng << "// * Support the != and bitwise & with uint64_t\n"
2269df3765bfSSheng << "// * Support put (<<) to raw_ostream&\n"
2270df3765bfSSheng << "template <typename InsnType>\n"
2271df3765bfSSheng << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2272df3765bfSSheng << "__declspec(noinline)\n"
2273df3765bfSSheng << "#endif\n"
2274df3765bfSSheng << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
2275df3765bfSSheng << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2276df3765bfSSheng << " unsigned numBits) {\n"
2277df3765bfSSheng << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2278df3765bfSSheng "extractions!\");\n"
2279df3765bfSSheng << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2280df3765bfSSheng << " \"Instruction field out of bounds!\");\n"
2281df3765bfSSheng << " InsnType fieldMask;\n"
2282df3765bfSSheng << " if (numBits == sizeof(InsnType) * 8)\n"
2283df3765bfSSheng << " fieldMask = (InsnType)(-1LL);\n"
2284df3765bfSSheng << " else\n"
2285df3765bfSSheng << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2286df3765bfSSheng << " return (insn & fieldMask) >> startBit;\n"
2287df3765bfSSheng << "}\n"
2288df3765bfSSheng << "\n"
2289df3765bfSSheng << "template <typename InsnType>\n"
2290df3765bfSSheng << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
2291df3765bfSSheng "uint64_t>\n"
2292df3765bfSSheng << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2293df3765bfSSheng << " unsigned numBits) {\n"
2294df3765bfSSheng << " return insn.extractBitsAsZExtValue(numBits, startBit);\n"
2295df3765bfSSheng << "}\n\n";
2296df3765bfSSheng }
2297df3765bfSSheng
2298df3765bfSSheng // emitInsertBits - Emit the templated helper function insertBits().
emitInsertBits(formatted_raw_ostream & OS)2299df3765bfSSheng static void emitInsertBits(formatted_raw_ostream &OS) {
2300df3765bfSSheng OS << "// Helper function for inserting bits extracted from an encoded "
2301df3765bfSSheng "instruction into\n"
2302df3765bfSSheng << "// a field.\n"
2303df3765bfSSheng << "template <typename InsnType>\n"
2304df3765bfSSheng << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
2305df3765bfSSheng << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
2306df3765bfSSheng "unsigned numBits) {\n"
2307df3765bfSSheng << " assert(startBit + numBits <= sizeof field * 8);\n"
2308df3765bfSSheng << " field |= (InsnType)bits << startBit;\n"
2309df3765bfSSheng << "}\n"
2310df3765bfSSheng << "\n"
2311df3765bfSSheng << "template <typename InsnType>\n"
2312df3765bfSSheng << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
2313df3765bfSSheng << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
2314df3765bfSSheng "unsigned numBits) {\n"
2315df3765bfSSheng << " field.insertBits(bits, startBit, numBits);\n"
2316df3765bfSSheng << "}\n\n";
2317df3765bfSSheng }
2318df3765bfSSheng
2319df3765bfSSheng // emitDecodeInstruction - Emit the templated helper function
2320df3765bfSSheng // decodeInstruction().
emitDecodeInstruction(formatted_raw_ostream & OS,bool IsVarLenInst)2321df3765bfSSheng static void emitDecodeInstruction(formatted_raw_ostream &OS,
2322df3765bfSSheng bool IsVarLenInst) {
2323df3765bfSSheng OS << "template <typename InsnType>\n"
2324df3765bfSSheng << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2325df3765bfSSheng "MCInst &MI,\n"
2326df3765bfSSheng << " InsnType insn, uint64_t "
2327df3765bfSSheng "Address,\n"
2328df3765bfSSheng << " const MCDisassembler *DisAsm,\n"
2329df3765bfSSheng << " const MCSubtargetInfo &STI";
2330df3765bfSSheng if (IsVarLenInst) {
2331df3765bfSSheng OS << ",\n"
2332df3765bfSSheng << " llvm::function_ref<void(APInt "
2333df3765bfSSheng "&,"
2334df3765bfSSheng << " uint64_t)> makeUp";
2335df3765bfSSheng }
2336df3765bfSSheng OS << ") {\n"
2337df3765bfSSheng << " const FeatureBitset &Bits = STI.getFeatureBits();\n"
2338df3765bfSSheng << "\n"
2339df3765bfSSheng << " const uint8_t *Ptr = DecodeTable;\n"
2340df3765bfSSheng << " uint64_t CurFieldValue = 0;\n"
2341df3765bfSSheng << " DecodeStatus S = MCDisassembler::Success;\n"
2342df3765bfSSheng << " while (true) {\n"
2343df3765bfSSheng << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2344df3765bfSSheng << " switch (*Ptr) {\n"
2345df3765bfSSheng << " default:\n"
2346df3765bfSSheng << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2347df3765bfSSheng << " return MCDisassembler::Fail;\n"
2348df3765bfSSheng << " case MCD::OPC_ExtractField: {\n"
2349df3765bfSSheng << " unsigned Start = *++Ptr;\n"
2350df3765bfSSheng << " unsigned Len = *++Ptr;\n"
2351df3765bfSSheng << " ++Ptr;\n";
2352df3765bfSSheng if (IsVarLenInst)
2353df3765bfSSheng OS << " makeUp(insn, Start + Len);\n";
2354df3765bfSSheng OS << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2355df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2356df3765bfSSheng "\", \"\n"
2357df3765bfSSheng << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2358df3765bfSSheng << " break;\n"
2359df3765bfSSheng << " }\n"
2360df3765bfSSheng << " case MCD::OPC_FilterValue: {\n"
2361df3765bfSSheng << " // Decode the field value.\n"
2362df3765bfSSheng << " unsigned Len;\n"
2363df3765bfSSheng << " uint64_t Val = decodeULEB128(++Ptr, &Len);\n"
2364df3765bfSSheng << " Ptr += Len;\n"
2365df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n"
2366df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n"
2367df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n"
2368df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n"
2369df3765bfSSheng << "\n"
2370df3765bfSSheng << " // Perform the filter operation.\n"
2371df3765bfSSheng << " if (Val != CurFieldValue)\n"
2372df3765bfSSheng << " Ptr += NumToSkip;\n"
2373df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2374df3765bfSSheng "\", \" << NumToSkip\n"
2375df3765bfSSheng << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2376df3765bfSSheng ": \"PASS:\")\n"
2377df3765bfSSheng << " << \" continuing at \" << (Ptr - DecodeTable) << "
2378df3765bfSSheng "\"\\n\");\n"
2379df3765bfSSheng << "\n"
2380df3765bfSSheng << " break;\n"
2381df3765bfSSheng << " }\n"
2382df3765bfSSheng << " case MCD::OPC_CheckField: {\n"
2383df3765bfSSheng << " unsigned Start = *++Ptr;\n"
2384df3765bfSSheng << " unsigned Len = *++Ptr;\n";
2385df3765bfSSheng if (IsVarLenInst)
2386df3765bfSSheng OS << " makeUp(insn, Start + Len);\n";
2387df3765bfSSheng OS << " uint64_t FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2388df3765bfSSheng << " // Decode the field value.\n"
2389df3765bfSSheng << " unsigned PtrLen = 0;\n"
2390df3765bfSSheng << " uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen);\n"
2391df3765bfSSheng << " Ptr += PtrLen;\n"
2392df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n"
2393df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n"
2394df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n"
2395df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n"
2396df3765bfSSheng << "\n"
2397df3765bfSSheng << " // If the actual and expected values don't match, skip.\n"
2398df3765bfSSheng << " if (ExpectedValue != FieldValue)\n"
2399df3765bfSSheng << " Ptr += NumToSkip;\n"
2400df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2401df3765bfSSheng "\", \"\n"
2402df3765bfSSheng << " << Len << \", \" << ExpectedValue << \", \" << "
2403df3765bfSSheng "NumToSkip\n"
2404df3765bfSSheng << " << \"): FieldValue = \" << FieldValue << \", "
2405df3765bfSSheng "ExpectedValue = \"\n"
2406df3765bfSSheng << " << ExpectedValue << \": \"\n"
2407df3765bfSSheng << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2408df3765bfSSheng "\"FAIL\\n\"));\n"
2409df3765bfSSheng << " break;\n"
2410df3765bfSSheng << " }\n"
2411df3765bfSSheng << " case MCD::OPC_CheckPredicate: {\n"
2412df3765bfSSheng << " unsigned Len;\n"
2413df3765bfSSheng << " // Decode the Predicate Index value.\n"
2414df3765bfSSheng << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2415df3765bfSSheng << " Ptr += Len;\n"
2416df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n"
2417df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n"
2418df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n"
2419df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n"
2420df3765bfSSheng << " // Check the predicate.\n"
2421df3765bfSSheng << " bool Pred;\n"
2422df3765bfSSheng << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2423df3765bfSSheng << " Ptr += NumToSkip;\n"
2424df3765bfSSheng << " (void)Pred;\n"
2425df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2426df3765bfSSheng "<< \"): \"\n"
2427df3765bfSSheng << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2428df3765bfSSheng << "\n"
2429df3765bfSSheng << " break;\n"
2430df3765bfSSheng << " }\n"
2431df3765bfSSheng << " case MCD::OPC_Decode: {\n"
2432df3765bfSSheng << " unsigned Len;\n"
2433df3765bfSSheng << " // Decode the Opcode value.\n"
2434df3765bfSSheng << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2435df3765bfSSheng << " Ptr += Len;\n"
2436df3765bfSSheng << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2437df3765bfSSheng << " Ptr += Len;\n"
2438df3765bfSSheng << "\n"
2439df3765bfSSheng << " MI.clear();\n"
2440df3765bfSSheng << " MI.setOpcode(Opc);\n"
2441df3765bfSSheng << " bool DecodeComplete;\n";
2442df3765bfSSheng if (IsVarLenInst) {
2443df3765bfSSheng OS << " Len = InstrLenTable[Opc];\n"
2444df3765bfSSheng << " makeUp(insn, Len);\n";
2445df3765bfSSheng }
2446df3765bfSSheng OS << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2447df3765bfSSheng "DecodeComplete);\n"
2448df3765bfSSheng << " assert(DecodeComplete);\n"
2449df3765bfSSheng << "\n"
2450df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2451df3765bfSSheng << " << \", using decoder \" << DecodeIdx << \": \"\n"
2452df3765bfSSheng << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2453df3765bfSSheng "\"FAIL\") << \"\\n\");\n"
2454df3765bfSSheng << " return S;\n"
2455df3765bfSSheng << " }\n"
2456df3765bfSSheng << " case MCD::OPC_TryDecode: {\n"
2457df3765bfSSheng << " unsigned Len;\n"
2458df3765bfSSheng << " // Decode the Opcode value.\n"
2459df3765bfSSheng << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2460df3765bfSSheng << " Ptr += Len;\n"
2461df3765bfSSheng << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2462df3765bfSSheng << " Ptr += Len;\n"
2463df3765bfSSheng << " // NumToSkip is a plain 24-bit integer.\n"
2464df3765bfSSheng << " unsigned NumToSkip = *Ptr++;\n"
2465df3765bfSSheng << " NumToSkip |= (*Ptr++) << 8;\n"
2466df3765bfSSheng << " NumToSkip |= (*Ptr++) << 16;\n"
2467df3765bfSSheng << "\n"
2468df3765bfSSheng << " // Perform the decode operation.\n"
2469df3765bfSSheng << " MCInst TmpMI;\n"
2470df3765bfSSheng << " TmpMI.setOpcode(Opc);\n"
2471df3765bfSSheng << " bool DecodeComplete;\n"
2472df3765bfSSheng << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2473df3765bfSSheng "DecodeComplete);\n"
2474df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2475df3765bfSSheng "Opc\n"
2476df3765bfSSheng << " << \", using decoder \" << DecodeIdx << \": \");\n"
2477df3765bfSSheng << "\n"
2478df3765bfSSheng << " if (DecodeComplete) {\n"
2479df3765bfSSheng << " // Decoding complete.\n"
2480df3765bfSSheng << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2481df3765bfSSheng "\"FAIL\") << \"\\n\");\n"
2482df3765bfSSheng << " MI = TmpMI;\n"
2483df3765bfSSheng << " return S;\n"
2484df3765bfSSheng << " } else {\n"
2485df3765bfSSheng << " assert(S == MCDisassembler::Fail);\n"
2486df3765bfSSheng << " // If the decoding was incomplete, skip.\n"
2487df3765bfSSheng << " Ptr += NumToSkip;\n"
2488df3765bfSSheng << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2489df3765bfSSheng "DecodeTable) << \"\\n\");\n"
2490df3765bfSSheng << " // Reset decode status. This also drops a SoftFail status "
2491df3765bfSSheng "that could be\n"
2492df3765bfSSheng << " // set before the decode attempt.\n"
2493df3765bfSSheng << " S = MCDisassembler::Success;\n"
2494df3765bfSSheng << " }\n"
2495df3765bfSSheng << " break;\n"
2496df3765bfSSheng << " }\n"
2497df3765bfSSheng << " case MCD::OPC_SoftFail: {\n"
2498df3765bfSSheng << " // Decode the mask values.\n"
2499df3765bfSSheng << " unsigned Len;\n"
2500df3765bfSSheng << " uint64_t PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2501df3765bfSSheng << " Ptr += Len;\n"
2502df3765bfSSheng << " uint64_t NegativeMask = decodeULEB128(Ptr, &Len);\n"
2503df3765bfSSheng << " Ptr += Len;\n"
2504df3765bfSSheng << " bool Fail = (insn & PositiveMask) != 0 || (~insn & "
2505df3765bfSSheng "NegativeMask) != 0;\n"
2506df3765bfSSheng << " if (Fail)\n"
2507df3765bfSSheng << " S = MCDisassembler::SoftFail;\n"
2508df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2509df3765bfSSheng "\"FAIL\\n\" : \"PASS\\n\"));\n"
2510df3765bfSSheng << " break;\n"
2511df3765bfSSheng << " }\n"
2512df3765bfSSheng << " case MCD::OPC_Fail: {\n"
2513df3765bfSSheng << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2514df3765bfSSheng << " return MCDisassembler::Fail;\n"
2515df3765bfSSheng << " }\n"
2516df3765bfSSheng << " }\n"
2517df3765bfSSheng << " }\n"
2518df3765bfSSheng << " llvm_unreachable(\"bogosity detected in disassembler state "
2519df3765bfSSheng "machine!\");\n"
2520df3765bfSSheng << "}\n\n";
2521df3765bfSSheng }
2522df3765bfSSheng
2523df3765bfSSheng // Emits disassembler code for instruction decoding.
run(raw_ostream & o)2524df3765bfSSheng void DecoderEmitter::run(raw_ostream &o) {
2525df3765bfSSheng formatted_raw_ostream OS(o);
2526df3765bfSSheng OS << "#include \"llvm/MC/MCInst.h\"\n";
2527df3765bfSSheng OS << "#include \"llvm/MC/MCSubtargetInfo.h\"\n";
2528df3765bfSSheng OS << "#include \"llvm/MC/SubtargetFeature.h\"\n";
2529df3765bfSSheng OS << "#include \"llvm/Support/DataTypes.h\"\n";
2530df3765bfSSheng OS << "#include \"llvm/Support/Debug.h\"\n";
2531df3765bfSSheng OS << "#include \"llvm/Support/LEB128.h\"\n";
2532df3765bfSSheng OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2533df3765bfSSheng OS << "#include <assert.h>\n";
2534df3765bfSSheng OS << '\n';
2535df3765bfSSheng OS << "namespace llvm {\n\n";
2536df3765bfSSheng
2537df3765bfSSheng emitFieldFromInstruction(OS);
2538df3765bfSSheng emitInsertBits(OS);
2539df3765bfSSheng
2540df3765bfSSheng Target.reverseBitsForLittleEndianEncoding();
2541df3765bfSSheng
2542df3765bfSSheng // Parameterize the decoders based on namespace and instruction width.
2543df3765bfSSheng std::set<StringRef> HwModeNames;
2544df3765bfSSheng const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2545df3765bfSSheng NumberedEncodings.reserve(NumberedInstructions.size());
2546df3765bfSSheng DenseMap<Record *, unsigned> IndexOfInstruction;
2547df3765bfSSheng // First, collect all HwModes referenced by the target.
2548df3765bfSSheng for (const auto &NumberedInstruction : NumberedInstructions) {
2549df3765bfSSheng IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2550df3765bfSSheng
2551df3765bfSSheng if (const RecordVal *RV =
2552df3765bfSSheng NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2553df3765bfSSheng if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2554df3765bfSSheng const CodeGenHwModes &HWM = Target.getHwModes();
2555df3765bfSSheng EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2556df3765bfSSheng for (auto &KV : EBM)
2557df3765bfSSheng HwModeNames.insert(HWM.getMode(KV.first).Name);
2558df3765bfSSheng }
2559df3765bfSSheng }
2560df3765bfSSheng }
2561df3765bfSSheng
2562df3765bfSSheng // If HwModeNames is empty, add the empty string so we always have one HwMode.
2563df3765bfSSheng if (HwModeNames.empty())
2564df3765bfSSheng HwModeNames.insert("");
2565df3765bfSSheng
2566df3765bfSSheng for (const auto &NumberedInstruction : NumberedInstructions) {
2567df3765bfSSheng IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2568df3765bfSSheng
2569df3765bfSSheng if (const RecordVal *RV =
2570df3765bfSSheng NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2571df3765bfSSheng if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2572df3765bfSSheng const CodeGenHwModes &HWM = Target.getHwModes();
2573df3765bfSSheng EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2574df3765bfSSheng for (auto &KV : EBM) {
2575df3765bfSSheng NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
2576df3765bfSSheng HWM.getMode(KV.first).Name);
2577df3765bfSSheng HwModeNames.insert(HWM.getMode(KV.first).Name);
2578df3765bfSSheng }
2579df3765bfSSheng continue;
2580df3765bfSSheng }
2581df3765bfSSheng }
2582df3765bfSSheng // This instruction is encoded the same on all HwModes. Emit it for all
2583df3765bfSSheng // HwModes.
2584df3765bfSSheng for (StringRef HwModeName : HwModeNames)
2585df3765bfSSheng NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
2586df3765bfSSheng NumberedInstruction, HwModeName);
2587df3765bfSSheng }
2588df3765bfSSheng for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
2589df3765bfSSheng NumberedEncodings.emplace_back(
2590df3765bfSSheng NumberedAlias,
2591df3765bfSSheng &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
2592df3765bfSSheng
2593df3765bfSSheng std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
2594df3765bfSSheng OpcMap;
2595df3765bfSSheng std::map<unsigned, std::vector<OperandInfo>> Operands;
2596df3765bfSSheng std::vector<unsigned> InstrLen;
2597df3765bfSSheng
2598df3765bfSSheng bool IsVarLenInst =
2599df3765bfSSheng any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) {
2600df3765bfSSheng RecordVal *RV = CGI->TheDef->getValue("Inst");
2601df3765bfSSheng return RV && isa<DagInit>(RV->getValue());
2602df3765bfSSheng });
2603df3765bfSSheng unsigned MaxInstLen = 0;
2604df3765bfSSheng
2605df3765bfSSheng for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2606df3765bfSSheng const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
2607df3765bfSSheng const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2608df3765bfSSheng const Record *Def = Inst->TheDef;
2609df3765bfSSheng unsigned Size = EncodingDef->getValueAsInt("Size");
2610df3765bfSSheng if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2611df3765bfSSheng Def->getValueAsBit("isPseudo") ||
2612df3765bfSSheng Def->getValueAsBit("isAsmParserOnly") ||
2613df3765bfSSheng Def->getValueAsBit("isCodeGenOnly")) {
2614df3765bfSSheng NumEncodingsLackingDisasm++;
2615df3765bfSSheng continue;
2616df3765bfSSheng }
2617df3765bfSSheng
2618df3765bfSSheng if (i < NumberedInstructions.size())
2619df3765bfSSheng NumInstructions++;
2620df3765bfSSheng NumEncodings++;
2621df3765bfSSheng
2622df3765bfSSheng if (!Size && !IsVarLenInst)
2623df3765bfSSheng continue;
2624df3765bfSSheng
2625df3765bfSSheng if (IsVarLenInst)
2626df3765bfSSheng InstrLen.resize(NumberedInstructions.size(), 0);
2627df3765bfSSheng
2628df3765bfSSheng if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, i,
2629df3765bfSSheng Operands, IsVarLenInst)) {
2630df3765bfSSheng if (IsVarLenInst) {
2631df3765bfSSheng MaxInstLen = std::max(MaxInstLen, Len);
2632df3765bfSSheng InstrLen[i] = Len;
2633df3765bfSSheng }
2634df3765bfSSheng std::string DecoderNamespace =
2635df3765bfSSheng std::string(EncodingDef->getValueAsString("DecoderNamespace"));
2636df3765bfSSheng if (!NumberedEncodings[i].HwModeName.empty())
2637df3765bfSSheng DecoderNamespace +=
2638df3765bfSSheng std::string("_") + NumberedEncodings[i].HwModeName.str();
2639df3765bfSSheng OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
2640df3765bfSSheng i, IndexOfInstruction.find(Def)->second);
2641df3765bfSSheng } else {
2642df3765bfSSheng NumEncodingsOmitted++;
2643df3765bfSSheng }
2644df3765bfSSheng }
2645df3765bfSSheng
2646df3765bfSSheng DecoderTableInfo TableInfo;
2647df3765bfSSheng for (const auto &Opc : OpcMap) {
2648df3765bfSSheng // Emit the decoder for this namespace+width combination.
2649df3765bfSSheng ArrayRef<EncodingAndInst> NumberedEncodingsRef(
2650df3765bfSSheng NumberedEncodings.data(), NumberedEncodings.size());
2651df3765bfSSheng FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2652df3765bfSSheng IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this);
2653df3765bfSSheng
2654df3765bfSSheng // The decode table is cleared for each top level decoder function. The
2655df3765bfSSheng // predicates and decoders themselves, however, are shared across all
2656df3765bfSSheng // decoders to give more opportunities for uniqueing.
2657df3765bfSSheng TableInfo.Table.clear();
2658df3765bfSSheng TableInfo.FixupStack.clear();
2659df3765bfSSheng TableInfo.Table.reserve(16384);
2660df3765bfSSheng TableInfo.FixupStack.emplace_back();
2661df3765bfSSheng FC.emitTableEntries(TableInfo);
2662df3765bfSSheng // Any NumToSkip fixups in the top level scope can resolve to the
2663df3765bfSSheng // OPC_Fail at the end of the table.
2664df3765bfSSheng assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2665df3765bfSSheng // Resolve any NumToSkip fixups in the current scope.
2666df3765bfSSheng resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2667df3765bfSSheng TableInfo.Table.size());
2668df3765bfSSheng TableInfo.FixupStack.clear();
2669df3765bfSSheng
2670df3765bfSSheng TableInfo.Table.push_back(MCD::OPC_Fail);
2671df3765bfSSheng
2672df3765bfSSheng // Print the table to the output stream.
2673df3765bfSSheng emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2674df3765bfSSheng OS.flush();
2675df3765bfSSheng }
2676df3765bfSSheng
2677df3765bfSSheng // For variable instruction, we emit a instruction length table
2678df3765bfSSheng // to let the decoder know how long the instructions are.
2679df3765bfSSheng // You can see example usage in M68k's disassembler.
2680df3765bfSSheng if (IsVarLenInst)
2681df3765bfSSheng emitInstrLenTable(OS, InstrLen);
2682df3765bfSSheng // Emit the predicate function.
2683df3765bfSSheng emitPredicateFunction(OS, TableInfo.Predicates, 0);
2684df3765bfSSheng
2685df3765bfSSheng // Emit the decoder function.
2686df3765bfSSheng emitDecoderFunction(OS, TableInfo.Decoders, 0);
2687df3765bfSSheng
2688df3765bfSSheng // Emit the main entry point for the decoder, decodeInstruction().
2689df3765bfSSheng emitDecodeInstruction(OS, IsVarLenInst);
2690df3765bfSSheng
2691df3765bfSSheng OS << "\n} // end namespace llvm\n";
2692df3765bfSSheng }
2693df3765bfSSheng
2694df3765bfSSheng namespace llvm {
2695df3765bfSSheng
EmitDecoder(RecordKeeper & RK,raw_ostream & OS,const std::string & PredicateNamespace,const std::string & GPrefix,const std::string & GPostfix,const std::string & ROK,const std::string & RFail,const std::string & L)2696df3765bfSSheng void EmitDecoder(RecordKeeper &RK, raw_ostream &OS,
2697df3765bfSSheng const std::string &PredicateNamespace,
2698df3765bfSSheng const std::string &GPrefix, const std::string &GPostfix,
2699df3765bfSSheng const std::string &ROK, const std::string &RFail,
2700df3765bfSSheng const std::string &L) {
2701df3765bfSSheng DecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L)
2702df3765bfSSheng .run(OS);
2703df3765bfSSheng }
2704df3765bfSSheng
2705df3765bfSSheng } // end namespace llvm
2706