1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as decribed in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "subtarget-emitter" 16 17 #include "CodeGenSchedule.h" 18 #include "CodeGenTarget.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Regex.h" 22 #include "llvm/ADT/STLExtras.h" 23 24 using namespace llvm; 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(const IdxVec &V) { 28 for (unsigned i = 0, e = V.size(); i < e; ++i) { 29 dbgs() << V[i] << ", "; 30 } 31 } 32 static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) { 33 for (unsigned i = 0, e = V.size(); i < e; ++i) { 34 dbgs() << V[i] << ", "; 35 } 36 } 37 #endif 38 39 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 40 struct InstrsOp : public SetTheory::Operator { 41 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts) { 42 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts); 43 } 44 }; 45 46 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 47 // 48 // TODO: Since this is a prefix match, perform a binary search over the 49 // instruction names using lower_bound. Note that the predefined instrs must be 50 // scanned linearly first. However, this is only safe if the regex pattern has 51 // no top-level bars. The DAG already has a list of patterns, so there's no 52 // reason to use top-level bars, but we need a way to verify they don't exist 53 // before implementing the optimization. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts) { 59 SmallVector<Regex*, 4> RegexList; 60 for (DagInit::const_arg_iterator 61 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 62 StringInit *SI = dyn_cast<StringInit>(*AI); 63 if (!SI) 64 throw "instregex requires pattern string: " + Expr->getAsString(); 65 std::string pat = SI->getValue(); 66 // Implement a python-style prefix match. 67 if (pat[0] != '^') { 68 pat.insert(0, "^("); 69 pat.insert(pat.end(), ')'); 70 } 71 RegexList.push_back(new Regex(pat)); 72 } 73 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 74 E = Target.inst_end(); I != E; ++I) { 75 for (SmallVectorImpl<Regex*>::iterator 76 RI = RegexList.begin(), RE = RegexList.end(); RI != RE; ++RI) { 77 if ((*RI)->match((*I)->TheDef->getName())) 78 Elts.insert((*I)->TheDef); 79 } 80 } 81 DeleteContainerPointers(RegexList); 82 } 83 }; 84 85 /// CodeGenModels ctor interprets machine model records and populates maps. 86 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 87 const CodeGenTarget &TGT): 88 Records(RK), Target(TGT), NumItineraryClasses(0) { 89 90 Sets.addFieldExpander("InstRW", "Instrs"); 91 92 // Allow Set evaluation to recognize the dags used in InstRW records: 93 // (instrs Op1, Op1...) 94 Sets.addOperator("instrs", new InstrsOp); 95 Sets.addOperator("instregex", new InstRegexOp(Target)); 96 97 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 98 // that are explicitly referenced in tablegen records. Resources associated 99 // with each processor will be derived later. Populate ProcModelMap with the 100 // CodeGenProcModel instances. 101 collectProcModels(); 102 103 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 104 // defined, and populate SchedReads and SchedWrites vectors. Implicit 105 // SchedReadWrites that represent sequences derived from expanded variant will 106 // be inferred later. 107 collectSchedRW(); 108 109 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 110 // required by an instruction definition, and populate SchedClassIdxMap. Set 111 // NumItineraryClasses to the number of explicit itinerary classes referenced 112 // by instructions. Set NumInstrSchedClasses to the number of itinerary 113 // classes plus any classes implied by instructions that derive from class 114 // Sched and provide SchedRW list. This does not infer any new classes from 115 // SchedVariant. 116 collectSchedClasses(); 117 118 // Find instruction itineraries for each processor. Sort and populate 119 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 120 // all itinerary classes to be discovered. 121 collectProcItins(); 122 123 // Find ItinRW records for each processor and itinerary class. 124 // (For per-operand resources mapped to itinerary classes). 125 collectProcItinRW(); 126 127 // Infer new SchedClasses from SchedVariant. 128 inferSchedClasses(); 129 130 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 131 // ProcResourceDefs. 132 collectProcResources(); 133 } 134 135 /// Gather all processor models. 136 void CodeGenSchedModels::collectProcModels() { 137 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 138 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 139 140 // Reserve space because we can. Reallocation would be ok. 141 ProcModels.reserve(ProcRecords.size()+1); 142 143 // Use idx=0 for NoModel/NoItineraries. 144 Record *NoModelDef = Records.getDef("NoSchedModel"); 145 Record *NoItinsDef = Records.getDef("NoItineraries"); 146 ProcModels.push_back(CodeGenProcModel(0, "NoSchedModel", 147 NoModelDef, NoItinsDef)); 148 ProcModelMap[NoModelDef] = 0; 149 150 // For each processor, find a unique machine model. 151 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 152 addProcModel(ProcRecords[i]); 153 } 154 155 /// Get a unique processor model based on the defined MachineModel and 156 /// ProcessorItineraries. 157 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 158 Record *ModelKey = getModelOrItinDef(ProcDef); 159 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 160 return; 161 162 std::string Name = ModelKey->getName(); 163 if (ModelKey->isSubClassOf("SchedMachineModel")) { 164 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 165 ProcModels.push_back( 166 CodeGenProcModel(ProcModels.size(), Name, ModelKey, ItinsDef)); 167 } 168 else { 169 // An itinerary is defined without a machine model. Infer a new model. 170 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 171 Name = Name + "Model"; 172 ProcModels.push_back( 173 CodeGenProcModel(ProcModels.size(), Name, 174 ProcDef->getValueAsDef("SchedModel"), ModelKey)); 175 } 176 DEBUG(ProcModels.back().dump()); 177 } 178 179 // Recursively find all reachable SchedReadWrite records. 180 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 181 SmallPtrSet<Record*, 16> &RWSet) { 182 if (!RWSet.insert(RWDef)) 183 return; 184 RWDefs.push_back(RWDef); 185 // Reads don't current have sequence records, but it can be added later. 186 if (RWDef->isSubClassOf("WriteSequence")) { 187 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 188 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 189 scanSchedRW(*I, RWDefs, RWSet); 190 } 191 else if (RWDef->isSubClassOf("SchedVariant")) { 192 // Visit each variant (guarded by a different predicate). 193 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 194 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 195 // Visit each RW in the sequence selected by the current variant. 196 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 197 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 198 scanSchedRW(*I, RWDefs, RWSet); 199 } 200 } 201 } 202 203 // Collect and sort all SchedReadWrites reachable via tablegen records. 204 // More may be inferred later when inferring new SchedClasses from variants. 205 void CodeGenSchedModels::collectSchedRW() { 206 // Reserve idx=0 for invalid writes/reads. 207 SchedWrites.resize(1); 208 SchedReads.resize(1); 209 210 SmallPtrSet<Record*, 16> RWSet; 211 212 // Find all SchedReadWrites referenced by instruction defs. 213 RecVec SWDefs, SRDefs; 214 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 215 E = Target.inst_end(); I != E; ++I) { 216 Record *SchedDef = (*I)->TheDef; 217 if (!SchedDef->isSubClassOf("Sched")) 218 continue; 219 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 220 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 221 if ((*RWI)->isSubClassOf("SchedWrite")) 222 scanSchedRW(*RWI, SWDefs, RWSet); 223 else { 224 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 225 scanSchedRW(*RWI, SRDefs, RWSet); 226 } 227 } 228 } 229 // Find all ReadWrites referenced by InstRW. 230 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 231 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 232 // For all OperandReadWrites. 233 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 234 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 235 RWI != RWE; ++RWI) { 236 if ((*RWI)->isSubClassOf("SchedWrite")) 237 scanSchedRW(*RWI, SWDefs, RWSet); 238 else { 239 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 240 scanSchedRW(*RWI, SRDefs, RWSet); 241 } 242 } 243 } 244 // Find all ReadWrites referenced by ItinRW. 245 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 246 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 247 // For all OperandReadWrites. 248 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 249 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 250 RWI != RWE; ++RWI) { 251 if ((*RWI)->isSubClassOf("SchedWrite")) 252 scanSchedRW(*RWI, SWDefs, RWSet); 253 else { 254 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 255 scanSchedRW(*RWI, SRDefs, RWSet); 256 } 257 } 258 } 259 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 260 // for the loop below that initializes Alias vectors. 261 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 262 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 263 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 264 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 265 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 266 if (MatchDef->isSubClassOf("SchedWrite")) { 267 if (!AliasDef->isSubClassOf("SchedWrite")) 268 throw TGError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 269 scanSchedRW(AliasDef, SWDefs, RWSet); 270 } 271 else { 272 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 273 if (!AliasDef->isSubClassOf("SchedRead")) 274 throw TGError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 275 scanSchedRW(AliasDef, SRDefs, RWSet); 276 } 277 } 278 // Sort and add the SchedReadWrites directly referenced by instructions or 279 // itinerary resources. Index reads and writes in separate domains. 280 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 281 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 282 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 283 SchedWrites.push_back(CodeGenSchedRW(SchedWrites.size(), *SWI)); 284 } 285 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 286 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 287 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 288 SchedReads.push_back(CodeGenSchedRW(SchedReads.size(), *SRI)); 289 } 290 // Initialize WriteSequence vectors. 291 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 292 WE = SchedWrites.end(); WI != WE; ++WI) { 293 if (!WI->IsSequence) 294 continue; 295 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 296 /*IsRead=*/false); 297 } 298 // Initialize Aliases vectors. 299 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 300 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 301 getSchedRW(AliasDef).IsAlias = true; 302 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 303 CodeGenSchedRW &RW = getSchedRW(MatchDef); 304 if (RW.IsAlias) 305 throw TGError((*AI)->getLoc(), "Cannot Alias an Alias"); 306 RW.Aliases.push_back(*AI); 307 } 308 DEBUG( 309 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 310 dbgs() << WIdx << ": "; 311 SchedWrites[WIdx].dump(); 312 dbgs() << '\n'; 313 } 314 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 315 dbgs() << RIdx << ": "; 316 SchedReads[RIdx].dump(); 317 dbgs() << '\n'; 318 } 319 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 320 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 321 RI != RE; ++RI) { 322 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 323 const std::string &Name = (*RI)->getName(); 324 if (Name != "NoWrite" && Name != "ReadDefault") 325 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 326 } 327 }); 328 } 329 330 /// Compute a SchedWrite name from a sequence of writes. 331 std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) { 332 std::string Name("("); 333 for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) { 334 if (I != Seq.begin()) 335 Name += '_'; 336 Name += getSchedRW(*I, IsRead).Name; 337 } 338 Name += ')'; 339 return Name; 340 } 341 342 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 343 unsigned After) const { 344 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 345 assert(After < RWVec.size() && "start position out of bounds"); 346 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 347 E = RWVec.end(); I != E; ++I) { 348 if (I->TheDef == Def) 349 return I - RWVec.begin(); 350 } 351 return 0; 352 } 353 354 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 355 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 356 Record *ReadDef = SchedReads[i].TheDef; 357 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 358 continue; 359 360 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 361 if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) 362 != ValidWrites.end()) { 363 return true; 364 } 365 } 366 return false; 367 } 368 369 namespace llvm { 370 void splitSchedReadWrites(const RecVec &RWDefs, 371 RecVec &WriteDefs, RecVec &ReadDefs) { 372 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 373 if ((*RWI)->isSubClassOf("SchedWrite")) 374 WriteDefs.push_back(*RWI); 375 else { 376 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 377 ReadDefs.push_back(*RWI); 378 } 379 } 380 } 381 } // namespace llvm 382 383 // Split the SchedReadWrites defs and call findRWs for each list. 384 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 385 IdxVec &Writes, IdxVec &Reads) const { 386 RecVec WriteDefs; 387 RecVec ReadDefs; 388 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 389 findRWs(WriteDefs, Writes, false); 390 findRWs(ReadDefs, Reads, true); 391 } 392 393 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 394 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 395 bool IsRead) const { 396 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 397 unsigned Idx = getSchedRWIdx(*RI, IsRead); 398 assert(Idx && "failed to collect SchedReadWrite"); 399 RWs.push_back(Idx); 400 } 401 } 402 403 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 404 bool IsRead) const { 405 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 406 if (!SchedRW.IsSequence) { 407 RWSeq.push_back(RWIdx); 408 return; 409 } 410 int Repeat = 411 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 412 for (int i = 0; i < Repeat; ++i) { 413 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 414 I != E; ++I) { 415 expandRWSequence(*I, RWSeq, IsRead); 416 } 417 } 418 } 419 420 // Expand a SchedWrite as a sequence following any aliases that coincide with 421 // the given processor model. 422 void CodeGenSchedModels::expandRWSeqForProc( 423 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 424 const CodeGenProcModel &ProcModel) const { 425 426 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 427 Record *AliasDef = 0; 428 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 429 AI != AE; ++AI) { 430 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 431 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 432 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 433 if (&getProcModel(ModelDef) != &ProcModel) 434 continue; 435 } 436 if (AliasDef) 437 throw TGError(AliasRW.TheDef->getLoc(), "Multiple aliases " 438 "defined for processor " + ProcModel.ModelName + 439 " Ensure only one SchedAlias exists per RW."); 440 AliasDef = AliasRW.TheDef; 441 } 442 if (AliasDef) { 443 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 444 RWSeq, IsRead,ProcModel); 445 return; 446 } 447 if (!SchedWrite.IsSequence) { 448 RWSeq.push_back(RWIdx); 449 return; 450 } 451 int Repeat = 452 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 453 for (int i = 0; i < Repeat; ++i) { 454 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 455 I != E; ++I) { 456 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 457 } 458 } 459 } 460 461 // Find the existing SchedWrite that models this sequence of writes. 462 unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq, 463 bool IsRead) { 464 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 465 466 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 467 I != E; ++I) { 468 if (I->Sequence == Seq) 469 return I - RWVec.begin(); 470 } 471 // Index zero reserved for invalid RW. 472 return 0; 473 } 474 475 /// Add this ReadWrite if it doesn't already exist. 476 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 477 bool IsRead) { 478 assert(!Seq.empty() && "cannot insert empty sequence"); 479 if (Seq.size() == 1) 480 return Seq.back(); 481 482 unsigned Idx = findRWForSequence(Seq, IsRead); 483 if (Idx) 484 return Idx; 485 486 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 487 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 488 if (IsRead) 489 SchedReads.push_back(SchedRW); 490 else 491 SchedWrites.push_back(SchedRW); 492 return RWIdx; 493 } 494 495 /// Visit all the instruction definitions for this target to gather and 496 /// enumerate the itinerary classes. These are the explicitly specified 497 /// SchedClasses. More SchedClasses may be inferred. 498 void CodeGenSchedModels::collectSchedClasses() { 499 500 // NoItinerary is always the first class at Idx=0 501 SchedClasses.resize(1); 502 SchedClasses.back().Name = "NoItinerary"; 503 SchedClasses.back().ProcIndices.push_back(0); 504 SchedClassIdxMap[SchedClasses.back().Name] = 0; 505 506 // Gather and sort all itinerary classes used by instruction descriptions. 507 RecVec ItinClassList; 508 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 509 E = Target.inst_end(); I != E; ++I) { 510 Record *ItinDef = (*I)->TheDef->getValueAsDef("Itinerary"); 511 // Map a new SchedClass with no index. 512 if (!SchedClassIdxMap.count(ItinDef->getName())) { 513 SchedClassIdxMap[ItinDef->getName()] = 0; 514 ItinClassList.push_back(ItinDef); 515 } 516 } 517 // Assign each itinerary class unique number, skipping NoItinerary==0 518 NumItineraryClasses = ItinClassList.size(); 519 std::sort(ItinClassList.begin(), ItinClassList.end(), LessRecord()); 520 for (unsigned i = 0, N = NumItineraryClasses; i < N; i++) { 521 Record *ItinDef = ItinClassList[i]; 522 SchedClassIdxMap[ItinDef->getName()] = SchedClasses.size(); 523 SchedClasses.push_back(CodeGenSchedClass(ItinDef)); 524 } 525 // Infer classes from SchedReadWrite resources listed for each 526 // instruction definition that inherits from class Sched. 527 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 528 E = Target.inst_end(); I != E; ++I) { 529 if (!(*I)->TheDef->isSubClassOf("Sched")) 530 continue; 531 IdxVec Writes, Reads; 532 findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 533 // ProcIdx == 0 indicates the class applies to all processors. 534 IdxVec ProcIndices(1, 0); 535 addSchedClass(Writes, Reads, ProcIndices); 536 } 537 // Create classes for InstRW defs. 538 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 539 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 540 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 541 createInstRWClass(*OI); 542 543 NumInstrSchedClasses = SchedClasses.size(); 544 545 bool EnableDump = false; 546 DEBUG(EnableDump = true); 547 if (!EnableDump) 548 return; 549 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 550 E = Target.inst_end(); I != E; ++I) { 551 Record *SchedDef = (*I)->TheDef; 552 std::string InstName = (*I)->TheDef->getName(); 553 if (SchedDef->isSubClassOf("Sched")) { 554 IdxVec Writes; 555 IdxVec Reads; 556 findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 557 dbgs() << "SchedRW machine model for " << InstName; 558 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 559 dbgs() << " " << SchedWrites[*WI].Name; 560 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 561 dbgs() << " " << SchedReads[*RI].Name; 562 dbgs() << '\n'; 563 } 564 unsigned SCIdx = InstrClassMap.lookup((*I)->TheDef); 565 if (SCIdx) { 566 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 567 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 568 RWI != RWE; ++RWI) { 569 const CodeGenProcModel &ProcModel = 570 getProcModel((*RWI)->getValueAsDef("SchedModel")); 571 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 572 IdxVec Writes; 573 IdxVec Reads; 574 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 575 Writes, Reads); 576 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 577 dbgs() << " " << SchedWrites[*WI].Name; 578 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 579 dbgs() << " " << SchedReads[*RI].Name; 580 dbgs() << '\n'; 581 } 582 continue; 583 } 584 if (!SchedDef->isSubClassOf("Sched") 585 && (SchedDef->getValueAsDef("Itinerary")->getName() == "NoItinerary")) { 586 dbgs() << "No machine model for " << (*I)->TheDef->getName() << '\n'; 587 } 588 } 589 } 590 591 unsigned CodeGenSchedModels::getSchedClassIdx( 592 const RecVec &RWDefs) const { 593 594 IdxVec Writes, Reads; 595 findRWs(RWDefs, Writes, Reads); 596 return findSchedClassIdx(Writes, Reads); 597 } 598 599 /// Find an SchedClass that has been inferred from a per-operand list of 600 /// SchedWrites and SchedReads. 601 unsigned CodeGenSchedModels::findSchedClassIdx(const IdxVec &Writes, 602 const IdxVec &Reads) const { 603 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 604 // Classes with InstRWs may have the same Writes/Reads as a class originally 605 // produced by a SchedRW definition. We need to be able to recover the 606 // original class index for processors that don't match any InstRWs. 607 if (I->ItinClassDef || !I->InstRWs.empty()) 608 continue; 609 610 if (I->Writes == Writes && I->Reads == Reads) { 611 return I - schedClassBegin(); 612 } 613 } 614 return 0; 615 } 616 617 // Get the SchedClass index for an instruction. 618 unsigned CodeGenSchedModels::getSchedClassIdx( 619 const CodeGenInstruction &Inst) const { 620 621 unsigned SCIdx = InstrClassMap.lookup(Inst.TheDef); 622 if (SCIdx) 623 return SCIdx; 624 625 // If this opcode isn't mapped by the subtarget fallback to the instruction 626 // definition's SchedRW or ItinDef values. 627 if (Inst.TheDef->isSubClassOf("Sched")) { 628 RecVec RWs = Inst.TheDef->getValueAsListOfDefs("SchedRW"); 629 return getSchedClassIdx(RWs); 630 } 631 Record *ItinDef = Inst.TheDef->getValueAsDef("Itinerary"); 632 assert(SchedClassIdxMap.count(ItinDef->getName()) && "missing ItinClass"); 633 unsigned Idx = SchedClassIdxMap.lookup(ItinDef->getName()); 634 assert(Idx <= NumItineraryClasses && "bad ItinClass index"); 635 return Idx; 636 } 637 638 std::string CodeGenSchedModels::createSchedClassName( 639 const IdxVec &OperWrites, const IdxVec &OperReads) { 640 641 std::string Name; 642 for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) { 643 if (WI != OperWrites.begin()) 644 Name += '_'; 645 Name += SchedWrites[*WI].Name; 646 } 647 for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) { 648 Name += '_'; 649 Name += SchedReads[*RI].Name; 650 } 651 return Name; 652 } 653 654 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 655 656 std::string Name; 657 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 658 if (I != InstDefs.begin()) 659 Name += '_'; 660 Name += (*I)->getName(); 661 } 662 return Name; 663 } 664 665 /// Add an inferred sched class from a per-operand list of SchedWrites and 666 /// SchedReads. ProcIndices contains the set of IDs of processors that may 667 /// utilize this class. 668 unsigned CodeGenSchedModels::addSchedClass(const IdxVec &OperWrites, 669 const IdxVec &OperReads, 670 const IdxVec &ProcIndices) 671 { 672 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 673 674 unsigned Idx = findSchedClassIdx(OperWrites, OperReads); 675 if (Idx) { 676 IdxVec PI; 677 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 678 SchedClasses[Idx].ProcIndices.end(), 679 ProcIndices.begin(), ProcIndices.end(), 680 std::back_inserter(PI)); 681 SchedClasses[Idx].ProcIndices.swap(PI); 682 return Idx; 683 } 684 Idx = SchedClasses.size(); 685 SchedClasses.resize(Idx+1); 686 CodeGenSchedClass &SC = SchedClasses.back(); 687 SC.Name = createSchedClassName(OperWrites, OperReads); 688 SC.Writes = OperWrites; 689 SC.Reads = OperReads; 690 SC.ProcIndices = ProcIndices; 691 692 return Idx; 693 } 694 695 // Create classes for each set of opcodes that are in the same InstReadWrite 696 // definition across all processors. 697 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 698 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 699 // intersects with an existing class via a previous InstRWDef. Instrs that do 700 // not intersect with an existing class refer back to their former class as 701 // determined from ItinDef or SchedRW. 702 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 703 // Sort Instrs into sets. 704 const RecVec *InstDefs = Sets.expand(InstRWDef); 705 if (InstDefs->empty()) 706 throw TGError(InstRWDef->getLoc(), "No matching instruction opcodes"); 707 708 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 709 unsigned SCIdx = 0; 710 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 711 if (Pos != InstrClassMap.end()) 712 SCIdx = Pos->second; 713 else { 714 // This instruction has not been mapped yet. Get the original class. All 715 // instructions in the same InstrRW class must be from the same original 716 // class because that is the fall-back class for other processors. 717 Record *ItinDef = (*I)->getValueAsDef("Itinerary"); 718 SCIdx = SchedClassIdxMap.lookup(ItinDef->getName()); 719 if (!SCIdx && (*I)->isSubClassOf("Sched")) 720 SCIdx = getSchedClassIdx((*I)->getValueAsListOfDefs("SchedRW")); 721 } 722 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 723 for (; CIdx != CEnd; ++CIdx) { 724 if (ClassInstrs[CIdx].first == SCIdx) 725 break; 726 } 727 if (CIdx == CEnd) { 728 ClassInstrs.resize(CEnd + 1); 729 ClassInstrs[CIdx].first = SCIdx; 730 } 731 ClassInstrs[CIdx].second.push_back(*I); 732 } 733 // For each set of Instrs, create a new class if necessary, and map or remap 734 // the Instrs to it. 735 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 736 for (; CIdx != CEnd; ++CIdx) { 737 unsigned OldSCIdx = ClassInstrs[CIdx].first; 738 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 739 // If the all instrs in the current class are accounted for, then leave 740 // them mapped to their old class. 741 if (SchedClasses[OldSCIdx].InstRWs.size() == InstDefs.size()) { 742 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 743 "expected a generic SchedClass"); 744 continue; 745 } 746 unsigned SCIdx = SchedClasses.size(); 747 SchedClasses.resize(SCIdx+1); 748 CodeGenSchedClass &SC = SchedClasses.back(); 749 SC.Name = createSchedClassName(InstDefs); 750 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 751 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 752 SC.Writes = SchedClasses[OldSCIdx].Writes; 753 SC.Reads = SchedClasses[OldSCIdx].Reads; 754 SC.ProcIndices.push_back(0); 755 // Map each Instr to this new class. 756 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 757 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 758 SmallSet<unsigned, 4> RemappedClassIDs; 759 for (ArrayRef<Record*>::const_iterator 760 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 761 unsigned OldSCIdx = InstrClassMap[*II]; 762 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx)) { 763 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 764 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 765 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 766 throw TGError(InstRWDef->getLoc(), "Overlapping InstRW def " + 767 (*II)->getName() + " also matches " + 768 (*RI)->getValue("Instrs")->getValue()->getAsString()); 769 } 770 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 771 SC.InstRWs.push_back(*RI); 772 } 773 } 774 InstrClassMap[*II] = SCIdx; 775 } 776 SC.InstRWs.push_back(InstRWDef); 777 } 778 } 779 780 // Gather the processor itineraries. 781 void CodeGenSchedModels::collectProcItins() { 782 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 783 PE = ProcModels.end(); PI != PE; ++PI) { 784 CodeGenProcModel &ProcModel = *PI; 785 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 786 // Skip empty itinerary. 787 if (ItinRecords.empty()) 788 continue; 789 790 ProcModel.ItinDefList.resize(NumItineraryClasses+1); 791 792 // Insert each itinerary data record in the correct position within 793 // the processor model's ItinDefList. 794 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 795 Record *ItinData = ItinRecords[i]; 796 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 797 if (!SchedClassIdxMap.count(ItinDef->getName())) { 798 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 799 << " has unused itinerary class " << ItinDef->getName() << '\n'); 800 continue; 801 } 802 assert(SchedClassIdxMap.count(ItinDef->getName()) && "missing ItinClass"); 803 unsigned Idx = SchedClassIdxMap.lookup(ItinDef->getName()); 804 assert(Idx <= NumItineraryClasses && "bad ItinClass index"); 805 ProcModel.ItinDefList[Idx] = ItinData; 806 } 807 // Check for missing itinerary entries. 808 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 809 DEBUG( 810 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 811 if (!ProcModel.ItinDefList[i]) 812 dbgs() << ProcModel.ItinsDef->getName() 813 << " missing itinerary for class " 814 << SchedClasses[i].Name << '\n'; 815 }); 816 } 817 } 818 819 // Gather the read/write types for each itinerary class. 820 void CodeGenSchedModels::collectProcItinRW() { 821 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 822 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 823 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 824 if (!(*II)->getValueInit("SchedModel")->isComplete()) 825 throw TGError((*II)->getLoc(), "SchedModel is undefined"); 826 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 827 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 828 if (I == ProcModelMap.end()) { 829 throw TGError((*II)->getLoc(), "Undefined SchedMachineModel " 830 + ModelDef->getName()); 831 } 832 ProcModels[I->second].ItinRWDefs.push_back(*II); 833 } 834 } 835 836 /// Infer new classes from existing classes. In the process, this may create new 837 /// SchedWrites from sequences of existing SchedWrites. 838 void CodeGenSchedModels::inferSchedClasses() { 839 // Visit all existing classes and newly created classes. 840 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 841 if (SchedClasses[Idx].ItinClassDef) 842 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 843 else if (!SchedClasses[Idx].InstRWs.empty()) 844 inferFromInstRWs(Idx); 845 else { 846 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 847 Idx, SchedClasses[Idx].ProcIndices); 848 } 849 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 850 "too many SchedVariants"); 851 } 852 } 853 854 /// Infer classes from per-processor itinerary resources. 855 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 856 unsigned FromClassIdx) { 857 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 858 const CodeGenProcModel &PM = ProcModels[PIdx]; 859 // For all ItinRW entries. 860 bool HasMatch = false; 861 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 862 II != IE; ++II) { 863 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 864 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 865 continue; 866 if (HasMatch) 867 throw TGError((*II)->getLoc(), "Duplicate itinerary class " 868 + ItinClassDef->getName() 869 + " in ItinResources for " + PM.ModelName); 870 HasMatch = true; 871 IdxVec Writes, Reads; 872 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 873 IdxVec ProcIndices(1, PIdx); 874 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 875 } 876 } 877 } 878 879 /// Infer classes from per-processor InstReadWrite definitions. 880 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 881 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 882 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 883 const RecVec *InstDefs = Sets.expand(*RWI); 884 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 885 for (; II != IE; ++II) { 886 if (InstrClassMap[*II] == SCIdx) 887 break; 888 } 889 // If this class no longer has any instructions mapped to it, it has become 890 // irrelevant. 891 if (II == IE) 892 continue; 893 IdxVec Writes, Reads; 894 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 895 unsigned PIdx = getProcModel((*RWI)->getValueAsDef("SchedModel")).Index; 896 IdxVec ProcIndices(1, PIdx); 897 inferFromRW(Writes, Reads, SCIdx, ProcIndices); 898 } 899 } 900 901 namespace { 902 // Helper for substituteVariantOperand. 903 struct TransVariant { 904 Record *VarOrSeqDef; // Variant or sequence. 905 unsigned RWIdx; // Index of this variant or sequence's matched type. 906 unsigned ProcIdx; // Processor model index or zero for any. 907 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 908 909 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 910 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 911 }; 912 913 // Associate a predicate with the SchedReadWrite that it guards. 914 // RWIdx is the index of the read/write variant. 915 struct PredCheck { 916 bool IsRead; 917 unsigned RWIdx; 918 Record *Predicate; 919 920 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 921 }; 922 923 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 924 struct PredTransition { 925 // A predicate term is a conjunction of PredChecks. 926 SmallVector<PredCheck, 4> PredTerm; 927 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 928 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 929 SmallVector<unsigned, 4> ProcIndices; 930 }; 931 932 // Encapsulate a set of partially constructed transitions. 933 // The results are built by repeated calls to substituteVariants. 934 class PredTransitions { 935 CodeGenSchedModels &SchedModels; 936 937 public: 938 std::vector<PredTransition> TransVec; 939 940 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 941 942 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 943 bool IsRead, unsigned StartIdx); 944 945 void substituteVariants(const PredTransition &Trans); 946 947 #ifndef NDEBUG 948 void dump() const; 949 #endif 950 951 private: 952 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 953 void getIntersectingVariants( 954 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 955 std::vector<TransVariant> &IntersectingVariants); 956 void pushVariant(const TransVariant &VInfo, bool IsRead); 957 }; 958 } // anonymous 959 960 // Return true if this predicate is mutually exclusive with a PredTerm. This 961 // degenerates into checking if the predicate is mutually exclusive with any 962 // predicate in the Term's conjunction. 963 // 964 // All predicates associated with a given SchedRW are considered mutually 965 // exclusive. This should work even if the conditions expressed by the 966 // predicates are not exclusive because the predicates for a given SchedWrite 967 // are always checked in the order they are defined in the .td file. Later 968 // conditions implicitly negate any prior condition. 969 bool PredTransitions::mutuallyExclusive(Record *PredDef, 970 ArrayRef<PredCheck> Term) { 971 972 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 973 I != E; ++I) { 974 if (I->Predicate == PredDef) 975 return false; 976 977 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 978 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 979 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 980 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 981 if ((*VI)->getValueAsDef("Predicate") == PredDef) 982 return true; 983 } 984 } 985 return false; 986 } 987 988 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 989 CodeGenSchedModels &SchedModels) { 990 if (RW.HasVariants) 991 return true; 992 993 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 994 const CodeGenSchedRW &AliasRW = 995 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 996 if (AliasRW.HasVariants) 997 return true; 998 if (AliasRW.IsSequence) { 999 IdxVec ExpandedRWs; 1000 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1001 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1002 SI != SE; ++SI) { 1003 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1004 SchedModels)) { 1005 return true; 1006 } 1007 } 1008 } 1009 } 1010 return false; 1011 } 1012 1013 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1014 CodeGenSchedModels &SchedModels) { 1015 for (ArrayRef<PredTransition>::iterator 1016 PTI = Transitions.begin(), PTE = Transitions.end(); 1017 PTI != PTE; ++PTI) { 1018 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1019 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1020 WSI != WSE; ++WSI) { 1021 for (SmallVectorImpl<unsigned>::const_iterator 1022 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1023 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1024 return true; 1025 } 1026 } 1027 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1028 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1029 RSI != RSE; ++RSI) { 1030 for (SmallVectorImpl<unsigned>::const_iterator 1031 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1032 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1033 return true; 1034 } 1035 } 1036 } 1037 return false; 1038 } 1039 1040 // Populate IntersectingVariants with any variants or aliased sequences of the 1041 // given SchedRW whose processor indices and predicates are not mutually 1042 // exclusive with the given transition, 1043 void PredTransitions::getIntersectingVariants( 1044 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1045 std::vector<TransVariant> &IntersectingVariants) { 1046 1047 std::vector<TransVariant> Variants; 1048 if (SchedRW.HasVariants) { 1049 unsigned VarProcIdx = 0; 1050 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1051 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1052 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1053 } 1054 // Push each variant. Assign TransVecIdx later. 1055 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1056 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1057 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1058 } 1059 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1060 AI != AE; ++AI) { 1061 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1062 // to is defined within a processor model, constrain all variants to 1063 // that processor. 1064 unsigned AliasProcIdx = 0; 1065 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1066 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1067 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1068 } 1069 const CodeGenSchedRW &AliasRW = 1070 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1071 1072 if (AliasRW.HasVariants) { 1073 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1074 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1075 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1076 } 1077 if (AliasRW.IsSequence) { 1078 Variants.push_back( 1079 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1080 } 1081 } 1082 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1083 TransVariant &Variant = Variants[VIdx]; 1084 // Don't expand variants if the processor models don't intersect. 1085 // A zero processor index means any processor. 1086 SmallVector<unsigned, 4> &ProcIndices = TransVec[TransIdx].ProcIndices; 1087 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1088 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1089 Variant.ProcIdx); 1090 if (!Cnt) 1091 continue; 1092 if (Cnt > 1) { 1093 const CodeGenProcModel &PM = 1094 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1095 throw TGError(Variant.VarOrSeqDef->getLoc(), 1096 "Multiple variants defined for processor " + PM.ModelName + 1097 " Ensure only one SchedAlias exists per RW."); 1098 } 1099 } 1100 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1101 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1102 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1103 continue; 1104 } 1105 if (IntersectingVariants.empty()) { 1106 // The first variant builds on the existing transition. 1107 Variant.TransVecIdx = TransIdx; 1108 IntersectingVariants.push_back(Variant); 1109 } 1110 else { 1111 // Push another copy of the current transition for more variants. 1112 Variant.TransVecIdx = TransVec.size(); 1113 IntersectingVariants.push_back(Variant); 1114 TransVec.push_back(TransVec[TransIdx]); 1115 } 1116 } 1117 } 1118 1119 // Push the Reads/Writes selected by this variant onto the PredTransition 1120 // specified by VInfo. 1121 void PredTransitions:: 1122 pushVariant(const TransVariant &VInfo, bool IsRead) { 1123 1124 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1125 1126 // If this operand transition is reached through a processor-specific alias, 1127 // then the whole transition is specific to this processor. 1128 if (VInfo.ProcIdx != 0) 1129 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1130 1131 IdxVec SelectedRWs; 1132 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1133 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1134 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1135 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1136 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1137 } 1138 else { 1139 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1140 "variant must be a SchedVariant or aliased WriteSequence"); 1141 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1142 } 1143 1144 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1145 1146 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1147 ? Trans.ReadSequences : Trans.WriteSequences; 1148 if (SchedRW.IsVariadic) { 1149 unsigned OperIdx = RWSequences.size()-1; 1150 // Make N-1 copies of this transition's last sequence. 1151 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1152 RWSequences.push_back(RWSequences[OperIdx]); 1153 } 1154 // Push each of the N elements of the SelectedRWs onto a copy of the last 1155 // sequence (split the current operand into N operands). 1156 // Note that write sequences should be expanded within this loop--the entire 1157 // sequence belongs to a single operand. 1158 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1159 RWI != RWE; ++RWI, ++OperIdx) { 1160 IdxVec ExpandedRWs; 1161 if (IsRead) 1162 ExpandedRWs.push_back(*RWI); 1163 else 1164 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1165 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1166 ExpandedRWs.begin(), ExpandedRWs.end()); 1167 } 1168 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1169 } 1170 else { 1171 // Push this transition's expanded sequence onto this transition's last 1172 // sequence (add to the current operand's sequence). 1173 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1174 IdxVec ExpandedRWs; 1175 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1176 RWI != RWE; ++RWI) { 1177 if (IsRead) 1178 ExpandedRWs.push_back(*RWI); 1179 else 1180 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1181 } 1182 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1183 } 1184 } 1185 1186 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1187 // operand. StartIdx is an index into TransVec where partial results 1188 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1189 // of TransVec. 1190 void PredTransitions::substituteVariantOperand( 1191 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1192 1193 // Visit each original RW within the current sequence. 1194 for (SmallVectorImpl<unsigned>::const_iterator 1195 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1196 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1197 // Push this RW on all partial PredTransitions or distribute variants. 1198 // New PredTransitions may be pushed within this loop which should not be 1199 // revisited (TransEnd must be loop invariant). 1200 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1201 TransIdx != TransEnd; ++TransIdx) { 1202 // In the common case, push RW onto the current operand's sequence. 1203 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1204 if (IsRead) 1205 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1206 else 1207 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1208 continue; 1209 } 1210 // Distribute this partial PredTransition across intersecting variants. 1211 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1212 std::vector<TransVariant> IntersectingVariants; 1213 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1214 if (IntersectingVariants.empty()) 1215 throw TGError(SchedRW.TheDef->getLoc(), "No variant of this type has a " 1216 "matching predicate on any processor "); 1217 // Now expand each variant on top of its copy of the transition. 1218 for (std::vector<TransVariant>::const_iterator 1219 IVI = IntersectingVariants.begin(), 1220 IVE = IntersectingVariants.end(); 1221 IVI != IVE; ++IVI) { 1222 pushVariant(*IVI, IsRead); 1223 } 1224 } 1225 } 1226 } 1227 1228 // For each variant of a Read/Write in Trans, substitute the sequence of 1229 // Read/Writes guarded by the variant. This is exponential in the number of 1230 // variant Read/Writes, but in practice detection of mutually exclusive 1231 // predicates should result in linear growth in the total number variants. 1232 // 1233 // This is one step in a breadth-first search of nested variants. 1234 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1235 // Build up a set of partial results starting at the back of 1236 // PredTransitions. Remember the first new transition. 1237 unsigned StartIdx = TransVec.size(); 1238 TransVec.resize(TransVec.size() + 1); 1239 TransVec.back().PredTerm = Trans.PredTerm; 1240 TransVec.back().ProcIndices = Trans.ProcIndices; 1241 1242 // Visit each original write sequence. 1243 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1244 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1245 WSI != WSE; ++WSI) { 1246 // Push a new (empty) write sequence onto all partial Transitions. 1247 for (std::vector<PredTransition>::iterator I = 1248 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1249 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1250 } 1251 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1252 } 1253 // Visit each original read sequence. 1254 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1255 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1256 RSI != RSE; ++RSI) { 1257 // Push a new (empty) read sequence onto all partial Transitions. 1258 for (std::vector<PredTransition>::iterator I = 1259 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1260 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1261 } 1262 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1263 } 1264 } 1265 1266 // Create a new SchedClass for each variant found by inferFromRW. Pass 1267 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1268 unsigned FromClassIdx, 1269 CodeGenSchedModels &SchedModels) { 1270 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1271 // requires creating a new SchedClass. 1272 for (ArrayRef<PredTransition>::iterator 1273 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1274 IdxVec OperWritesVariant; 1275 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1276 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1277 WSI != WSE; ++WSI) { 1278 // Create a new write representing the expanded sequence. 1279 OperWritesVariant.push_back( 1280 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1281 } 1282 IdxVec OperReadsVariant; 1283 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1284 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1285 RSI != RSE; ++RSI) { 1286 // Create a new read representing the expanded sequence. 1287 OperReadsVariant.push_back( 1288 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1289 } 1290 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1291 CodeGenSchedTransition SCTrans; 1292 SCTrans.ToClassIdx = 1293 SchedModels.addSchedClass(OperWritesVariant, OperReadsVariant, 1294 ProcIndices); 1295 SCTrans.ProcIndices = ProcIndices; 1296 // The final PredTerm is unique set of predicates guarding the transition. 1297 RecVec Preds; 1298 for (SmallVectorImpl<PredCheck>::const_iterator 1299 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1300 Preds.push_back(PI->Predicate); 1301 } 1302 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1303 Preds.resize(PredsEnd - Preds.begin()); 1304 SCTrans.PredTerm = Preds; 1305 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1306 } 1307 } 1308 1309 // Create new SchedClasses for the given ReadWrite list. If any of the 1310 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1311 // of the ReadWrite list, following Aliases if necessary. 1312 void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites, 1313 const IdxVec &OperReads, 1314 unsigned FromClassIdx, 1315 const IdxVec &ProcIndices) { 1316 DEBUG(dbgs() << "INFER RW: "); 1317 1318 // Create a seed transition with an empty PredTerm and the expanded sequences 1319 // of SchedWrites for the current SchedClass. 1320 std::vector<PredTransition> LastTransitions; 1321 LastTransitions.resize(1); 1322 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1323 ProcIndices.end()); 1324 1325 for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) { 1326 IdxVec WriteSeq; 1327 expandRWSequence(*I, WriteSeq, /*IsRead=*/false); 1328 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1329 LastTransitions[0].WriteSequences.resize(Idx + 1); 1330 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1331 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1332 Seq.push_back(*WI); 1333 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1334 } 1335 DEBUG(dbgs() << " Reads: "); 1336 for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) { 1337 IdxVec ReadSeq; 1338 expandRWSequence(*I, ReadSeq, /*IsRead=*/true); 1339 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1340 LastTransitions[0].ReadSequences.resize(Idx + 1); 1341 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1342 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1343 Seq.push_back(*RI); 1344 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1345 } 1346 DEBUG(dbgs() << '\n'); 1347 1348 // Collect all PredTransitions for individual operands. 1349 // Iterate until no variant writes remain. 1350 while (hasVariant(LastTransitions, *this)) { 1351 PredTransitions Transitions(*this); 1352 for (std::vector<PredTransition>::const_iterator 1353 I = LastTransitions.begin(), E = LastTransitions.end(); 1354 I != E; ++I) { 1355 Transitions.substituteVariants(*I); 1356 } 1357 DEBUG(Transitions.dump()); 1358 LastTransitions.swap(Transitions.TransVec); 1359 } 1360 // If the first transition has no variants, nothing to do. 1361 if (LastTransitions[0].PredTerm.empty()) 1362 return; 1363 1364 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1365 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1366 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1367 } 1368 1369 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1370 void CodeGenSchedModels::collectProcResources() { 1371 // Add any subtarget-specific SchedReadWrites that are directly associated 1372 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1373 // determine which processors they apply to. 1374 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1375 SCI != SCE; ++SCI) { 1376 if (SCI->ItinClassDef) 1377 collectItinProcResources(SCI->ItinClassDef); 1378 else 1379 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1380 } 1381 // Add resources separately defined by each subtarget. 1382 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1383 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1384 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1385 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1386 } 1387 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1388 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1389 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1390 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1391 } 1392 // Finalize each ProcModel by sorting the record arrays. 1393 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1394 CodeGenProcModel &PM = ProcModels[PIdx]; 1395 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1396 LessRecord()); 1397 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1398 LessRecord()); 1399 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1400 LessRecord()); 1401 DEBUG( 1402 PM.dump(); 1403 dbgs() << "WriteResDefs: "; 1404 for (RecIter RI = PM.WriteResDefs.begin(), 1405 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1406 if ((*RI)->isSubClassOf("WriteRes")) 1407 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1408 else 1409 dbgs() << (*RI)->getName() << " "; 1410 } 1411 dbgs() << "\nReadAdvanceDefs: "; 1412 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1413 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1414 if ((*RI)->isSubClassOf("ReadAdvance")) 1415 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1416 else 1417 dbgs() << (*RI)->getName() << " "; 1418 } 1419 dbgs() << "\nProcResourceDefs: "; 1420 for (RecIter RI = PM.ProcResourceDefs.begin(), 1421 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1422 dbgs() << (*RI)->getName() << " "; 1423 } 1424 dbgs() << '\n'); 1425 } 1426 } 1427 1428 // Collect itinerary class resources for each processor. 1429 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1430 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1431 const CodeGenProcModel &PM = ProcModels[PIdx]; 1432 // For all ItinRW entries. 1433 bool HasMatch = false; 1434 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1435 II != IE; ++II) { 1436 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1437 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1438 continue; 1439 if (HasMatch) 1440 throw TGError((*II)->getLoc(), "Duplicate itinerary class " 1441 + ItinClassDef->getName() 1442 + " in ItinResources for " + PM.ModelName); 1443 HasMatch = true; 1444 IdxVec Writes, Reads; 1445 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1446 IdxVec ProcIndices(1, PIdx); 1447 collectRWResources(Writes, Reads, ProcIndices); 1448 } 1449 } 1450 } 1451 1452 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1453 const IdxVec &ProcIndices) { 1454 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1455 if (SchedRW.TheDef) { 1456 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1457 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1458 PI != PE; ++PI) { 1459 addWriteRes(SchedRW.TheDef, *PI); 1460 } 1461 } 1462 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1463 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1464 PI != PE; ++PI) { 1465 addReadAdvance(SchedRW.TheDef, *PI); 1466 } 1467 } 1468 } 1469 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1470 AI != AE; ++AI) { 1471 IdxVec AliasProcIndices; 1472 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1473 AliasProcIndices.push_back( 1474 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1475 } 1476 else 1477 AliasProcIndices = ProcIndices; 1478 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1479 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1480 1481 IdxVec ExpandedRWs; 1482 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1483 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1484 SI != SE; ++SI) { 1485 collectRWResources(*SI, IsRead, AliasProcIndices); 1486 } 1487 } 1488 } 1489 1490 // Collect resources for a set of read/write types and processor indices. 1491 void CodeGenSchedModels::collectRWResources(const IdxVec &Writes, 1492 const IdxVec &Reads, 1493 const IdxVec &ProcIndices) { 1494 1495 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 1496 collectRWResources(*WI, /*IsRead=*/false, ProcIndices); 1497 1498 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 1499 collectRWResources(*RI, /*IsRead=*/true, ProcIndices); 1500 } 1501 1502 1503 // Find the processor's resource units for this kind of resource. 1504 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1505 const CodeGenProcModel &PM) const { 1506 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1507 return ProcResKind; 1508 1509 Record *ProcUnitDef = 0; 1510 RecVec ProcResourceDefs = 1511 Records.getAllDerivedDefinitions("ProcResourceUnits"); 1512 1513 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1514 RI != RE; ++RI) { 1515 1516 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1517 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1518 if (ProcUnitDef) { 1519 throw TGError((*RI)->getLoc(), 1520 "Multiple ProcessorResourceUnits associated with " 1521 + ProcResKind->getName()); 1522 } 1523 ProcUnitDef = *RI; 1524 } 1525 } 1526 if (!ProcUnitDef) { 1527 throw TGError(ProcResKind->getLoc(), 1528 "No ProcessorResources associated with " 1529 + ProcResKind->getName()); 1530 } 1531 return ProcUnitDef; 1532 } 1533 1534 // Iteratively add a resource and its super resources. 1535 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1536 CodeGenProcModel &PM) { 1537 for (;;) { 1538 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1539 1540 // See if this ProcResource is already associated with this processor. 1541 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1542 PM.ProcResourceDefs.end(), ProcResUnits); 1543 if (I != PM.ProcResourceDefs.end()) 1544 return; 1545 1546 PM.ProcResourceDefs.push_back(ProcResUnits); 1547 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1548 return; 1549 1550 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1551 } 1552 } 1553 1554 // Add resources for a SchedWrite to this processor if they don't exist. 1555 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1556 assert(PIdx && "don't add resources to an invalid Processor model"); 1557 1558 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1559 RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); 1560 if (WRI != WRDefs.end()) 1561 return; 1562 WRDefs.push_back(ProcWriteResDef); 1563 1564 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1565 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1566 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1567 WritePRI != WritePRE; ++WritePRI) { 1568 addProcResource(*WritePRI, ProcModels[PIdx]); 1569 } 1570 } 1571 1572 // Add resources for a ReadAdvance to this processor if they don't exist. 1573 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1574 unsigned PIdx) { 1575 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1576 RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); 1577 if (I != RADefs.end()) 1578 return; 1579 RADefs.push_back(ProcReadAdvanceDef); 1580 } 1581 1582 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1583 RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), 1584 PRDef); 1585 if (PRPos == ProcResourceDefs.end()) 1586 throw TGError(PRDef->getLoc(), "ProcResource def is not included in " 1587 "the ProcResources list for " + ModelName); 1588 // Idx=0 is reserved for invalid. 1589 return 1 + PRPos - ProcResourceDefs.begin(); 1590 } 1591 1592 #ifndef NDEBUG 1593 void CodeGenProcModel::dump() const { 1594 dbgs() << Index << ": " << ModelName << " " 1595 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1596 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1597 } 1598 1599 void CodeGenSchedRW::dump() const { 1600 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1601 if (IsSequence) { 1602 dbgs() << "("; 1603 dumpIdxVec(Sequence); 1604 dbgs() << ")"; 1605 } 1606 } 1607 1608 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1609 dbgs() << "SCHEDCLASS " << Name << '\n' 1610 << " Writes: "; 1611 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1612 SchedModels->getSchedWrite(Writes[i]).dump(); 1613 if (i < N-1) { 1614 dbgs() << '\n'; 1615 dbgs().indent(10); 1616 } 1617 } 1618 dbgs() << "\n Reads: "; 1619 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1620 SchedModels->getSchedRead(Reads[i]).dump(); 1621 if (i < N-1) { 1622 dbgs() << '\n'; 1623 dbgs().indent(10); 1624 } 1625 } 1626 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1627 } 1628 1629 void PredTransitions::dump() const { 1630 dbgs() << "Expanded Variants:\n"; 1631 for (std::vector<PredTransition>::const_iterator 1632 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1633 dbgs() << "{"; 1634 for (SmallVectorImpl<PredCheck>::const_iterator 1635 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1636 PCI != PCE; ++PCI) { 1637 if (PCI != TI->PredTerm.begin()) 1638 dbgs() << ", "; 1639 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1640 << ":" << PCI->Predicate->getName(); 1641 } 1642 dbgs() << "},\n => {"; 1643 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1644 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1645 WSI != WSE; ++WSI) { 1646 dbgs() << "("; 1647 for (SmallVectorImpl<unsigned>::const_iterator 1648 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1649 if (WI != WSI->begin()) 1650 dbgs() << ", "; 1651 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1652 } 1653 dbgs() << "),"; 1654 } 1655 dbgs() << "}\n"; 1656 } 1657 } 1658 #endif // NDEBUG 1659