1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Regex.h" 20 #include "llvm/TableGen/Error.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "subtarget-emitter" 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(ArrayRef<unsigned> V) { 28 for (unsigned Idx : V) 29 dbgs() << Idx << ", "; 30 } 31 #endif 32 33 namespace { 34 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 35 struct InstrsOp : public SetTheory::Operator { 36 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 37 ArrayRef<SMLoc> Loc) override { 38 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 39 } 40 }; 41 42 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 43 // 44 // TODO: Since this is a prefix match, perform a binary search over the 45 // instruction names using lower_bound. Note that the predefined instrs must be 46 // scanned linearly first. However, this is only safe if the regex pattern has 47 // no top-level bars. The DAG already has a list of patterns, so there's no 48 // reason to use top-level bars, but we need a way to verify they don't exist 49 // before implementing the optimization. 50 struct InstRegexOp : public SetTheory::Operator { 51 const CodeGenTarget &Target; 52 InstRegexOp(const CodeGenTarget &t): Target(t) {} 53 54 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 55 ArrayRef<SMLoc> Loc) override { 56 SmallVector<Regex, 4> RegexList; 57 for (DagInit::const_arg_iterator 58 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 59 StringInit *SI = dyn_cast<StringInit>(*AI); 60 if (!SI) 61 PrintFatalError(Loc, "instregex requires pattern string: " 62 + Expr->getAsString()); 63 std::string pat = SI->getValue(); 64 // Implement a python-style prefix match. 65 if (pat[0] != '^') { 66 pat.insert(0, "^("); 67 pat.insert(pat.end(), ')'); 68 } 69 RegexList.push_back(Regex(pat)); 70 } 71 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 72 for (auto &R : RegexList) { 73 if (R.match(Inst->TheDef->getName())) 74 Elts.insert(Inst->TheDef); 75 } 76 } 77 } 78 }; 79 } // end anonymous namespace 80 81 /// CodeGenModels ctor interprets machine model records and populates maps. 82 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 83 const CodeGenTarget &TGT): 84 Records(RK), Target(TGT) { 85 86 Sets.addFieldExpander("InstRW", "Instrs"); 87 88 // Allow Set evaluation to recognize the dags used in InstRW records: 89 // (instrs Op1, Op1...) 90 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 91 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 92 93 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 94 // that are explicitly referenced in tablegen records. Resources associated 95 // with each processor will be derived later. Populate ProcModelMap with the 96 // CodeGenProcModel instances. 97 collectProcModels(); 98 99 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 100 // defined, and populate SchedReads and SchedWrites vectors. Implicit 101 // SchedReadWrites that represent sequences derived from expanded variant will 102 // be inferred later. 103 collectSchedRW(); 104 105 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 106 // required by an instruction definition, and populate SchedClassIdxMap. Set 107 // NumItineraryClasses to the number of explicit itinerary classes referenced 108 // by instructions. Set NumInstrSchedClasses to the number of itinerary 109 // classes plus any classes implied by instructions that derive from class 110 // Sched and provide SchedRW list. This does not infer any new classes from 111 // SchedVariant. 112 collectSchedClasses(); 113 114 // Find instruction itineraries for each processor. Sort and populate 115 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 116 // all itinerary classes to be discovered. 117 collectProcItins(); 118 119 // Find ItinRW records for each processor and itinerary class. 120 // (For per-operand resources mapped to itinerary classes). 121 collectProcItinRW(); 122 123 // Infer new SchedClasses from SchedVariant. 124 inferSchedClasses(); 125 126 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 127 // ProcResourceDefs. 128 collectProcResources(); 129 130 checkCompleteness(); 131 } 132 133 /// Gather all processor models. 134 void CodeGenSchedModels::collectProcModels() { 135 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 136 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 137 138 // Reserve space because we can. Reallocation would be ok. 139 ProcModels.reserve(ProcRecords.size()+1); 140 141 // Use idx=0 for NoModel/NoItineraries. 142 Record *NoModelDef = Records.getDef("NoSchedModel"); 143 Record *NoItinsDef = Records.getDef("NoItineraries"); 144 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 145 ProcModelMap[NoModelDef] = 0; 146 147 // For each processor, find a unique machine model. 148 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 149 addProcModel(ProcRecords[i]); 150 } 151 152 /// Get a unique processor model based on the defined MachineModel and 153 /// ProcessorItineraries. 154 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 155 Record *ModelKey = getModelOrItinDef(ProcDef); 156 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 157 return; 158 159 std::string Name = ModelKey->getName(); 160 if (ModelKey->isSubClassOf("SchedMachineModel")) { 161 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 162 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 163 } 164 else { 165 // An itinerary is defined without a machine model. Infer a new model. 166 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 167 Name = Name + "Model"; 168 ProcModels.emplace_back(ProcModels.size(), Name, 169 ProcDef->getValueAsDef("SchedModel"), ModelKey); 170 } 171 DEBUG(ProcModels.back().dump()); 172 } 173 174 // Recursively find all reachable SchedReadWrite records. 175 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 176 SmallPtrSet<Record*, 16> &RWSet) { 177 if (!RWSet.insert(RWDef).second) 178 return; 179 RWDefs.push_back(RWDef); 180 // Reads don't current have sequence records, but it can be added later. 181 if (RWDef->isSubClassOf("WriteSequence")) { 182 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 183 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 184 scanSchedRW(*I, RWDefs, RWSet); 185 } 186 else if (RWDef->isSubClassOf("SchedVariant")) { 187 // Visit each variant (guarded by a different predicate). 188 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 189 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 190 // Visit each RW in the sequence selected by the current variant. 191 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 192 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 193 scanSchedRW(*I, RWDefs, RWSet); 194 } 195 } 196 } 197 198 // Collect and sort all SchedReadWrites reachable via tablegen records. 199 // More may be inferred later when inferring new SchedClasses from variants. 200 void CodeGenSchedModels::collectSchedRW() { 201 // Reserve idx=0 for invalid writes/reads. 202 SchedWrites.resize(1); 203 SchedReads.resize(1); 204 205 SmallPtrSet<Record*, 16> RWSet; 206 207 // Find all SchedReadWrites referenced by instruction defs. 208 RecVec SWDefs, SRDefs; 209 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 210 Record *SchedDef = Inst->TheDef; 211 if (SchedDef->isValueUnset("SchedRW")) 212 continue; 213 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 214 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 215 if ((*RWI)->isSubClassOf("SchedWrite")) 216 scanSchedRW(*RWI, SWDefs, RWSet); 217 else { 218 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 219 scanSchedRW(*RWI, SRDefs, RWSet); 220 } 221 } 222 } 223 // Find all ReadWrites referenced by InstRW. 224 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 225 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 226 // For all OperandReadWrites. 227 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 228 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 229 RWI != RWE; ++RWI) { 230 if ((*RWI)->isSubClassOf("SchedWrite")) 231 scanSchedRW(*RWI, SWDefs, RWSet); 232 else { 233 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 234 scanSchedRW(*RWI, SRDefs, RWSet); 235 } 236 } 237 } 238 // Find all ReadWrites referenced by ItinRW. 239 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 240 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 241 // For all OperandReadWrites. 242 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 243 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 244 RWI != RWE; ++RWI) { 245 if ((*RWI)->isSubClassOf("SchedWrite")) 246 scanSchedRW(*RWI, SWDefs, RWSet); 247 else { 248 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 249 scanSchedRW(*RWI, SRDefs, RWSet); 250 } 251 } 252 } 253 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 254 // for the loop below that initializes Alias vectors. 255 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 256 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 257 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 258 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 259 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 260 if (MatchDef->isSubClassOf("SchedWrite")) { 261 if (!AliasDef->isSubClassOf("SchedWrite")) 262 PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 263 scanSchedRW(AliasDef, SWDefs, RWSet); 264 } 265 else { 266 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 267 if (!AliasDef->isSubClassOf("SchedRead")) 268 PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 269 scanSchedRW(AliasDef, SRDefs, RWSet); 270 } 271 } 272 // Sort and add the SchedReadWrites directly referenced by instructions or 273 // itinerary resources. Index reads and writes in separate domains. 274 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 275 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 276 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 277 SchedWrites.emplace_back(SchedWrites.size(), *SWI); 278 } 279 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 280 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 281 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 282 SchedReads.emplace_back(SchedReads.size(), *SRI); 283 } 284 // Initialize WriteSequence vectors. 285 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 286 WE = SchedWrites.end(); WI != WE; ++WI) { 287 if (!WI->IsSequence) 288 continue; 289 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 290 /*IsRead=*/false); 291 } 292 // Initialize Aliases vectors. 293 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 294 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 295 getSchedRW(AliasDef).IsAlias = true; 296 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 297 CodeGenSchedRW &RW = getSchedRW(MatchDef); 298 if (RW.IsAlias) 299 PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); 300 RW.Aliases.push_back(*AI); 301 } 302 DEBUG( 303 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 304 dbgs() << WIdx << ": "; 305 SchedWrites[WIdx].dump(); 306 dbgs() << '\n'; 307 } 308 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 309 dbgs() << RIdx << ": "; 310 SchedReads[RIdx].dump(); 311 dbgs() << '\n'; 312 } 313 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 314 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 315 RI != RE; ++RI) { 316 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 317 const std::string &Name = (*RI)->getName(); 318 if (Name != "NoWrite" && Name != "ReadDefault") 319 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 320 } 321 }); 322 } 323 324 /// Compute a SchedWrite name from a sequence of writes. 325 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 326 std::string Name("("); 327 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 328 if (I != Seq.begin()) 329 Name += '_'; 330 Name += getSchedRW(*I, IsRead).Name; 331 } 332 Name += ')'; 333 return Name; 334 } 335 336 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 337 unsigned After) const { 338 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 339 assert(After < RWVec.size() && "start position out of bounds"); 340 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 341 E = RWVec.end(); I != E; ++I) { 342 if (I->TheDef == Def) 343 return I - RWVec.begin(); 344 } 345 return 0; 346 } 347 348 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 349 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 350 Record *ReadDef = SchedReads[i].TheDef; 351 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 352 continue; 353 354 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 355 if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) 356 != ValidWrites.end()) { 357 return true; 358 } 359 } 360 return false; 361 } 362 363 namespace llvm { 364 void splitSchedReadWrites(const RecVec &RWDefs, 365 RecVec &WriteDefs, RecVec &ReadDefs) { 366 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 367 if ((*RWI)->isSubClassOf("SchedWrite")) 368 WriteDefs.push_back(*RWI); 369 else { 370 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 371 ReadDefs.push_back(*RWI); 372 } 373 } 374 } 375 } // namespace llvm 376 377 // Split the SchedReadWrites defs and call findRWs for each list. 378 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 379 IdxVec &Writes, IdxVec &Reads) const { 380 RecVec WriteDefs; 381 RecVec ReadDefs; 382 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 383 findRWs(WriteDefs, Writes, false); 384 findRWs(ReadDefs, Reads, true); 385 } 386 387 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 388 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 389 bool IsRead) const { 390 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 391 unsigned Idx = getSchedRWIdx(*RI, IsRead); 392 assert(Idx && "failed to collect SchedReadWrite"); 393 RWs.push_back(Idx); 394 } 395 } 396 397 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 398 bool IsRead) const { 399 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 400 if (!SchedRW.IsSequence) { 401 RWSeq.push_back(RWIdx); 402 return; 403 } 404 int Repeat = 405 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 406 for (int i = 0; i < Repeat; ++i) { 407 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 408 I != E; ++I) { 409 expandRWSequence(*I, RWSeq, IsRead); 410 } 411 } 412 } 413 414 // Expand a SchedWrite as a sequence following any aliases that coincide with 415 // the given processor model. 416 void CodeGenSchedModels::expandRWSeqForProc( 417 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 418 const CodeGenProcModel &ProcModel) const { 419 420 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 421 Record *AliasDef = nullptr; 422 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 423 AI != AE; ++AI) { 424 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 425 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 426 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 427 if (&getProcModel(ModelDef) != &ProcModel) 428 continue; 429 } 430 if (AliasDef) 431 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 432 "defined for processor " + ProcModel.ModelName + 433 " Ensure only one SchedAlias exists per RW."); 434 AliasDef = AliasRW.TheDef; 435 } 436 if (AliasDef) { 437 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 438 RWSeq, IsRead,ProcModel); 439 return; 440 } 441 if (!SchedWrite.IsSequence) { 442 RWSeq.push_back(RWIdx); 443 return; 444 } 445 int Repeat = 446 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 447 for (int i = 0; i < Repeat; ++i) { 448 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 449 I != E; ++I) { 450 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 451 } 452 } 453 } 454 455 // Find the existing SchedWrite that models this sequence of writes. 456 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 457 bool IsRead) { 458 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 459 460 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 461 I != E; ++I) { 462 if (makeArrayRef(I->Sequence) == Seq) 463 return I - RWVec.begin(); 464 } 465 // Index zero reserved for invalid RW. 466 return 0; 467 } 468 469 /// Add this ReadWrite if it doesn't already exist. 470 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 471 bool IsRead) { 472 assert(!Seq.empty() && "cannot insert empty sequence"); 473 if (Seq.size() == 1) 474 return Seq.back(); 475 476 unsigned Idx = findRWForSequence(Seq, IsRead); 477 if (Idx) 478 return Idx; 479 480 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 481 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 482 if (IsRead) 483 SchedReads.push_back(SchedRW); 484 else 485 SchedWrites.push_back(SchedRW); 486 return RWIdx; 487 } 488 489 /// Visit all the instruction definitions for this target to gather and 490 /// enumerate the itinerary classes. These are the explicitly specified 491 /// SchedClasses. More SchedClasses may be inferred. 492 void CodeGenSchedModels::collectSchedClasses() { 493 494 // NoItinerary is always the first class at Idx=0 495 SchedClasses.resize(1); 496 SchedClasses.back().Index = 0; 497 SchedClasses.back().Name = "NoInstrModel"; 498 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 499 SchedClasses.back().ProcIndices.push_back(0); 500 501 // Create a SchedClass for each unique combination of itinerary class and 502 // SchedRW list. 503 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 504 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 505 IdxVec Writes, Reads; 506 if (!Inst->TheDef->isValueUnset("SchedRW")) 507 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 508 509 // ProcIdx == 0 indicates the class applies to all processors. 510 IdxVec ProcIndices(1, 0); 511 512 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 513 InstrClassMap[Inst->TheDef] = SCIdx; 514 } 515 // Create classes for InstRW defs. 516 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 517 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 518 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 519 createInstRWClass(*OI); 520 521 NumInstrSchedClasses = SchedClasses.size(); 522 523 bool EnableDump = false; 524 DEBUG(EnableDump = true); 525 if (!EnableDump) 526 return; 527 528 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 529 std::string InstName = Inst->TheDef->getName(); 530 unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); 531 if (!SCIdx) { 532 if (!Inst->hasNoSchedulingInfo) 533 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 534 continue; 535 } 536 CodeGenSchedClass &SC = getSchedClass(SCIdx); 537 if (SC.ProcIndices[0] != 0) 538 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 539 "must not be subtarget specific."); 540 541 IdxVec ProcIndices; 542 if (SC.ItinClassDef->getName() != "NoItinerary") { 543 ProcIndices.push_back(0); 544 dbgs() << "Itinerary for " << InstName << ": " 545 << SC.ItinClassDef->getName() << '\n'; 546 } 547 if (!SC.Writes.empty()) { 548 ProcIndices.push_back(0); 549 dbgs() << "SchedRW machine model for " << InstName; 550 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 551 dbgs() << " " << SchedWrites[*WI].Name; 552 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 553 dbgs() << " " << SchedReads[*RI].Name; 554 dbgs() << '\n'; 555 } 556 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 557 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 558 RWI != RWE; ++RWI) { 559 const CodeGenProcModel &ProcModel = 560 getProcModel((*RWI)->getValueAsDef("SchedModel")); 561 ProcIndices.push_back(ProcModel.Index); 562 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 563 IdxVec Writes; 564 IdxVec Reads; 565 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 566 Writes, Reads); 567 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 568 dbgs() << " " << SchedWrites[*WI].Name; 569 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 570 dbgs() << " " << SchedReads[*RI].Name; 571 dbgs() << '\n'; 572 } 573 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 574 PE = ProcModels.end(); PI != PE; ++PI) { 575 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) 576 dbgs() << "No machine model for " << Inst->TheDef->getName() 577 << " on processor " << PI->ModelName << '\n'; 578 } 579 } 580 } 581 582 /// Find an SchedClass that has been inferred from a per-operand list of 583 /// SchedWrites and SchedReads. 584 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 585 ArrayRef<unsigned> Writes, 586 ArrayRef<unsigned> Reads) const { 587 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 588 if (I->ItinClassDef == ItinClassDef && makeArrayRef(I->Writes) == Writes && 589 makeArrayRef(I->Reads) == Reads) { 590 return I - schedClassBegin(); 591 } 592 } 593 return 0; 594 } 595 596 // Get the SchedClass index for an instruction. 597 unsigned CodeGenSchedModels::getSchedClassIdx( 598 const CodeGenInstruction &Inst) const { 599 600 return InstrClassMap.lookup(Inst.TheDef); 601 } 602 603 std::string 604 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 605 ArrayRef<unsigned> OperWrites, 606 ArrayRef<unsigned> OperReads) { 607 608 std::string Name; 609 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 610 Name = ItinClassDef->getName(); 611 for (unsigned Idx : OperWrites) { 612 if (!Name.empty()) 613 Name += '_'; 614 Name += SchedWrites[Idx].Name; 615 } 616 for (unsigned Idx : OperReads) { 617 Name += '_'; 618 Name += SchedReads[Idx].Name; 619 } 620 return Name; 621 } 622 623 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 624 625 std::string Name; 626 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 627 if (I != InstDefs.begin()) 628 Name += '_'; 629 Name += (*I)->getName(); 630 } 631 return Name; 632 } 633 634 /// Add an inferred sched class from an itinerary class and per-operand list of 635 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 636 /// processors that may utilize this class. 637 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 638 ArrayRef<unsigned> OperWrites, 639 ArrayRef<unsigned> OperReads, 640 ArrayRef<unsigned> ProcIndices) { 641 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 642 643 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 644 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 645 IdxVec PI; 646 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 647 SchedClasses[Idx].ProcIndices.end(), 648 ProcIndices.begin(), ProcIndices.end(), 649 std::back_inserter(PI)); 650 SchedClasses[Idx].ProcIndices.swap(PI); 651 return Idx; 652 } 653 Idx = SchedClasses.size(); 654 SchedClasses.resize(Idx+1); 655 CodeGenSchedClass &SC = SchedClasses.back(); 656 SC.Index = Idx; 657 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 658 SC.ItinClassDef = ItinClassDef; 659 SC.Writes = OperWrites; 660 SC.Reads = OperReads; 661 SC.ProcIndices = ProcIndices; 662 663 return Idx; 664 } 665 666 // Create classes for each set of opcodes that are in the same InstReadWrite 667 // definition across all processors. 668 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 669 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 670 // intersects with an existing class via a previous InstRWDef. Instrs that do 671 // not intersect with an existing class refer back to their former class as 672 // determined from ItinDef or SchedRW. 673 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 674 // Sort Instrs into sets. 675 const RecVec *InstDefs = Sets.expand(InstRWDef); 676 if (InstDefs->empty()) 677 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 678 679 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 680 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 681 if (Pos == InstrClassMap.end()) 682 PrintFatalError((*I)->getLoc(), "No sched class for instruction."); 683 unsigned SCIdx = Pos->second; 684 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 685 for (; CIdx != CEnd; ++CIdx) { 686 if (ClassInstrs[CIdx].first == SCIdx) 687 break; 688 } 689 if (CIdx == CEnd) { 690 ClassInstrs.resize(CEnd + 1); 691 ClassInstrs[CIdx].first = SCIdx; 692 } 693 ClassInstrs[CIdx].second.push_back(*I); 694 } 695 // For each set of Instrs, create a new class if necessary, and map or remap 696 // the Instrs to it. 697 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 698 for (; CIdx != CEnd; ++CIdx) { 699 unsigned OldSCIdx = ClassInstrs[CIdx].first; 700 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 701 // If the all instrs in the current class are accounted for, then leave 702 // them mapped to their old class. 703 if (OldSCIdx) { 704 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 705 if (!RWDefs.empty()) { 706 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 707 unsigned OrigNumInstrs = 0; 708 for (RecIter I = OrigInstDefs->begin(), E = OrigInstDefs->end(); 709 I != E; ++I) { 710 if (InstrClassMap[*I] == OldSCIdx) 711 ++OrigNumInstrs; 712 } 713 if (OrigNumInstrs == InstDefs.size()) { 714 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 715 "expected a generic SchedClass"); 716 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 717 << SchedClasses[OldSCIdx].Name << " on " 718 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 719 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 720 continue; 721 } 722 } 723 } 724 unsigned SCIdx = SchedClasses.size(); 725 SchedClasses.resize(SCIdx+1); 726 CodeGenSchedClass &SC = SchedClasses.back(); 727 SC.Index = SCIdx; 728 SC.Name = createSchedClassName(InstDefs); 729 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 730 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 731 732 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 733 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 734 SC.Writes = SchedClasses[OldSCIdx].Writes; 735 SC.Reads = SchedClasses[OldSCIdx].Reads; 736 SC.ProcIndices.push_back(0); 737 // Map each Instr to this new class. 738 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 739 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 740 SmallSet<unsigned, 4> RemappedClassIDs; 741 for (ArrayRef<Record*>::const_iterator 742 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 743 unsigned OldSCIdx = InstrClassMap[*II]; 744 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { 745 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 746 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 747 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 748 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 749 (*II)->getName() + " also matches " + 750 (*RI)->getValue("Instrs")->getValue()->getAsString()); 751 } 752 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 753 SC.InstRWs.push_back(*RI); 754 } 755 } 756 InstrClassMap[*II] = SCIdx; 757 } 758 SC.InstRWs.push_back(InstRWDef); 759 } 760 } 761 762 // True if collectProcItins found anything. 763 bool CodeGenSchedModels::hasItineraries() const { 764 for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); 765 PI != PE; ++PI) { 766 if (PI->hasItineraries()) 767 return true; 768 } 769 return false; 770 } 771 772 // Gather the processor itineraries. 773 void CodeGenSchedModels::collectProcItins() { 774 for (CodeGenProcModel &ProcModel : ProcModels) { 775 if (!ProcModel.hasItineraries()) 776 continue; 777 778 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 779 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 780 781 // Populate ItinDefList with Itinerary records. 782 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 783 784 // Insert each itinerary data record in the correct position within 785 // the processor model's ItinDefList. 786 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 787 Record *ItinData = ItinRecords[i]; 788 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 789 bool FoundClass = false; 790 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 791 SCI != SCE; ++SCI) { 792 // Multiple SchedClasses may share an itinerary. Update all of them. 793 if (SCI->ItinClassDef == ItinDef) { 794 ProcModel.ItinDefList[SCI->Index] = ItinData; 795 FoundClass = true; 796 } 797 } 798 if (!FoundClass) { 799 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 800 << " missing class for itinerary " << ItinDef->getName() << '\n'); 801 } 802 } 803 // Check for missing itinerary entries. 804 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 805 DEBUG( 806 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 807 if (!ProcModel.ItinDefList[i]) 808 dbgs() << ProcModel.ItinsDef->getName() 809 << " missing itinerary for class " 810 << SchedClasses[i].Name << '\n'; 811 }); 812 } 813 } 814 815 // Gather the read/write types for each itinerary class. 816 void CodeGenSchedModels::collectProcItinRW() { 817 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 818 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 819 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 820 if (!(*II)->getValueInit("SchedModel")->isComplete()) 821 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 822 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 823 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 824 if (I == ProcModelMap.end()) { 825 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 826 + ModelDef->getName()); 827 } 828 ProcModels[I->second].ItinRWDefs.push_back(*II); 829 } 830 } 831 832 /// Infer new classes from existing classes. In the process, this may create new 833 /// SchedWrites from sequences of existing SchedWrites. 834 void CodeGenSchedModels::inferSchedClasses() { 835 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 836 837 // Visit all existing classes and newly created classes. 838 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 839 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 840 841 if (SchedClasses[Idx].ItinClassDef) 842 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 843 if (!SchedClasses[Idx].InstRWs.empty()) 844 inferFromInstRWs(Idx); 845 if (!SchedClasses[Idx].Writes.empty()) { 846 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 847 Idx, SchedClasses[Idx].ProcIndices); 848 } 849 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 850 "too many SchedVariants"); 851 } 852 } 853 854 /// Infer classes from per-processor itinerary resources. 855 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 856 unsigned FromClassIdx) { 857 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 858 const CodeGenProcModel &PM = ProcModels[PIdx]; 859 // For all ItinRW entries. 860 bool HasMatch = false; 861 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 862 II != IE; ++II) { 863 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 864 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 865 continue; 866 if (HasMatch) 867 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 868 + ItinClassDef->getName() 869 + " in ItinResources for " + PM.ModelName); 870 HasMatch = true; 871 IdxVec Writes, Reads; 872 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 873 IdxVec ProcIndices(1, PIdx); 874 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 875 } 876 } 877 } 878 879 /// Infer classes from per-processor InstReadWrite definitions. 880 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 881 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 882 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 883 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 884 const RecVec *InstDefs = Sets.expand(Rec); 885 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 886 for (; II != IE; ++II) { 887 if (InstrClassMap[*II] == SCIdx) 888 break; 889 } 890 // If this class no longer has any instructions mapped to it, it has become 891 // irrelevant. 892 if (II == IE) 893 continue; 894 IdxVec Writes, Reads; 895 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 896 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 897 IdxVec ProcIndices(1, PIdx); 898 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 899 } 900 } 901 902 namespace { 903 // Helper for substituteVariantOperand. 904 struct TransVariant { 905 Record *VarOrSeqDef; // Variant or sequence. 906 unsigned RWIdx; // Index of this variant or sequence's matched type. 907 unsigned ProcIdx; // Processor model index or zero for any. 908 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 909 910 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 911 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 912 }; 913 914 // Associate a predicate with the SchedReadWrite that it guards. 915 // RWIdx is the index of the read/write variant. 916 struct PredCheck { 917 bool IsRead; 918 unsigned RWIdx; 919 Record *Predicate; 920 921 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 922 }; 923 924 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 925 struct PredTransition { 926 // A predicate term is a conjunction of PredChecks. 927 SmallVector<PredCheck, 4> PredTerm; 928 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 929 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 930 SmallVector<unsigned, 4> ProcIndices; 931 }; 932 933 // Encapsulate a set of partially constructed transitions. 934 // The results are built by repeated calls to substituteVariants. 935 class PredTransitions { 936 CodeGenSchedModels &SchedModels; 937 938 public: 939 std::vector<PredTransition> TransVec; 940 941 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 942 943 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 944 bool IsRead, unsigned StartIdx); 945 946 void substituteVariants(const PredTransition &Trans); 947 948 #ifndef NDEBUG 949 void dump() const; 950 #endif 951 952 private: 953 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 954 void getIntersectingVariants( 955 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 956 std::vector<TransVariant> &IntersectingVariants); 957 void pushVariant(const TransVariant &VInfo, bool IsRead); 958 }; 959 } // anonymous 960 961 // Return true if this predicate is mutually exclusive with a PredTerm. This 962 // degenerates into checking if the predicate is mutually exclusive with any 963 // predicate in the Term's conjunction. 964 // 965 // All predicates associated with a given SchedRW are considered mutually 966 // exclusive. This should work even if the conditions expressed by the 967 // predicates are not exclusive because the predicates for a given SchedWrite 968 // are always checked in the order they are defined in the .td file. Later 969 // conditions implicitly negate any prior condition. 970 bool PredTransitions::mutuallyExclusive(Record *PredDef, 971 ArrayRef<PredCheck> Term) { 972 973 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 974 I != E; ++I) { 975 if (I->Predicate == PredDef) 976 return false; 977 978 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 979 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 980 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 981 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 982 if ((*VI)->getValueAsDef("Predicate") == PredDef) 983 return true; 984 } 985 } 986 return false; 987 } 988 989 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 990 CodeGenSchedModels &SchedModels) { 991 if (RW.HasVariants) 992 return true; 993 994 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 995 const CodeGenSchedRW &AliasRW = 996 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 997 if (AliasRW.HasVariants) 998 return true; 999 if (AliasRW.IsSequence) { 1000 IdxVec ExpandedRWs; 1001 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1002 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1003 SI != SE; ++SI) { 1004 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1005 SchedModels)) { 1006 return true; 1007 } 1008 } 1009 } 1010 } 1011 return false; 1012 } 1013 1014 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1015 CodeGenSchedModels &SchedModels) { 1016 for (ArrayRef<PredTransition>::iterator 1017 PTI = Transitions.begin(), PTE = Transitions.end(); 1018 PTI != PTE; ++PTI) { 1019 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1020 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1021 WSI != WSE; ++WSI) { 1022 for (SmallVectorImpl<unsigned>::const_iterator 1023 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1024 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1025 return true; 1026 } 1027 } 1028 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1029 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1030 RSI != RSE; ++RSI) { 1031 for (SmallVectorImpl<unsigned>::const_iterator 1032 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1033 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1034 return true; 1035 } 1036 } 1037 } 1038 return false; 1039 } 1040 1041 // Populate IntersectingVariants with any variants or aliased sequences of the 1042 // given SchedRW whose processor indices and predicates are not mutually 1043 // exclusive with the given transition. 1044 void PredTransitions::getIntersectingVariants( 1045 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1046 std::vector<TransVariant> &IntersectingVariants) { 1047 1048 bool GenericRW = false; 1049 1050 std::vector<TransVariant> Variants; 1051 if (SchedRW.HasVariants) { 1052 unsigned VarProcIdx = 0; 1053 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1054 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1055 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1056 } 1057 // Push each variant. Assign TransVecIdx later. 1058 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1059 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1060 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1061 if (VarProcIdx == 0) 1062 GenericRW = true; 1063 } 1064 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1065 AI != AE; ++AI) { 1066 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1067 // to is defined within a processor model, constrain all variants to 1068 // that processor. 1069 unsigned AliasProcIdx = 0; 1070 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1071 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1072 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1073 } 1074 const CodeGenSchedRW &AliasRW = 1075 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1076 1077 if (AliasRW.HasVariants) { 1078 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1079 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1080 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1081 } 1082 if (AliasRW.IsSequence) { 1083 Variants.push_back( 1084 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1085 } 1086 if (AliasProcIdx == 0) 1087 GenericRW = true; 1088 } 1089 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1090 TransVariant &Variant = Variants[VIdx]; 1091 // Don't expand variants if the processor models don't intersect. 1092 // A zero processor index means any processor. 1093 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1094 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1095 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1096 Variant.ProcIdx); 1097 if (!Cnt) 1098 continue; 1099 if (Cnt > 1) { 1100 const CodeGenProcModel &PM = 1101 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1102 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1103 "Multiple variants defined for processor " + 1104 PM.ModelName + 1105 " Ensure only one SchedAlias exists per RW."); 1106 } 1107 } 1108 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1109 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1110 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1111 continue; 1112 } 1113 if (IntersectingVariants.empty()) { 1114 // The first variant builds on the existing transition. 1115 Variant.TransVecIdx = TransIdx; 1116 IntersectingVariants.push_back(Variant); 1117 } 1118 else { 1119 // Push another copy of the current transition for more variants. 1120 Variant.TransVecIdx = TransVec.size(); 1121 IntersectingVariants.push_back(Variant); 1122 TransVec.push_back(TransVec[TransIdx]); 1123 } 1124 } 1125 if (GenericRW && IntersectingVariants.empty()) { 1126 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1127 "a matching predicate on any processor"); 1128 } 1129 } 1130 1131 // Push the Reads/Writes selected by this variant onto the PredTransition 1132 // specified by VInfo. 1133 void PredTransitions:: 1134 pushVariant(const TransVariant &VInfo, bool IsRead) { 1135 1136 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1137 1138 // If this operand transition is reached through a processor-specific alias, 1139 // then the whole transition is specific to this processor. 1140 if (VInfo.ProcIdx != 0) 1141 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1142 1143 IdxVec SelectedRWs; 1144 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1145 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1146 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1147 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1148 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1149 } 1150 else { 1151 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1152 "variant must be a SchedVariant or aliased WriteSequence"); 1153 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1154 } 1155 1156 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1157 1158 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1159 ? Trans.ReadSequences : Trans.WriteSequences; 1160 if (SchedRW.IsVariadic) { 1161 unsigned OperIdx = RWSequences.size()-1; 1162 // Make N-1 copies of this transition's last sequence. 1163 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1164 // Create a temporary copy the vector could reallocate. 1165 RWSequences.reserve(RWSequences.size() + 1); 1166 RWSequences.push_back(RWSequences[OperIdx]); 1167 } 1168 // Push each of the N elements of the SelectedRWs onto a copy of the last 1169 // sequence (split the current operand into N operands). 1170 // Note that write sequences should be expanded within this loop--the entire 1171 // sequence belongs to a single operand. 1172 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1173 RWI != RWE; ++RWI, ++OperIdx) { 1174 IdxVec ExpandedRWs; 1175 if (IsRead) 1176 ExpandedRWs.push_back(*RWI); 1177 else 1178 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1179 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1180 ExpandedRWs.begin(), ExpandedRWs.end()); 1181 } 1182 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1183 } 1184 else { 1185 // Push this transition's expanded sequence onto this transition's last 1186 // sequence (add to the current operand's sequence). 1187 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1188 IdxVec ExpandedRWs; 1189 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1190 RWI != RWE; ++RWI) { 1191 if (IsRead) 1192 ExpandedRWs.push_back(*RWI); 1193 else 1194 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1195 } 1196 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1197 } 1198 } 1199 1200 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1201 // operand. StartIdx is an index into TransVec where partial results 1202 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1203 // of TransVec. 1204 void PredTransitions::substituteVariantOperand( 1205 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1206 1207 // Visit each original RW within the current sequence. 1208 for (SmallVectorImpl<unsigned>::const_iterator 1209 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1210 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1211 // Push this RW on all partial PredTransitions or distribute variants. 1212 // New PredTransitions may be pushed within this loop which should not be 1213 // revisited (TransEnd must be loop invariant). 1214 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1215 TransIdx != TransEnd; ++TransIdx) { 1216 // In the common case, push RW onto the current operand's sequence. 1217 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1218 if (IsRead) 1219 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1220 else 1221 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1222 continue; 1223 } 1224 // Distribute this partial PredTransition across intersecting variants. 1225 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1226 std::vector<TransVariant> IntersectingVariants; 1227 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1228 // Now expand each variant on top of its copy of the transition. 1229 for (std::vector<TransVariant>::const_iterator 1230 IVI = IntersectingVariants.begin(), 1231 IVE = IntersectingVariants.end(); 1232 IVI != IVE; ++IVI) { 1233 pushVariant(*IVI, IsRead); 1234 } 1235 } 1236 } 1237 } 1238 1239 // For each variant of a Read/Write in Trans, substitute the sequence of 1240 // Read/Writes guarded by the variant. This is exponential in the number of 1241 // variant Read/Writes, but in practice detection of mutually exclusive 1242 // predicates should result in linear growth in the total number variants. 1243 // 1244 // This is one step in a breadth-first search of nested variants. 1245 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1246 // Build up a set of partial results starting at the back of 1247 // PredTransitions. Remember the first new transition. 1248 unsigned StartIdx = TransVec.size(); 1249 TransVec.resize(TransVec.size() + 1); 1250 TransVec.back().PredTerm = Trans.PredTerm; 1251 TransVec.back().ProcIndices = Trans.ProcIndices; 1252 1253 // Visit each original write sequence. 1254 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1255 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1256 WSI != WSE; ++WSI) { 1257 // Push a new (empty) write sequence onto all partial Transitions. 1258 for (std::vector<PredTransition>::iterator I = 1259 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1260 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1261 } 1262 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1263 } 1264 // Visit each original read sequence. 1265 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1266 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1267 RSI != RSE; ++RSI) { 1268 // Push a new (empty) read sequence onto all partial Transitions. 1269 for (std::vector<PredTransition>::iterator I = 1270 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1271 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1272 } 1273 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1274 } 1275 } 1276 1277 // Create a new SchedClass for each variant found by inferFromRW. Pass 1278 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1279 unsigned FromClassIdx, 1280 CodeGenSchedModels &SchedModels) { 1281 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1282 // requires creating a new SchedClass. 1283 for (ArrayRef<PredTransition>::iterator 1284 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1285 IdxVec OperWritesVariant; 1286 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1287 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1288 WSI != WSE; ++WSI) { 1289 // Create a new write representing the expanded sequence. 1290 OperWritesVariant.push_back( 1291 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1292 } 1293 IdxVec OperReadsVariant; 1294 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1295 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1296 RSI != RSE; ++RSI) { 1297 // Create a new read representing the expanded sequence. 1298 OperReadsVariant.push_back( 1299 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1300 } 1301 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1302 CodeGenSchedTransition SCTrans; 1303 SCTrans.ToClassIdx = 1304 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1305 OperReadsVariant, ProcIndices); 1306 SCTrans.ProcIndices = ProcIndices; 1307 // The final PredTerm is unique set of predicates guarding the transition. 1308 RecVec Preds; 1309 for (SmallVectorImpl<PredCheck>::const_iterator 1310 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1311 Preds.push_back(PI->Predicate); 1312 } 1313 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1314 Preds.resize(PredsEnd - Preds.begin()); 1315 SCTrans.PredTerm = Preds; 1316 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1317 } 1318 } 1319 1320 // Create new SchedClasses for the given ReadWrite list. If any of the 1321 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1322 // of the ReadWrite list, following Aliases if necessary. 1323 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1324 ArrayRef<unsigned> OperReads, 1325 unsigned FromClassIdx, 1326 ArrayRef<unsigned> ProcIndices) { 1327 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1328 1329 // Create a seed transition with an empty PredTerm and the expanded sequences 1330 // of SchedWrites for the current SchedClass. 1331 std::vector<PredTransition> LastTransitions; 1332 LastTransitions.resize(1); 1333 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1334 ProcIndices.end()); 1335 1336 for (unsigned WriteIdx : OperWrites) { 1337 IdxVec WriteSeq; 1338 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1339 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1340 LastTransitions[0].WriteSequences.resize(Idx + 1); 1341 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1342 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1343 Seq.push_back(*WI); 1344 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1345 } 1346 DEBUG(dbgs() << " Reads: "); 1347 for (unsigned ReadIdx : OperReads) { 1348 IdxVec ReadSeq; 1349 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1350 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1351 LastTransitions[0].ReadSequences.resize(Idx + 1); 1352 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1353 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1354 Seq.push_back(*RI); 1355 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1356 } 1357 DEBUG(dbgs() << '\n'); 1358 1359 // Collect all PredTransitions for individual operands. 1360 // Iterate until no variant writes remain. 1361 while (hasVariant(LastTransitions, *this)) { 1362 PredTransitions Transitions(*this); 1363 for (std::vector<PredTransition>::const_iterator 1364 I = LastTransitions.begin(), E = LastTransitions.end(); 1365 I != E; ++I) { 1366 Transitions.substituteVariants(*I); 1367 } 1368 DEBUG(Transitions.dump()); 1369 LastTransitions.swap(Transitions.TransVec); 1370 } 1371 // If the first transition has no variants, nothing to do. 1372 if (LastTransitions[0].PredTerm.empty()) 1373 return; 1374 1375 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1376 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1377 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1378 } 1379 1380 // Check if any processor resource group contains all resource records in 1381 // SubUnits. 1382 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1383 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1384 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1385 continue; 1386 RecVec SuperUnits = 1387 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1388 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1389 for ( ; RI != RE; ++RI) { 1390 if (std::find(SuperUnits.begin(), SuperUnits.end(), *RI) 1391 == SuperUnits.end()) { 1392 break; 1393 } 1394 } 1395 if (RI == RE) 1396 return true; 1397 } 1398 return false; 1399 } 1400 1401 // Verify that overlapping groups have a common supergroup. 1402 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1403 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1404 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1405 continue; 1406 RecVec CheckUnits = 1407 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1408 for (unsigned j = i+1; j < e; ++j) { 1409 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1410 continue; 1411 RecVec OtherUnits = 1412 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1413 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1414 OtherUnits.begin(), OtherUnits.end()) 1415 != CheckUnits.end()) { 1416 // CheckUnits and OtherUnits overlap 1417 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1418 CheckUnits.end()); 1419 if (!hasSuperGroup(OtherUnits, PM)) { 1420 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1421 "proc resource group overlaps with " 1422 + PM.ProcResourceDefs[j]->getName() 1423 + " but no supergroup contains both."); 1424 } 1425 } 1426 } 1427 } 1428 } 1429 1430 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1431 void CodeGenSchedModels::collectProcResources() { 1432 // Add any subtarget-specific SchedReadWrites that are directly associated 1433 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1434 // determine which processors they apply to. 1435 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1436 SCI != SCE; ++SCI) { 1437 if (SCI->ItinClassDef) 1438 collectItinProcResources(SCI->ItinClassDef); 1439 else { 1440 // This class may have a default ReadWrite list which can be overriden by 1441 // InstRW definitions. 1442 if (!SCI->InstRWs.empty()) { 1443 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1444 RWI != RWE; ++RWI) { 1445 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1446 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1447 IdxVec Writes, Reads; 1448 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1449 Writes, Reads); 1450 collectRWResources(Writes, Reads, ProcIndices); 1451 } 1452 } 1453 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1454 } 1455 } 1456 // Add resources separately defined by each subtarget. 1457 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1458 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1459 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1460 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1461 } 1462 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1463 for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { 1464 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1465 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1466 } 1467 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1468 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1469 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1470 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1471 } 1472 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1473 for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { 1474 if ((*RAI)->getValueInit("SchedModel")->isComplete()) { 1475 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1476 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1477 } 1478 } 1479 // Add ProcResGroups that are defined within this processor model, which may 1480 // not be directly referenced but may directly specify a buffer size. 1481 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1482 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1483 RI != RE; ++RI) { 1484 if (!(*RI)->getValueInit("SchedModel")->isComplete()) 1485 continue; 1486 CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); 1487 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1488 PM.ProcResourceDefs.end(), *RI); 1489 if (I == PM.ProcResourceDefs.end()) 1490 PM.ProcResourceDefs.push_back(*RI); 1491 } 1492 // Finalize each ProcModel by sorting the record arrays. 1493 for (CodeGenProcModel &PM : ProcModels) { 1494 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1495 LessRecord()); 1496 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1497 LessRecord()); 1498 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1499 LessRecord()); 1500 DEBUG( 1501 PM.dump(); 1502 dbgs() << "WriteResDefs: "; 1503 for (RecIter RI = PM.WriteResDefs.begin(), 1504 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1505 if ((*RI)->isSubClassOf("WriteRes")) 1506 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1507 else 1508 dbgs() << (*RI)->getName() << " "; 1509 } 1510 dbgs() << "\nReadAdvanceDefs: "; 1511 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1512 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1513 if ((*RI)->isSubClassOf("ReadAdvance")) 1514 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1515 else 1516 dbgs() << (*RI)->getName() << " "; 1517 } 1518 dbgs() << "\nProcResourceDefs: "; 1519 for (RecIter RI = PM.ProcResourceDefs.begin(), 1520 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1521 dbgs() << (*RI)->getName() << " "; 1522 } 1523 dbgs() << '\n'); 1524 verifyProcResourceGroups(PM); 1525 } 1526 } 1527 1528 void CodeGenSchedModels::checkCompleteness() { 1529 bool Complete = true; 1530 bool HadCompleteModel = false; 1531 for (const CodeGenProcModel &ProcModel : procModels()) { 1532 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1533 continue; 1534 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1535 if (Inst->hasNoSchedulingInfo) 1536 continue; 1537 unsigned SCIdx = getSchedClassIdx(*Inst); 1538 if (!SCIdx) { 1539 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1540 PrintError("No schedule information for instruction '" 1541 + Inst->TheDef->getName() + "'"); 1542 Complete = false; 1543 } 1544 continue; 1545 } 1546 1547 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1548 if (!SC.Writes.empty()) 1549 continue; 1550 if (SC.ItinClassDef != nullptr) 1551 continue; 1552 1553 const RecVec &InstRWs = SC.InstRWs; 1554 auto I = std::find_if(InstRWs.begin(), InstRWs.end(), 1555 [&ProcModel] (const Record *R) { 1556 return R->getValueAsDef("SchedModel") == 1557 ProcModel.ModelDef; 1558 }); 1559 if (I == InstRWs.end()) { 1560 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1561 Inst->TheDef->getName() + "'"); 1562 Complete = false; 1563 } 1564 } 1565 HadCompleteModel = true; 1566 } 1567 if (!Complete) { 1568 errs() << "\n\nIncomplete schedule models found.\n" 1569 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1570 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1571 << "- Instructions should usually have Sched<[...]> as a superclass, " 1572 "you may temporarily use an empty list.\n\n"; 1573 PrintFatalError("Incomplete schedule model"); 1574 } 1575 } 1576 1577 // Collect itinerary class resources for each processor. 1578 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1579 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1580 const CodeGenProcModel &PM = ProcModels[PIdx]; 1581 // For all ItinRW entries. 1582 bool HasMatch = false; 1583 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1584 II != IE; ++II) { 1585 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1586 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1587 continue; 1588 if (HasMatch) 1589 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1590 + ItinClassDef->getName() 1591 + " in ItinResources for " + PM.ModelName); 1592 HasMatch = true; 1593 IdxVec Writes, Reads; 1594 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1595 IdxVec ProcIndices(1, PIdx); 1596 collectRWResources(Writes, Reads, ProcIndices); 1597 } 1598 } 1599 } 1600 1601 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1602 ArrayRef<unsigned> ProcIndices) { 1603 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1604 if (SchedRW.TheDef) { 1605 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1606 for (unsigned Idx : ProcIndices) 1607 addWriteRes(SchedRW.TheDef, Idx); 1608 } 1609 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1610 for (unsigned Idx : ProcIndices) 1611 addReadAdvance(SchedRW.TheDef, Idx); 1612 } 1613 } 1614 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1615 AI != AE; ++AI) { 1616 IdxVec AliasProcIndices; 1617 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1618 AliasProcIndices.push_back( 1619 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1620 } 1621 else 1622 AliasProcIndices = ProcIndices; 1623 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1624 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1625 1626 IdxVec ExpandedRWs; 1627 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1628 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1629 SI != SE; ++SI) { 1630 collectRWResources(*SI, IsRead, AliasProcIndices); 1631 } 1632 } 1633 } 1634 1635 // Collect resources for a set of read/write types and processor indices. 1636 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1637 ArrayRef<unsigned> Reads, 1638 ArrayRef<unsigned> ProcIndices) { 1639 1640 for (unsigned Idx : Writes) 1641 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1642 1643 for (unsigned Idx : Reads) 1644 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1645 } 1646 1647 1648 // Find the processor's resource units for this kind of resource. 1649 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1650 const CodeGenProcModel &PM) const { 1651 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1652 return ProcResKind; 1653 1654 Record *ProcUnitDef = nullptr; 1655 RecVec ProcResourceDefs = 1656 Records.getAllDerivedDefinitions("ProcResourceUnits"); 1657 1658 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1659 RI != RE; ++RI) { 1660 1661 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1662 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1663 if (ProcUnitDef) { 1664 PrintFatalError((*RI)->getLoc(), 1665 "Multiple ProcessorResourceUnits associated with " 1666 + ProcResKind->getName()); 1667 } 1668 ProcUnitDef = *RI; 1669 } 1670 } 1671 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1672 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1673 RI != RE; ++RI) { 1674 1675 if (*RI == ProcResKind 1676 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1677 if (ProcUnitDef) { 1678 PrintFatalError((*RI)->getLoc(), 1679 "Multiple ProcessorResourceUnits associated with " 1680 + ProcResKind->getName()); 1681 } 1682 ProcUnitDef = *RI; 1683 } 1684 } 1685 if (!ProcUnitDef) { 1686 PrintFatalError(ProcResKind->getLoc(), 1687 "No ProcessorResources associated with " 1688 + ProcResKind->getName()); 1689 } 1690 return ProcUnitDef; 1691 } 1692 1693 // Iteratively add a resource and its super resources. 1694 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1695 CodeGenProcModel &PM) { 1696 for (;;) { 1697 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1698 1699 // See if this ProcResource is already associated with this processor. 1700 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1701 PM.ProcResourceDefs.end(), ProcResUnits); 1702 if (I != PM.ProcResourceDefs.end()) 1703 return; 1704 1705 PM.ProcResourceDefs.push_back(ProcResUnits); 1706 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1707 return; 1708 1709 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1710 return; 1711 1712 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1713 } 1714 } 1715 1716 // Add resources for a SchedWrite to this processor if they don't exist. 1717 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1718 assert(PIdx && "don't add resources to an invalid Processor model"); 1719 1720 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1721 RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); 1722 if (WRI != WRDefs.end()) 1723 return; 1724 WRDefs.push_back(ProcWriteResDef); 1725 1726 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1727 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1728 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1729 WritePRI != WritePRE; ++WritePRI) { 1730 addProcResource(*WritePRI, ProcModels[PIdx]); 1731 } 1732 } 1733 1734 // Add resources for a ReadAdvance to this processor if they don't exist. 1735 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1736 unsigned PIdx) { 1737 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1738 RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); 1739 if (I != RADefs.end()) 1740 return; 1741 RADefs.push_back(ProcReadAdvanceDef); 1742 } 1743 1744 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1745 RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), 1746 PRDef); 1747 if (PRPos == ProcResourceDefs.end()) 1748 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1749 "the ProcResources list for " + ModelName); 1750 // Idx=0 is reserved for invalid. 1751 return 1 + (PRPos - ProcResourceDefs.begin()); 1752 } 1753 1754 #ifndef NDEBUG 1755 void CodeGenProcModel::dump() const { 1756 dbgs() << Index << ": " << ModelName << " " 1757 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1758 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1759 } 1760 1761 void CodeGenSchedRW::dump() const { 1762 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1763 if (IsSequence) { 1764 dbgs() << "("; 1765 dumpIdxVec(Sequence); 1766 dbgs() << ")"; 1767 } 1768 } 1769 1770 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1771 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1772 << " Writes: "; 1773 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1774 SchedModels->getSchedWrite(Writes[i]).dump(); 1775 if (i < N-1) { 1776 dbgs() << '\n'; 1777 dbgs().indent(10); 1778 } 1779 } 1780 dbgs() << "\n Reads: "; 1781 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1782 SchedModels->getSchedRead(Reads[i]).dump(); 1783 if (i < N-1) { 1784 dbgs() << '\n'; 1785 dbgs().indent(10); 1786 } 1787 } 1788 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1789 if (!Transitions.empty()) { 1790 dbgs() << "\n Transitions for Proc "; 1791 for (std::vector<CodeGenSchedTransition>::const_iterator 1792 TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { 1793 dumpIdxVec(TI->ProcIndices); 1794 } 1795 } 1796 } 1797 1798 void PredTransitions::dump() const { 1799 dbgs() << "Expanded Variants:\n"; 1800 for (std::vector<PredTransition>::const_iterator 1801 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1802 dbgs() << "{"; 1803 for (SmallVectorImpl<PredCheck>::const_iterator 1804 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1805 PCI != PCE; ++PCI) { 1806 if (PCI != TI->PredTerm.begin()) 1807 dbgs() << ", "; 1808 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1809 << ":" << PCI->Predicate->getName(); 1810 } 1811 dbgs() << "},\n => {"; 1812 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1813 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1814 WSI != WSE; ++WSI) { 1815 dbgs() << "("; 1816 for (SmallVectorImpl<unsigned>::const_iterator 1817 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1818 if (WI != WSI->begin()) 1819 dbgs() << ", "; 1820 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1821 } 1822 dbgs() << "),"; 1823 } 1824 dbgs() << "}\n"; 1825 } 1826 } 1827 #endif // NDEBUG 1828