1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "subtarget-emitter"
34 
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37   for (unsigned Idx : V)
38     dbgs() << Idx << ", ";
39 }
40 #endif
41 
42 namespace {
43 
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47              ArrayRef<SMLoc> Loc) override {
48     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49   }
50 };
51 
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54   const CodeGenTarget &Target;
55   InstRegexOp(const CodeGenTarget &t): Target(t) {}
56 
57   /// Remove any text inside of parentheses from S.
58   static std::string removeParens(llvm::StringRef S) {
59     std::string Result;
60     unsigned Paren = 0;
61     // NB: We don't care about escaped parens here.
62     for (char C : S) {
63       switch (C) {
64       case '(':
65         ++Paren;
66         break;
67       case ')':
68         --Paren;
69         break;
70       default:
71         if (Paren == 0)
72           Result += C;
73       }
74     }
75     return Result;
76   }
77 
78   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79              ArrayRef<SMLoc> Loc) override {
80     ArrayRef<const CodeGenInstruction *> Instructions =
81         Target.getInstructionsByEnumValue();
82 
83     unsigned NumGeneric = Target.getNumFixedInstructions();
84     unsigned NumPseudos = Target.getNumPseudoInstructions();
85     auto Generics = Instructions.slice(0, NumGeneric);
86     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 
89     for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90       StringInit *SI = dyn_cast<StringInit>(Arg);
91       if (!SI)
92         PrintFatalError(Loc, "instregex requires pattern string: " +
93                                  Expr->getAsString());
94       StringRef Original = SI->getValue();
95 
96       // Extract a prefix that we can binary search on.
97       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98       auto FirstMeta = Original.find_first_of(RegexMetachars);
99 
100       // Look for top-level | or ?. We cannot optimize them to binary search.
101       if (removeParens(Original).find_first_of("|?") != std::string::npos)
102         FirstMeta = 0;
103 
104       Optional<Regex> Regexpr = None;
105       StringRef Prefix = Original.substr(0, FirstMeta);
106       StringRef PatStr = Original.substr(FirstMeta);
107       if (!PatStr.empty()) {
108         // For the rest use a python-style prefix match.
109         std::string pat = std::string(PatStr);
110         if (pat[0] != '^') {
111           pat.insert(0, "^(");
112           pat.insert(pat.end(), ')');
113         }
114         Regexpr = Regex(pat);
115       }
116 
117       int NumMatches = 0;
118 
119       // The generic opcodes are unsorted, handle them manually.
120       for (auto *Inst : Generics) {
121         StringRef InstName = Inst->TheDef->getName();
122         if (InstName.startswith(Prefix) &&
123             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124           Elts.insert(Inst->TheDef);
125           NumMatches++;
126         }
127       }
128 
129       // Target instructions are split into two ranges: pseudo instructions
130       // first, than non-pseudos. Each range is in lexicographical order
131       // sorted by name. Find the sub-ranges that start with our prefix.
132       struct Comp {
133         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134           return LHS->TheDef->getName() < RHS;
135         }
136         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137           return LHS < RHS->TheDef->getName() &&
138                  !RHS->TheDef->getName().startswith(LHS);
139         }
140       };
141       auto Range1 =
142           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                      Prefix, Comp());
145 
146       // For these ranges we know that instruction names start with the prefix.
147       // Check if there's a regex that needs to be checked.
148       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149         StringRef InstName = Inst->TheDef->getName();
150         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151           Elts.insert(Inst->TheDef);
152           NumMatches++;
153         }
154       };
155       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157 
158       if (0 == NumMatches)
159         PrintFatalError(Loc, "instregex has no matches: " + Original);
160     }
161   }
162 };
163 
164 } // end anonymous namespace
165 
166 /// CodeGenModels ctor interprets machine model records and populates maps.
167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                        const CodeGenTarget &TGT):
169   Records(RK), Target(TGT) {
170 
171   Sets.addFieldExpander("InstRW", "Instrs");
172 
173   // Allow Set evaluation to recognize the dags used in InstRW records:
174   // (instrs Op1, Op1...)
175   Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176   Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177 
178   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179   // that are explicitly referenced in tablegen records. Resources associated
180   // with each processor will be derived later. Populate ProcModelMap with the
181   // CodeGenProcModel instances.
182   collectProcModels();
183 
184   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185   // defined, and populate SchedReads and SchedWrites vectors. Implicit
186   // SchedReadWrites that represent sequences derived from expanded variant will
187   // be inferred later.
188   collectSchedRW();
189 
190   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191   // required by an instruction definition, and populate SchedClassIdxMap. Set
192   // NumItineraryClasses to the number of explicit itinerary classes referenced
193   // by instructions. Set NumInstrSchedClasses to the number of itinerary
194   // classes plus any classes implied by instructions that derive from class
195   // Sched and provide SchedRW list. This does not infer any new classes from
196   // SchedVariant.
197   collectSchedClasses();
198 
199   // Find instruction itineraries for each processor. Sort and populate
200   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201   // all itinerary classes to be discovered.
202   collectProcItins();
203 
204   // Find ItinRW records for each processor and itinerary class.
205   // (For per-operand resources mapped to itinerary classes).
206   collectProcItinRW();
207 
208   // Find UnsupportedFeatures records for each processor.
209   // (For per-operand resources mapped to itinerary classes).
210   collectProcUnsupportedFeatures();
211 
212   // Infer new SchedClasses from SchedVariant.
213   inferSchedClasses();
214 
215   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216   // ProcResourceDefs.
217   LLVM_DEBUG(
218       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219   collectProcResources();
220 
221   // Collect optional processor description.
222   collectOptionalProcessorInfo();
223 
224   // Check MCInstPredicate definitions.
225   checkMCInstPredicates();
226 
227   // Check STIPredicate definitions.
228   checkSTIPredicates();
229 
230   // Find STIPredicate definitions for each processor model, and construct
231   // STIPredicateFunction objects.
232   collectSTIPredicates();
233 
234   checkCompleteness();
235 }
236 
237 void CodeGenSchedModels::checkSTIPredicates() const {
238   DenseMap<StringRef, const Record *> Declarations;
239 
240   // There cannot be multiple declarations with the same name.
241   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242   for (const Record *R : Decls) {
243     StringRef Name = R->getValueAsString("Name");
244     const auto It = Declarations.find(Name);
245     if (It == Declarations.end()) {
246       Declarations[Name] = R;
247       continue;
248     }
249 
250     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251     PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
252   }
253 
254   // Disallow InstructionEquivalenceClasses with an empty instruction list.
255   const RecVec Defs =
256       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
257   for (const Record *R : Defs) {
258     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
259     if (Opcodes.empty()) {
260       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
261                                    "defined with an empty opcode list.");
262     }
263   }
264 }
265 
266 // Used by function `processSTIPredicate` to construct a mask of machine
267 // instruction operands.
268 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
269   APInt OperandMask;
270   if (Indices.empty())
271     return OperandMask;
272 
273   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
274   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
275   OperandMask = OperandMask.zext(MaxIndex + 1);
276   for (const int64_t Index : Indices) {
277     assert(Index >= 0 && "Invalid negative indices!");
278     OperandMask.setBit(Index);
279   }
280 
281   return OperandMask;
282 }
283 
284 static void
285 processSTIPredicate(STIPredicateFunction &Fn,
286                     const ProcModelMapTy &ProcModelMap) {
287   DenseMap<const Record *, unsigned> Opcode2Index;
288   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
289   std::vector<OpcodeMapPair> OpcodeMappings;
290   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
291 
292   DenseMap<const Record *, unsigned> Predicate2Index;
293   unsigned NumUniquePredicates = 0;
294 
295   // Number unique predicates and opcodes used by InstructionEquivalenceClass
296   // definitions. Each unique opcode will be associated with an OpcodeInfo
297   // object.
298   for (const Record *Def : Fn.getDefinitions()) {
299     RecVec Classes = Def->getValueAsListOfDefs("Classes");
300     for (const Record *EC : Classes) {
301       const Record *Pred = EC->getValueAsDef("Predicate");
302       if (Predicate2Index.find(Pred) == Predicate2Index.end())
303         Predicate2Index[Pred] = NumUniquePredicates++;
304 
305       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
306       for (const Record *Opcode : Opcodes) {
307         if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
308           Opcode2Index[Opcode] = OpcodeMappings.size();
309           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
310         }
311       }
312     }
313   }
314 
315   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
316   // of which processors "use" which opcodes.  We also want to be able to
317   // identify predicates that are used by different processors for a same
318   // opcode.
319   // This information is used later on by this algorithm to sort OpcodeMapping
320   // elements based on their processor and predicate sets.
321   OpcodeMasks.resize(OpcodeMappings.size());
322   APInt DefaultProcMask(ProcModelMap.size(), 0);
323   APInt DefaultPredMask(NumUniquePredicates, 0);
324   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
325     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
326 
327   // Construct a OpcodeInfo object for every unique opcode declared by an
328   // InstructionEquivalenceClass definition.
329   for (const Record *Def : Fn.getDefinitions()) {
330     RecVec Classes = Def->getValueAsListOfDefs("Classes");
331     const Record *SchedModel = Def->getValueAsDef("SchedModel");
332     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
333     APInt ProcMask(ProcModelMap.size(), 0);
334     ProcMask.setBit(ProcIndex);
335 
336     for (const Record *EC : Classes) {
337       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
338 
339       std::vector<int64_t> OpIndices =
340           EC->getValueAsListOfInts("OperandIndices");
341       APInt OperandMask = constructOperandMask(OpIndices);
342 
343       const Record *Pred = EC->getValueAsDef("Predicate");
344       APInt PredMask(NumUniquePredicates, 0);
345       PredMask.setBit(Predicate2Index[Pred]);
346 
347       for (const Record *Opcode : Opcodes) {
348         unsigned OpcodeIdx = Opcode2Index[Opcode];
349         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
350           std::string Message =
351               "Opcode " + Opcode->getName().str() +
352               " used by multiple InstructionEquivalenceClass definitions.";
353           PrintFatalError(EC->getLoc(), Message);
354         }
355         OpcodeMasks[OpcodeIdx].first |= ProcMask;
356         OpcodeMasks[OpcodeIdx].second |= PredMask;
357         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
358 
359         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
360       }
361     }
362   }
363 
364   // Sort OpcodeMappings elements based on their CPU and predicate masks.
365   // As a last resort, order elements by opcode identifier.
366   llvm::sort(OpcodeMappings,
367              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
368                unsigned LhsIdx = Opcode2Index[Lhs.first];
369                unsigned RhsIdx = Opcode2Index[Rhs.first];
370                const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
371                const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
372 
373                auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
374                  unsigned LhsCountPopulation = Lhs.countPopulation();
375                  unsigned RhsCountPopulation = Rhs.countPopulation();
376                  return ((LhsCountPopulation < RhsCountPopulation) ||
377                          ((LhsCountPopulation == RhsCountPopulation) &&
378                           (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
379                };
380 
381                if (LhsMasks.first != RhsMasks.first)
382                  return LessThan(LhsMasks.first, RhsMasks.first);
383 
384                if (LhsMasks.second != RhsMasks.second)
385                  return LessThan(LhsMasks.second, RhsMasks.second);
386 
387                return LhsIdx < RhsIdx;
388              });
389 
390   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
391   // expanding the body of a STIPredicate function. In particular, each opcode
392   // group is expanded into a sequence of labels in a switch statement.
393   // It identifies opcodes for which different processors define same predicates
394   // and same opcode masks.
395   for (OpcodeMapPair &Info : OpcodeMappings)
396     Fn.addOpcode(Info.first, std::move(Info.second));
397 }
398 
399 void CodeGenSchedModels::collectSTIPredicates() {
400   // Map STIPredicateDecl records to elements of vector
401   // CodeGenSchedModels::STIPredicates.
402   DenseMap<const Record *, unsigned> Decl2Index;
403 
404   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
405   for (const Record *R : RV) {
406     const Record *Decl = R->getValueAsDef("Declaration");
407 
408     const auto It = Decl2Index.find(Decl);
409     if (It == Decl2Index.end()) {
410       Decl2Index[Decl] = STIPredicates.size();
411       STIPredicateFunction Predicate(Decl);
412       Predicate.addDefinition(R);
413       STIPredicates.emplace_back(std::move(Predicate));
414       continue;
415     }
416 
417     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
418     PreviousDef.addDefinition(R);
419   }
420 
421   for (STIPredicateFunction &Fn : STIPredicates)
422     processSTIPredicate(Fn, ProcModelMap);
423 }
424 
425 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
426                                           const llvm::APInt &OperandMask,
427                                           const Record *Predicate) {
428   auto It = llvm::find_if(
429       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
430         return P.Predicate == Predicate && P.OperandMask == OperandMask;
431       });
432   if (It == Predicates.end()) {
433     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
434     return;
435   }
436   It->ProcModelMask |= CpuMask;
437 }
438 
439 void CodeGenSchedModels::checkMCInstPredicates() const {
440   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
441   if (MCPredicates.empty())
442     return;
443 
444   // A target cannot have multiple TIIPredicate definitions with a same name.
445   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
446   for (const Record *TIIPred : MCPredicates) {
447     StringRef Name = TIIPred->getValueAsString("FunctionName");
448     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
449     if (It == TIIPredicates.end()) {
450       TIIPredicates[Name] = TIIPred;
451       continue;
452     }
453 
454     PrintError(TIIPred->getLoc(),
455                "TIIPredicate " + Name + " is multiply defined.");
456     PrintFatalNote(It->second->getLoc(),
457                    " Previous definition of " + Name + " was here.");
458   }
459 }
460 
461 void CodeGenSchedModels::collectRetireControlUnits() {
462   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
463 
464   for (Record *RCU : Units) {
465     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
466     if (PM.RetireControlUnit) {
467       PrintError(RCU->getLoc(),
468                  "Expected a single RetireControlUnit definition");
469       PrintNote(PM.RetireControlUnit->getLoc(),
470                 "Previous definition of RetireControlUnit was here");
471     }
472     PM.RetireControlUnit = RCU;
473   }
474 }
475 
476 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
477   RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
478 
479   for (Record *Queue : Queues) {
480     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
481     if (Queue->isSubClassOf("LoadQueue")) {
482       if (PM.LoadQueue) {
483         PrintError(Queue->getLoc(),
484                    "Expected a single LoadQueue definition");
485         PrintNote(PM.LoadQueue->getLoc(),
486                   "Previous definition of LoadQueue was here");
487       }
488 
489       PM.LoadQueue = Queue;
490     }
491 
492     if (Queue->isSubClassOf("StoreQueue")) {
493       if (PM.StoreQueue) {
494         PrintError(Queue->getLoc(),
495                    "Expected a single StoreQueue definition");
496         PrintNote(PM.LoadQueue->getLoc(),
497                   "Previous definition of StoreQueue was here");
498       }
499 
500       PM.StoreQueue = Queue;
501     }
502   }
503 }
504 
505 /// Collect optional processor information.
506 void CodeGenSchedModels::collectOptionalProcessorInfo() {
507   // Find register file definitions for each processor.
508   collectRegisterFiles();
509 
510   // Collect processor RetireControlUnit descriptors if available.
511   collectRetireControlUnits();
512 
513   // Collect information about load/store queues.
514   collectLoadStoreQueueInfo();
515 
516   checkCompleteness();
517 }
518 
519 /// Gather all processor models.
520 void CodeGenSchedModels::collectProcModels() {
521   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
522   llvm::sort(ProcRecords, LessRecordFieldName());
523 
524   // Reserve space because we can. Reallocation would be ok.
525   ProcModels.reserve(ProcRecords.size()+1);
526 
527   // Use idx=0 for NoModel/NoItineraries.
528   Record *NoModelDef = Records.getDef("NoSchedModel");
529   Record *NoItinsDef = Records.getDef("NoItineraries");
530   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
531   ProcModelMap[NoModelDef] = 0;
532 
533   // For each processor, find a unique machine model.
534   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
535   for (Record *ProcRecord : ProcRecords)
536     addProcModel(ProcRecord);
537 }
538 
539 /// Get a unique processor model based on the defined MachineModel and
540 /// ProcessorItineraries.
541 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
542   Record *ModelKey = getModelOrItinDef(ProcDef);
543   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
544     return;
545 
546   std::string Name = std::string(ModelKey->getName());
547   if (ModelKey->isSubClassOf("SchedMachineModel")) {
548     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
549     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
550   }
551   else {
552     // An itinerary is defined without a machine model. Infer a new model.
553     if (!ModelKey->getValueAsListOfDefs("IID").empty())
554       Name = Name + "Model";
555     ProcModels.emplace_back(ProcModels.size(), Name,
556                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
557   }
558   LLVM_DEBUG(ProcModels.back().dump());
559 }
560 
561 // Recursively find all reachable SchedReadWrite records.
562 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
563                         SmallPtrSet<Record*, 16> &RWSet) {
564   if (!RWSet.insert(RWDef).second)
565     return;
566   RWDefs.push_back(RWDef);
567   // Reads don't currently have sequence records, but it can be added later.
568   if (RWDef->isSubClassOf("WriteSequence")) {
569     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
570     for (Record *WSRec : Seq)
571       scanSchedRW(WSRec, RWDefs, RWSet);
572   }
573   else if (RWDef->isSubClassOf("SchedVariant")) {
574     // Visit each variant (guarded by a different predicate).
575     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
576     for (Record *Variant : Vars) {
577       // Visit each RW in the sequence selected by the current variant.
578       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
579       for (Record *SelDef : Selected)
580         scanSchedRW(SelDef, RWDefs, RWSet);
581     }
582   }
583 }
584 
585 // Collect and sort all SchedReadWrites reachable via tablegen records.
586 // More may be inferred later when inferring new SchedClasses from variants.
587 void CodeGenSchedModels::collectSchedRW() {
588   // Reserve idx=0 for invalid writes/reads.
589   SchedWrites.resize(1);
590   SchedReads.resize(1);
591 
592   SmallPtrSet<Record*, 16> RWSet;
593 
594   // Find all SchedReadWrites referenced by instruction defs.
595   RecVec SWDefs, SRDefs;
596   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
597     Record *SchedDef = Inst->TheDef;
598     if (SchedDef->isValueUnset("SchedRW"))
599       continue;
600     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
601     for (Record *RW : RWs) {
602       if (RW->isSubClassOf("SchedWrite"))
603         scanSchedRW(RW, SWDefs, RWSet);
604       else {
605         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
606         scanSchedRW(RW, SRDefs, RWSet);
607       }
608     }
609   }
610   // Find all ReadWrites referenced by InstRW.
611   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
612   for (Record *InstRWDef : InstRWDefs) {
613     // For all OperandReadWrites.
614     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
615     for (Record *RWDef : RWDefs) {
616       if (RWDef->isSubClassOf("SchedWrite"))
617         scanSchedRW(RWDef, SWDefs, RWSet);
618       else {
619         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
620         scanSchedRW(RWDef, SRDefs, RWSet);
621       }
622     }
623   }
624   // Find all ReadWrites referenced by ItinRW.
625   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
626   for (Record *ItinRWDef : ItinRWDefs) {
627     // For all OperandReadWrites.
628     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
629     for (Record *RWDef : RWDefs) {
630       if (RWDef->isSubClassOf("SchedWrite"))
631         scanSchedRW(RWDef, SWDefs, RWSet);
632       else {
633         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
634         scanSchedRW(RWDef, SRDefs, RWSet);
635       }
636     }
637   }
638   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
639   // for the loop below that initializes Alias vectors.
640   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
641   llvm::sort(AliasDefs, LessRecord());
642   for (Record *ADef : AliasDefs) {
643     Record *MatchDef = ADef->getValueAsDef("MatchRW");
644     Record *AliasDef = ADef->getValueAsDef("AliasRW");
645     if (MatchDef->isSubClassOf("SchedWrite")) {
646       if (!AliasDef->isSubClassOf("SchedWrite"))
647         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
648       scanSchedRW(AliasDef, SWDefs, RWSet);
649     }
650     else {
651       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
652       if (!AliasDef->isSubClassOf("SchedRead"))
653         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
654       scanSchedRW(AliasDef, SRDefs, RWSet);
655     }
656   }
657   // Sort and add the SchedReadWrites directly referenced by instructions or
658   // itinerary resources. Index reads and writes in separate domains.
659   llvm::sort(SWDefs, LessRecord());
660   for (Record *SWDef : SWDefs) {
661     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
662     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
663   }
664   llvm::sort(SRDefs, LessRecord());
665   for (Record *SRDef : SRDefs) {
666     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
667     SchedReads.emplace_back(SchedReads.size(), SRDef);
668   }
669   // Initialize WriteSequence vectors.
670   for (CodeGenSchedRW &CGRW : SchedWrites) {
671     if (!CGRW.IsSequence)
672       continue;
673     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
674             /*IsRead=*/false);
675   }
676   // Initialize Aliases vectors.
677   for (Record *ADef : AliasDefs) {
678     Record *AliasDef = ADef->getValueAsDef("AliasRW");
679     getSchedRW(AliasDef).IsAlias = true;
680     Record *MatchDef = ADef->getValueAsDef("MatchRW");
681     CodeGenSchedRW &RW = getSchedRW(MatchDef);
682     if (RW.IsAlias)
683       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
684     RW.Aliases.push_back(ADef);
685   }
686   LLVM_DEBUG(
687       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
688       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
689         dbgs() << WIdx << ": ";
690         SchedWrites[WIdx].dump();
691         dbgs() << '\n';
692       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
693              ++RIdx) {
694         dbgs() << RIdx << ": ";
695         SchedReads[RIdx].dump();
696         dbgs() << '\n';
697       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
698       for (Record *RWDef
699            : RWDefs) {
700         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
701           StringRef Name = RWDef->getName();
702           if (Name != "NoWrite" && Name != "ReadDefault")
703             dbgs() << "Unused SchedReadWrite " << Name << '\n';
704         }
705       });
706 }
707 
708 /// Compute a SchedWrite name from a sequence of writes.
709 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
710   std::string Name("(");
711   for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
712     if (I != Seq.begin())
713       Name += '_';
714     Name += getSchedRW(*I, IsRead).Name;
715   }
716   Name += ')';
717   return Name;
718 }
719 
720 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
721                                            bool IsRead) const {
722   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
723   const auto I = find_if(
724       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
725   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
726 }
727 
728 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
729   for (const CodeGenSchedRW &Read : SchedReads) {
730     Record *ReadDef = Read.TheDef;
731     if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
732       continue;
733 
734     RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
735     if (is_contained(ValidWrites, WriteDef)) {
736       return true;
737     }
738   }
739   return false;
740 }
741 
742 static void splitSchedReadWrites(const RecVec &RWDefs,
743                                  RecVec &WriteDefs, RecVec &ReadDefs) {
744   for (Record *RWDef : RWDefs) {
745     if (RWDef->isSubClassOf("SchedWrite"))
746       WriteDefs.push_back(RWDef);
747     else {
748       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
749       ReadDefs.push_back(RWDef);
750     }
751   }
752 }
753 
754 // Split the SchedReadWrites defs and call findRWs for each list.
755 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
756                                  IdxVec &Writes, IdxVec &Reads) const {
757   RecVec WriteDefs;
758   RecVec ReadDefs;
759   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
760   findRWs(WriteDefs, Writes, false);
761   findRWs(ReadDefs, Reads, true);
762 }
763 
764 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
765 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
766                                  bool IsRead) const {
767   for (Record *RWDef : RWDefs) {
768     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
769     assert(Idx && "failed to collect SchedReadWrite");
770     RWs.push_back(Idx);
771   }
772 }
773 
774 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
775                                           bool IsRead) const {
776   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
777   if (!SchedRW.IsSequence) {
778     RWSeq.push_back(RWIdx);
779     return;
780   }
781   int Repeat =
782     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
783   for (int i = 0; i < Repeat; ++i) {
784     for (unsigned I : SchedRW.Sequence) {
785       expandRWSequence(I, RWSeq, IsRead);
786     }
787   }
788 }
789 
790 // Expand a SchedWrite as a sequence following any aliases that coincide with
791 // the given processor model.
792 void CodeGenSchedModels::expandRWSeqForProc(
793   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
794   const CodeGenProcModel &ProcModel) const {
795 
796   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
797   Record *AliasDef = nullptr;
798   for (const Record *Rec : SchedWrite.Aliases) {
799     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
800     if (Rec->getValueInit("SchedModel")->isComplete()) {
801       Record *ModelDef = Rec->getValueAsDef("SchedModel");
802       if (&getProcModel(ModelDef) != &ProcModel)
803         continue;
804     }
805     if (AliasDef)
806       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
807                       "defined for processor " + ProcModel.ModelName +
808                       " Ensure only one SchedAlias exists per RW.");
809     AliasDef = AliasRW.TheDef;
810   }
811   if (AliasDef) {
812     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
813                        RWSeq, IsRead,ProcModel);
814     return;
815   }
816   if (!SchedWrite.IsSequence) {
817     RWSeq.push_back(RWIdx);
818     return;
819   }
820   int Repeat =
821     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
822   for (int I = 0, E = Repeat; I < E; ++I) {
823     for (unsigned Idx : SchedWrite.Sequence) {
824       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
825     }
826   }
827 }
828 
829 // Find the existing SchedWrite that models this sequence of writes.
830 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
831                                                bool IsRead) {
832   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
833 
834   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
835     return makeArrayRef(RW.Sequence) == Seq;
836   });
837   // Index zero reserved for invalid RW.
838   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
839 }
840 
841 /// Add this ReadWrite if it doesn't already exist.
842 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
843                                             bool IsRead) {
844   assert(!Seq.empty() && "cannot insert empty sequence");
845   if (Seq.size() == 1)
846     return Seq.back();
847 
848   unsigned Idx = findRWForSequence(Seq, IsRead);
849   if (Idx)
850     return Idx;
851 
852   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
853   unsigned RWIdx = RWVec.size();
854   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
855   RWVec.push_back(SchedRW);
856   return RWIdx;
857 }
858 
859 /// Visit all the instruction definitions for this target to gather and
860 /// enumerate the itinerary classes. These are the explicitly specified
861 /// SchedClasses. More SchedClasses may be inferred.
862 void CodeGenSchedModels::collectSchedClasses() {
863 
864   // NoItinerary is always the first class at Idx=0
865   assert(SchedClasses.empty() && "Expected empty sched class");
866   SchedClasses.emplace_back(0, "NoInstrModel",
867                             Records.getDef("NoItinerary"));
868   SchedClasses.back().ProcIndices.push_back(0);
869 
870   // Create a SchedClass for each unique combination of itinerary class and
871   // SchedRW list.
872   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
873     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
874     IdxVec Writes, Reads;
875     if (!Inst->TheDef->isValueUnset("SchedRW"))
876       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
877 
878     // ProcIdx == 0 indicates the class applies to all processors.
879     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
880     InstrClassMap[Inst->TheDef] = SCIdx;
881   }
882   // Create classes for InstRW defs.
883   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
884   llvm::sort(InstRWDefs, LessRecord());
885   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
886   for (Record *RWDef : InstRWDefs)
887     createInstRWClass(RWDef);
888 
889   NumInstrSchedClasses = SchedClasses.size();
890 
891   bool EnableDump = false;
892   LLVM_DEBUG(EnableDump = true);
893   if (!EnableDump)
894     return;
895 
896   LLVM_DEBUG(
897       dbgs()
898       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
899   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
900     StringRef InstName = Inst->TheDef->getName();
901     unsigned SCIdx = getSchedClassIdx(*Inst);
902     if (!SCIdx) {
903       LLVM_DEBUG({
904         if (!Inst->hasNoSchedulingInfo)
905           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
906       });
907       continue;
908     }
909     CodeGenSchedClass &SC = getSchedClass(SCIdx);
910     if (SC.ProcIndices[0] != 0)
911       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
912                       "must not be subtarget specific.");
913 
914     IdxVec ProcIndices;
915     if (SC.ItinClassDef->getName() != "NoItinerary") {
916       ProcIndices.push_back(0);
917       dbgs() << "Itinerary for " << InstName << ": "
918              << SC.ItinClassDef->getName() << '\n';
919     }
920     if (!SC.Writes.empty()) {
921       ProcIndices.push_back(0);
922       LLVM_DEBUG({
923         dbgs() << "SchedRW machine model for " << InstName;
924         for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
925              ++WI)
926           dbgs() << " " << SchedWrites[*WI].Name;
927         for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
928           dbgs() << " " << SchedReads[*RI].Name;
929         dbgs() << '\n';
930       });
931     }
932     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
933     for (Record *RWDef : RWDefs) {
934       const CodeGenProcModel &ProcModel =
935           getProcModel(RWDef->getValueAsDef("SchedModel"));
936       ProcIndices.push_back(ProcModel.Index);
937       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
938                         << InstName);
939       IdxVec Writes;
940       IdxVec Reads;
941       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
942               Writes, Reads);
943       LLVM_DEBUG({
944         for (unsigned WIdx : Writes)
945           dbgs() << " " << SchedWrites[WIdx].Name;
946         for (unsigned RIdx : Reads)
947           dbgs() << " " << SchedReads[RIdx].Name;
948         dbgs() << '\n';
949       });
950     }
951     // If ProcIndices contains zero, the class applies to all processors.
952     LLVM_DEBUG({
953       if (!llvm::is_contained(ProcIndices, 0)) {
954         for (const CodeGenProcModel &PM : ProcModels) {
955           if (!llvm::is_contained(ProcIndices, PM.Index))
956             dbgs() << "No machine model for " << Inst->TheDef->getName()
957                    << " on processor " << PM.ModelName << '\n';
958         }
959       }
960     });
961   }
962 }
963 
964 // Get the SchedClass index for an instruction.
965 unsigned
966 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
967   return InstrClassMap.lookup(Inst.TheDef);
968 }
969 
970 std::string
971 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
972                                          ArrayRef<unsigned> OperWrites,
973                                          ArrayRef<unsigned> OperReads) {
974 
975   std::string Name;
976   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
977     Name = std::string(ItinClassDef->getName());
978   for (unsigned Idx : OperWrites) {
979     if (!Name.empty())
980       Name += '_';
981     Name += SchedWrites[Idx].Name;
982   }
983   for (unsigned Idx : OperReads) {
984     Name += '_';
985     Name += SchedReads[Idx].Name;
986   }
987   return Name;
988 }
989 
990 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
991 
992   std::string Name;
993   for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
994     if (I != InstDefs.begin())
995       Name += '_';
996     Name += (*I)->getName();
997   }
998   return Name;
999 }
1000 
1001 /// Add an inferred sched class from an itinerary class and per-operand list of
1002 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1003 /// processors that may utilize this class.
1004 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1005                                            ArrayRef<unsigned> OperWrites,
1006                                            ArrayRef<unsigned> OperReads,
1007                                            ArrayRef<unsigned> ProcIndices) {
1008   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1009 
1010   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1011                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1012                    };
1013 
1014   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1015   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1016   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1017     IdxVec PI;
1018     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1019                    SchedClasses[Idx].ProcIndices.end(),
1020                    ProcIndices.begin(), ProcIndices.end(),
1021                    std::back_inserter(PI));
1022     SchedClasses[Idx].ProcIndices = std::move(PI);
1023     return Idx;
1024   }
1025   Idx = SchedClasses.size();
1026   SchedClasses.emplace_back(Idx,
1027                             createSchedClassName(ItinClassDef, OperWrites,
1028                                                  OperReads),
1029                             ItinClassDef);
1030   CodeGenSchedClass &SC = SchedClasses.back();
1031   SC.Writes = OperWrites;
1032   SC.Reads = OperReads;
1033   SC.ProcIndices = ProcIndices;
1034 
1035   return Idx;
1036 }
1037 
1038 // Create classes for each set of opcodes that are in the same InstReadWrite
1039 // definition across all processors.
1040 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1041   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1042   // intersects with an existing class via a previous InstRWDef. Instrs that do
1043   // not intersect with an existing class refer back to their former class as
1044   // determined from ItinDef or SchedRW.
1045   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1046   // Sort Instrs into sets.
1047   const RecVec *InstDefs = Sets.expand(InstRWDef);
1048   if (InstDefs->empty())
1049     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1050 
1051   for (Record *InstDef : *InstDefs) {
1052     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1053     if (Pos == InstrClassMap.end())
1054       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1055     unsigned SCIdx = Pos->second;
1056     ClassInstrs[SCIdx].push_back(InstDef);
1057   }
1058   // For each set of Instrs, create a new class if necessary, and map or remap
1059   // the Instrs to it.
1060   for (auto &Entry : ClassInstrs) {
1061     unsigned OldSCIdx = Entry.first;
1062     ArrayRef<Record*> InstDefs = Entry.second;
1063     // If the all instrs in the current class are accounted for, then leave
1064     // them mapped to their old class.
1065     if (OldSCIdx) {
1066       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1067       if (!RWDefs.empty()) {
1068         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1069         unsigned OrigNumInstrs =
1070           count_if(*OrigInstDefs, [&](Record *OIDef) {
1071                      return InstrClassMap[OIDef] == OldSCIdx;
1072                    });
1073         if (OrigNumInstrs == InstDefs.size()) {
1074           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1075                  "expected a generic SchedClass");
1076           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1077           // Make sure we didn't already have a InstRW containing this
1078           // instruction on this model.
1079           for (Record *RWD : RWDefs) {
1080             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1081                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1082               assert(!InstDefs.empty()); // Checked at function start.
1083               PrintError(
1084                   InstRWDef->getLoc(),
1085                   "Overlapping InstRW definition for \"" +
1086                       InstDefs.front()->getName() +
1087                       "\" also matches previous \"" +
1088                       RWD->getValue("Instrs")->getValue()->getAsString() +
1089                       "\".");
1090               PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1091             }
1092           }
1093           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1094                             << SchedClasses[OldSCIdx].Name << " on "
1095                             << RWModelDef->getName() << "\n");
1096           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1097           continue;
1098         }
1099       }
1100     }
1101     unsigned SCIdx = SchedClasses.size();
1102     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1103     CodeGenSchedClass &SC = SchedClasses.back();
1104     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1105                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1106                       << "\n");
1107 
1108     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1109     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1110     SC.Writes = SchedClasses[OldSCIdx].Writes;
1111     SC.Reads = SchedClasses[OldSCIdx].Reads;
1112     SC.ProcIndices.push_back(0);
1113     // If we had an old class, copy it's InstRWs to this new class.
1114     if (OldSCIdx) {
1115       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1116       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1117         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1118           assert(!InstDefs.empty()); // Checked at function start.
1119           PrintError(
1120               InstRWDef->getLoc(),
1121               "Overlapping InstRW definition for \"" +
1122                   InstDefs.front()->getName() + "\" also matches previous \"" +
1123                   OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1124                   "\".");
1125           PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1126         }
1127         assert(OldRWDef != InstRWDef &&
1128                "SchedClass has duplicate InstRW def");
1129         SC.InstRWs.push_back(OldRWDef);
1130       }
1131     }
1132     // Map each Instr to this new class.
1133     for (Record *InstDef : InstDefs)
1134       InstrClassMap[InstDef] = SCIdx;
1135     SC.InstRWs.push_back(InstRWDef);
1136   }
1137 }
1138 
1139 // True if collectProcItins found anything.
1140 bool CodeGenSchedModels::hasItineraries() const {
1141   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1142     if (PM.hasItineraries())
1143       return true;
1144   return false;
1145 }
1146 
1147 // Gather the processor itineraries.
1148 void CodeGenSchedModels::collectProcItins() {
1149   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1150   for (CodeGenProcModel &ProcModel : ProcModels) {
1151     if (!ProcModel.hasItineraries())
1152       continue;
1153 
1154     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1155     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1156 
1157     // Populate ItinDefList with Itinerary records.
1158     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1159 
1160     // Insert each itinerary data record in the correct position within
1161     // the processor model's ItinDefList.
1162     for (Record *ItinData : ItinRecords) {
1163       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1164       bool FoundClass = false;
1165 
1166       for (const CodeGenSchedClass &SC :
1167            make_range(schedClassBegin(), schedClassEnd())) {
1168         // Multiple SchedClasses may share an itinerary. Update all of them.
1169         if (SC.ItinClassDef == ItinDef) {
1170           ProcModel.ItinDefList[SC.Index] = ItinData;
1171           FoundClass = true;
1172         }
1173       }
1174       if (!FoundClass) {
1175         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1176                           << " missing class for itinerary "
1177                           << ItinDef->getName() << '\n');
1178       }
1179     }
1180     // Check for missing itinerary entries.
1181     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1182     LLVM_DEBUG(
1183         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1184           if (!ProcModel.ItinDefList[i])
1185             dbgs() << ProcModel.ItinsDef->getName()
1186                    << " missing itinerary for class " << SchedClasses[i].Name
1187                    << '\n';
1188         });
1189   }
1190 }
1191 
1192 // Gather the read/write types for each itinerary class.
1193 void CodeGenSchedModels::collectProcItinRW() {
1194   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1195   llvm::sort(ItinRWDefs, LessRecord());
1196   for (Record *RWDef  : ItinRWDefs) {
1197     if (!RWDef->getValueInit("SchedModel")->isComplete())
1198       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1199     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1200     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1201     if (I == ProcModelMap.end()) {
1202       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1203                     + ModelDef->getName());
1204     }
1205     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1206   }
1207 }
1208 
1209 // Gather the unsupported features for processor models.
1210 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1211   for (CodeGenProcModel &ProcModel : ProcModels) {
1212     for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1213        ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1214     }
1215   }
1216 }
1217 
1218 /// Infer new classes from existing classes. In the process, this may create new
1219 /// SchedWrites from sequences of existing SchedWrites.
1220 void CodeGenSchedModels::inferSchedClasses() {
1221   LLVM_DEBUG(
1222       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1223   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1224 
1225   // Visit all existing classes and newly created classes.
1226   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1227     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1228 
1229     if (SchedClasses[Idx].ItinClassDef)
1230       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1231     if (!SchedClasses[Idx].InstRWs.empty())
1232       inferFromInstRWs(Idx);
1233     if (!SchedClasses[Idx].Writes.empty()) {
1234       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1235                   Idx, SchedClasses[Idx].ProcIndices);
1236     }
1237     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1238            "too many SchedVariants");
1239   }
1240 }
1241 
1242 /// Infer classes from per-processor itinerary resources.
1243 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1244                                             unsigned FromClassIdx) {
1245   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1246     const CodeGenProcModel &PM = ProcModels[PIdx];
1247     // For all ItinRW entries.
1248     bool HasMatch = false;
1249     for (const Record *Rec : PM.ItinRWDefs) {
1250       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1251       if (!llvm::is_contained(Matched, ItinClassDef))
1252         continue;
1253       if (HasMatch)
1254         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1255                       + ItinClassDef->getName()
1256                       + " in ItinResources for " + PM.ModelName);
1257       HasMatch = true;
1258       IdxVec Writes, Reads;
1259       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1260       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1261     }
1262   }
1263 }
1264 
1265 /// Infer classes from per-processor InstReadWrite definitions.
1266 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1267   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1268     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1269     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1270     const RecVec *InstDefs = Sets.expand(Rec);
1271     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1272     for (; II != IE; ++II) {
1273       if (InstrClassMap[*II] == SCIdx)
1274         break;
1275     }
1276     // If this class no longer has any instructions mapped to it, it has become
1277     // irrelevant.
1278     if (II == IE)
1279       continue;
1280     IdxVec Writes, Reads;
1281     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1282     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1283     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1284     SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1285   }
1286 }
1287 
1288 namespace {
1289 
1290 // Helper for substituteVariantOperand.
1291 struct TransVariant {
1292   Record *VarOrSeqDef;  // Variant or sequence.
1293   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1294   unsigned ProcIdx;     // Processor model index or zero for any.
1295   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1296 
1297   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1298     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1299 };
1300 
1301 // Associate a predicate with the SchedReadWrite that it guards.
1302 // RWIdx is the index of the read/write variant.
1303 struct PredCheck {
1304   bool IsRead;
1305   unsigned RWIdx;
1306   Record *Predicate;
1307 
1308   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1309 };
1310 
1311 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1312 struct PredTransition {
1313   // A predicate term is a conjunction of PredChecks.
1314   SmallVector<PredCheck, 4> PredTerm;
1315   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1316   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1317   unsigned ProcIndex = 0;
1318 
1319   PredTransition() = default;
1320   PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1321     PredTerm.assign(PT.begin(), PT.end());
1322     ProcIndex = ProcId;
1323   }
1324 };
1325 
1326 // Encapsulate a set of partially constructed transitions.
1327 // The results are built by repeated calls to substituteVariants.
1328 class PredTransitions {
1329   CodeGenSchedModels &SchedModels;
1330 
1331 public:
1332   std::vector<PredTransition> TransVec;
1333 
1334   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1335 
1336   bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1337                                 bool IsRead, unsigned StartIdx);
1338 
1339   bool substituteVariants(const PredTransition &Trans);
1340 
1341 #ifndef NDEBUG
1342   void dump() const;
1343 #endif
1344 
1345 private:
1346   bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1347                          ArrayRef<PredCheck> Term);
1348   void getIntersectingVariants(
1349     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1350     std::vector<TransVariant> &IntersectingVariants);
1351   void pushVariant(const TransVariant &VInfo, bool IsRead);
1352 };
1353 
1354 } // end anonymous namespace
1355 
1356 // Return true if this predicate is mutually exclusive with a PredTerm. This
1357 // degenerates into checking if the predicate is mutually exclusive with any
1358 // predicate in the Term's conjunction.
1359 //
1360 // All predicates associated with a given SchedRW are considered mutually
1361 // exclusive. This should work even if the conditions expressed by the
1362 // predicates are not exclusive because the predicates for a given SchedWrite
1363 // are always checked in the order they are defined in the .td file. Later
1364 // conditions implicitly negate any prior condition.
1365 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1366                                         ArrayRef<Record *> Preds,
1367                                         ArrayRef<PredCheck> Term) {
1368   for (const PredCheck &PC: Term) {
1369     if (PC.Predicate == PredDef)
1370       return false;
1371 
1372     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1373     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1374     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1375     if (any_of(Variants, [PredDef](const Record *R) {
1376           return R->getValueAsDef("Predicate") == PredDef;
1377         })) {
1378       // To check if PredDef is mutually exclusive with PC we also need to
1379       // check that PC.Predicate is exclusive with all predicates from variant
1380       // we're expanding. Consider following RW sequence with two variants
1381       // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1382       //
1383       // 1:A/B - 2:C/B
1384       //
1385       // Here C is not mutually exclusive with variant (1), because A doesn't
1386       // exist in variant (2). This means we have possible transitions from A
1387       // to C and from A to B, and fully expanded sequence would look like:
1388       //
1389       // if (A & C) return ...;
1390       // if (A & B) return ...;
1391       // if (B) return ...;
1392       //
1393       // Now let's consider another sequence:
1394       //
1395       // 1:A/B - 2:A/B
1396       //
1397       // Here A in variant (2) is mutually exclusive with variant (1), because
1398       // A also exists in (2). This means A->B transition is impossible and
1399       // expanded sequence would look like:
1400       //
1401       // if (A) return ...;
1402       // if (B) return ...;
1403       if (!count(Preds, PC.Predicate))
1404         continue;
1405       return true;
1406     }
1407   }
1408   return false;
1409 }
1410 
1411 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1412                                               unsigned ProcId) {
1413   std::vector<Record *> Preds;
1414   for (auto &Variant : Variants) {
1415     if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1416       continue;
1417     Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1418   }
1419   return Preds;
1420 }
1421 
1422 // Populate IntersectingVariants with any variants or aliased sequences of the
1423 // given SchedRW whose processor indices and predicates are not mutually
1424 // exclusive with the given transition.
1425 void PredTransitions::getIntersectingVariants(
1426   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1427   std::vector<TransVariant> &IntersectingVariants) {
1428 
1429   bool GenericRW = false;
1430 
1431   std::vector<TransVariant> Variants;
1432   if (SchedRW.HasVariants) {
1433     unsigned VarProcIdx = 0;
1434     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1435       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1436       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1437     }
1438     if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1439       // Push each variant. Assign TransVecIdx later.
1440       const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1441       for (Record *VarDef : VarDefs)
1442         Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1443       if (VarProcIdx == 0)
1444         GenericRW = true;
1445     }
1446   }
1447   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1448        AI != AE; ++AI) {
1449     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1450     // to is defined within a processor model, constrain all variants to
1451     // that processor.
1452     unsigned AliasProcIdx = 0;
1453     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1454       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1455       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1456     }
1457     if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1458       continue;
1459     if (!Variants.empty()) {
1460       const CodeGenProcModel &PM =
1461           *(SchedModels.procModelBegin() + AliasProcIdx);
1462       PrintFatalError((*AI)->getLoc(),
1463                       "Multiple variants defined for processor " +
1464                           PM.ModelName +
1465                           " Ensure only one SchedAlias exists per RW.");
1466     }
1467 
1468     const CodeGenSchedRW &AliasRW =
1469       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1470 
1471     if (AliasRW.HasVariants) {
1472       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1473       for (Record *VD : VarDefs)
1474         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1475     }
1476     if (AliasRW.IsSequence)
1477       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1478     if (AliasProcIdx == 0)
1479       GenericRW = true;
1480   }
1481   std::vector<Record *> AllPreds =
1482       getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1483   for (TransVariant &Variant : Variants) {
1484     // Don't expand variants if the processor models don't intersect.
1485     // A zero processor index means any processor.
1486     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1487       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1488       if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1489         continue;
1490     }
1491 
1492     if (IntersectingVariants.empty()) {
1493       // The first variant builds on the existing transition.
1494       Variant.TransVecIdx = TransIdx;
1495       IntersectingVariants.push_back(Variant);
1496     }
1497     else {
1498       // Push another copy of the current transition for more variants.
1499       Variant.TransVecIdx = TransVec.size();
1500       IntersectingVariants.push_back(Variant);
1501       TransVec.push_back(TransVec[TransIdx]);
1502     }
1503   }
1504   if (GenericRW && IntersectingVariants.empty()) {
1505     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1506                     "a matching predicate on any processor");
1507   }
1508 }
1509 
1510 // Push the Reads/Writes selected by this variant onto the PredTransition
1511 // specified by VInfo.
1512 void PredTransitions::
1513 pushVariant(const TransVariant &VInfo, bool IsRead) {
1514   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1515 
1516   // If this operand transition is reached through a processor-specific alias,
1517   // then the whole transition is specific to this processor.
1518   IdxVec SelectedRWs;
1519   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1520     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1521     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1522     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1523     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1524   }
1525   else {
1526     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1527            "variant must be a SchedVariant or aliased WriteSequence");
1528     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1529   }
1530 
1531   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1532 
1533   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1534     ? Trans.ReadSequences : Trans.WriteSequences;
1535   if (SchedRW.IsVariadic) {
1536     unsigned OperIdx = RWSequences.size()-1;
1537     // Make N-1 copies of this transition's last sequence.
1538     RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1539     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1540                        RWSequences[OperIdx]);
1541     // Push each of the N elements of the SelectedRWs onto a copy of the last
1542     // sequence (split the current operand into N operands).
1543     // Note that write sequences should be expanded within this loop--the entire
1544     // sequence belongs to a single operand.
1545     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1546          RWI != RWE; ++RWI, ++OperIdx) {
1547       IdxVec ExpandedRWs;
1548       if (IsRead)
1549         ExpandedRWs.push_back(*RWI);
1550       else
1551         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1552       llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1553     }
1554     assert(OperIdx == RWSequences.size() && "missed a sequence");
1555   }
1556   else {
1557     // Push this transition's expanded sequence onto this transition's last
1558     // sequence (add to the current operand's sequence).
1559     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1560     IdxVec ExpandedRWs;
1561     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1562          RWI != RWE; ++RWI) {
1563       if (IsRead)
1564         ExpandedRWs.push_back(*RWI);
1565       else
1566         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1567     }
1568     llvm::append_range(Seq, ExpandedRWs);
1569   }
1570 }
1571 
1572 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1573 // operand. StartIdx is an index into TransVec where partial results
1574 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1575 // of TransVec.
1576 bool PredTransitions::substituteVariantOperand(
1577     const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1578   bool Subst = false;
1579   // Visit each original RW within the current sequence.
1580   for (SmallVectorImpl<unsigned>::const_iterator
1581          RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1582     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1583     // Push this RW on all partial PredTransitions or distribute variants.
1584     // New PredTransitions may be pushed within this loop which should not be
1585     // revisited (TransEnd must be loop invariant).
1586     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1587          TransIdx != TransEnd; ++TransIdx) {
1588       // Distribute this partial PredTransition across intersecting variants.
1589       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1590       std::vector<TransVariant> IntersectingVariants;
1591       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1592       // Now expand each variant on top of its copy of the transition.
1593       for (const TransVariant &IV : IntersectingVariants)
1594         pushVariant(IV, IsRead);
1595       if (IntersectingVariants.empty()) {
1596         if (IsRead)
1597           TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1598         else
1599           TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1600         continue;
1601       } else {
1602         Subst = true;
1603       }
1604     }
1605   }
1606   return Subst;
1607 }
1608 
1609 // For each variant of a Read/Write in Trans, substitute the sequence of
1610 // Read/Writes guarded by the variant. This is exponential in the number of
1611 // variant Read/Writes, but in practice detection of mutually exclusive
1612 // predicates should result in linear growth in the total number variants.
1613 //
1614 // This is one step in a breadth-first search of nested variants.
1615 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1616   // Build up a set of partial results starting at the back of
1617   // PredTransitions. Remember the first new transition.
1618   unsigned StartIdx = TransVec.size();
1619   bool Subst = false;
1620   assert(Trans.ProcIndex != 0);
1621   TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1622 
1623   // Visit each original write sequence.
1624   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1625          WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1626        WSI != WSE; ++WSI) {
1627     // Push a new (empty) write sequence onto all partial Transitions.
1628     for (std::vector<PredTransition>::iterator I =
1629            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1630       I->WriteSequences.emplace_back();
1631     }
1632     Subst |= substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1633   }
1634   // Visit each original read sequence.
1635   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1636          RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1637        RSI != RSE; ++RSI) {
1638     // Push a new (empty) read sequence onto all partial Transitions.
1639     for (std::vector<PredTransition>::iterator I =
1640            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1641       I->ReadSequences.emplace_back();
1642     }
1643     Subst |= substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1644   }
1645   return Subst;
1646 }
1647 
1648 static void addSequences(CodeGenSchedModels &SchedModels,
1649                          const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1650                          IdxVec &Result, bool IsRead) {
1651   for (const auto &S : Seqs)
1652     if (!S.empty())
1653       Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1654 }
1655 
1656 #ifndef NDEBUG
1657 static void dumpRecVec(const RecVec &RV) {
1658   for (const Record *R : RV)
1659     dbgs() << R->getName() << ", ";
1660 }
1661 #endif
1662 
1663 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1664                            const CodeGenSchedClass &FromSC,
1665                            const CodeGenSchedTransition &SCTrans,
1666                            const RecVec &Preds) {
1667   LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1668                     << FromSC.Index << ") to "
1669                     << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1670                     << SCTrans.ToClassIdx << ") on pred term: (";
1671              dumpRecVec(Preds);
1672              dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1673 }
1674 // Create a new SchedClass for each variant found by inferFromRW. Pass
1675 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1676                                  unsigned FromClassIdx,
1677                                  CodeGenSchedModels &SchedModels) {
1678   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1679   // requires creating a new SchedClass.
1680   for (ArrayRef<PredTransition>::iterator
1681          I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1682     // Variant expansion (substituteVariants) may create unconditional
1683     // transitions. We don't need to build sched classes for them.
1684     if (I->PredTerm.empty())
1685       continue;
1686     IdxVec OperWritesVariant, OperReadsVariant;
1687     addSequences(SchedModels, I->WriteSequences, OperWritesVariant, false);
1688     addSequences(SchedModels, I->ReadSequences, OperReadsVariant, true);
1689     CodeGenSchedTransition SCTrans;
1690 
1691     // Transition should not contain processor indices already assigned to
1692     // InstRWs in this scheduling class.
1693     const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1694     if (FromSC.InstRWProcIndices.count(I->ProcIndex))
1695       continue;
1696     SCTrans.ProcIndex = I->ProcIndex;
1697     SCTrans.ToClassIdx =
1698         SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1699                                   OperReadsVariant, I->ProcIndex);
1700 
1701     // The final PredTerm is unique set of predicates guarding the transition.
1702     RecVec Preds;
1703     transform(I->PredTerm, std::back_inserter(Preds),
1704               [](const PredCheck &P) {
1705                 return P.Predicate;
1706               });
1707     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1708     dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1709     SCTrans.PredTerm = std::move(Preds);
1710     SchedModels.getSchedClass(FromClassIdx)
1711         .Transitions.push_back(std::move(SCTrans));
1712   }
1713 }
1714 
1715 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1716   std::vector<unsigned> ProcIdVec;
1717   for (const auto &PM : ProcModelMap)
1718     if (PM.second != 0)
1719       ProcIdVec.push_back(PM.second);
1720   // The order of the keys (Record pointers) of ProcModelMap are not stable.
1721   // Sort to stabalize the values.
1722   llvm::sort(ProcIdVec);
1723   return ProcIdVec;
1724 }
1725 
1726 static std::vector<PredTransition>
1727 makePerProcessorTransitions(const PredTransition &Trans,
1728                             ArrayRef<unsigned> ProcIndices) {
1729   std::vector<PredTransition> PerCpuTransVec;
1730   for (unsigned ProcId : ProcIndices) {
1731     assert(ProcId != 0);
1732     PerCpuTransVec.push_back(Trans);
1733     PerCpuTransVec.back().ProcIndex = ProcId;
1734   }
1735   return PerCpuTransVec;
1736 }
1737 
1738 // Create new SchedClasses for the given ReadWrite list. If any of the
1739 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1740 // of the ReadWrite list, following Aliases if necessary.
1741 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1742                                      ArrayRef<unsigned> OperReads,
1743                                      unsigned FromClassIdx,
1744                                      ArrayRef<unsigned> ProcIndices) {
1745   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1746              dbgs() << ") ");
1747   // Create a seed transition with an empty PredTerm and the expanded sequences
1748   // of SchedWrites for the current SchedClass.
1749   std::vector<PredTransition> LastTransitions;
1750   LastTransitions.emplace_back();
1751 
1752   for (unsigned WriteIdx : OperWrites) {
1753     IdxVec WriteSeq;
1754     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1755     LastTransitions[0].WriteSequences.emplace_back();
1756     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1757     Seq.append(WriteSeq.begin(), WriteSeq.end());
1758     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1759   }
1760   LLVM_DEBUG(dbgs() << " Reads: ");
1761   for (unsigned ReadIdx : OperReads) {
1762     IdxVec ReadSeq;
1763     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1764     LastTransitions[0].ReadSequences.emplace_back();
1765     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1766     Seq.append(ReadSeq.begin(), ReadSeq.end());
1767     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1768   }
1769   LLVM_DEBUG(dbgs() << '\n');
1770 
1771   LastTransitions = makePerProcessorTransitions(
1772       LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1773                               ? ArrayRef<unsigned>(getAllProcIndices())
1774                               : ProcIndices);
1775   // Collect all PredTransitions for individual operands.
1776   // Iterate until no variant writes remain.
1777   bool SubstitutedAny;
1778   do {
1779     SubstitutedAny = false;
1780     PredTransitions Transitions(*this);
1781     for (const PredTransition &Trans : LastTransitions)
1782       SubstitutedAny |= Transitions.substituteVariants(Trans);
1783     LLVM_DEBUG(Transitions.dump());
1784     LastTransitions.swap(Transitions.TransVec);
1785   } while (SubstitutedAny);
1786 
1787   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1788   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1789   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1790 }
1791 
1792 // Check if any processor resource group contains all resource records in
1793 // SubUnits.
1794 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1795   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1796     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1797       continue;
1798     RecVec SuperUnits =
1799       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1800     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1801     for ( ; RI != RE; ++RI) {
1802       if (!is_contained(SuperUnits, *RI)) {
1803         break;
1804       }
1805     }
1806     if (RI == RE)
1807       return true;
1808   }
1809   return false;
1810 }
1811 
1812 // Verify that overlapping groups have a common supergroup.
1813 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1814   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1815     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1816       continue;
1817     RecVec CheckUnits =
1818       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1819     for (unsigned j = i+1; j < e; ++j) {
1820       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1821         continue;
1822       RecVec OtherUnits =
1823         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1824       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1825                              OtherUnits.begin(), OtherUnits.end())
1826           != CheckUnits.end()) {
1827         // CheckUnits and OtherUnits overlap
1828         llvm::append_range(OtherUnits, CheckUnits);
1829         if (!hasSuperGroup(OtherUnits, PM)) {
1830           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1831                           "proc resource group overlaps with "
1832                           + PM.ProcResourceDefs[j]->getName()
1833                           + " but no supergroup contains both.");
1834         }
1835       }
1836     }
1837   }
1838 }
1839 
1840 // Collect all the RegisterFile definitions available in this target.
1841 void CodeGenSchedModels::collectRegisterFiles() {
1842   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1843 
1844   // RegisterFiles is the vector of CodeGenRegisterFile.
1845   for (Record *RF : RegisterFileDefs) {
1846     // For each register file definition, construct a CodeGenRegisterFile object
1847     // and add it to the appropriate scheduling model.
1848     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1849     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1850     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1851     CGRF.MaxMovesEliminatedPerCycle =
1852         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1853     CGRF.AllowZeroMoveEliminationOnly =
1854         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1855 
1856     // Now set the number of physical registers as well as the cost of registers
1857     // in each register class.
1858     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1859     if (!CGRF.NumPhysRegs) {
1860       PrintFatalError(RF->getLoc(),
1861                       "Invalid RegisterFile with zero physical registers");
1862     }
1863 
1864     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1865     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1866     ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1867     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1868       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1869 
1870       bool AllowMoveElim = false;
1871       if (MoveElimInfo->size() > I) {
1872         BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1873         AllowMoveElim = Val->getValue();
1874       }
1875 
1876       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1877     }
1878   }
1879 }
1880 
1881 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1882 void CodeGenSchedModels::collectProcResources() {
1883   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1884   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1885 
1886   // Add any subtarget-specific SchedReadWrites that are directly associated
1887   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1888   // determine which processors they apply to.
1889   for (const CodeGenSchedClass &SC :
1890        make_range(schedClassBegin(), schedClassEnd())) {
1891     if (SC.ItinClassDef) {
1892       collectItinProcResources(SC.ItinClassDef);
1893       continue;
1894     }
1895 
1896     // This class may have a default ReadWrite list which can be overriden by
1897     // InstRW definitions.
1898     for (Record *RW : SC.InstRWs) {
1899       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1900       unsigned PIdx = getProcModel(RWModelDef).Index;
1901       IdxVec Writes, Reads;
1902       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1903       collectRWResources(Writes, Reads, PIdx);
1904     }
1905 
1906     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1907   }
1908   // Add resources separately defined by each subtarget.
1909   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1910   for (Record *WR : WRDefs) {
1911     Record *ModelDef = WR->getValueAsDef("SchedModel");
1912     addWriteRes(WR, getProcModel(ModelDef).Index);
1913   }
1914   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1915   for (Record *SWR : SWRDefs) {
1916     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1917     addWriteRes(SWR, getProcModel(ModelDef).Index);
1918   }
1919   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1920   for (Record *RA : RADefs) {
1921     Record *ModelDef = RA->getValueAsDef("SchedModel");
1922     addReadAdvance(RA, getProcModel(ModelDef).Index);
1923   }
1924   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1925   for (Record *SRA : SRADefs) {
1926     if (SRA->getValueInit("SchedModel")->isComplete()) {
1927       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1928       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1929     }
1930   }
1931   // Add ProcResGroups that are defined within this processor model, which may
1932   // not be directly referenced but may directly specify a buffer size.
1933   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1934   for (Record *PRG : ProcResGroups) {
1935     if (!PRG->getValueInit("SchedModel")->isComplete())
1936       continue;
1937     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1938     if (!is_contained(PM.ProcResourceDefs, PRG))
1939       PM.ProcResourceDefs.push_back(PRG);
1940   }
1941   // Add ProcResourceUnits unconditionally.
1942   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1943     if (!PRU->getValueInit("SchedModel")->isComplete())
1944       continue;
1945     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1946     if (!is_contained(PM.ProcResourceDefs, PRU))
1947       PM.ProcResourceDefs.push_back(PRU);
1948   }
1949   // Finalize each ProcModel by sorting the record arrays.
1950   for (CodeGenProcModel &PM : ProcModels) {
1951     llvm::sort(PM.WriteResDefs, LessRecord());
1952     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1953     llvm::sort(PM.ProcResourceDefs, LessRecord());
1954     LLVM_DEBUG(
1955         PM.dump();
1956         dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1957                                          RE = PM.WriteResDefs.end();
1958                                          RI != RE; ++RI) {
1959           if ((*RI)->isSubClassOf("WriteRes"))
1960             dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1961           else
1962             dbgs() << (*RI)->getName() << " ";
1963         } dbgs() << "\nReadAdvanceDefs: ";
1964         for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1965              RE = PM.ReadAdvanceDefs.end();
1966              RI != RE; ++RI) {
1967           if ((*RI)->isSubClassOf("ReadAdvance"))
1968             dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1969           else
1970             dbgs() << (*RI)->getName() << " ";
1971         } dbgs()
1972         << "\nProcResourceDefs: ";
1973         for (RecIter RI = PM.ProcResourceDefs.begin(),
1974              RE = PM.ProcResourceDefs.end();
1975              RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1976         << '\n');
1977     verifyProcResourceGroups(PM);
1978   }
1979 
1980   ProcResourceDefs.clear();
1981   ProcResGroups.clear();
1982 }
1983 
1984 void CodeGenSchedModels::checkCompleteness() {
1985   bool Complete = true;
1986   bool HadCompleteModel = false;
1987   for (const CodeGenProcModel &ProcModel : procModels()) {
1988     const bool HasItineraries = ProcModel.hasItineraries();
1989     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1990       continue;
1991     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1992       if (Inst->hasNoSchedulingInfo)
1993         continue;
1994       if (ProcModel.isUnsupported(*Inst))
1995         continue;
1996       unsigned SCIdx = getSchedClassIdx(*Inst);
1997       if (!SCIdx) {
1998         if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1999           PrintError(Inst->TheDef->getLoc(),
2000                      "No schedule information for instruction '" +
2001                          Inst->TheDef->getName() + "' in SchedMachineModel '" +
2002                      ProcModel.ModelDef->getName() + "'");
2003           Complete = false;
2004         }
2005         continue;
2006       }
2007 
2008       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
2009       if (!SC.Writes.empty())
2010         continue;
2011       if (HasItineraries && SC.ItinClassDef != nullptr &&
2012           SC.ItinClassDef->getName() != "NoItinerary")
2013         continue;
2014 
2015       const RecVec &InstRWs = SC.InstRWs;
2016       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2017         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2018       });
2019       if (I == InstRWs.end()) {
2020         PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2021                                                "' lacks information for '" +
2022                                                Inst->TheDef->getName() + "'");
2023         Complete = false;
2024       }
2025     }
2026     HadCompleteModel = true;
2027   }
2028   if (!Complete) {
2029     errs() << "\n\nIncomplete schedule models found.\n"
2030       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2031       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2032       << "- Instructions should usually have Sched<[...]> as a superclass, "
2033          "you may temporarily use an empty list.\n"
2034       << "- Instructions related to unsupported features can be excluded with "
2035          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2036          "processor model.\n\n";
2037     PrintFatalError("Incomplete schedule model");
2038   }
2039 }
2040 
2041 // Collect itinerary class resources for each processor.
2042 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2043   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2044     const CodeGenProcModel &PM = ProcModels[PIdx];
2045     // For all ItinRW entries.
2046     bool HasMatch = false;
2047     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2048          II != IE; ++II) {
2049       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2050       if (!llvm::is_contained(Matched, ItinClassDef))
2051         continue;
2052       if (HasMatch)
2053         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2054                         + ItinClassDef->getName()
2055                         + " in ItinResources for " + PM.ModelName);
2056       HasMatch = true;
2057       IdxVec Writes, Reads;
2058       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2059       collectRWResources(Writes, Reads, PIdx);
2060     }
2061   }
2062 }
2063 
2064 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2065                                             ArrayRef<unsigned> ProcIndices) {
2066   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2067   if (SchedRW.TheDef) {
2068     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2069       for (unsigned Idx : ProcIndices)
2070         addWriteRes(SchedRW.TheDef, Idx);
2071     }
2072     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2073       for (unsigned Idx : ProcIndices)
2074         addReadAdvance(SchedRW.TheDef, Idx);
2075     }
2076   }
2077   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2078        AI != AE; ++AI) {
2079     IdxVec AliasProcIndices;
2080     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2081       AliasProcIndices.push_back(
2082         getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2083     }
2084     else
2085       AliasProcIndices = ProcIndices;
2086     const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2087     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2088 
2089     IdxVec ExpandedRWs;
2090     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2091     for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2092          SI != SE; ++SI) {
2093       collectRWResources(*SI, IsRead, AliasProcIndices);
2094     }
2095   }
2096 }
2097 
2098 // Collect resources for a set of read/write types and processor indices.
2099 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2100                                             ArrayRef<unsigned> Reads,
2101                                             ArrayRef<unsigned> ProcIndices) {
2102   for (unsigned Idx : Writes)
2103     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2104 
2105   for (unsigned Idx : Reads)
2106     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2107 }
2108 
2109 // Find the processor's resource units for this kind of resource.
2110 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2111                                              const CodeGenProcModel &PM,
2112                                              ArrayRef<SMLoc> Loc) const {
2113   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2114     return ProcResKind;
2115 
2116   Record *ProcUnitDef = nullptr;
2117   assert(!ProcResourceDefs.empty());
2118   assert(!ProcResGroups.empty());
2119 
2120   for (Record *ProcResDef : ProcResourceDefs) {
2121     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2122         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2123       if (ProcUnitDef) {
2124         PrintFatalError(Loc,
2125                         "Multiple ProcessorResourceUnits associated with "
2126                         + ProcResKind->getName());
2127       }
2128       ProcUnitDef = ProcResDef;
2129     }
2130   }
2131   for (Record *ProcResGroup : ProcResGroups) {
2132     if (ProcResGroup == ProcResKind
2133         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2134       if (ProcUnitDef) {
2135         PrintFatalError(Loc,
2136                         "Multiple ProcessorResourceUnits associated with "
2137                         + ProcResKind->getName());
2138       }
2139       ProcUnitDef = ProcResGroup;
2140     }
2141   }
2142   if (!ProcUnitDef) {
2143     PrintFatalError(Loc,
2144                     "No ProcessorResources associated with "
2145                     + ProcResKind->getName());
2146   }
2147   return ProcUnitDef;
2148 }
2149 
2150 // Iteratively add a resource and its super resources.
2151 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2152                                          CodeGenProcModel &PM,
2153                                          ArrayRef<SMLoc> Loc) {
2154   while (true) {
2155     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2156 
2157     // See if this ProcResource is already associated with this processor.
2158     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2159       return;
2160 
2161     PM.ProcResourceDefs.push_back(ProcResUnits);
2162     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2163       return;
2164 
2165     if (!ProcResUnits->getValueInit("Super")->isComplete())
2166       return;
2167 
2168     ProcResKind = ProcResUnits->getValueAsDef("Super");
2169   }
2170 }
2171 
2172 // Add resources for a SchedWrite to this processor if they don't exist.
2173 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2174   assert(PIdx && "don't add resources to an invalid Processor model");
2175 
2176   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2177   if (is_contained(WRDefs, ProcWriteResDef))
2178     return;
2179   WRDefs.push_back(ProcWriteResDef);
2180 
2181   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2182   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2183   for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2184        WritePRI != WritePRE; ++WritePRI) {
2185     addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2186   }
2187 }
2188 
2189 // Add resources for a ReadAdvance to this processor if they don't exist.
2190 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2191                                         unsigned PIdx) {
2192   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2193   if (is_contained(RADefs, ProcReadAdvanceDef))
2194     return;
2195   RADefs.push_back(ProcReadAdvanceDef);
2196 }
2197 
2198 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2199   RecIter PRPos = find(ProcResourceDefs, PRDef);
2200   if (PRPos == ProcResourceDefs.end())
2201     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2202                     "the ProcResources list for " + ModelName);
2203   // Idx=0 is reserved for invalid.
2204   return 1 + (PRPos - ProcResourceDefs.begin());
2205 }
2206 
2207 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2208   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2209     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2210       if (TheDef->getName() == PredDef->getName())
2211         return true;
2212     }
2213   }
2214   return false;
2215 }
2216 
2217 #ifndef NDEBUG
2218 void CodeGenProcModel::dump() const {
2219   dbgs() << Index << ": " << ModelName << " "
2220          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2221          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2222 }
2223 
2224 void CodeGenSchedRW::dump() const {
2225   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2226   if (IsSequence) {
2227     dbgs() << "(";
2228     dumpIdxVec(Sequence);
2229     dbgs() << ")";
2230   }
2231 }
2232 
2233 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2234   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2235          << "  Writes: ";
2236   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2237     SchedModels->getSchedWrite(Writes[i]).dump();
2238     if (i < N-1) {
2239       dbgs() << '\n';
2240       dbgs().indent(10);
2241     }
2242   }
2243   dbgs() << "\n  Reads: ";
2244   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2245     SchedModels->getSchedRead(Reads[i]).dump();
2246     if (i < N-1) {
2247       dbgs() << '\n';
2248       dbgs().indent(10);
2249     }
2250   }
2251   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices);
2252   if (!Transitions.empty()) {
2253     dbgs() << "\n Transitions for Proc ";
2254     for (const CodeGenSchedTransition &Transition : Transitions) {
2255       dbgs() << Transition.ProcIndex << ", ";
2256     }
2257   }
2258   dbgs() << '\n';
2259 }
2260 
2261 void PredTransitions::dump() const {
2262   dbgs() << "Expanded Variants:\n";
2263   for (std::vector<PredTransition>::const_iterator
2264          TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2265     dbgs() << "{";
2266     for (SmallVectorImpl<PredCheck>::const_iterator
2267            PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2268          PCI != PCE; ++PCI) {
2269       if (PCI != TI->PredTerm.begin())
2270         dbgs() << ", ";
2271       dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2272              << ":" << PCI->Predicate->getName();
2273     }
2274     dbgs() << "},\n  => {";
2275     for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2276            WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2277          WSI != WSE; ++WSI) {
2278       dbgs() << "(";
2279       for (SmallVectorImpl<unsigned>::const_iterator
2280              WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2281         if (WI != WSI->begin())
2282           dbgs() << ", ";
2283         dbgs() << SchedModels.getSchedWrite(*WI).Name;
2284       }
2285       dbgs() << "),";
2286     }
2287     dbgs() << "}\n";
2288   }
2289 }
2290 #endif // NDEBUG
2291