1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenInstruction.h" 16 #include "CodeGenSchedule.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/TableGen/Error.h" 27 #include <algorithm> 28 #include <iterator> 29 #include <utility> 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "subtarget-emitter" 34 35 #ifndef NDEBUG 36 static void dumpIdxVec(ArrayRef<unsigned> V) { 37 for (unsigned Idx : V) 38 dbgs() << Idx << ", "; 39 } 40 #endif 41 42 namespace { 43 44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 45 struct InstrsOp : public SetTheory::Operator { 46 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 47 ArrayRef<SMLoc> Loc) override { 48 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 49 } 50 }; 51 52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 53 // 54 // TODO: Since this is a prefix match, perform a binary search over the 55 // instruction names using lower_bound. Note that the predefined instrs must be 56 // scanned linearly first. However, this is only safe if the regex pattern has 57 // no top-level bars. The DAG already has a list of patterns, so there's no 58 // reason to use top-level bars, but we need a way to verify they don't exist 59 // before implementing the optimization. 60 struct InstRegexOp : public SetTheory::Operator { 61 const CodeGenTarget &Target; 62 InstRegexOp(const CodeGenTarget &t): Target(t) {} 63 64 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 65 ArrayRef<SMLoc> Loc) override { 66 SmallVector<Regex, 4> RegexList; 67 for (DagInit::const_arg_iterator 68 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 69 StringInit *SI = dyn_cast<StringInit>(*AI); 70 if (!SI) 71 PrintFatalError(Loc, "instregex requires pattern string: " 72 + Expr->getAsString()); 73 std::string pat = SI->getValue(); 74 // Implement a python-style prefix match. 75 if (pat[0] != '^') { 76 pat.insert(0, "^("); 77 pat.insert(pat.end(), ')'); 78 } 79 RegexList.push_back(Regex(pat)); 80 } 81 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 82 for (auto &R : RegexList) { 83 if (R.match(Inst->TheDef->getName())) 84 Elts.insert(Inst->TheDef); 85 } 86 } 87 } 88 }; 89 90 } // end anonymous namespace 91 92 /// CodeGenModels ctor interprets machine model records and populates maps. 93 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 94 const CodeGenTarget &TGT): 95 Records(RK), Target(TGT) { 96 97 Sets.addFieldExpander("InstRW", "Instrs"); 98 99 // Allow Set evaluation to recognize the dags used in InstRW records: 100 // (instrs Op1, Op1...) 101 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 102 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 103 104 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 105 // that are explicitly referenced in tablegen records. Resources associated 106 // with each processor will be derived later. Populate ProcModelMap with the 107 // CodeGenProcModel instances. 108 collectProcModels(); 109 110 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 111 // defined, and populate SchedReads and SchedWrites vectors. Implicit 112 // SchedReadWrites that represent sequences derived from expanded variant will 113 // be inferred later. 114 collectSchedRW(); 115 116 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 117 // required by an instruction definition, and populate SchedClassIdxMap. Set 118 // NumItineraryClasses to the number of explicit itinerary classes referenced 119 // by instructions. Set NumInstrSchedClasses to the number of itinerary 120 // classes plus any classes implied by instructions that derive from class 121 // Sched and provide SchedRW list. This does not infer any new classes from 122 // SchedVariant. 123 collectSchedClasses(); 124 125 // Find instruction itineraries for each processor. Sort and populate 126 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 127 // all itinerary classes to be discovered. 128 collectProcItins(); 129 130 // Find ItinRW records for each processor and itinerary class. 131 // (For per-operand resources mapped to itinerary classes). 132 collectProcItinRW(); 133 134 // Find UnsupportedFeatures records for each processor. 135 // (For per-operand resources mapped to itinerary classes). 136 collectProcUnsupportedFeatures(); 137 138 // Infer new SchedClasses from SchedVariant. 139 inferSchedClasses(); 140 141 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 142 // ProcResourceDefs. 143 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 144 collectProcResources(); 145 146 checkCompleteness(); 147 } 148 149 /// Gather all processor models. 150 void CodeGenSchedModels::collectProcModels() { 151 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 152 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 153 154 // Reserve space because we can. Reallocation would be ok. 155 ProcModels.reserve(ProcRecords.size()+1); 156 157 // Use idx=0 for NoModel/NoItineraries. 158 Record *NoModelDef = Records.getDef("NoSchedModel"); 159 Record *NoItinsDef = Records.getDef("NoItineraries"); 160 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 161 ProcModelMap[NoModelDef] = 0; 162 163 // For each processor, find a unique machine model. 164 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 165 for (Record *ProcRecord : ProcRecords) 166 addProcModel(ProcRecord); 167 } 168 169 /// Get a unique processor model based on the defined MachineModel and 170 /// ProcessorItineraries. 171 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 172 Record *ModelKey = getModelOrItinDef(ProcDef); 173 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 174 return; 175 176 std::string Name = ModelKey->getName(); 177 if (ModelKey->isSubClassOf("SchedMachineModel")) { 178 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 179 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 180 } 181 else { 182 // An itinerary is defined without a machine model. Infer a new model. 183 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 184 Name = Name + "Model"; 185 ProcModels.emplace_back(ProcModels.size(), Name, 186 ProcDef->getValueAsDef("SchedModel"), ModelKey); 187 } 188 DEBUG(ProcModels.back().dump()); 189 } 190 191 // Recursively find all reachable SchedReadWrite records. 192 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 193 SmallPtrSet<Record*, 16> &RWSet) { 194 if (!RWSet.insert(RWDef).second) 195 return; 196 RWDefs.push_back(RWDef); 197 // Reads don't currently have sequence records, but it can be added later. 198 if (RWDef->isSubClassOf("WriteSequence")) { 199 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 200 for (Record *WSRec : Seq) 201 scanSchedRW(WSRec, RWDefs, RWSet); 202 } 203 else if (RWDef->isSubClassOf("SchedVariant")) { 204 // Visit each variant (guarded by a different predicate). 205 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 206 for (Record *Variant : Vars) { 207 // Visit each RW in the sequence selected by the current variant. 208 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 209 for (Record *SelDef : Selected) 210 scanSchedRW(SelDef, RWDefs, RWSet); 211 } 212 } 213 } 214 215 // Collect and sort all SchedReadWrites reachable via tablegen records. 216 // More may be inferred later when inferring new SchedClasses from variants. 217 void CodeGenSchedModels::collectSchedRW() { 218 // Reserve idx=0 for invalid writes/reads. 219 SchedWrites.resize(1); 220 SchedReads.resize(1); 221 222 SmallPtrSet<Record*, 16> RWSet; 223 224 // Find all SchedReadWrites referenced by instruction defs. 225 RecVec SWDefs, SRDefs; 226 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 227 Record *SchedDef = Inst->TheDef; 228 if (SchedDef->isValueUnset("SchedRW")) 229 continue; 230 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 231 for (Record *RW : RWs) { 232 if (RW->isSubClassOf("SchedWrite")) 233 scanSchedRW(RW, SWDefs, RWSet); 234 else { 235 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 236 scanSchedRW(RW, SRDefs, RWSet); 237 } 238 } 239 } 240 // Find all ReadWrites referenced by InstRW. 241 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 242 for (Record *InstRWDef : InstRWDefs) { 243 // For all OperandReadWrites. 244 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 245 for (Record *RWDef : RWDefs) { 246 if (RWDef->isSubClassOf("SchedWrite")) 247 scanSchedRW(RWDef, SWDefs, RWSet); 248 else { 249 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 250 scanSchedRW(RWDef, SRDefs, RWSet); 251 } 252 } 253 } 254 // Find all ReadWrites referenced by ItinRW. 255 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 256 for (Record *ItinRWDef : ItinRWDefs) { 257 // For all OperandReadWrites. 258 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 259 for (Record *RWDef : RWDefs) { 260 if (RWDef->isSubClassOf("SchedWrite")) 261 scanSchedRW(RWDef, SWDefs, RWSet); 262 else { 263 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 264 scanSchedRW(RWDef, SRDefs, RWSet); 265 } 266 } 267 } 268 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 269 // for the loop below that initializes Alias vectors. 270 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 271 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 272 for (Record *ADef : AliasDefs) { 273 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 274 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 275 if (MatchDef->isSubClassOf("SchedWrite")) { 276 if (!AliasDef->isSubClassOf("SchedWrite")) 277 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 278 scanSchedRW(AliasDef, SWDefs, RWSet); 279 } 280 else { 281 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 282 if (!AliasDef->isSubClassOf("SchedRead")) 283 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 284 scanSchedRW(AliasDef, SRDefs, RWSet); 285 } 286 } 287 // Sort and add the SchedReadWrites directly referenced by instructions or 288 // itinerary resources. Index reads and writes in separate domains. 289 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 290 for (Record *SWDef : SWDefs) { 291 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 292 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 293 } 294 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 295 for (Record *SRDef : SRDefs) { 296 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 297 SchedReads.emplace_back(SchedReads.size(), SRDef); 298 } 299 // Initialize WriteSequence vectors. 300 for (CodeGenSchedRW &CGRW : SchedWrites) { 301 if (!CGRW.IsSequence) 302 continue; 303 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 304 /*IsRead=*/false); 305 } 306 // Initialize Aliases vectors. 307 for (Record *ADef : AliasDefs) { 308 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 309 getSchedRW(AliasDef).IsAlias = true; 310 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 311 CodeGenSchedRW &RW = getSchedRW(MatchDef); 312 if (RW.IsAlias) 313 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 314 RW.Aliases.push_back(ADef); 315 } 316 DEBUG( 317 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 318 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 319 dbgs() << WIdx << ": "; 320 SchedWrites[WIdx].dump(); 321 dbgs() << '\n'; 322 } 323 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 324 dbgs() << RIdx << ": "; 325 SchedReads[RIdx].dump(); 326 dbgs() << '\n'; 327 } 328 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 329 for (Record *RWDef : RWDefs) { 330 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 331 const std::string &Name = RWDef->getName(); 332 if (Name != "NoWrite" && Name != "ReadDefault") 333 dbgs() << "Unused SchedReadWrite " << RWDef->getName() << '\n'; 334 } 335 }); 336 } 337 338 /// Compute a SchedWrite name from a sequence of writes. 339 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 340 std::string Name("("); 341 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 342 if (I != Seq.begin()) 343 Name += '_'; 344 Name += getSchedRW(*I, IsRead).Name; 345 } 346 Name += ')'; 347 return Name; 348 } 349 350 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 351 unsigned After) const { 352 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 353 assert(After < RWVec.size() && "start position out of bounds"); 354 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 355 E = RWVec.end(); I != E; ++I) { 356 if (I->TheDef == Def) 357 return I - RWVec.begin(); 358 } 359 return 0; 360 } 361 362 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 363 for (const CodeGenSchedRW &Read : SchedReads) { 364 Record *ReadDef = Read.TheDef; 365 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 366 continue; 367 368 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 369 if (is_contained(ValidWrites, WriteDef)) { 370 return true; 371 } 372 } 373 return false; 374 } 375 376 namespace llvm { 377 378 void splitSchedReadWrites(const RecVec &RWDefs, 379 RecVec &WriteDefs, RecVec &ReadDefs) { 380 for (Record *RWDef : RWDefs) { 381 if (RWDef->isSubClassOf("SchedWrite")) 382 WriteDefs.push_back(RWDef); 383 else { 384 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 385 ReadDefs.push_back(RWDef); 386 } 387 } 388 } 389 390 } // end namespace llvm 391 392 // Split the SchedReadWrites defs and call findRWs for each list. 393 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 394 IdxVec &Writes, IdxVec &Reads) const { 395 RecVec WriteDefs; 396 RecVec ReadDefs; 397 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 398 findRWs(WriteDefs, Writes, false); 399 findRWs(ReadDefs, Reads, true); 400 } 401 402 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 403 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 404 bool IsRead) const { 405 for (Record *RWDef : RWDefs) { 406 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 407 assert(Idx && "failed to collect SchedReadWrite"); 408 RWs.push_back(Idx); 409 } 410 } 411 412 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 413 bool IsRead) const { 414 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 415 if (!SchedRW.IsSequence) { 416 RWSeq.push_back(RWIdx); 417 return; 418 } 419 int Repeat = 420 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 421 for (int i = 0; i < Repeat; ++i) { 422 for (unsigned I : SchedRW.Sequence) { 423 expandRWSequence(I, RWSeq, IsRead); 424 } 425 } 426 } 427 428 // Expand a SchedWrite as a sequence following any aliases that coincide with 429 // the given processor model. 430 void CodeGenSchedModels::expandRWSeqForProc( 431 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 432 const CodeGenProcModel &ProcModel) const { 433 434 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 435 Record *AliasDef = nullptr; 436 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 437 AI != AE; ++AI) { 438 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 439 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 440 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 441 if (&getProcModel(ModelDef) != &ProcModel) 442 continue; 443 } 444 if (AliasDef) 445 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 446 "defined for processor " + ProcModel.ModelName + 447 " Ensure only one SchedAlias exists per RW."); 448 AliasDef = AliasRW.TheDef; 449 } 450 if (AliasDef) { 451 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 452 RWSeq, IsRead,ProcModel); 453 return; 454 } 455 if (!SchedWrite.IsSequence) { 456 RWSeq.push_back(RWIdx); 457 return; 458 } 459 int Repeat = 460 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 461 for (int i = 0; i < Repeat; ++i) { 462 for (unsigned I : SchedWrite.Sequence) { 463 expandRWSeqForProc(I, RWSeq, IsRead, ProcModel); 464 } 465 } 466 } 467 468 // Find the existing SchedWrite that models this sequence of writes. 469 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 470 bool IsRead) { 471 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 472 473 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 474 I != E; ++I) { 475 if (makeArrayRef(I->Sequence) == Seq) 476 return I - RWVec.begin(); 477 } 478 // Index zero reserved for invalid RW. 479 return 0; 480 } 481 482 /// Add this ReadWrite if it doesn't already exist. 483 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 484 bool IsRead) { 485 assert(!Seq.empty() && "cannot insert empty sequence"); 486 if (Seq.size() == 1) 487 return Seq.back(); 488 489 unsigned Idx = findRWForSequence(Seq, IsRead); 490 if (Idx) 491 return Idx; 492 493 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 494 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 495 if (IsRead) 496 SchedReads.push_back(SchedRW); 497 else 498 SchedWrites.push_back(SchedRW); 499 return RWIdx; 500 } 501 502 /// Visit all the instruction definitions for this target to gather and 503 /// enumerate the itinerary classes. These are the explicitly specified 504 /// SchedClasses. More SchedClasses may be inferred. 505 void CodeGenSchedModels::collectSchedClasses() { 506 507 // NoItinerary is always the first class at Idx=0 508 SchedClasses.resize(1); 509 SchedClasses.back().Index = 0; 510 SchedClasses.back().Name = "NoInstrModel"; 511 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 512 SchedClasses.back().ProcIndices.push_back(0); 513 514 // Create a SchedClass for each unique combination of itinerary class and 515 // SchedRW list. 516 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 517 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 518 IdxVec Writes, Reads; 519 if (!Inst->TheDef->isValueUnset("SchedRW")) 520 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 521 522 // ProcIdx == 0 indicates the class applies to all processors. 523 IdxVec ProcIndices(1, 0); 524 525 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 526 InstrClassMap[Inst->TheDef] = SCIdx; 527 } 528 // Create classes for InstRW defs. 529 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 530 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 531 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 532 for (Record *RWDef : InstRWDefs) 533 createInstRWClass(RWDef); 534 535 NumInstrSchedClasses = SchedClasses.size(); 536 537 bool EnableDump = false; 538 DEBUG(EnableDump = true); 539 if (!EnableDump) 540 return; 541 542 dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"; 543 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 544 StringRef InstName = Inst->TheDef->getName(); 545 unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); 546 if (!SCIdx) { 547 if (!Inst->hasNoSchedulingInfo) 548 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 549 continue; 550 } 551 CodeGenSchedClass &SC = getSchedClass(SCIdx); 552 if (SC.ProcIndices[0] != 0) 553 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 554 "must not be subtarget specific."); 555 556 IdxVec ProcIndices; 557 if (SC.ItinClassDef->getName() != "NoItinerary") { 558 ProcIndices.push_back(0); 559 dbgs() << "Itinerary for " << InstName << ": " 560 << SC.ItinClassDef->getName() << '\n'; 561 } 562 if (!SC.Writes.empty()) { 563 ProcIndices.push_back(0); 564 dbgs() << "SchedRW machine model for " << InstName; 565 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 566 dbgs() << " " << SchedWrites[*WI].Name; 567 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 568 dbgs() << " " << SchedReads[*RI].Name; 569 dbgs() << '\n'; 570 } 571 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 572 for (Record *RWDef : RWDefs) { 573 const CodeGenProcModel &ProcModel = 574 getProcModel(RWDef->getValueAsDef("SchedModel")); 575 ProcIndices.push_back(ProcModel.Index); 576 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 577 IdxVec Writes; 578 IdxVec Reads; 579 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 580 Writes, Reads); 581 for (unsigned WIdx : Writes) 582 dbgs() << " " << SchedWrites[WIdx].Name; 583 for (unsigned RIdx : Reads) 584 dbgs() << " " << SchedReads[RIdx].Name; 585 dbgs() << '\n'; 586 } 587 // If ProcIndices contains zero, the class applies to all processors. 588 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 589 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 590 PE = ProcModels.end(); PI != PE; ++PI) { 591 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) 592 dbgs() << "No machine model for " << Inst->TheDef->getName() 593 << " on processor " << PI->ModelName << '\n'; 594 } 595 } 596 } 597 } 598 599 /// Find an SchedClass that has been inferred from a per-operand list of 600 /// SchedWrites and SchedReads. 601 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 602 ArrayRef<unsigned> Writes, 603 ArrayRef<unsigned> Reads) const { 604 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 605 if (I->ItinClassDef == ItinClassDef && makeArrayRef(I->Writes) == Writes && 606 makeArrayRef(I->Reads) == Reads) { 607 return I - schedClassBegin(); 608 } 609 } 610 return 0; 611 } 612 613 // Get the SchedClass index for an instruction. 614 unsigned CodeGenSchedModels::getSchedClassIdx( 615 const CodeGenInstruction &Inst) const { 616 617 return InstrClassMap.lookup(Inst.TheDef); 618 } 619 620 std::string 621 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 622 ArrayRef<unsigned> OperWrites, 623 ArrayRef<unsigned> OperReads) { 624 625 std::string Name; 626 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 627 Name = ItinClassDef->getName(); 628 for (unsigned Idx : OperWrites) { 629 if (!Name.empty()) 630 Name += '_'; 631 Name += SchedWrites[Idx].Name; 632 } 633 for (unsigned Idx : OperReads) { 634 Name += '_'; 635 Name += SchedReads[Idx].Name; 636 } 637 return Name; 638 } 639 640 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 641 642 std::string Name; 643 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 644 if (I != InstDefs.begin()) 645 Name += '_'; 646 Name += (*I)->getName(); 647 } 648 return Name; 649 } 650 651 /// Add an inferred sched class from an itinerary class and per-operand list of 652 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 653 /// processors that may utilize this class. 654 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 655 ArrayRef<unsigned> OperWrites, 656 ArrayRef<unsigned> OperReads, 657 ArrayRef<unsigned> ProcIndices) { 658 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 659 660 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 661 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 662 IdxVec PI; 663 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 664 SchedClasses[Idx].ProcIndices.end(), 665 ProcIndices.begin(), ProcIndices.end(), 666 std::back_inserter(PI)); 667 SchedClasses[Idx].ProcIndices.swap(PI); 668 return Idx; 669 } 670 Idx = SchedClasses.size(); 671 SchedClasses.resize(Idx+1); 672 CodeGenSchedClass &SC = SchedClasses.back(); 673 SC.Index = Idx; 674 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 675 SC.ItinClassDef = ItinClassDef; 676 SC.Writes = OperWrites; 677 SC.Reads = OperReads; 678 SC.ProcIndices = ProcIndices; 679 680 return Idx; 681 } 682 683 // Create classes for each set of opcodes that are in the same InstReadWrite 684 // definition across all processors. 685 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 686 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 687 // intersects with an existing class via a previous InstRWDef. Instrs that do 688 // not intersect with an existing class refer back to their former class as 689 // determined from ItinDef or SchedRW. 690 SmallVector<std::pair<unsigned, SmallVector<Record *, 8>>, 4> ClassInstrs; 691 // Sort Instrs into sets. 692 const RecVec *InstDefs = Sets.expand(InstRWDef); 693 if (InstDefs->empty()) 694 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 695 696 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 697 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 698 if (Pos == InstrClassMap.end()) 699 PrintFatalError((*I)->getLoc(), "No sched class for instruction."); 700 unsigned SCIdx = Pos->second; 701 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 702 for (; CIdx != CEnd; ++CIdx) { 703 if (ClassInstrs[CIdx].first == SCIdx) 704 break; 705 } 706 if (CIdx == CEnd) { 707 ClassInstrs.resize(CEnd + 1); 708 ClassInstrs[CIdx].first = SCIdx; 709 } 710 ClassInstrs[CIdx].second.push_back(*I); 711 } 712 // For each set of Instrs, create a new class if necessary, and map or remap 713 // the Instrs to it. 714 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 715 for (; CIdx != CEnd; ++CIdx) { 716 unsigned OldSCIdx = ClassInstrs[CIdx].first; 717 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 718 // If the all instrs in the current class are accounted for, then leave 719 // them mapped to their old class. 720 if (OldSCIdx) { 721 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 722 if (!RWDefs.empty()) { 723 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 724 unsigned OrigNumInstrs = 0; 725 for (Record *OIDef : make_range(OrigInstDefs->begin(), OrigInstDefs->end())) { 726 if (InstrClassMap[OIDef] == OldSCIdx) 727 ++OrigNumInstrs; 728 } 729 if (OrigNumInstrs == InstDefs.size()) { 730 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 731 "expected a generic SchedClass"); 732 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 733 << SchedClasses[OldSCIdx].Name << " on " 734 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 735 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 736 continue; 737 } 738 } 739 } 740 unsigned SCIdx = SchedClasses.size(); 741 SchedClasses.resize(SCIdx+1); 742 CodeGenSchedClass &SC = SchedClasses.back(); 743 SC.Index = SCIdx; 744 SC.Name = createSchedClassName(InstDefs); 745 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 746 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 747 748 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 749 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 750 SC.Writes = SchedClasses[OldSCIdx].Writes; 751 SC.Reads = SchedClasses[OldSCIdx].Reads; 752 SC.ProcIndices.push_back(0); 753 // Map each Instr to this new class. 754 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 755 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 756 SmallSet<unsigned, 4> RemappedClassIDs; 757 for (ArrayRef<Record*>::const_iterator 758 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 759 unsigned OldSCIdx = InstrClassMap[*II]; 760 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { 761 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 762 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 763 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 764 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 765 (*II)->getName() + " also matches " + 766 (*RI)->getValue("Instrs")->getValue()->getAsString()); 767 } 768 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 769 SC.InstRWs.push_back(*RI); 770 } 771 } 772 InstrClassMap[*II] = SCIdx; 773 } 774 SC.InstRWs.push_back(InstRWDef); 775 } 776 } 777 778 // True if collectProcItins found anything. 779 bool CodeGenSchedModels::hasItineraries() const { 780 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) { 781 if (PM.hasItineraries()) 782 return true; 783 } 784 return false; 785 } 786 787 // Gather the processor itineraries. 788 void CodeGenSchedModels::collectProcItins() { 789 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 790 for (CodeGenProcModel &ProcModel : ProcModels) { 791 if (!ProcModel.hasItineraries()) 792 continue; 793 794 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 795 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 796 797 // Populate ItinDefList with Itinerary records. 798 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 799 800 // Insert each itinerary data record in the correct position within 801 // the processor model's ItinDefList. 802 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 803 Record *ItinData = ItinRecords[i]; 804 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 805 bool FoundClass = false; 806 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 807 SCI != SCE; ++SCI) { 808 // Multiple SchedClasses may share an itinerary. Update all of them. 809 if (SCI->ItinClassDef == ItinDef) { 810 ProcModel.ItinDefList[SCI->Index] = ItinData; 811 FoundClass = true; 812 } 813 } 814 if (!FoundClass) { 815 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 816 << " missing class for itinerary " << ItinDef->getName() << '\n'); 817 } 818 } 819 // Check for missing itinerary entries. 820 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 821 DEBUG( 822 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 823 if (!ProcModel.ItinDefList[i]) 824 dbgs() << ProcModel.ItinsDef->getName() 825 << " missing itinerary for class " 826 << SchedClasses[i].Name << '\n'; 827 }); 828 } 829 } 830 831 // Gather the read/write types for each itinerary class. 832 void CodeGenSchedModels::collectProcItinRW() { 833 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 834 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 835 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 836 if (!(*II)->getValueInit("SchedModel")->isComplete()) 837 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 838 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 839 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 840 if (I == ProcModelMap.end()) { 841 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 842 + ModelDef->getName()); 843 } 844 ProcModels[I->second].ItinRWDefs.push_back(*II); 845 } 846 } 847 848 // Gather the unsupported features for processor models. 849 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 850 for (CodeGenProcModel &ProcModel : ProcModels) { 851 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 852 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 853 } 854 } 855 } 856 857 /// Infer new classes from existing classes. In the process, this may create new 858 /// SchedWrites from sequences of existing SchedWrites. 859 void CodeGenSchedModels::inferSchedClasses() { 860 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 861 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 862 863 // Visit all existing classes and newly created classes. 864 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 865 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 866 867 if (SchedClasses[Idx].ItinClassDef) 868 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 869 if (!SchedClasses[Idx].InstRWs.empty()) 870 inferFromInstRWs(Idx); 871 if (!SchedClasses[Idx].Writes.empty()) { 872 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 873 Idx, SchedClasses[Idx].ProcIndices); 874 } 875 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 876 "too many SchedVariants"); 877 } 878 } 879 880 /// Infer classes from per-processor itinerary resources. 881 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 882 unsigned FromClassIdx) { 883 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 884 const CodeGenProcModel &PM = ProcModels[PIdx]; 885 // For all ItinRW entries. 886 bool HasMatch = false; 887 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 888 II != IE; ++II) { 889 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 890 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 891 continue; 892 if (HasMatch) 893 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 894 + ItinClassDef->getName() 895 + " in ItinResources for " + PM.ModelName); 896 HasMatch = true; 897 IdxVec Writes, Reads; 898 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 899 IdxVec ProcIndices(1, PIdx); 900 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 901 } 902 } 903 } 904 905 /// Infer classes from per-processor InstReadWrite definitions. 906 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 907 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 908 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 909 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 910 const RecVec *InstDefs = Sets.expand(Rec); 911 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 912 for (; II != IE; ++II) { 913 if (InstrClassMap[*II] == SCIdx) 914 break; 915 } 916 // If this class no longer has any instructions mapped to it, it has become 917 // irrelevant. 918 if (II == IE) 919 continue; 920 IdxVec Writes, Reads; 921 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 922 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 923 IdxVec ProcIndices(1, PIdx); 924 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 925 } 926 } 927 928 namespace { 929 930 // Helper for substituteVariantOperand. 931 struct TransVariant { 932 Record *VarOrSeqDef; // Variant or sequence. 933 unsigned RWIdx; // Index of this variant or sequence's matched type. 934 unsigned ProcIdx; // Processor model index or zero for any. 935 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 936 937 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 938 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 939 }; 940 941 // Associate a predicate with the SchedReadWrite that it guards. 942 // RWIdx is the index of the read/write variant. 943 struct PredCheck { 944 bool IsRead; 945 unsigned RWIdx; 946 Record *Predicate; 947 948 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 949 }; 950 951 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 952 struct PredTransition { 953 // A predicate term is a conjunction of PredChecks. 954 SmallVector<PredCheck, 4> PredTerm; 955 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 956 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 957 SmallVector<unsigned, 4> ProcIndices; 958 }; 959 960 // Encapsulate a set of partially constructed transitions. 961 // The results are built by repeated calls to substituteVariants. 962 class PredTransitions { 963 CodeGenSchedModels &SchedModels; 964 965 public: 966 std::vector<PredTransition> TransVec; 967 968 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 969 970 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 971 bool IsRead, unsigned StartIdx); 972 973 void substituteVariants(const PredTransition &Trans); 974 975 #ifndef NDEBUG 976 void dump() const; 977 #endif 978 979 private: 980 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 981 void getIntersectingVariants( 982 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 983 std::vector<TransVariant> &IntersectingVariants); 984 void pushVariant(const TransVariant &VInfo, bool IsRead); 985 }; 986 987 } // end anonymous namespace 988 989 // Return true if this predicate is mutually exclusive with a PredTerm. This 990 // degenerates into checking if the predicate is mutually exclusive with any 991 // predicate in the Term's conjunction. 992 // 993 // All predicates associated with a given SchedRW are considered mutually 994 // exclusive. This should work even if the conditions expressed by the 995 // predicates are not exclusive because the predicates for a given SchedWrite 996 // are always checked in the order they are defined in the .td file. Later 997 // conditions implicitly negate any prior condition. 998 bool PredTransitions::mutuallyExclusive(Record *PredDef, 999 ArrayRef<PredCheck> Term) { 1000 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 1001 I != E; ++I) { 1002 if (I->Predicate == PredDef) 1003 return false; 1004 1005 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 1006 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1007 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1008 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 1009 if ((*VI)->getValueAsDef("Predicate") == PredDef) 1010 return true; 1011 } 1012 } 1013 return false; 1014 } 1015 1016 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1017 CodeGenSchedModels &SchedModels) { 1018 if (RW.HasVariants) 1019 return true; 1020 1021 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 1022 const CodeGenSchedRW &AliasRW = 1023 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 1024 if (AliasRW.HasVariants) 1025 return true; 1026 if (AliasRW.IsSequence) { 1027 IdxVec ExpandedRWs; 1028 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1029 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1030 SI != SE; ++SI) { 1031 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1032 SchedModels)) { 1033 return true; 1034 } 1035 } 1036 } 1037 } 1038 return false; 1039 } 1040 1041 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1042 CodeGenSchedModels &SchedModels) { 1043 for (ArrayRef<PredTransition>::iterator 1044 PTI = Transitions.begin(), PTE = Transitions.end(); 1045 PTI != PTE; ++PTI) { 1046 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1047 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1048 WSI != WSE; ++WSI) { 1049 for (SmallVectorImpl<unsigned>::const_iterator 1050 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1051 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1052 return true; 1053 } 1054 } 1055 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1056 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1057 RSI != RSE; ++RSI) { 1058 for (SmallVectorImpl<unsigned>::const_iterator 1059 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1060 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1061 return true; 1062 } 1063 } 1064 } 1065 return false; 1066 } 1067 1068 // Populate IntersectingVariants with any variants or aliased sequences of the 1069 // given SchedRW whose processor indices and predicates are not mutually 1070 // exclusive with the given transition. 1071 void PredTransitions::getIntersectingVariants( 1072 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1073 std::vector<TransVariant> &IntersectingVariants) { 1074 1075 bool GenericRW = false; 1076 1077 std::vector<TransVariant> Variants; 1078 if (SchedRW.HasVariants) { 1079 unsigned VarProcIdx = 0; 1080 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1081 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1082 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1083 } 1084 // Push each variant. Assign TransVecIdx later. 1085 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1086 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1087 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1088 if (VarProcIdx == 0) 1089 GenericRW = true; 1090 } 1091 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1092 AI != AE; ++AI) { 1093 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1094 // to is defined within a processor model, constrain all variants to 1095 // that processor. 1096 unsigned AliasProcIdx = 0; 1097 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1098 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1099 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1100 } 1101 const CodeGenSchedRW &AliasRW = 1102 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1103 1104 if (AliasRW.HasVariants) { 1105 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1106 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1107 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1108 } 1109 if (AliasRW.IsSequence) { 1110 Variants.push_back( 1111 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1112 } 1113 if (AliasProcIdx == 0) 1114 GenericRW = true; 1115 } 1116 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1117 TransVariant &Variant = Variants[VIdx]; 1118 // Don't expand variants if the processor models don't intersect. 1119 // A zero processor index means any processor. 1120 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1121 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1122 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1123 Variant.ProcIdx); 1124 if (!Cnt) 1125 continue; 1126 if (Cnt > 1) { 1127 const CodeGenProcModel &PM = 1128 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1129 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1130 "Multiple variants defined for processor " + 1131 PM.ModelName + 1132 " Ensure only one SchedAlias exists per RW."); 1133 } 1134 } 1135 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1136 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1137 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1138 continue; 1139 } 1140 if (IntersectingVariants.empty()) { 1141 // The first variant builds on the existing transition. 1142 Variant.TransVecIdx = TransIdx; 1143 IntersectingVariants.push_back(Variant); 1144 } 1145 else { 1146 // Push another copy of the current transition for more variants. 1147 Variant.TransVecIdx = TransVec.size(); 1148 IntersectingVariants.push_back(Variant); 1149 TransVec.push_back(TransVec[TransIdx]); 1150 } 1151 } 1152 if (GenericRW && IntersectingVariants.empty()) { 1153 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1154 "a matching predicate on any processor"); 1155 } 1156 } 1157 1158 // Push the Reads/Writes selected by this variant onto the PredTransition 1159 // specified by VInfo. 1160 void PredTransitions:: 1161 pushVariant(const TransVariant &VInfo, bool IsRead) { 1162 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1163 1164 // If this operand transition is reached through a processor-specific alias, 1165 // then the whole transition is specific to this processor. 1166 if (VInfo.ProcIdx != 0) 1167 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1168 1169 IdxVec SelectedRWs; 1170 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1171 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1172 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1173 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1174 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1175 } 1176 else { 1177 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1178 "variant must be a SchedVariant or aliased WriteSequence"); 1179 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1180 } 1181 1182 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1183 1184 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1185 ? Trans.ReadSequences : Trans.WriteSequences; 1186 if (SchedRW.IsVariadic) { 1187 unsigned OperIdx = RWSequences.size()-1; 1188 // Make N-1 copies of this transition's last sequence. 1189 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1190 // Create a temporary copy the vector could reallocate. 1191 RWSequences.reserve(RWSequences.size() + 1); 1192 RWSequences.push_back(RWSequences[OperIdx]); 1193 } 1194 // Push each of the N elements of the SelectedRWs onto a copy of the last 1195 // sequence (split the current operand into N operands). 1196 // Note that write sequences should be expanded within this loop--the entire 1197 // sequence belongs to a single operand. 1198 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1199 RWI != RWE; ++RWI, ++OperIdx) { 1200 IdxVec ExpandedRWs; 1201 if (IsRead) 1202 ExpandedRWs.push_back(*RWI); 1203 else 1204 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1205 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1206 ExpandedRWs.begin(), ExpandedRWs.end()); 1207 } 1208 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1209 } 1210 else { 1211 // Push this transition's expanded sequence onto this transition's last 1212 // sequence (add to the current operand's sequence). 1213 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1214 IdxVec ExpandedRWs; 1215 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1216 RWI != RWE; ++RWI) { 1217 if (IsRead) 1218 ExpandedRWs.push_back(*RWI); 1219 else 1220 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1221 } 1222 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1223 } 1224 } 1225 1226 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1227 // operand. StartIdx is an index into TransVec where partial results 1228 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1229 // of TransVec. 1230 void PredTransitions::substituteVariantOperand( 1231 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1232 1233 // Visit each original RW within the current sequence. 1234 for (SmallVectorImpl<unsigned>::const_iterator 1235 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1236 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1237 // Push this RW on all partial PredTransitions or distribute variants. 1238 // New PredTransitions may be pushed within this loop which should not be 1239 // revisited (TransEnd must be loop invariant). 1240 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1241 TransIdx != TransEnd; ++TransIdx) { 1242 // In the common case, push RW onto the current operand's sequence. 1243 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1244 if (IsRead) 1245 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1246 else 1247 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1248 continue; 1249 } 1250 // Distribute this partial PredTransition across intersecting variants. 1251 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1252 std::vector<TransVariant> IntersectingVariants; 1253 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1254 // Now expand each variant on top of its copy of the transition. 1255 for (std::vector<TransVariant>::const_iterator 1256 IVI = IntersectingVariants.begin(), 1257 IVE = IntersectingVariants.end(); 1258 IVI != IVE; ++IVI) { 1259 pushVariant(*IVI, IsRead); 1260 } 1261 } 1262 } 1263 } 1264 1265 // For each variant of a Read/Write in Trans, substitute the sequence of 1266 // Read/Writes guarded by the variant. This is exponential in the number of 1267 // variant Read/Writes, but in practice detection of mutually exclusive 1268 // predicates should result in linear growth in the total number variants. 1269 // 1270 // This is one step in a breadth-first search of nested variants. 1271 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1272 // Build up a set of partial results starting at the back of 1273 // PredTransitions. Remember the first new transition. 1274 unsigned StartIdx = TransVec.size(); 1275 TransVec.resize(TransVec.size() + 1); 1276 TransVec.back().PredTerm = Trans.PredTerm; 1277 TransVec.back().ProcIndices = Trans.ProcIndices; 1278 1279 // Visit each original write sequence. 1280 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1281 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1282 WSI != WSE; ++WSI) { 1283 // Push a new (empty) write sequence onto all partial Transitions. 1284 for (std::vector<PredTransition>::iterator I = 1285 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1286 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1287 } 1288 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1289 } 1290 // Visit each original read sequence. 1291 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1292 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1293 RSI != RSE; ++RSI) { 1294 // Push a new (empty) read sequence onto all partial Transitions. 1295 for (std::vector<PredTransition>::iterator I = 1296 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1297 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1298 } 1299 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1300 } 1301 } 1302 1303 // Create a new SchedClass for each variant found by inferFromRW. Pass 1304 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1305 unsigned FromClassIdx, 1306 CodeGenSchedModels &SchedModels) { 1307 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1308 // requires creating a new SchedClass. 1309 for (ArrayRef<PredTransition>::iterator 1310 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1311 IdxVec OperWritesVariant; 1312 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1313 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1314 WSI != WSE; ++WSI) { 1315 // Create a new write representing the expanded sequence. 1316 OperWritesVariant.push_back( 1317 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1318 } 1319 IdxVec OperReadsVariant; 1320 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1321 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1322 RSI != RSE; ++RSI) { 1323 // Create a new read representing the expanded sequence. 1324 OperReadsVariant.push_back( 1325 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1326 } 1327 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1328 CodeGenSchedTransition SCTrans; 1329 SCTrans.ToClassIdx = 1330 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1331 OperReadsVariant, ProcIndices); 1332 SCTrans.ProcIndices = ProcIndices; 1333 // The final PredTerm is unique set of predicates guarding the transition. 1334 RecVec Preds; 1335 for (SmallVectorImpl<PredCheck>::const_iterator 1336 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1337 Preds.push_back(PI->Predicate); 1338 } 1339 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1340 Preds.resize(PredsEnd - Preds.begin()); 1341 SCTrans.PredTerm = Preds; 1342 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1343 } 1344 } 1345 1346 // Create new SchedClasses for the given ReadWrite list. If any of the 1347 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1348 // of the ReadWrite list, following Aliases if necessary. 1349 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1350 ArrayRef<unsigned> OperReads, 1351 unsigned FromClassIdx, 1352 ArrayRef<unsigned> ProcIndices) { 1353 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1354 1355 // Create a seed transition with an empty PredTerm and the expanded sequences 1356 // of SchedWrites for the current SchedClass. 1357 std::vector<PredTransition> LastTransitions; 1358 LastTransitions.resize(1); 1359 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1360 ProcIndices.end()); 1361 1362 for (unsigned WriteIdx : OperWrites) { 1363 IdxVec WriteSeq; 1364 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1365 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1366 LastTransitions[0].WriteSequences.resize(Idx + 1); 1367 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1368 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1369 Seq.push_back(*WI); 1370 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1371 } 1372 DEBUG(dbgs() << " Reads: "); 1373 for (unsigned ReadIdx : OperReads) { 1374 IdxVec ReadSeq; 1375 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1376 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1377 LastTransitions[0].ReadSequences.resize(Idx + 1); 1378 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1379 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1380 Seq.push_back(*RI); 1381 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1382 } 1383 DEBUG(dbgs() << '\n'); 1384 1385 // Collect all PredTransitions for individual operands. 1386 // Iterate until no variant writes remain. 1387 while (hasVariant(LastTransitions, *this)) { 1388 PredTransitions Transitions(*this); 1389 for (std::vector<PredTransition>::const_iterator 1390 I = LastTransitions.begin(), E = LastTransitions.end(); 1391 I != E; ++I) { 1392 Transitions.substituteVariants(*I); 1393 } 1394 DEBUG(Transitions.dump()); 1395 LastTransitions.swap(Transitions.TransVec); 1396 } 1397 // If the first transition has no variants, nothing to do. 1398 if (LastTransitions[0].PredTerm.empty()) 1399 return; 1400 1401 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1402 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1403 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1404 } 1405 1406 // Check if any processor resource group contains all resource records in 1407 // SubUnits. 1408 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1409 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1410 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1411 continue; 1412 RecVec SuperUnits = 1413 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1414 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1415 for ( ; RI != RE; ++RI) { 1416 if (!is_contained(SuperUnits, *RI)) { 1417 break; 1418 } 1419 } 1420 if (RI == RE) 1421 return true; 1422 } 1423 return false; 1424 } 1425 1426 // Verify that overlapping groups have a common supergroup. 1427 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1428 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1429 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1430 continue; 1431 RecVec CheckUnits = 1432 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1433 for (unsigned j = i+1; j < e; ++j) { 1434 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1435 continue; 1436 RecVec OtherUnits = 1437 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1438 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1439 OtherUnits.begin(), OtherUnits.end()) 1440 != CheckUnits.end()) { 1441 // CheckUnits and OtherUnits overlap 1442 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1443 CheckUnits.end()); 1444 if (!hasSuperGroup(OtherUnits, PM)) { 1445 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1446 "proc resource group overlaps with " 1447 + PM.ProcResourceDefs[j]->getName() 1448 + " but no supergroup contains both."); 1449 } 1450 } 1451 } 1452 } 1453 } 1454 1455 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1456 void CodeGenSchedModels::collectProcResources() { 1457 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1458 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1459 1460 // Add any subtarget-specific SchedReadWrites that are directly associated 1461 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1462 // determine which processors they apply to. 1463 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1464 SCI != SCE; ++SCI) { 1465 if (SCI->ItinClassDef) 1466 collectItinProcResources(SCI->ItinClassDef); 1467 else { 1468 // This class may have a default ReadWrite list which can be overriden by 1469 // InstRW definitions. 1470 if (!SCI->InstRWs.empty()) { 1471 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1472 RWI != RWE; ++RWI) { 1473 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1474 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1475 IdxVec Writes, Reads; 1476 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1477 Writes, Reads); 1478 collectRWResources(Writes, Reads, ProcIndices); 1479 } 1480 } 1481 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1482 } 1483 } 1484 // Add resources separately defined by each subtarget. 1485 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1486 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1487 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1488 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1489 } 1490 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1491 for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { 1492 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1493 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1494 } 1495 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1496 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1497 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1498 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1499 } 1500 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1501 for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { 1502 if ((*RAI)->getValueInit("SchedModel")->isComplete()) { 1503 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1504 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1505 } 1506 } 1507 // Add ProcResGroups that are defined within this processor model, which may 1508 // not be directly referenced but may directly specify a buffer size. 1509 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1510 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1511 RI != RE; ++RI) { 1512 if (!(*RI)->getValueInit("SchedModel")->isComplete()) 1513 continue; 1514 CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); 1515 if (!is_contained(PM.ProcResourceDefs, *RI)) 1516 PM.ProcResourceDefs.push_back(*RI); 1517 } 1518 // Finalize each ProcModel by sorting the record arrays. 1519 for (CodeGenProcModel &PM : ProcModels) { 1520 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1521 LessRecord()); 1522 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1523 LessRecord()); 1524 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1525 LessRecord()); 1526 DEBUG( 1527 PM.dump(); 1528 dbgs() << "WriteResDefs: "; 1529 for (RecIter RI = PM.WriteResDefs.begin(), 1530 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1531 if ((*RI)->isSubClassOf("WriteRes")) 1532 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1533 else 1534 dbgs() << (*RI)->getName() << " "; 1535 } 1536 dbgs() << "\nReadAdvanceDefs: "; 1537 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1538 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1539 if ((*RI)->isSubClassOf("ReadAdvance")) 1540 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1541 else 1542 dbgs() << (*RI)->getName() << " "; 1543 } 1544 dbgs() << "\nProcResourceDefs: "; 1545 for (RecIter RI = PM.ProcResourceDefs.begin(), 1546 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1547 dbgs() << (*RI)->getName() << " "; 1548 } 1549 dbgs() << '\n'); 1550 verifyProcResourceGroups(PM); 1551 } 1552 1553 ProcResourceDefs.clear(); 1554 ProcResGroups.clear(); 1555 } 1556 1557 void CodeGenSchedModels::checkCompleteness() { 1558 bool Complete = true; 1559 bool HadCompleteModel = false; 1560 for (const CodeGenProcModel &ProcModel : procModels()) { 1561 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1562 continue; 1563 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1564 if (Inst->hasNoSchedulingInfo) 1565 continue; 1566 if (ProcModel.isUnsupported(*Inst)) 1567 continue; 1568 unsigned SCIdx = getSchedClassIdx(*Inst); 1569 if (!SCIdx) { 1570 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1571 PrintError("No schedule information for instruction '" 1572 + Inst->TheDef->getName() + "'"); 1573 Complete = false; 1574 } 1575 continue; 1576 } 1577 1578 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1579 if (!SC.Writes.empty()) 1580 continue; 1581 if (SC.ItinClassDef != nullptr && 1582 SC.ItinClassDef->getName() != "NoItinerary") 1583 continue; 1584 1585 const RecVec &InstRWs = SC.InstRWs; 1586 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1587 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1588 }); 1589 if (I == InstRWs.end()) { 1590 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1591 Inst->TheDef->getName() + "'"); 1592 Complete = false; 1593 } 1594 } 1595 HadCompleteModel = true; 1596 } 1597 if (!Complete) { 1598 errs() << "\n\nIncomplete schedule models found.\n" 1599 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1600 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1601 << "- Instructions should usually have Sched<[...]> as a superclass, " 1602 "you may temporarily use an empty list.\n" 1603 << "- Instructions related to unsupported features can be excluded with " 1604 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1605 "processor model.\n\n"; 1606 PrintFatalError("Incomplete schedule model"); 1607 } 1608 } 1609 1610 // Collect itinerary class resources for each processor. 1611 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1612 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1613 const CodeGenProcModel &PM = ProcModels[PIdx]; 1614 // For all ItinRW entries. 1615 bool HasMatch = false; 1616 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1617 II != IE; ++II) { 1618 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1619 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1620 continue; 1621 if (HasMatch) 1622 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1623 + ItinClassDef->getName() 1624 + " in ItinResources for " + PM.ModelName); 1625 HasMatch = true; 1626 IdxVec Writes, Reads; 1627 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1628 IdxVec ProcIndices(1, PIdx); 1629 collectRWResources(Writes, Reads, ProcIndices); 1630 } 1631 } 1632 } 1633 1634 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1635 ArrayRef<unsigned> ProcIndices) { 1636 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1637 if (SchedRW.TheDef) { 1638 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1639 for (unsigned Idx : ProcIndices) 1640 addWriteRes(SchedRW.TheDef, Idx); 1641 } 1642 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1643 for (unsigned Idx : ProcIndices) 1644 addReadAdvance(SchedRW.TheDef, Idx); 1645 } 1646 } 1647 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1648 AI != AE; ++AI) { 1649 IdxVec AliasProcIndices; 1650 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1651 AliasProcIndices.push_back( 1652 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1653 } 1654 else 1655 AliasProcIndices = ProcIndices; 1656 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1657 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1658 1659 IdxVec ExpandedRWs; 1660 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1661 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1662 SI != SE; ++SI) { 1663 collectRWResources(*SI, IsRead, AliasProcIndices); 1664 } 1665 } 1666 } 1667 1668 // Collect resources for a set of read/write types and processor indices. 1669 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1670 ArrayRef<unsigned> Reads, 1671 ArrayRef<unsigned> ProcIndices) { 1672 for (unsigned Idx : Writes) 1673 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1674 1675 for (unsigned Idx : Reads) 1676 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1677 } 1678 1679 // Find the processor's resource units for this kind of resource. 1680 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1681 const CodeGenProcModel &PM) const { 1682 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1683 return ProcResKind; 1684 1685 Record *ProcUnitDef = nullptr; 1686 assert(!ProcResourceDefs.empty()); 1687 assert(!ProcResGroups.empty()); 1688 1689 for (Record *ProcResDef : ProcResourceDefs) { 1690 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1691 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1692 if (ProcUnitDef) { 1693 PrintFatalError(ProcResDef->getLoc(), 1694 "Multiple ProcessorResourceUnits associated with " 1695 + ProcResKind->getName()); 1696 } 1697 ProcUnitDef = ProcResDef; 1698 } 1699 } 1700 for (Record *ProcResGroup : ProcResGroups) { 1701 if (ProcResGroup == ProcResKind 1702 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1703 if (ProcUnitDef) { 1704 PrintFatalError((ProcResGroup)->getLoc(), 1705 "Multiple ProcessorResourceUnits associated with " 1706 + ProcResKind->getName()); 1707 } 1708 ProcUnitDef = ProcResGroup; 1709 } 1710 } 1711 if (!ProcUnitDef) { 1712 PrintFatalError(ProcResKind->getLoc(), 1713 "No ProcessorResources associated with " 1714 + ProcResKind->getName()); 1715 } 1716 return ProcUnitDef; 1717 } 1718 1719 // Iteratively add a resource and its super resources. 1720 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1721 CodeGenProcModel &PM) { 1722 while (true) { 1723 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1724 1725 // See if this ProcResource is already associated with this processor. 1726 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1727 return; 1728 1729 PM.ProcResourceDefs.push_back(ProcResUnits); 1730 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1731 return; 1732 1733 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1734 return; 1735 1736 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1737 } 1738 } 1739 1740 // Add resources for a SchedWrite to this processor if they don't exist. 1741 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1742 assert(PIdx && "don't add resources to an invalid Processor model"); 1743 1744 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1745 if (is_contained(WRDefs, ProcWriteResDef)) 1746 return; 1747 WRDefs.push_back(ProcWriteResDef); 1748 1749 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1750 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1751 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1752 WritePRI != WritePRE; ++WritePRI) { 1753 addProcResource(*WritePRI, ProcModels[PIdx]); 1754 } 1755 } 1756 1757 // Add resources for a ReadAdvance to this processor if they don't exist. 1758 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1759 unsigned PIdx) { 1760 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1761 if (is_contained(RADefs, ProcReadAdvanceDef)) 1762 return; 1763 RADefs.push_back(ProcReadAdvanceDef); 1764 } 1765 1766 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1767 RecIter PRPos = find(ProcResourceDefs, PRDef); 1768 if (PRPos == ProcResourceDefs.end()) 1769 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1770 "the ProcResources list for " + ModelName); 1771 // Idx=0 is reserved for invalid. 1772 return 1 + (PRPos - ProcResourceDefs.begin()); 1773 } 1774 1775 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1776 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1777 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1778 if (TheDef->getName() == PredDef->getName()) 1779 return true; 1780 } 1781 } 1782 return false; 1783 } 1784 1785 #ifndef NDEBUG 1786 void CodeGenProcModel::dump() const { 1787 dbgs() << Index << ": " << ModelName << " " 1788 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1789 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1790 } 1791 1792 void CodeGenSchedRW::dump() const { 1793 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1794 if (IsSequence) { 1795 dbgs() << "("; 1796 dumpIdxVec(Sequence); 1797 dbgs() << ")"; 1798 } 1799 } 1800 1801 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1802 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1803 << " Writes: "; 1804 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1805 SchedModels->getSchedWrite(Writes[i]).dump(); 1806 if (i < N-1) { 1807 dbgs() << '\n'; 1808 dbgs().indent(10); 1809 } 1810 } 1811 dbgs() << "\n Reads: "; 1812 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1813 SchedModels->getSchedRead(Reads[i]).dump(); 1814 if (i < N-1) { 1815 dbgs() << '\n'; 1816 dbgs().indent(10); 1817 } 1818 } 1819 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1820 if (!Transitions.empty()) { 1821 dbgs() << "\n Transitions for Proc "; 1822 for (const CodeGenSchedTransition &Transition : Transitions) { 1823 dumpIdxVec(Transition.ProcIndices); 1824 } 1825 } 1826 } 1827 1828 void PredTransitions::dump() const { 1829 dbgs() << "Expanded Variants:\n"; 1830 for (std::vector<PredTransition>::const_iterator 1831 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1832 dbgs() << "{"; 1833 for (SmallVectorImpl<PredCheck>::const_iterator 1834 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1835 PCI != PCE; ++PCI) { 1836 if (PCI != TI->PredTerm.begin()) 1837 dbgs() << ", "; 1838 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1839 << ":" << PCI->Predicate->getName(); 1840 } 1841 dbgs() << "},\n => {"; 1842 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1843 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1844 WSI != WSE; ++WSI) { 1845 dbgs() << "("; 1846 for (SmallVectorImpl<unsigned>::const_iterator 1847 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1848 if (WI != WSI->begin()) 1849 dbgs() << ", "; 1850 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1851 } 1852 dbgs() << "),"; 1853 } 1854 dbgs() << "}\n"; 1855 } 1856 } 1857 #endif // NDEBUG 1858