1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate the machine model as described in
11 // the target description.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenSchedule.h"
16 #include "CodeGenInstruction.h"
17 #include "CodeGenTarget.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Regex.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/TableGen/Error.h"
28 #include <algorithm>
29 #include <iterator>
30 #include <utility>
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "subtarget-emitter"
35 
36 #ifndef NDEBUG
37 static void dumpIdxVec(ArrayRef<unsigned> V) {
38   for (unsigned Idx : V)
39     dbgs() << Idx << ", ";
40 }
41 #endif
42 
43 namespace {
44 
45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
46 struct InstrsOp : public SetTheory::Operator {
47   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
48              ArrayRef<SMLoc> Loc) override {
49     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
50   }
51 };
52 
53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
54 struct InstRegexOp : public SetTheory::Operator {
55   const CodeGenTarget &Target;
56   InstRegexOp(const CodeGenTarget &t): Target(t) {}
57 
58   /// Remove any text inside of parentheses from S.
59   static std::string removeParens(llvm::StringRef S) {
60     std::string Result;
61     unsigned Paren = 0;
62     // NB: We don't care about escaped parens here.
63     for (char C : S) {
64       switch (C) {
65       case '(':
66         ++Paren;
67         break;
68       case ')':
69         --Paren;
70         break;
71       default:
72         if (Paren == 0)
73           Result += C;
74       }
75     }
76     return Result;
77   }
78 
79   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
80              ArrayRef<SMLoc> Loc) override {
81     ArrayRef<const CodeGenInstruction *> Instructions =
82         Target.getInstructionsByEnumValue();
83 
84     unsigned NumGeneric = Target.getNumFixedInstructions();
85     unsigned NumPseudos = Target.getNumPseudoInstructions();
86     auto Generics = Instructions.slice(0, NumGeneric);
87     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
88     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
89 
90     for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
91       StringInit *SI = dyn_cast<StringInit>(Arg);
92       if (!SI)
93         PrintFatalError(Loc, "instregex requires pattern string: " +
94                                  Expr->getAsString());
95       StringRef Original = SI->getValue();
96 
97       // Extract a prefix that we can binary search on.
98       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
99       auto FirstMeta = Original.find_first_of(RegexMetachars);
100 
101       // Look for top-level | or ?. We cannot optimize them to binary search.
102       if (removeParens(Original).find_first_of("|?") != std::string::npos)
103         FirstMeta = 0;
104 
105       Optional<Regex> Regexpr = None;
106       StringRef Prefix = Original.substr(0, FirstMeta);
107       StringRef PatStr = Original.substr(FirstMeta);
108       if (!PatStr.empty()) {
109         // For the rest use a python-style prefix match.
110         std::string pat = PatStr;
111         if (pat[0] != '^') {
112           pat.insert(0, "^(");
113           pat.insert(pat.end(), ')');
114         }
115         Regexpr = Regex(pat);
116       }
117 
118       int NumMatches = 0;
119 
120       // The generic opcodes are unsorted, handle them manually.
121       for (auto *Inst : Generics) {
122         StringRef InstName = Inst->TheDef->getName();
123         if (InstName.startswith(Prefix) &&
124             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
125           Elts.insert(Inst->TheDef);
126           NumMatches++;
127         }
128       }
129 
130       // Target instructions are split into two ranges: pseudo instructions
131       // first, than non-pseudos. Each range is in lexicographical order
132       // sorted by name. Find the sub-ranges that start with our prefix.
133       struct Comp {
134         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
135           return LHS->TheDef->getName() < RHS;
136         }
137         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
138           return LHS < RHS->TheDef->getName() &&
139                  !RHS->TheDef->getName().startswith(LHS);
140         }
141       };
142       auto Range1 =
143           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
144       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
145                                      Prefix, Comp());
146 
147       // For these ranges we know that instruction names start with the prefix.
148       // Check if there's a regex that needs to be checked.
149       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
150         StringRef InstName = Inst->TheDef->getName();
151         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
152           Elts.insert(Inst->TheDef);
153           NumMatches++;
154         }
155       };
156       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
157       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
158 
159       if (0 == NumMatches)
160         PrintFatalError(Loc, "instregex has no matches: " + Original);
161     }
162   }
163 };
164 
165 } // end anonymous namespace
166 
167 /// CodeGenModels ctor interprets machine model records and populates maps.
168 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
169                                        const CodeGenTarget &TGT):
170   Records(RK), Target(TGT) {
171 
172   Sets.addFieldExpander("InstRW", "Instrs");
173 
174   // Allow Set evaluation to recognize the dags used in InstRW records:
175   // (instrs Op1, Op1...)
176   Sets.addOperator("instrs", llvm::make_unique<InstrsOp>());
177   Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target));
178 
179   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
180   // that are explicitly referenced in tablegen records. Resources associated
181   // with each processor will be derived later. Populate ProcModelMap with the
182   // CodeGenProcModel instances.
183   collectProcModels();
184 
185   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
186   // defined, and populate SchedReads and SchedWrites vectors. Implicit
187   // SchedReadWrites that represent sequences derived from expanded variant will
188   // be inferred later.
189   collectSchedRW();
190 
191   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
192   // required by an instruction definition, and populate SchedClassIdxMap. Set
193   // NumItineraryClasses to the number of explicit itinerary classes referenced
194   // by instructions. Set NumInstrSchedClasses to the number of itinerary
195   // classes plus any classes implied by instructions that derive from class
196   // Sched and provide SchedRW list. This does not infer any new classes from
197   // SchedVariant.
198   collectSchedClasses();
199 
200   // Find instruction itineraries for each processor. Sort and populate
201   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
202   // all itinerary classes to be discovered.
203   collectProcItins();
204 
205   // Find ItinRW records for each processor and itinerary class.
206   // (For per-operand resources mapped to itinerary classes).
207   collectProcItinRW();
208 
209   // Find UnsupportedFeatures records for each processor.
210   // (For per-operand resources mapped to itinerary classes).
211   collectProcUnsupportedFeatures();
212 
213   // Infer new SchedClasses from SchedVariant.
214   inferSchedClasses();
215 
216   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
217   // ProcResourceDefs.
218   LLVM_DEBUG(
219       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
220   collectProcResources();
221 
222   // Collect optional processor description.
223   collectOptionalProcessorInfo();
224 
225   // Check MCInstPredicate definitions.
226   checkMCInstPredicates();
227 
228   // Check STIPredicate definitions.
229   checkSTIPredicates();
230 
231   // Find STIPredicate definitions for each processor model, and construct
232   // STIPredicateFunction objects.
233   collectSTIPredicates();
234 
235   checkCompleteness();
236 }
237 
238 void CodeGenSchedModels::checkSTIPredicates() const {
239   DenseMap<StringRef, const Record *> Declarations;
240 
241   // There cannot be multiple declarations with the same name.
242   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
243   for (const Record *R : Decls) {
244     StringRef Name = R->getValueAsString("Name");
245     const auto It = Declarations.find(Name);
246     if (It == Declarations.end()) {
247       Declarations[Name] = R;
248       continue;
249     }
250 
251     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
252     PrintNote(It->second->getLoc(), "Previous declaration was here.");
253     PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
254   }
255 
256   // Disallow InstructionEquivalenceClasses with an empty instruction list.
257   const RecVec Defs =
258       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
259   for (const Record *R : Defs) {
260     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
261     if (Opcodes.empty()) {
262       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
263                                    "defined with an empty opcode list.");
264     }
265   }
266 }
267 
268 // Used by function `processSTIPredicate` to construct a mask of machine
269 // instruction operands.
270 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
271   APInt OperandMask;
272   if (Indices.empty())
273     return OperandMask;
274 
275   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
276   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
277   OperandMask = OperandMask.zext(MaxIndex + 1);
278   for (const int64_t Index : Indices) {
279     assert(Index >= 0 && "Invalid negative indices!");
280     OperandMask.setBit(Index);
281   }
282 
283   return OperandMask;
284 }
285 
286 static void
287 processSTIPredicate(STIPredicateFunction &Fn,
288                     const DenseMap<Record *, unsigned> &ProcModelMap) {
289   DenseMap<const Record *, unsigned> Opcode2Index;
290   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
291   std::vector<OpcodeMapPair> OpcodeMappings;
292   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
293 
294   DenseMap<const Record *, unsigned> Predicate2Index;
295   unsigned NumUniquePredicates = 0;
296 
297   // Number unique predicates and opcodes used by InstructionEquivalenceClass
298   // definitions. Each unique opcode will be associated with an OpcodeInfo
299   // object.
300   for (const Record *Def : Fn.getDefinitions()) {
301     RecVec Classes = Def->getValueAsListOfDefs("Classes");
302     for (const Record *EC : Classes) {
303       const Record *Pred = EC->getValueAsDef("Predicate");
304       if (Predicate2Index.find(Pred) == Predicate2Index.end())
305         Predicate2Index[Pred] = NumUniquePredicates++;
306 
307       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
308       for (const Record *Opcode : Opcodes) {
309         if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
310           Opcode2Index[Opcode] = OpcodeMappings.size();
311           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
312         }
313       }
314     }
315   }
316 
317   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
318   // of which processors "use" which opcodes.  We also want to be able to
319   // identify predicates that are used by different processors for a same
320   // opcode.
321   // This information is used later on by this algorithm to sort OpcodeMapping
322   // elements based on their processor and predicate sets.
323   OpcodeMasks.resize(OpcodeMappings.size());
324   APInt DefaultProcMask(ProcModelMap.size(), 0);
325   APInt DefaultPredMask(NumUniquePredicates, 0);
326   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
327     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
328 
329   // Construct a OpcodeInfo object for every unique opcode declared by an
330   // InstructionEquivalenceClass definition.
331   for (const Record *Def : Fn.getDefinitions()) {
332     RecVec Classes = Def->getValueAsListOfDefs("Classes");
333     const Record *SchedModel = Def->getValueAsDef("SchedModel");
334     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
335     APInt ProcMask(ProcModelMap.size(), 0);
336     ProcMask.setBit(ProcIndex);
337 
338     for (const Record *EC : Classes) {
339       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
340 
341       std::vector<int64_t> OpIndices =
342           EC->getValueAsListOfInts("OperandIndices");
343       APInt OperandMask = constructOperandMask(OpIndices);
344 
345       const Record *Pred = EC->getValueAsDef("Predicate");
346       APInt PredMask(NumUniquePredicates, 0);
347       PredMask.setBit(Predicate2Index[Pred]);
348 
349       for (const Record *Opcode : Opcodes) {
350         unsigned OpcodeIdx = Opcode2Index[Opcode];
351         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
352           std::string Message =
353               "Opcode " + Opcode->getName().str() +
354               " used by multiple InstructionEquivalenceClass definitions.";
355           PrintFatalError(EC->getLoc(), Message);
356         }
357         OpcodeMasks[OpcodeIdx].first |= ProcMask;
358         OpcodeMasks[OpcodeIdx].second |= PredMask;
359         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
360 
361         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
362       }
363     }
364   }
365 
366   // Sort OpcodeMappings elements based on their CPU and predicate masks.
367   // As a last resort, order elements by opcode identifier.
368   llvm::sort(OpcodeMappings.begin(), OpcodeMappings.end(),
369              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
370                unsigned LhsIdx = Opcode2Index[Lhs.first];
371                unsigned RhsIdx = Opcode2Index[Rhs.first];
372                std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
373                std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
374 
375                if (LhsMasks.first != RhsMasks.first) {
376                  if (LhsMasks.first.countPopulation() <
377                      RhsMasks.first.countPopulation())
378                    return true;
379                  return LhsMasks.first.countLeadingZeros() >
380                         RhsMasks.first.countLeadingZeros();
381                }
382 
383                if (LhsMasks.second != RhsMasks.second) {
384                  if (LhsMasks.second.countPopulation() <
385                      RhsMasks.second.countPopulation())
386                    return true;
387                  return LhsMasks.second.countLeadingZeros() >
388                         RhsMasks.second.countLeadingZeros();
389                }
390 
391                return LhsIdx < RhsIdx;
392              });
393 
394   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
395   // expanding the body of a STIPredicate function. In particular, each opcode
396   // group is expanded into a sequence of labels in a switch statement.
397   // It identifies opcodes for which different processors define same predicates
398   // and same opcode masks.
399   for (OpcodeMapPair &Info : OpcodeMappings)
400     Fn.addOpcode(Info.first, std::move(Info.second));
401 }
402 
403 void CodeGenSchedModels::collectSTIPredicates() {
404   // Map STIPredicateDecl records to elements of vector
405   // CodeGenSchedModels::STIPredicates.
406   DenseMap<const Record *, unsigned> Decl2Index;
407 
408   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
409   for (const Record *R : RV) {
410     const Record *Decl = R->getValueAsDef("Declaration");
411 
412     const auto It = Decl2Index.find(Decl);
413     if (It == Decl2Index.end()) {
414       Decl2Index[Decl] = STIPredicates.size();
415       STIPredicateFunction Predicate(Decl);
416       Predicate.addDefinition(R);
417       STIPredicates.emplace_back(std::move(Predicate));
418       continue;
419     }
420 
421     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
422     PreviousDef.addDefinition(R);
423   }
424 
425   for (STIPredicateFunction &Fn : STIPredicates)
426     processSTIPredicate(Fn, ProcModelMap);
427 }
428 
429 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
430                                           const llvm::APInt &OperandMask,
431                                           const Record *Predicate) {
432   auto It = llvm::find_if(
433       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
434         return P.Predicate == Predicate && P.OperandMask == OperandMask;
435       });
436   if (It == Predicates.end()) {
437     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
438     return;
439   }
440   It->ProcModelMask |= CpuMask;
441 }
442 
443 void CodeGenSchedModels::checkMCInstPredicates() const {
444   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
445   if (MCPredicates.empty())
446     return;
447 
448   // A target cannot have multiple TIIPredicate definitions with a same name.
449   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
450   for (const Record *TIIPred : MCPredicates) {
451     StringRef Name = TIIPred->getValueAsString("FunctionName");
452     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
453     if (It == TIIPredicates.end()) {
454       TIIPredicates[Name] = TIIPred;
455       continue;
456     }
457 
458     PrintError(TIIPred->getLoc(),
459                "TIIPredicate " + Name + " is multiply defined.");
460     PrintNote(It->second->getLoc(),
461               " Previous definition of " + Name + " was here.");
462     PrintFatalError(TIIPred->getLoc(),
463                     "Found conflicting definitions of TIIPredicate.");
464   }
465 }
466 
467 void CodeGenSchedModels::collectRetireControlUnits() {
468   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
469 
470   for (Record *RCU : Units) {
471     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
472     if (PM.RetireControlUnit) {
473       PrintError(RCU->getLoc(),
474                  "Expected a single RetireControlUnit definition");
475       PrintNote(PM.RetireControlUnit->getLoc(),
476                 "Previous definition of RetireControlUnit was here");
477     }
478     PM.RetireControlUnit = RCU;
479   }
480 }
481 
482 /// Collect optional processor information.
483 void CodeGenSchedModels::collectOptionalProcessorInfo() {
484   // Find register file definitions for each processor.
485   collectRegisterFiles();
486 
487   // Collect processor RetireControlUnit descriptors if available.
488   collectRetireControlUnits();
489 
490   // Find pfm counter definitions for each processor.
491   collectPfmCounters();
492 
493   checkCompleteness();
494 }
495 
496 /// Gather all processor models.
497 void CodeGenSchedModels::collectProcModels() {
498   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
499   llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName());
500 
501   // Reserve space because we can. Reallocation would be ok.
502   ProcModels.reserve(ProcRecords.size()+1);
503 
504   // Use idx=0 for NoModel/NoItineraries.
505   Record *NoModelDef = Records.getDef("NoSchedModel");
506   Record *NoItinsDef = Records.getDef("NoItineraries");
507   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
508   ProcModelMap[NoModelDef] = 0;
509 
510   // For each processor, find a unique machine model.
511   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
512   for (Record *ProcRecord : ProcRecords)
513     addProcModel(ProcRecord);
514 }
515 
516 /// Get a unique processor model based on the defined MachineModel and
517 /// ProcessorItineraries.
518 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
519   Record *ModelKey = getModelOrItinDef(ProcDef);
520   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
521     return;
522 
523   std::string Name = ModelKey->getName();
524   if (ModelKey->isSubClassOf("SchedMachineModel")) {
525     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
526     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
527   }
528   else {
529     // An itinerary is defined without a machine model. Infer a new model.
530     if (!ModelKey->getValueAsListOfDefs("IID").empty())
531       Name = Name + "Model";
532     ProcModels.emplace_back(ProcModels.size(), Name,
533                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
534   }
535   LLVM_DEBUG(ProcModels.back().dump());
536 }
537 
538 // Recursively find all reachable SchedReadWrite records.
539 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
540                         SmallPtrSet<Record*, 16> &RWSet) {
541   if (!RWSet.insert(RWDef).second)
542     return;
543   RWDefs.push_back(RWDef);
544   // Reads don't currently have sequence records, but it can be added later.
545   if (RWDef->isSubClassOf("WriteSequence")) {
546     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
547     for (Record *WSRec : Seq)
548       scanSchedRW(WSRec, RWDefs, RWSet);
549   }
550   else if (RWDef->isSubClassOf("SchedVariant")) {
551     // Visit each variant (guarded by a different predicate).
552     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
553     for (Record *Variant : Vars) {
554       // Visit each RW in the sequence selected by the current variant.
555       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
556       for (Record *SelDef : Selected)
557         scanSchedRW(SelDef, RWDefs, RWSet);
558     }
559   }
560 }
561 
562 // Collect and sort all SchedReadWrites reachable via tablegen records.
563 // More may be inferred later when inferring new SchedClasses from variants.
564 void CodeGenSchedModels::collectSchedRW() {
565   // Reserve idx=0 for invalid writes/reads.
566   SchedWrites.resize(1);
567   SchedReads.resize(1);
568 
569   SmallPtrSet<Record*, 16> RWSet;
570 
571   // Find all SchedReadWrites referenced by instruction defs.
572   RecVec SWDefs, SRDefs;
573   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
574     Record *SchedDef = Inst->TheDef;
575     if (SchedDef->isValueUnset("SchedRW"))
576       continue;
577     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
578     for (Record *RW : RWs) {
579       if (RW->isSubClassOf("SchedWrite"))
580         scanSchedRW(RW, SWDefs, RWSet);
581       else {
582         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
583         scanSchedRW(RW, SRDefs, RWSet);
584       }
585     }
586   }
587   // Find all ReadWrites referenced by InstRW.
588   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
589   for (Record *InstRWDef : InstRWDefs) {
590     // For all OperandReadWrites.
591     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
592     for (Record *RWDef : RWDefs) {
593       if (RWDef->isSubClassOf("SchedWrite"))
594         scanSchedRW(RWDef, SWDefs, RWSet);
595       else {
596         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
597         scanSchedRW(RWDef, SRDefs, RWSet);
598       }
599     }
600   }
601   // Find all ReadWrites referenced by ItinRW.
602   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
603   for (Record *ItinRWDef : ItinRWDefs) {
604     // For all OperandReadWrites.
605     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
606     for (Record *RWDef : RWDefs) {
607       if (RWDef->isSubClassOf("SchedWrite"))
608         scanSchedRW(RWDef, SWDefs, RWSet);
609       else {
610         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
611         scanSchedRW(RWDef, SRDefs, RWSet);
612       }
613     }
614   }
615   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
616   // for the loop below that initializes Alias vectors.
617   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
618   llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord());
619   for (Record *ADef : AliasDefs) {
620     Record *MatchDef = ADef->getValueAsDef("MatchRW");
621     Record *AliasDef = ADef->getValueAsDef("AliasRW");
622     if (MatchDef->isSubClassOf("SchedWrite")) {
623       if (!AliasDef->isSubClassOf("SchedWrite"))
624         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
625       scanSchedRW(AliasDef, SWDefs, RWSet);
626     }
627     else {
628       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
629       if (!AliasDef->isSubClassOf("SchedRead"))
630         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
631       scanSchedRW(AliasDef, SRDefs, RWSet);
632     }
633   }
634   // Sort and add the SchedReadWrites directly referenced by instructions or
635   // itinerary resources. Index reads and writes in separate domains.
636   llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord());
637   for (Record *SWDef : SWDefs) {
638     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
639     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
640   }
641   llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord());
642   for (Record *SRDef : SRDefs) {
643     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
644     SchedReads.emplace_back(SchedReads.size(), SRDef);
645   }
646   // Initialize WriteSequence vectors.
647   for (CodeGenSchedRW &CGRW : SchedWrites) {
648     if (!CGRW.IsSequence)
649       continue;
650     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
651             /*IsRead=*/false);
652   }
653   // Initialize Aliases vectors.
654   for (Record *ADef : AliasDefs) {
655     Record *AliasDef = ADef->getValueAsDef("AliasRW");
656     getSchedRW(AliasDef).IsAlias = true;
657     Record *MatchDef = ADef->getValueAsDef("MatchRW");
658     CodeGenSchedRW &RW = getSchedRW(MatchDef);
659     if (RW.IsAlias)
660       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
661     RW.Aliases.push_back(ADef);
662   }
663   LLVM_DEBUG(
664       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
665       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
666         dbgs() << WIdx << ": ";
667         SchedWrites[WIdx].dump();
668         dbgs() << '\n';
669       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
670              ++RIdx) {
671         dbgs() << RIdx << ": ";
672         SchedReads[RIdx].dump();
673         dbgs() << '\n';
674       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
675       for (Record *RWDef
676            : RWDefs) {
677         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
678           StringRef Name = RWDef->getName();
679           if (Name != "NoWrite" && Name != "ReadDefault")
680             dbgs() << "Unused SchedReadWrite " << Name << '\n';
681         }
682       });
683 }
684 
685 /// Compute a SchedWrite name from a sequence of writes.
686 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
687   std::string Name("(");
688   for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
689     if (I != Seq.begin())
690       Name += '_';
691     Name += getSchedRW(*I, IsRead).Name;
692   }
693   Name += ')';
694   return Name;
695 }
696 
697 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
698                                            bool IsRead) const {
699   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
700   const auto I = find_if(
701       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
702   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
703 }
704 
705 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
706   for (const CodeGenSchedRW &Read : SchedReads) {
707     Record *ReadDef = Read.TheDef;
708     if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
709       continue;
710 
711     RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
712     if (is_contained(ValidWrites, WriteDef)) {
713       return true;
714     }
715   }
716   return false;
717 }
718 
719 static void splitSchedReadWrites(const RecVec &RWDefs,
720                                  RecVec &WriteDefs, RecVec &ReadDefs) {
721   for (Record *RWDef : RWDefs) {
722     if (RWDef->isSubClassOf("SchedWrite"))
723       WriteDefs.push_back(RWDef);
724     else {
725       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
726       ReadDefs.push_back(RWDef);
727     }
728   }
729 }
730 
731 // Split the SchedReadWrites defs and call findRWs for each list.
732 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
733                                  IdxVec &Writes, IdxVec &Reads) const {
734   RecVec WriteDefs;
735   RecVec ReadDefs;
736   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
737   findRWs(WriteDefs, Writes, false);
738   findRWs(ReadDefs, Reads, true);
739 }
740 
741 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
742 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
743                                  bool IsRead) const {
744   for (Record *RWDef : RWDefs) {
745     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
746     assert(Idx && "failed to collect SchedReadWrite");
747     RWs.push_back(Idx);
748   }
749 }
750 
751 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
752                                           bool IsRead) const {
753   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
754   if (!SchedRW.IsSequence) {
755     RWSeq.push_back(RWIdx);
756     return;
757   }
758   int Repeat =
759     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
760   for (int i = 0; i < Repeat; ++i) {
761     for (unsigned I : SchedRW.Sequence) {
762       expandRWSequence(I, RWSeq, IsRead);
763     }
764   }
765 }
766 
767 // Expand a SchedWrite as a sequence following any aliases that coincide with
768 // the given processor model.
769 void CodeGenSchedModels::expandRWSeqForProc(
770   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
771   const CodeGenProcModel &ProcModel) const {
772 
773   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
774   Record *AliasDef = nullptr;
775   for (const Record *Rec : SchedWrite.Aliases) {
776     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
777     if (Rec->getValueInit("SchedModel")->isComplete()) {
778       Record *ModelDef = Rec->getValueAsDef("SchedModel");
779       if (&getProcModel(ModelDef) != &ProcModel)
780         continue;
781     }
782     if (AliasDef)
783       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
784                       "defined for processor " + ProcModel.ModelName +
785                       " Ensure only one SchedAlias exists per RW.");
786     AliasDef = AliasRW.TheDef;
787   }
788   if (AliasDef) {
789     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
790                        RWSeq, IsRead,ProcModel);
791     return;
792   }
793   if (!SchedWrite.IsSequence) {
794     RWSeq.push_back(RWIdx);
795     return;
796   }
797   int Repeat =
798     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
799   for (int I = 0, E = Repeat; I < E; ++I) {
800     for (unsigned Idx : SchedWrite.Sequence) {
801       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
802     }
803   }
804 }
805 
806 // Find the existing SchedWrite that models this sequence of writes.
807 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
808                                                bool IsRead) {
809   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
810 
811   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
812     return makeArrayRef(RW.Sequence) == Seq;
813   });
814   // Index zero reserved for invalid RW.
815   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
816 }
817 
818 /// Add this ReadWrite if it doesn't already exist.
819 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
820                                             bool IsRead) {
821   assert(!Seq.empty() && "cannot insert empty sequence");
822   if (Seq.size() == 1)
823     return Seq.back();
824 
825   unsigned Idx = findRWForSequence(Seq, IsRead);
826   if (Idx)
827     return Idx;
828 
829   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
830   unsigned RWIdx = RWVec.size();
831   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
832   RWVec.push_back(SchedRW);
833   return RWIdx;
834 }
835 
836 /// Visit all the instruction definitions for this target to gather and
837 /// enumerate the itinerary classes. These are the explicitly specified
838 /// SchedClasses. More SchedClasses may be inferred.
839 void CodeGenSchedModels::collectSchedClasses() {
840 
841   // NoItinerary is always the first class at Idx=0
842   assert(SchedClasses.empty() && "Expected empty sched class");
843   SchedClasses.emplace_back(0, "NoInstrModel",
844                             Records.getDef("NoItinerary"));
845   SchedClasses.back().ProcIndices.push_back(0);
846 
847   // Create a SchedClass for each unique combination of itinerary class and
848   // SchedRW list.
849   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
850     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
851     IdxVec Writes, Reads;
852     if (!Inst->TheDef->isValueUnset("SchedRW"))
853       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
854 
855     // ProcIdx == 0 indicates the class applies to all processors.
856     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
857     InstrClassMap[Inst->TheDef] = SCIdx;
858   }
859   // Create classes for InstRW defs.
860   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
861   llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord());
862   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
863   for (Record *RWDef : InstRWDefs)
864     createInstRWClass(RWDef);
865 
866   NumInstrSchedClasses = SchedClasses.size();
867 
868   bool EnableDump = false;
869   LLVM_DEBUG(EnableDump = true);
870   if (!EnableDump)
871     return;
872 
873   LLVM_DEBUG(
874       dbgs()
875       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
876   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
877     StringRef InstName = Inst->TheDef->getName();
878     unsigned SCIdx = getSchedClassIdx(*Inst);
879     if (!SCIdx) {
880       LLVM_DEBUG({
881         if (!Inst->hasNoSchedulingInfo)
882           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
883       });
884       continue;
885     }
886     CodeGenSchedClass &SC = getSchedClass(SCIdx);
887     if (SC.ProcIndices[0] != 0)
888       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
889                       "must not be subtarget specific.");
890 
891     IdxVec ProcIndices;
892     if (SC.ItinClassDef->getName() != "NoItinerary") {
893       ProcIndices.push_back(0);
894       dbgs() << "Itinerary for " << InstName << ": "
895              << SC.ItinClassDef->getName() << '\n';
896     }
897     if (!SC.Writes.empty()) {
898       ProcIndices.push_back(0);
899       LLVM_DEBUG({
900         dbgs() << "SchedRW machine model for " << InstName;
901         for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
902              ++WI)
903           dbgs() << " " << SchedWrites[*WI].Name;
904         for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
905           dbgs() << " " << SchedReads[*RI].Name;
906         dbgs() << '\n';
907       });
908     }
909     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
910     for (Record *RWDef : RWDefs) {
911       const CodeGenProcModel &ProcModel =
912           getProcModel(RWDef->getValueAsDef("SchedModel"));
913       ProcIndices.push_back(ProcModel.Index);
914       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
915                         << InstName);
916       IdxVec Writes;
917       IdxVec Reads;
918       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
919               Writes, Reads);
920       LLVM_DEBUG({
921         for (unsigned WIdx : Writes)
922           dbgs() << " " << SchedWrites[WIdx].Name;
923         for (unsigned RIdx : Reads)
924           dbgs() << " " << SchedReads[RIdx].Name;
925         dbgs() << '\n';
926       });
927     }
928     // If ProcIndices contains zero, the class applies to all processors.
929     LLVM_DEBUG({
930       if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
931         for (const CodeGenProcModel &PM : ProcModels) {
932           if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
933             dbgs() << "No machine model for " << Inst->TheDef->getName()
934                    << " on processor " << PM.ModelName << '\n';
935         }
936       }
937     });
938   }
939 }
940 
941 // Get the SchedClass index for an instruction.
942 unsigned
943 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
944   return InstrClassMap.lookup(Inst.TheDef);
945 }
946 
947 std::string
948 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
949                                          ArrayRef<unsigned> OperWrites,
950                                          ArrayRef<unsigned> OperReads) {
951 
952   std::string Name;
953   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
954     Name = ItinClassDef->getName();
955   for (unsigned Idx : OperWrites) {
956     if (!Name.empty())
957       Name += '_';
958     Name += SchedWrites[Idx].Name;
959   }
960   for (unsigned Idx : OperReads) {
961     Name += '_';
962     Name += SchedReads[Idx].Name;
963   }
964   return Name;
965 }
966 
967 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
968 
969   std::string Name;
970   for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
971     if (I != InstDefs.begin())
972       Name += '_';
973     Name += (*I)->getName();
974   }
975   return Name;
976 }
977 
978 /// Add an inferred sched class from an itinerary class and per-operand list of
979 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
980 /// processors that may utilize this class.
981 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
982                                            ArrayRef<unsigned> OperWrites,
983                                            ArrayRef<unsigned> OperReads,
984                                            ArrayRef<unsigned> ProcIndices) {
985   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
986 
987   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
988                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
989                    };
990 
991   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
992   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
993   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
994     IdxVec PI;
995     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
996                    SchedClasses[Idx].ProcIndices.end(),
997                    ProcIndices.begin(), ProcIndices.end(),
998                    std::back_inserter(PI));
999     SchedClasses[Idx].ProcIndices = std::move(PI);
1000     return Idx;
1001   }
1002   Idx = SchedClasses.size();
1003   SchedClasses.emplace_back(Idx,
1004                             createSchedClassName(ItinClassDef, OperWrites,
1005                                                  OperReads),
1006                             ItinClassDef);
1007   CodeGenSchedClass &SC = SchedClasses.back();
1008   SC.Writes = OperWrites;
1009   SC.Reads = OperReads;
1010   SC.ProcIndices = ProcIndices;
1011 
1012   return Idx;
1013 }
1014 
1015 // Create classes for each set of opcodes that are in the same InstReadWrite
1016 // definition across all processors.
1017 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1018   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1019   // intersects with an existing class via a previous InstRWDef. Instrs that do
1020   // not intersect with an existing class refer back to their former class as
1021   // determined from ItinDef or SchedRW.
1022   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1023   // Sort Instrs into sets.
1024   const RecVec *InstDefs = Sets.expand(InstRWDef);
1025   if (InstDefs->empty())
1026     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1027 
1028   for (Record *InstDef : *InstDefs) {
1029     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1030     if (Pos == InstrClassMap.end())
1031       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1032     unsigned SCIdx = Pos->second;
1033     ClassInstrs[SCIdx].push_back(InstDef);
1034   }
1035   // For each set of Instrs, create a new class if necessary, and map or remap
1036   // the Instrs to it.
1037   for (auto &Entry : ClassInstrs) {
1038     unsigned OldSCIdx = Entry.first;
1039     ArrayRef<Record*> InstDefs = Entry.second;
1040     // If the all instrs in the current class are accounted for, then leave
1041     // them mapped to their old class.
1042     if (OldSCIdx) {
1043       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1044       if (!RWDefs.empty()) {
1045         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1046         unsigned OrigNumInstrs =
1047           count_if(*OrigInstDefs, [&](Record *OIDef) {
1048                      return InstrClassMap[OIDef] == OldSCIdx;
1049                    });
1050         if (OrigNumInstrs == InstDefs.size()) {
1051           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1052                  "expected a generic SchedClass");
1053           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1054           // Make sure we didn't already have a InstRW containing this
1055           // instruction on this model.
1056           for (Record *RWD : RWDefs) {
1057             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1058                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1059               for (Record *Inst : InstDefs) {
1060                 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " +
1061                             Inst->getName() + " also matches " +
1062                             RWD->getValue("Instrs")->getValue()->getAsString());
1063               }
1064             }
1065           }
1066           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1067                             << SchedClasses[OldSCIdx].Name << " on "
1068                             << RWModelDef->getName() << "\n");
1069           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1070           continue;
1071         }
1072       }
1073     }
1074     unsigned SCIdx = SchedClasses.size();
1075     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1076     CodeGenSchedClass &SC = SchedClasses.back();
1077     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1078                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1079                       << "\n");
1080 
1081     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1082     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1083     SC.Writes = SchedClasses[OldSCIdx].Writes;
1084     SC.Reads = SchedClasses[OldSCIdx].Reads;
1085     SC.ProcIndices.push_back(0);
1086     // If we had an old class, copy it's InstRWs to this new class.
1087     if (OldSCIdx) {
1088       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1089       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1090         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1091           for (Record *InstDef : InstDefs) {
1092             PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " +
1093                        InstDef->getName() + " also matches " +
1094                        OldRWDef->getValue("Instrs")->getValue()->getAsString());
1095           }
1096         }
1097         assert(OldRWDef != InstRWDef &&
1098                "SchedClass has duplicate InstRW def");
1099         SC.InstRWs.push_back(OldRWDef);
1100       }
1101     }
1102     // Map each Instr to this new class.
1103     for (Record *InstDef : InstDefs)
1104       InstrClassMap[InstDef] = SCIdx;
1105     SC.InstRWs.push_back(InstRWDef);
1106   }
1107 }
1108 
1109 // True if collectProcItins found anything.
1110 bool CodeGenSchedModels::hasItineraries() const {
1111   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1112     if (PM.hasItineraries())
1113       return true;
1114   return false;
1115 }
1116 
1117 // Gather the processor itineraries.
1118 void CodeGenSchedModels::collectProcItins() {
1119   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1120   for (CodeGenProcModel &ProcModel : ProcModels) {
1121     if (!ProcModel.hasItineraries())
1122       continue;
1123 
1124     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1125     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1126 
1127     // Populate ItinDefList with Itinerary records.
1128     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1129 
1130     // Insert each itinerary data record in the correct position within
1131     // the processor model's ItinDefList.
1132     for (Record *ItinData : ItinRecords) {
1133       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1134       bool FoundClass = false;
1135 
1136       for (const CodeGenSchedClass &SC :
1137            make_range(schedClassBegin(), schedClassEnd())) {
1138         // Multiple SchedClasses may share an itinerary. Update all of them.
1139         if (SC.ItinClassDef == ItinDef) {
1140           ProcModel.ItinDefList[SC.Index] = ItinData;
1141           FoundClass = true;
1142         }
1143       }
1144       if (!FoundClass) {
1145         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1146                           << " missing class for itinerary "
1147                           << ItinDef->getName() << '\n');
1148       }
1149     }
1150     // Check for missing itinerary entries.
1151     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1152     LLVM_DEBUG(
1153         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1154           if (!ProcModel.ItinDefList[i])
1155             dbgs() << ProcModel.ItinsDef->getName()
1156                    << " missing itinerary for class " << SchedClasses[i].Name
1157                    << '\n';
1158         });
1159   }
1160 }
1161 
1162 // Gather the read/write types for each itinerary class.
1163 void CodeGenSchedModels::collectProcItinRW() {
1164   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1165   llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord());
1166   for (Record *RWDef  : ItinRWDefs) {
1167     if (!RWDef->getValueInit("SchedModel")->isComplete())
1168       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1169     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1170     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1171     if (I == ProcModelMap.end()) {
1172       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1173                     + ModelDef->getName());
1174     }
1175     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1176   }
1177 }
1178 
1179 // Gather the unsupported features for processor models.
1180 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1181   for (CodeGenProcModel &ProcModel : ProcModels) {
1182     for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1183        ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1184     }
1185   }
1186 }
1187 
1188 /// Infer new classes from existing classes. In the process, this may create new
1189 /// SchedWrites from sequences of existing SchedWrites.
1190 void CodeGenSchedModels::inferSchedClasses() {
1191   LLVM_DEBUG(
1192       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1193   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1194 
1195   // Visit all existing classes and newly created classes.
1196   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1197     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1198 
1199     if (SchedClasses[Idx].ItinClassDef)
1200       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1201     if (!SchedClasses[Idx].InstRWs.empty())
1202       inferFromInstRWs(Idx);
1203     if (!SchedClasses[Idx].Writes.empty()) {
1204       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1205                   Idx, SchedClasses[Idx].ProcIndices);
1206     }
1207     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1208            "too many SchedVariants");
1209   }
1210 }
1211 
1212 /// Infer classes from per-processor itinerary resources.
1213 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1214                                             unsigned FromClassIdx) {
1215   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1216     const CodeGenProcModel &PM = ProcModels[PIdx];
1217     // For all ItinRW entries.
1218     bool HasMatch = false;
1219     for (const Record *Rec : PM.ItinRWDefs) {
1220       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1221       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1222         continue;
1223       if (HasMatch)
1224         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1225                       + ItinClassDef->getName()
1226                       + " in ItinResources for " + PM.ModelName);
1227       HasMatch = true;
1228       IdxVec Writes, Reads;
1229       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1230       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1231     }
1232   }
1233 }
1234 
1235 /// Infer classes from per-processor InstReadWrite definitions.
1236 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1237   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1238     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1239     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1240     const RecVec *InstDefs = Sets.expand(Rec);
1241     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1242     for (; II != IE; ++II) {
1243       if (InstrClassMap[*II] == SCIdx)
1244         break;
1245     }
1246     // If this class no longer has any instructions mapped to it, it has become
1247     // irrelevant.
1248     if (II == IE)
1249       continue;
1250     IdxVec Writes, Reads;
1251     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1252     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1253     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1254   }
1255 }
1256 
1257 namespace {
1258 
1259 // Helper for substituteVariantOperand.
1260 struct TransVariant {
1261   Record *VarOrSeqDef;  // Variant or sequence.
1262   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1263   unsigned ProcIdx;     // Processor model index or zero for any.
1264   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1265 
1266   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1267     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1268 };
1269 
1270 // Associate a predicate with the SchedReadWrite that it guards.
1271 // RWIdx is the index of the read/write variant.
1272 struct PredCheck {
1273   bool IsRead;
1274   unsigned RWIdx;
1275   Record *Predicate;
1276 
1277   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1278 };
1279 
1280 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1281 struct PredTransition {
1282   // A predicate term is a conjunction of PredChecks.
1283   SmallVector<PredCheck, 4> PredTerm;
1284   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1285   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1286   SmallVector<unsigned, 4> ProcIndices;
1287 };
1288 
1289 // Encapsulate a set of partially constructed transitions.
1290 // The results are built by repeated calls to substituteVariants.
1291 class PredTransitions {
1292   CodeGenSchedModels &SchedModels;
1293 
1294 public:
1295   std::vector<PredTransition> TransVec;
1296 
1297   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1298 
1299   void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1300                                 bool IsRead, unsigned StartIdx);
1301 
1302   void substituteVariants(const PredTransition &Trans);
1303 
1304 #ifndef NDEBUG
1305   void dump() const;
1306 #endif
1307 
1308 private:
1309   bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1310   void getIntersectingVariants(
1311     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1312     std::vector<TransVariant> &IntersectingVariants);
1313   void pushVariant(const TransVariant &VInfo, bool IsRead);
1314 };
1315 
1316 } // end anonymous namespace
1317 
1318 // Return true if this predicate is mutually exclusive with a PredTerm. This
1319 // degenerates into checking if the predicate is mutually exclusive with any
1320 // predicate in the Term's conjunction.
1321 //
1322 // All predicates associated with a given SchedRW are considered mutually
1323 // exclusive. This should work even if the conditions expressed by the
1324 // predicates are not exclusive because the predicates for a given SchedWrite
1325 // are always checked in the order they are defined in the .td file. Later
1326 // conditions implicitly negate any prior condition.
1327 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1328                                         ArrayRef<PredCheck> Term) {
1329   for (const PredCheck &PC: Term) {
1330     if (PC.Predicate == PredDef)
1331       return false;
1332 
1333     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1334     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1335     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1336     if (any_of(Variants, [PredDef](const Record *R) {
1337           return R->getValueAsDef("Predicate") == PredDef;
1338         }))
1339       return true;
1340   }
1341   return false;
1342 }
1343 
1344 static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1345                                CodeGenSchedModels &SchedModels) {
1346   if (RW.HasVariants)
1347     return true;
1348 
1349   for (Record *Alias : RW.Aliases) {
1350     const CodeGenSchedRW &AliasRW =
1351       SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1352     if (AliasRW.HasVariants)
1353       return true;
1354     if (AliasRW.IsSequence) {
1355       IdxVec ExpandedRWs;
1356       SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1357       for (unsigned SI : ExpandedRWs) {
1358         if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1359                                SchedModels))
1360           return true;
1361       }
1362     }
1363   }
1364   return false;
1365 }
1366 
1367 static bool hasVariant(ArrayRef<PredTransition> Transitions,
1368                        CodeGenSchedModels &SchedModels) {
1369   for (const PredTransition &PTI : Transitions) {
1370     for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1371       for (unsigned WI : WSI)
1372         if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1373           return true;
1374 
1375     for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1376       for (unsigned RI : RSI)
1377         if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1378           return true;
1379   }
1380   return false;
1381 }
1382 
1383 // Populate IntersectingVariants with any variants or aliased sequences of the
1384 // given SchedRW whose processor indices and predicates are not mutually
1385 // exclusive with the given transition.
1386 void PredTransitions::getIntersectingVariants(
1387   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1388   std::vector<TransVariant> &IntersectingVariants) {
1389 
1390   bool GenericRW = false;
1391 
1392   std::vector<TransVariant> Variants;
1393   if (SchedRW.HasVariants) {
1394     unsigned VarProcIdx = 0;
1395     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1396       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1397       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1398     }
1399     // Push each variant. Assign TransVecIdx later.
1400     const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1401     for (Record *VarDef : VarDefs)
1402       Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1403     if (VarProcIdx == 0)
1404       GenericRW = true;
1405   }
1406   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1407        AI != AE; ++AI) {
1408     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1409     // to is defined within a processor model, constrain all variants to
1410     // that processor.
1411     unsigned AliasProcIdx = 0;
1412     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1413       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1414       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1415     }
1416     const CodeGenSchedRW &AliasRW =
1417       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1418 
1419     if (AliasRW.HasVariants) {
1420       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1421       for (Record *VD : VarDefs)
1422         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1423     }
1424     if (AliasRW.IsSequence)
1425       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1426     if (AliasProcIdx == 0)
1427       GenericRW = true;
1428   }
1429   for (TransVariant &Variant : Variants) {
1430     // Don't expand variants if the processor models don't intersect.
1431     // A zero processor index means any processor.
1432     SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1433     if (ProcIndices[0] && Variant.ProcIdx) {
1434       unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1435                                 Variant.ProcIdx);
1436       if (!Cnt)
1437         continue;
1438       if (Cnt > 1) {
1439         const CodeGenProcModel &PM =
1440           *(SchedModels.procModelBegin() + Variant.ProcIdx);
1441         PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1442                         "Multiple variants defined for processor " +
1443                         PM.ModelName +
1444                         " Ensure only one SchedAlias exists per RW.");
1445       }
1446     }
1447     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1448       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1449       if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1450         continue;
1451     }
1452     if (IntersectingVariants.empty()) {
1453       // The first variant builds on the existing transition.
1454       Variant.TransVecIdx = TransIdx;
1455       IntersectingVariants.push_back(Variant);
1456     }
1457     else {
1458       // Push another copy of the current transition for more variants.
1459       Variant.TransVecIdx = TransVec.size();
1460       IntersectingVariants.push_back(Variant);
1461       TransVec.push_back(TransVec[TransIdx]);
1462     }
1463   }
1464   if (GenericRW && IntersectingVariants.empty()) {
1465     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1466                     "a matching predicate on any processor");
1467   }
1468 }
1469 
1470 // Push the Reads/Writes selected by this variant onto the PredTransition
1471 // specified by VInfo.
1472 void PredTransitions::
1473 pushVariant(const TransVariant &VInfo, bool IsRead) {
1474   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1475 
1476   // If this operand transition is reached through a processor-specific alias,
1477   // then the whole transition is specific to this processor.
1478   if (VInfo.ProcIdx != 0)
1479     Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1480 
1481   IdxVec SelectedRWs;
1482   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1483     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1484     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1485     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1486     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1487   }
1488   else {
1489     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1490            "variant must be a SchedVariant or aliased WriteSequence");
1491     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1492   }
1493 
1494   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1495 
1496   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1497     ? Trans.ReadSequences : Trans.WriteSequences;
1498   if (SchedRW.IsVariadic) {
1499     unsigned OperIdx = RWSequences.size()-1;
1500     // Make N-1 copies of this transition's last sequence.
1501     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1502                        RWSequences[OperIdx]);
1503     // Push each of the N elements of the SelectedRWs onto a copy of the last
1504     // sequence (split the current operand into N operands).
1505     // Note that write sequences should be expanded within this loop--the entire
1506     // sequence belongs to a single operand.
1507     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1508          RWI != RWE; ++RWI, ++OperIdx) {
1509       IdxVec ExpandedRWs;
1510       if (IsRead)
1511         ExpandedRWs.push_back(*RWI);
1512       else
1513         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1514       RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1515                                   ExpandedRWs.begin(), ExpandedRWs.end());
1516     }
1517     assert(OperIdx == RWSequences.size() && "missed a sequence");
1518   }
1519   else {
1520     // Push this transition's expanded sequence onto this transition's last
1521     // sequence (add to the current operand's sequence).
1522     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1523     IdxVec ExpandedRWs;
1524     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1525          RWI != RWE; ++RWI) {
1526       if (IsRead)
1527         ExpandedRWs.push_back(*RWI);
1528       else
1529         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1530     }
1531     Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1532   }
1533 }
1534 
1535 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1536 // operand. StartIdx is an index into TransVec where partial results
1537 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1538 // of TransVec.
1539 void PredTransitions::substituteVariantOperand(
1540   const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1541 
1542   // Visit each original RW within the current sequence.
1543   for (SmallVectorImpl<unsigned>::const_iterator
1544          RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1545     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1546     // Push this RW on all partial PredTransitions or distribute variants.
1547     // New PredTransitions may be pushed within this loop which should not be
1548     // revisited (TransEnd must be loop invariant).
1549     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1550          TransIdx != TransEnd; ++TransIdx) {
1551       // In the common case, push RW onto the current operand's sequence.
1552       if (!hasAliasedVariants(SchedRW, SchedModels)) {
1553         if (IsRead)
1554           TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1555         else
1556           TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1557         continue;
1558       }
1559       // Distribute this partial PredTransition across intersecting variants.
1560       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1561       std::vector<TransVariant> IntersectingVariants;
1562       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1563       // Now expand each variant on top of its copy of the transition.
1564       for (std::vector<TransVariant>::const_iterator
1565              IVI = IntersectingVariants.begin(),
1566              IVE = IntersectingVariants.end();
1567            IVI != IVE; ++IVI) {
1568         pushVariant(*IVI, IsRead);
1569       }
1570     }
1571   }
1572 }
1573 
1574 // For each variant of a Read/Write in Trans, substitute the sequence of
1575 // Read/Writes guarded by the variant. This is exponential in the number of
1576 // variant Read/Writes, but in practice detection of mutually exclusive
1577 // predicates should result in linear growth in the total number variants.
1578 //
1579 // This is one step in a breadth-first search of nested variants.
1580 void PredTransitions::substituteVariants(const PredTransition &Trans) {
1581   // Build up a set of partial results starting at the back of
1582   // PredTransitions. Remember the first new transition.
1583   unsigned StartIdx = TransVec.size();
1584   TransVec.emplace_back();
1585   TransVec.back().PredTerm = Trans.PredTerm;
1586   TransVec.back().ProcIndices = Trans.ProcIndices;
1587 
1588   // Visit each original write sequence.
1589   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1590          WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1591        WSI != WSE; ++WSI) {
1592     // Push a new (empty) write sequence onto all partial Transitions.
1593     for (std::vector<PredTransition>::iterator I =
1594            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1595       I->WriteSequences.emplace_back();
1596     }
1597     substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1598   }
1599   // Visit each original read sequence.
1600   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1601          RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1602        RSI != RSE; ++RSI) {
1603     // Push a new (empty) read sequence onto all partial Transitions.
1604     for (std::vector<PredTransition>::iterator I =
1605            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1606       I->ReadSequences.emplace_back();
1607     }
1608     substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1609   }
1610 }
1611 
1612 // Create a new SchedClass for each variant found by inferFromRW. Pass
1613 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1614                                  unsigned FromClassIdx,
1615                                  CodeGenSchedModels &SchedModels) {
1616   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1617   // requires creating a new SchedClass.
1618   for (ArrayRef<PredTransition>::iterator
1619          I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1620     IdxVec OperWritesVariant;
1621     transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1622               [&SchedModels](ArrayRef<unsigned> WS) {
1623                 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1624               });
1625     IdxVec OperReadsVariant;
1626     transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1627               [&SchedModels](ArrayRef<unsigned> RS) {
1628                 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1629               });
1630     CodeGenSchedTransition SCTrans;
1631     SCTrans.ToClassIdx =
1632       SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1633                                 OperReadsVariant, I->ProcIndices);
1634     SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1635     // The final PredTerm is unique set of predicates guarding the transition.
1636     RecVec Preds;
1637     transform(I->PredTerm, std::back_inserter(Preds),
1638               [](const PredCheck &P) {
1639                 return P.Predicate;
1640               });
1641     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1642     SCTrans.PredTerm = std::move(Preds);
1643     SchedModels.getSchedClass(FromClassIdx)
1644         .Transitions.push_back(std::move(SCTrans));
1645   }
1646 }
1647 
1648 // Create new SchedClasses for the given ReadWrite list. If any of the
1649 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1650 // of the ReadWrite list, following Aliases if necessary.
1651 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1652                                      ArrayRef<unsigned> OperReads,
1653                                      unsigned FromClassIdx,
1654                                      ArrayRef<unsigned> ProcIndices) {
1655   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1656              dbgs() << ") ");
1657 
1658   // Create a seed transition with an empty PredTerm and the expanded sequences
1659   // of SchedWrites for the current SchedClass.
1660   std::vector<PredTransition> LastTransitions;
1661   LastTransitions.emplace_back();
1662   LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1663                                             ProcIndices.end());
1664 
1665   for (unsigned WriteIdx : OperWrites) {
1666     IdxVec WriteSeq;
1667     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1668     LastTransitions[0].WriteSequences.emplace_back();
1669     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1670     Seq.append(WriteSeq.begin(), WriteSeq.end());
1671     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1672   }
1673   LLVM_DEBUG(dbgs() << " Reads: ");
1674   for (unsigned ReadIdx : OperReads) {
1675     IdxVec ReadSeq;
1676     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1677     LastTransitions[0].ReadSequences.emplace_back();
1678     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1679     Seq.append(ReadSeq.begin(), ReadSeq.end());
1680     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1681   }
1682   LLVM_DEBUG(dbgs() << '\n');
1683 
1684   // Collect all PredTransitions for individual operands.
1685   // Iterate until no variant writes remain.
1686   while (hasVariant(LastTransitions, *this)) {
1687     PredTransitions Transitions(*this);
1688     for (const PredTransition &Trans : LastTransitions)
1689       Transitions.substituteVariants(Trans);
1690     LLVM_DEBUG(Transitions.dump());
1691     LastTransitions.swap(Transitions.TransVec);
1692   }
1693   // If the first transition has no variants, nothing to do.
1694   if (LastTransitions[0].PredTerm.empty())
1695     return;
1696 
1697   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1698   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1699   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1700 }
1701 
1702 // Check if any processor resource group contains all resource records in
1703 // SubUnits.
1704 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1705   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1706     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1707       continue;
1708     RecVec SuperUnits =
1709       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1710     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1711     for ( ; RI != RE; ++RI) {
1712       if (!is_contained(SuperUnits, *RI)) {
1713         break;
1714       }
1715     }
1716     if (RI == RE)
1717       return true;
1718   }
1719   return false;
1720 }
1721 
1722 // Verify that overlapping groups have a common supergroup.
1723 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1724   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1725     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1726       continue;
1727     RecVec CheckUnits =
1728       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1729     for (unsigned j = i+1; j < e; ++j) {
1730       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1731         continue;
1732       RecVec OtherUnits =
1733         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1734       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1735                              OtherUnits.begin(), OtherUnits.end())
1736           != CheckUnits.end()) {
1737         // CheckUnits and OtherUnits overlap
1738         OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1739                           CheckUnits.end());
1740         if (!hasSuperGroup(OtherUnits, PM)) {
1741           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1742                           "proc resource group overlaps with "
1743                           + PM.ProcResourceDefs[j]->getName()
1744                           + " but no supergroup contains both.");
1745         }
1746       }
1747     }
1748   }
1749 }
1750 
1751 // Collect all the RegisterFile definitions available in this target.
1752 void CodeGenSchedModels::collectRegisterFiles() {
1753   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1754 
1755   // RegisterFiles is the vector of CodeGenRegisterFile.
1756   for (Record *RF : RegisterFileDefs) {
1757     // For each register file definition, construct a CodeGenRegisterFile object
1758     // and add it to the appropriate scheduling model.
1759     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1760     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1761     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1762 
1763     // Now set the number of physical registers as well as the cost of registers
1764     // in each register class.
1765     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1766     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1767     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1768     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1769       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1770       CGRF.Costs.emplace_back(RegisterClasses[I], Cost);
1771     }
1772   }
1773 }
1774 
1775 // Collect all the RegisterFile definitions available in this target.
1776 void CodeGenSchedModels::collectPfmCounters() {
1777   for (Record *Def : Records.getAllDerivedDefinitions("PfmIssueCounter")) {
1778     CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel"));
1779     PM.PfmIssueCounterDefs.emplace_back(Def);
1780   }
1781   for (Record *Def : Records.getAllDerivedDefinitions("PfmCycleCounter")) {
1782     CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel"));
1783     if (PM.PfmCycleCounterDef) {
1784       PrintFatalError(Def->getLoc(),
1785                       "multiple cycle counters for " +
1786                           Def->getValueAsDef("SchedModel")->getName());
1787     }
1788     PM.PfmCycleCounterDef = Def;
1789   }
1790 }
1791 
1792 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1793 void CodeGenSchedModels::collectProcResources() {
1794   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1795   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1796 
1797   // Add any subtarget-specific SchedReadWrites that are directly associated
1798   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1799   // determine which processors they apply to.
1800   for (const CodeGenSchedClass &SC :
1801        make_range(schedClassBegin(), schedClassEnd())) {
1802     if (SC.ItinClassDef) {
1803       collectItinProcResources(SC.ItinClassDef);
1804       continue;
1805     }
1806 
1807     // This class may have a default ReadWrite list which can be overriden by
1808     // InstRW definitions.
1809     for (Record *RW : SC.InstRWs) {
1810       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1811       unsigned PIdx = getProcModel(RWModelDef).Index;
1812       IdxVec Writes, Reads;
1813       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1814       collectRWResources(Writes, Reads, PIdx);
1815     }
1816 
1817     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1818   }
1819   // Add resources separately defined by each subtarget.
1820   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1821   for (Record *WR : WRDefs) {
1822     Record *ModelDef = WR->getValueAsDef("SchedModel");
1823     addWriteRes(WR, getProcModel(ModelDef).Index);
1824   }
1825   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1826   for (Record *SWR : SWRDefs) {
1827     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1828     addWriteRes(SWR, getProcModel(ModelDef).Index);
1829   }
1830   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1831   for (Record *RA : RADefs) {
1832     Record *ModelDef = RA->getValueAsDef("SchedModel");
1833     addReadAdvance(RA, getProcModel(ModelDef).Index);
1834   }
1835   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1836   for (Record *SRA : SRADefs) {
1837     if (SRA->getValueInit("SchedModel")->isComplete()) {
1838       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1839       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1840     }
1841   }
1842   // Add ProcResGroups that are defined within this processor model, which may
1843   // not be directly referenced but may directly specify a buffer size.
1844   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1845   for (Record *PRG : ProcResGroups) {
1846     if (!PRG->getValueInit("SchedModel")->isComplete())
1847       continue;
1848     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1849     if (!is_contained(PM.ProcResourceDefs, PRG))
1850       PM.ProcResourceDefs.push_back(PRG);
1851   }
1852   // Add ProcResourceUnits unconditionally.
1853   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1854     if (!PRU->getValueInit("SchedModel")->isComplete())
1855       continue;
1856     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1857     if (!is_contained(PM.ProcResourceDefs, PRU))
1858       PM.ProcResourceDefs.push_back(PRU);
1859   }
1860   // Finalize each ProcModel by sorting the record arrays.
1861   for (CodeGenProcModel &PM : ProcModels) {
1862     llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(),
1863                LessRecord());
1864     llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(),
1865                LessRecord());
1866     llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(),
1867                LessRecord());
1868     LLVM_DEBUG(
1869         PM.dump();
1870         dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1871                                          RE = PM.WriteResDefs.end();
1872                                          RI != RE; ++RI) {
1873           if ((*RI)->isSubClassOf("WriteRes"))
1874             dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1875           else
1876             dbgs() << (*RI)->getName() << " ";
1877         } dbgs() << "\nReadAdvanceDefs: ";
1878         for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1879              RE = PM.ReadAdvanceDefs.end();
1880              RI != RE; ++RI) {
1881           if ((*RI)->isSubClassOf("ReadAdvance"))
1882             dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1883           else
1884             dbgs() << (*RI)->getName() << " ";
1885         } dbgs()
1886         << "\nProcResourceDefs: ";
1887         for (RecIter RI = PM.ProcResourceDefs.begin(),
1888              RE = PM.ProcResourceDefs.end();
1889              RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1890         << '\n');
1891     verifyProcResourceGroups(PM);
1892   }
1893 
1894   ProcResourceDefs.clear();
1895   ProcResGroups.clear();
1896 }
1897 
1898 void CodeGenSchedModels::checkCompleteness() {
1899   bool Complete = true;
1900   bool HadCompleteModel = false;
1901   for (const CodeGenProcModel &ProcModel : procModels()) {
1902     const bool HasItineraries = ProcModel.hasItineraries();
1903     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1904       continue;
1905     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1906       if (Inst->hasNoSchedulingInfo)
1907         continue;
1908       if (ProcModel.isUnsupported(*Inst))
1909         continue;
1910       unsigned SCIdx = getSchedClassIdx(*Inst);
1911       if (!SCIdx) {
1912         if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1913           PrintError("No schedule information for instruction '"
1914                      + Inst->TheDef->getName() + "'");
1915           Complete = false;
1916         }
1917         continue;
1918       }
1919 
1920       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1921       if (!SC.Writes.empty())
1922         continue;
1923       if (HasItineraries && SC.ItinClassDef != nullptr &&
1924           SC.ItinClassDef->getName() != "NoItinerary")
1925         continue;
1926 
1927       const RecVec &InstRWs = SC.InstRWs;
1928       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1929         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1930       });
1931       if (I == InstRWs.end()) {
1932         PrintError("'" + ProcModel.ModelName + "' lacks information for '" +
1933                    Inst->TheDef->getName() + "'");
1934         Complete = false;
1935       }
1936     }
1937     HadCompleteModel = true;
1938   }
1939   if (!Complete) {
1940     errs() << "\n\nIncomplete schedule models found.\n"
1941       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1942       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1943       << "- Instructions should usually have Sched<[...]> as a superclass, "
1944          "you may temporarily use an empty list.\n"
1945       << "- Instructions related to unsupported features can be excluded with "
1946          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1947          "processor model.\n\n";
1948     PrintFatalError("Incomplete schedule model");
1949   }
1950 }
1951 
1952 // Collect itinerary class resources for each processor.
1953 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1954   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1955     const CodeGenProcModel &PM = ProcModels[PIdx];
1956     // For all ItinRW entries.
1957     bool HasMatch = false;
1958     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1959          II != IE; ++II) {
1960       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1961       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1962         continue;
1963       if (HasMatch)
1964         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1965                         + ItinClassDef->getName()
1966                         + " in ItinResources for " + PM.ModelName);
1967       HasMatch = true;
1968       IdxVec Writes, Reads;
1969       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1970       collectRWResources(Writes, Reads, PIdx);
1971     }
1972   }
1973 }
1974 
1975 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
1976                                             ArrayRef<unsigned> ProcIndices) {
1977   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
1978   if (SchedRW.TheDef) {
1979     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
1980       for (unsigned Idx : ProcIndices)
1981         addWriteRes(SchedRW.TheDef, Idx);
1982     }
1983     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
1984       for (unsigned Idx : ProcIndices)
1985         addReadAdvance(SchedRW.TheDef, Idx);
1986     }
1987   }
1988   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1989        AI != AE; ++AI) {
1990     IdxVec AliasProcIndices;
1991     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1992       AliasProcIndices.push_back(
1993         getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
1994     }
1995     else
1996       AliasProcIndices = ProcIndices;
1997     const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
1998     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
1999 
2000     IdxVec ExpandedRWs;
2001     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2002     for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2003          SI != SE; ++SI) {
2004       collectRWResources(*SI, IsRead, AliasProcIndices);
2005     }
2006   }
2007 }
2008 
2009 // Collect resources for a set of read/write types and processor indices.
2010 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2011                                             ArrayRef<unsigned> Reads,
2012                                             ArrayRef<unsigned> ProcIndices) {
2013   for (unsigned Idx : Writes)
2014     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2015 
2016   for (unsigned Idx : Reads)
2017     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2018 }
2019 
2020 // Find the processor's resource units for this kind of resource.
2021 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2022                                              const CodeGenProcModel &PM,
2023                                              ArrayRef<SMLoc> Loc) const {
2024   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2025     return ProcResKind;
2026 
2027   Record *ProcUnitDef = nullptr;
2028   assert(!ProcResourceDefs.empty());
2029   assert(!ProcResGroups.empty());
2030 
2031   for (Record *ProcResDef : ProcResourceDefs) {
2032     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2033         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2034       if (ProcUnitDef) {
2035         PrintFatalError(Loc,
2036                         "Multiple ProcessorResourceUnits associated with "
2037                         + ProcResKind->getName());
2038       }
2039       ProcUnitDef = ProcResDef;
2040     }
2041   }
2042   for (Record *ProcResGroup : ProcResGroups) {
2043     if (ProcResGroup == ProcResKind
2044         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2045       if (ProcUnitDef) {
2046         PrintFatalError(Loc,
2047                         "Multiple ProcessorResourceUnits associated with "
2048                         + ProcResKind->getName());
2049       }
2050       ProcUnitDef = ProcResGroup;
2051     }
2052   }
2053   if (!ProcUnitDef) {
2054     PrintFatalError(Loc,
2055                     "No ProcessorResources associated with "
2056                     + ProcResKind->getName());
2057   }
2058   return ProcUnitDef;
2059 }
2060 
2061 // Iteratively add a resource and its super resources.
2062 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2063                                          CodeGenProcModel &PM,
2064                                          ArrayRef<SMLoc> Loc) {
2065   while (true) {
2066     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2067 
2068     // See if this ProcResource is already associated with this processor.
2069     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2070       return;
2071 
2072     PM.ProcResourceDefs.push_back(ProcResUnits);
2073     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2074       return;
2075 
2076     if (!ProcResUnits->getValueInit("Super")->isComplete())
2077       return;
2078 
2079     ProcResKind = ProcResUnits->getValueAsDef("Super");
2080   }
2081 }
2082 
2083 // Add resources for a SchedWrite to this processor if they don't exist.
2084 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2085   assert(PIdx && "don't add resources to an invalid Processor model");
2086 
2087   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2088   if (is_contained(WRDefs, ProcWriteResDef))
2089     return;
2090   WRDefs.push_back(ProcWriteResDef);
2091 
2092   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2093   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2094   for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2095        WritePRI != WritePRE; ++WritePRI) {
2096     addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2097   }
2098 }
2099 
2100 // Add resources for a ReadAdvance to this processor if they don't exist.
2101 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2102                                         unsigned PIdx) {
2103   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2104   if (is_contained(RADefs, ProcReadAdvanceDef))
2105     return;
2106   RADefs.push_back(ProcReadAdvanceDef);
2107 }
2108 
2109 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2110   RecIter PRPos = find(ProcResourceDefs, PRDef);
2111   if (PRPos == ProcResourceDefs.end())
2112     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2113                     "the ProcResources list for " + ModelName);
2114   // Idx=0 is reserved for invalid.
2115   return 1 + (PRPos - ProcResourceDefs.begin());
2116 }
2117 
2118 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2119   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2120     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2121       if (TheDef->getName() == PredDef->getName())
2122         return true;
2123     }
2124   }
2125   return false;
2126 }
2127 
2128 #ifndef NDEBUG
2129 void CodeGenProcModel::dump() const {
2130   dbgs() << Index << ": " << ModelName << " "
2131          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2132          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2133 }
2134 
2135 void CodeGenSchedRW::dump() const {
2136   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2137   if (IsSequence) {
2138     dbgs() << "(";
2139     dumpIdxVec(Sequence);
2140     dbgs() << ")";
2141   }
2142 }
2143 
2144 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2145   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2146          << "  Writes: ";
2147   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2148     SchedModels->getSchedWrite(Writes[i]).dump();
2149     if (i < N-1) {
2150       dbgs() << '\n';
2151       dbgs().indent(10);
2152     }
2153   }
2154   dbgs() << "\n  Reads: ";
2155   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2156     SchedModels->getSchedRead(Reads[i]).dump();
2157     if (i < N-1) {
2158       dbgs() << '\n';
2159       dbgs().indent(10);
2160     }
2161   }
2162   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2163   if (!Transitions.empty()) {
2164     dbgs() << "\n Transitions for Proc ";
2165     for (const CodeGenSchedTransition &Transition : Transitions) {
2166       dumpIdxVec(Transition.ProcIndices);
2167     }
2168   }
2169 }
2170 
2171 void PredTransitions::dump() const {
2172   dbgs() << "Expanded Variants:\n";
2173   for (std::vector<PredTransition>::const_iterator
2174          TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2175     dbgs() << "{";
2176     for (SmallVectorImpl<PredCheck>::const_iterator
2177            PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2178          PCI != PCE; ++PCI) {
2179       if (PCI != TI->PredTerm.begin())
2180         dbgs() << ", ";
2181       dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2182              << ":" << PCI->Predicate->getName();
2183     }
2184     dbgs() << "},\n  => {";
2185     for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2186            WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2187          WSI != WSE; ++WSI) {
2188       dbgs() << "(";
2189       for (SmallVectorImpl<unsigned>::const_iterator
2190              WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2191         if (WI != WSI->begin())
2192           dbgs() << ", ";
2193         dbgs() << SchedModels.getSchedWrite(*WI).Name;
2194       }
2195       dbgs() << "),";
2196     }
2197     dbgs() << "}\n";
2198   }
2199 }
2200 #endif // NDEBUG
2201