1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Regex.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include <algorithm> 28 #include <iterator> 29 #include <utility> 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "subtarget-emitter" 34 35 #ifndef NDEBUG 36 static void dumpIdxVec(ArrayRef<unsigned> V) { 37 for (unsigned Idx : V) 38 dbgs() << Idx << ", "; 39 } 40 #endif 41 42 namespace { 43 44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 45 struct InstrsOp : public SetTheory::Operator { 46 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 47 ArrayRef<SMLoc> Loc) override { 48 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 49 } 50 }; 51 52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 53 struct InstRegexOp : public SetTheory::Operator { 54 const CodeGenTarget &Target; 55 InstRegexOp(const CodeGenTarget &t): Target(t) {} 56 57 /// Remove any text inside of parentheses from S. 58 static std::string removeParens(llvm::StringRef S) { 59 std::string Result; 60 unsigned Paren = 0; 61 // NB: We don't care about escaped parens here. 62 for (char C : S) { 63 switch (C) { 64 case '(': 65 ++Paren; 66 break; 67 case ')': 68 --Paren; 69 break; 70 default: 71 if (Paren == 0) 72 Result += C; 73 } 74 } 75 return Result; 76 } 77 78 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 79 ArrayRef<SMLoc> Loc) override { 80 SmallVector<std::pair<StringRef, Optional<Regex>>, 4> RegexList; 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 // Extract a prefix that we can binary search on. 87 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 88 auto FirstMeta = SI->getValue().find_first_of(RegexMetachars); 89 // Look for top-level | or ?. We cannot optimize them to binary search. 90 if (removeParens(SI->getValue()).find_first_of("|?") != std::string::npos) 91 FirstMeta = 0; 92 StringRef Prefix = SI->getValue().substr(0, FirstMeta); 93 std::string pat = SI->getValue().substr(FirstMeta); 94 if (pat.empty()) { 95 RegexList.push_back(std::make_pair(Prefix, None)); 96 continue; 97 } 98 // For the rest use a python-style prefix match. 99 if (pat[0] != '^') { 100 pat.insert(0, "^("); 101 pat.insert(pat.end(), ')'); 102 } 103 RegexList.push_back(std::make_pair(Prefix, Regex(pat))); 104 } 105 for (auto &R : RegexList) { 106 unsigned NumGeneric = Target.getNumFixedInstructions(); 107 // The generic opcodes are unsorted, handle them manually. 108 for (auto *Inst : 109 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1)) { 110 if (Inst->TheDef->getName().startswith(R.first) && 111 (!R.second || 112 R.second->match(Inst->TheDef->getName().substr(R.first.size())))) 113 Elts.insert(Inst->TheDef); 114 } 115 116 ArrayRef<const CodeGenInstruction *> Instructions = 117 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 118 119 // Target instructions are sorted. Find the range that starts with our 120 // prefix. 121 struct Comp { 122 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 123 return LHS->TheDef->getName() < RHS; 124 } 125 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 126 return LHS < RHS->TheDef->getName() && 127 !RHS->TheDef->getName().startswith(LHS); 128 } 129 }; 130 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 131 R.first, Comp()); 132 133 // For this range we know that it starts with the prefix. Check if there's 134 // a regex that needs to be checked. 135 for (auto *Inst : make_range(Range)) { 136 if (!R.second || 137 R.second->match(Inst->TheDef->getName().substr(R.first.size()))) 138 Elts.insert(Inst->TheDef); 139 } 140 } 141 } 142 }; 143 144 } // end anonymous namespace 145 146 /// CodeGenModels ctor interprets machine model records and populates maps. 147 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 148 const CodeGenTarget &TGT): 149 Records(RK), Target(TGT) { 150 151 Sets.addFieldExpander("InstRW", "Instrs"); 152 153 // Allow Set evaluation to recognize the dags used in InstRW records: 154 // (instrs Op1, Op1...) 155 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 156 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 157 158 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 159 // that are explicitly referenced in tablegen records. Resources associated 160 // with each processor will be derived later. Populate ProcModelMap with the 161 // CodeGenProcModel instances. 162 collectProcModels(); 163 164 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 165 // defined, and populate SchedReads and SchedWrites vectors. Implicit 166 // SchedReadWrites that represent sequences derived from expanded variant will 167 // be inferred later. 168 collectSchedRW(); 169 170 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 171 // required by an instruction definition, and populate SchedClassIdxMap. Set 172 // NumItineraryClasses to the number of explicit itinerary classes referenced 173 // by instructions. Set NumInstrSchedClasses to the number of itinerary 174 // classes plus any classes implied by instructions that derive from class 175 // Sched and provide SchedRW list. This does not infer any new classes from 176 // SchedVariant. 177 collectSchedClasses(); 178 179 // Find instruction itineraries for each processor. Sort and populate 180 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 181 // all itinerary classes to be discovered. 182 collectProcItins(); 183 184 // Find ItinRW records for each processor and itinerary class. 185 // (For per-operand resources mapped to itinerary classes). 186 collectProcItinRW(); 187 188 // Find UnsupportedFeatures records for each processor. 189 // (For per-operand resources mapped to itinerary classes). 190 collectProcUnsupportedFeatures(); 191 192 // Infer new SchedClasses from SchedVariant. 193 inferSchedClasses(); 194 195 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 196 // ProcResourceDefs. 197 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 198 collectProcResources(); 199 200 checkCompleteness(); 201 } 202 203 /// Gather all processor models. 204 void CodeGenSchedModels::collectProcModels() { 205 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 206 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 207 208 // Reserve space because we can. Reallocation would be ok. 209 ProcModels.reserve(ProcRecords.size()+1); 210 211 // Use idx=0 for NoModel/NoItineraries. 212 Record *NoModelDef = Records.getDef("NoSchedModel"); 213 Record *NoItinsDef = Records.getDef("NoItineraries"); 214 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 215 ProcModelMap[NoModelDef] = 0; 216 217 // For each processor, find a unique machine model. 218 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 219 for (Record *ProcRecord : ProcRecords) 220 addProcModel(ProcRecord); 221 } 222 223 /// Get a unique processor model based on the defined MachineModel and 224 /// ProcessorItineraries. 225 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 226 Record *ModelKey = getModelOrItinDef(ProcDef); 227 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 228 return; 229 230 std::string Name = ModelKey->getName(); 231 if (ModelKey->isSubClassOf("SchedMachineModel")) { 232 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 233 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 234 } 235 else { 236 // An itinerary is defined without a machine model. Infer a new model. 237 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 238 Name = Name + "Model"; 239 ProcModels.emplace_back(ProcModels.size(), Name, 240 ProcDef->getValueAsDef("SchedModel"), ModelKey); 241 } 242 DEBUG(ProcModels.back().dump()); 243 } 244 245 // Recursively find all reachable SchedReadWrite records. 246 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 247 SmallPtrSet<Record*, 16> &RWSet) { 248 if (!RWSet.insert(RWDef).second) 249 return; 250 RWDefs.push_back(RWDef); 251 // Reads don't currently have sequence records, but it can be added later. 252 if (RWDef->isSubClassOf("WriteSequence")) { 253 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 254 for (Record *WSRec : Seq) 255 scanSchedRW(WSRec, RWDefs, RWSet); 256 } 257 else if (RWDef->isSubClassOf("SchedVariant")) { 258 // Visit each variant (guarded by a different predicate). 259 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 260 for (Record *Variant : Vars) { 261 // Visit each RW in the sequence selected by the current variant. 262 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 263 for (Record *SelDef : Selected) 264 scanSchedRW(SelDef, RWDefs, RWSet); 265 } 266 } 267 } 268 269 // Collect and sort all SchedReadWrites reachable via tablegen records. 270 // More may be inferred later when inferring new SchedClasses from variants. 271 void CodeGenSchedModels::collectSchedRW() { 272 // Reserve idx=0 for invalid writes/reads. 273 SchedWrites.resize(1); 274 SchedReads.resize(1); 275 276 SmallPtrSet<Record*, 16> RWSet; 277 278 // Find all SchedReadWrites referenced by instruction defs. 279 RecVec SWDefs, SRDefs; 280 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 281 Record *SchedDef = Inst->TheDef; 282 if (SchedDef->isValueUnset("SchedRW")) 283 continue; 284 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 285 for (Record *RW : RWs) { 286 if (RW->isSubClassOf("SchedWrite")) 287 scanSchedRW(RW, SWDefs, RWSet); 288 else { 289 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 290 scanSchedRW(RW, SRDefs, RWSet); 291 } 292 } 293 } 294 // Find all ReadWrites referenced by InstRW. 295 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 296 for (Record *InstRWDef : InstRWDefs) { 297 // For all OperandReadWrites. 298 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 299 for (Record *RWDef : RWDefs) { 300 if (RWDef->isSubClassOf("SchedWrite")) 301 scanSchedRW(RWDef, SWDefs, RWSet); 302 else { 303 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 304 scanSchedRW(RWDef, SRDefs, RWSet); 305 } 306 } 307 } 308 // Find all ReadWrites referenced by ItinRW. 309 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 310 for (Record *ItinRWDef : ItinRWDefs) { 311 // For all OperandReadWrites. 312 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 313 for (Record *RWDef : RWDefs) { 314 if (RWDef->isSubClassOf("SchedWrite")) 315 scanSchedRW(RWDef, SWDefs, RWSet); 316 else { 317 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 318 scanSchedRW(RWDef, SRDefs, RWSet); 319 } 320 } 321 } 322 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 323 // for the loop below that initializes Alias vectors. 324 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 325 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 326 for (Record *ADef : AliasDefs) { 327 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 328 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 329 if (MatchDef->isSubClassOf("SchedWrite")) { 330 if (!AliasDef->isSubClassOf("SchedWrite")) 331 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 332 scanSchedRW(AliasDef, SWDefs, RWSet); 333 } 334 else { 335 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 336 if (!AliasDef->isSubClassOf("SchedRead")) 337 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 338 scanSchedRW(AliasDef, SRDefs, RWSet); 339 } 340 } 341 // Sort and add the SchedReadWrites directly referenced by instructions or 342 // itinerary resources. Index reads and writes in separate domains. 343 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 344 for (Record *SWDef : SWDefs) { 345 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 346 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 347 } 348 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 349 for (Record *SRDef : SRDefs) { 350 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 351 SchedReads.emplace_back(SchedReads.size(), SRDef); 352 } 353 // Initialize WriteSequence vectors. 354 for (CodeGenSchedRW &CGRW : SchedWrites) { 355 if (!CGRW.IsSequence) 356 continue; 357 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 358 /*IsRead=*/false); 359 } 360 // Initialize Aliases vectors. 361 for (Record *ADef : AliasDefs) { 362 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 363 getSchedRW(AliasDef).IsAlias = true; 364 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 365 CodeGenSchedRW &RW = getSchedRW(MatchDef); 366 if (RW.IsAlias) 367 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 368 RW.Aliases.push_back(ADef); 369 } 370 DEBUG( 371 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 372 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 373 dbgs() << WIdx << ": "; 374 SchedWrites[WIdx].dump(); 375 dbgs() << '\n'; 376 } 377 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 378 dbgs() << RIdx << ": "; 379 SchedReads[RIdx].dump(); 380 dbgs() << '\n'; 381 } 382 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 383 for (Record *RWDef : RWDefs) { 384 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 385 const std::string &Name = RWDef->getName(); 386 if (Name != "NoWrite" && Name != "ReadDefault") 387 dbgs() << "Unused SchedReadWrite " << RWDef->getName() << '\n'; 388 } 389 }); 390 } 391 392 /// Compute a SchedWrite name from a sequence of writes. 393 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 394 std::string Name("("); 395 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 396 if (I != Seq.begin()) 397 Name += '_'; 398 Name += getSchedRW(*I, IsRead).Name; 399 } 400 Name += ')'; 401 return Name; 402 } 403 404 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 405 unsigned After) const { 406 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 407 assert(After < RWVec.size() && "start position out of bounds"); 408 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 409 E = RWVec.end(); I != E; ++I) { 410 if (I->TheDef == Def) 411 return I - RWVec.begin(); 412 } 413 return 0; 414 } 415 416 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 417 for (const CodeGenSchedRW &Read : SchedReads) { 418 Record *ReadDef = Read.TheDef; 419 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 420 continue; 421 422 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 423 if (is_contained(ValidWrites, WriteDef)) { 424 return true; 425 } 426 } 427 return false; 428 } 429 430 namespace llvm { 431 432 void splitSchedReadWrites(const RecVec &RWDefs, 433 RecVec &WriteDefs, RecVec &ReadDefs) { 434 for (Record *RWDef : RWDefs) { 435 if (RWDef->isSubClassOf("SchedWrite")) 436 WriteDefs.push_back(RWDef); 437 else { 438 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 439 ReadDefs.push_back(RWDef); 440 } 441 } 442 } 443 444 } // end namespace llvm 445 446 // Split the SchedReadWrites defs and call findRWs for each list. 447 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 448 IdxVec &Writes, IdxVec &Reads) const { 449 RecVec WriteDefs; 450 RecVec ReadDefs; 451 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 452 findRWs(WriteDefs, Writes, false); 453 findRWs(ReadDefs, Reads, true); 454 } 455 456 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 457 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 458 bool IsRead) const { 459 for (Record *RWDef : RWDefs) { 460 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 461 assert(Idx && "failed to collect SchedReadWrite"); 462 RWs.push_back(Idx); 463 } 464 } 465 466 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 467 bool IsRead) const { 468 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 469 if (!SchedRW.IsSequence) { 470 RWSeq.push_back(RWIdx); 471 return; 472 } 473 int Repeat = 474 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 475 for (int i = 0; i < Repeat; ++i) { 476 for (unsigned I : SchedRW.Sequence) { 477 expandRWSequence(I, RWSeq, IsRead); 478 } 479 } 480 } 481 482 // Expand a SchedWrite as a sequence following any aliases that coincide with 483 // the given processor model. 484 void CodeGenSchedModels::expandRWSeqForProc( 485 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 486 const CodeGenProcModel &ProcModel) const { 487 488 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 489 Record *AliasDef = nullptr; 490 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 491 AI != AE; ++AI) { 492 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 493 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 494 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 495 if (&getProcModel(ModelDef) != &ProcModel) 496 continue; 497 } 498 if (AliasDef) 499 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 500 "defined for processor " + ProcModel.ModelName + 501 " Ensure only one SchedAlias exists per RW."); 502 AliasDef = AliasRW.TheDef; 503 } 504 if (AliasDef) { 505 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 506 RWSeq, IsRead,ProcModel); 507 return; 508 } 509 if (!SchedWrite.IsSequence) { 510 RWSeq.push_back(RWIdx); 511 return; 512 } 513 int Repeat = 514 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 515 for (int i = 0; i < Repeat; ++i) { 516 for (unsigned I : SchedWrite.Sequence) { 517 expandRWSeqForProc(I, RWSeq, IsRead, ProcModel); 518 } 519 } 520 } 521 522 // Find the existing SchedWrite that models this sequence of writes. 523 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 524 bool IsRead) { 525 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 526 527 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 528 I != E; ++I) { 529 if (makeArrayRef(I->Sequence) == Seq) 530 return I - RWVec.begin(); 531 } 532 // Index zero reserved for invalid RW. 533 return 0; 534 } 535 536 /// Add this ReadWrite if it doesn't already exist. 537 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 538 bool IsRead) { 539 assert(!Seq.empty() && "cannot insert empty sequence"); 540 if (Seq.size() == 1) 541 return Seq.back(); 542 543 unsigned Idx = findRWForSequence(Seq, IsRead); 544 if (Idx) 545 return Idx; 546 547 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 548 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 549 if (IsRead) 550 SchedReads.push_back(SchedRW); 551 else 552 SchedWrites.push_back(SchedRW); 553 return RWIdx; 554 } 555 556 /// Visit all the instruction definitions for this target to gather and 557 /// enumerate the itinerary classes. These are the explicitly specified 558 /// SchedClasses. More SchedClasses may be inferred. 559 void CodeGenSchedModels::collectSchedClasses() { 560 561 // NoItinerary is always the first class at Idx=0 562 SchedClasses.resize(1); 563 SchedClasses.back().Index = 0; 564 SchedClasses.back().Name = "NoInstrModel"; 565 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 566 SchedClasses.back().ProcIndices.push_back(0); 567 568 // Create a SchedClass for each unique combination of itinerary class and 569 // SchedRW list. 570 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 571 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 572 IdxVec Writes, Reads; 573 if (!Inst->TheDef->isValueUnset("SchedRW")) 574 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 575 576 // ProcIdx == 0 indicates the class applies to all processors. 577 IdxVec ProcIndices(1, 0); 578 579 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 580 InstrClassMap[Inst->TheDef] = SCIdx; 581 } 582 // Create classes for InstRW defs. 583 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 584 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 585 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 586 for (Record *RWDef : InstRWDefs) 587 createInstRWClass(RWDef); 588 589 NumInstrSchedClasses = SchedClasses.size(); 590 591 bool EnableDump = false; 592 DEBUG(EnableDump = true); 593 if (!EnableDump) 594 return; 595 596 dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"; 597 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 598 StringRef InstName = Inst->TheDef->getName(); 599 unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); 600 if (!SCIdx) { 601 if (!Inst->hasNoSchedulingInfo) 602 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 603 continue; 604 } 605 CodeGenSchedClass &SC = getSchedClass(SCIdx); 606 if (SC.ProcIndices[0] != 0) 607 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 608 "must not be subtarget specific."); 609 610 IdxVec ProcIndices; 611 if (SC.ItinClassDef->getName() != "NoItinerary") { 612 ProcIndices.push_back(0); 613 dbgs() << "Itinerary for " << InstName << ": " 614 << SC.ItinClassDef->getName() << '\n'; 615 } 616 if (!SC.Writes.empty()) { 617 ProcIndices.push_back(0); 618 dbgs() << "SchedRW machine model for " << InstName; 619 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 620 dbgs() << " " << SchedWrites[*WI].Name; 621 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 622 dbgs() << " " << SchedReads[*RI].Name; 623 dbgs() << '\n'; 624 } 625 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 626 for (Record *RWDef : RWDefs) { 627 const CodeGenProcModel &ProcModel = 628 getProcModel(RWDef->getValueAsDef("SchedModel")); 629 ProcIndices.push_back(ProcModel.Index); 630 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 631 IdxVec Writes; 632 IdxVec Reads; 633 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 634 Writes, Reads); 635 for (unsigned WIdx : Writes) 636 dbgs() << " " << SchedWrites[WIdx].Name; 637 for (unsigned RIdx : Reads) 638 dbgs() << " " << SchedReads[RIdx].Name; 639 dbgs() << '\n'; 640 } 641 // If ProcIndices contains zero, the class applies to all processors. 642 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 643 for (const CodeGenProcModel &PM : ProcModels) { 644 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 645 dbgs() << "No machine model for " << Inst->TheDef->getName() 646 << " on processor " << PM.ModelName << '\n'; 647 } 648 } 649 } 650 } 651 652 /// Find an SchedClass that has been inferred from a per-operand list of 653 /// SchedWrites and SchedReads. 654 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 655 ArrayRef<unsigned> Writes, 656 ArrayRef<unsigned> Reads) const { 657 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 658 if (I->ItinClassDef == ItinClassDef && makeArrayRef(I->Writes) == Writes && 659 makeArrayRef(I->Reads) == Reads) { 660 return I - schedClassBegin(); 661 } 662 } 663 return 0; 664 } 665 666 // Get the SchedClass index for an instruction. 667 unsigned CodeGenSchedModels::getSchedClassIdx( 668 const CodeGenInstruction &Inst) const { 669 670 return InstrClassMap.lookup(Inst.TheDef); 671 } 672 673 std::string 674 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 675 ArrayRef<unsigned> OperWrites, 676 ArrayRef<unsigned> OperReads) { 677 678 std::string Name; 679 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 680 Name = ItinClassDef->getName(); 681 for (unsigned Idx : OperWrites) { 682 if (!Name.empty()) 683 Name += '_'; 684 Name += SchedWrites[Idx].Name; 685 } 686 for (unsigned Idx : OperReads) { 687 Name += '_'; 688 Name += SchedReads[Idx].Name; 689 } 690 return Name; 691 } 692 693 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 694 695 std::string Name; 696 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 697 if (I != InstDefs.begin()) 698 Name += '_'; 699 Name += (*I)->getName(); 700 } 701 return Name; 702 } 703 704 /// Add an inferred sched class from an itinerary class and per-operand list of 705 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 706 /// processors that may utilize this class. 707 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 708 ArrayRef<unsigned> OperWrites, 709 ArrayRef<unsigned> OperReads, 710 ArrayRef<unsigned> ProcIndices) { 711 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 712 713 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 714 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 715 IdxVec PI; 716 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 717 SchedClasses[Idx].ProcIndices.end(), 718 ProcIndices.begin(), ProcIndices.end(), 719 std::back_inserter(PI)); 720 SchedClasses[Idx].ProcIndices.swap(PI); 721 return Idx; 722 } 723 Idx = SchedClasses.size(); 724 SchedClasses.resize(Idx+1); 725 CodeGenSchedClass &SC = SchedClasses.back(); 726 SC.Index = Idx; 727 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 728 SC.ItinClassDef = ItinClassDef; 729 SC.Writes = OperWrites; 730 SC.Reads = OperReads; 731 SC.ProcIndices = ProcIndices; 732 733 return Idx; 734 } 735 736 // Create classes for each set of opcodes that are in the same InstReadWrite 737 // definition across all processors. 738 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 739 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 740 // intersects with an existing class via a previous InstRWDef. Instrs that do 741 // not intersect with an existing class refer back to their former class as 742 // determined from ItinDef or SchedRW. 743 SmallVector<std::pair<unsigned, SmallVector<Record *, 8>>, 4> ClassInstrs; 744 // Sort Instrs into sets. 745 const RecVec *InstDefs = Sets.expand(InstRWDef); 746 if (InstDefs->empty()) 747 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 748 749 for (Record *InstDef : make_range(InstDefs->begin(), InstDefs->end())) { 750 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 751 if (Pos == InstrClassMap.end()) 752 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 753 unsigned SCIdx = Pos->second; 754 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 755 for (; CIdx != CEnd; ++CIdx) { 756 if (ClassInstrs[CIdx].first == SCIdx) 757 break; 758 } 759 if (CIdx == CEnd) { 760 ClassInstrs.resize(CEnd + 1); 761 ClassInstrs[CIdx].first = SCIdx; 762 } 763 ClassInstrs[CIdx].second.push_back(InstDef); 764 } 765 // For each set of Instrs, create a new class if necessary, and map or remap 766 // the Instrs to it. 767 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 768 for (; CIdx != CEnd; ++CIdx) { 769 unsigned OldSCIdx = ClassInstrs[CIdx].first; 770 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 771 // If the all instrs in the current class are accounted for, then leave 772 // them mapped to their old class. 773 if (OldSCIdx) { 774 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 775 if (!RWDefs.empty()) { 776 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 777 unsigned OrigNumInstrs = 0; 778 for (Record *OIDef : make_range(OrigInstDefs->begin(), OrigInstDefs->end())) { 779 if (InstrClassMap[OIDef] == OldSCIdx) 780 ++OrigNumInstrs; 781 } 782 if (OrigNumInstrs == InstDefs.size()) { 783 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 784 "expected a generic SchedClass"); 785 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 786 << SchedClasses[OldSCIdx].Name << " on " 787 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 788 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 789 continue; 790 } 791 } 792 } 793 unsigned SCIdx = SchedClasses.size(); 794 SchedClasses.resize(SCIdx+1); 795 CodeGenSchedClass &SC = SchedClasses.back(); 796 SC.Index = SCIdx; 797 SC.Name = createSchedClassName(InstDefs); 798 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 799 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 800 801 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 802 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 803 SC.Writes = SchedClasses[OldSCIdx].Writes; 804 SC.Reads = SchedClasses[OldSCIdx].Reads; 805 SC.ProcIndices.push_back(0); 806 // Map each Instr to this new class. 807 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 808 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 809 SmallSet<unsigned, 4> RemappedClassIDs; 810 for (ArrayRef<Record*>::const_iterator 811 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 812 unsigned OldSCIdx = InstrClassMap[*II]; 813 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { 814 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 815 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 816 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 817 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 818 (*II)->getName() + " also matches " + 819 (*RI)->getValue("Instrs")->getValue()->getAsString()); 820 } 821 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 822 SC.InstRWs.push_back(*RI); 823 } 824 } 825 InstrClassMap[*II] = SCIdx; 826 } 827 SC.InstRWs.push_back(InstRWDef); 828 } 829 } 830 831 // True if collectProcItins found anything. 832 bool CodeGenSchedModels::hasItineraries() const { 833 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) { 834 if (PM.hasItineraries()) 835 return true; 836 } 837 return false; 838 } 839 840 // Gather the processor itineraries. 841 void CodeGenSchedModels::collectProcItins() { 842 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 843 for (CodeGenProcModel &ProcModel : ProcModels) { 844 if (!ProcModel.hasItineraries()) 845 continue; 846 847 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 848 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 849 850 // Populate ItinDefList with Itinerary records. 851 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 852 853 // Insert each itinerary data record in the correct position within 854 // the processor model's ItinDefList. 855 for (Record *ItinData : ItinRecords) { 856 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 857 bool FoundClass = false; 858 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 859 SCI != SCE; ++SCI) { 860 // Multiple SchedClasses may share an itinerary. Update all of them. 861 if (SCI->ItinClassDef == ItinDef) { 862 ProcModel.ItinDefList[SCI->Index] = ItinData; 863 FoundClass = true; 864 } 865 } 866 if (!FoundClass) { 867 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 868 << " missing class for itinerary " << ItinDef->getName() << '\n'); 869 } 870 } 871 // Check for missing itinerary entries. 872 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 873 DEBUG( 874 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 875 if (!ProcModel.ItinDefList[i]) 876 dbgs() << ProcModel.ItinsDef->getName() 877 << " missing itinerary for class " 878 << SchedClasses[i].Name << '\n'; 879 }); 880 } 881 } 882 883 // Gather the read/write types for each itinerary class. 884 void CodeGenSchedModels::collectProcItinRW() { 885 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 886 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 887 for (Record *RWDef : ItinRWDefs) { 888 if (!RWDef->getValueInit("SchedModel")->isComplete()) 889 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 890 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 891 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 892 if (I == ProcModelMap.end()) { 893 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 894 + ModelDef->getName()); 895 } 896 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 897 } 898 } 899 900 // Gather the unsupported features for processor models. 901 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 902 for (CodeGenProcModel &ProcModel : ProcModels) { 903 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 904 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 905 } 906 } 907 } 908 909 /// Infer new classes from existing classes. In the process, this may create new 910 /// SchedWrites from sequences of existing SchedWrites. 911 void CodeGenSchedModels::inferSchedClasses() { 912 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 913 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 914 915 // Visit all existing classes and newly created classes. 916 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 917 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 918 919 if (SchedClasses[Idx].ItinClassDef) 920 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 921 if (!SchedClasses[Idx].InstRWs.empty()) 922 inferFromInstRWs(Idx); 923 if (!SchedClasses[Idx].Writes.empty()) { 924 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 925 Idx, SchedClasses[Idx].ProcIndices); 926 } 927 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 928 "too many SchedVariants"); 929 } 930 } 931 932 /// Infer classes from per-processor itinerary resources. 933 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 934 unsigned FromClassIdx) { 935 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 936 const CodeGenProcModel &PM = ProcModels[PIdx]; 937 // For all ItinRW entries. 938 bool HasMatch = false; 939 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 940 II != IE; ++II) { 941 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 942 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 943 continue; 944 if (HasMatch) 945 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 946 + ItinClassDef->getName() 947 + " in ItinResources for " + PM.ModelName); 948 HasMatch = true; 949 IdxVec Writes, Reads; 950 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 951 IdxVec ProcIndices(1, PIdx); 952 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 953 } 954 } 955 } 956 957 /// Infer classes from per-processor InstReadWrite definitions. 958 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 959 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 960 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 961 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 962 const RecVec *InstDefs = Sets.expand(Rec); 963 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 964 for (; II != IE; ++II) { 965 if (InstrClassMap[*II] == SCIdx) 966 break; 967 } 968 // If this class no longer has any instructions mapped to it, it has become 969 // irrelevant. 970 if (II == IE) 971 continue; 972 IdxVec Writes, Reads; 973 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 974 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 975 IdxVec ProcIndices(1, PIdx); 976 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 977 } 978 } 979 980 namespace { 981 982 // Helper for substituteVariantOperand. 983 struct TransVariant { 984 Record *VarOrSeqDef; // Variant or sequence. 985 unsigned RWIdx; // Index of this variant or sequence's matched type. 986 unsigned ProcIdx; // Processor model index or zero for any. 987 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 988 989 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 990 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 991 }; 992 993 // Associate a predicate with the SchedReadWrite that it guards. 994 // RWIdx is the index of the read/write variant. 995 struct PredCheck { 996 bool IsRead; 997 unsigned RWIdx; 998 Record *Predicate; 999 1000 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1001 }; 1002 1003 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1004 struct PredTransition { 1005 // A predicate term is a conjunction of PredChecks. 1006 SmallVector<PredCheck, 4> PredTerm; 1007 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1008 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1009 SmallVector<unsigned, 4> ProcIndices; 1010 }; 1011 1012 // Encapsulate a set of partially constructed transitions. 1013 // The results are built by repeated calls to substituteVariants. 1014 class PredTransitions { 1015 CodeGenSchedModels &SchedModels; 1016 1017 public: 1018 std::vector<PredTransition> TransVec; 1019 1020 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1021 1022 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1023 bool IsRead, unsigned StartIdx); 1024 1025 void substituteVariants(const PredTransition &Trans); 1026 1027 #ifndef NDEBUG 1028 void dump() const; 1029 #endif 1030 1031 private: 1032 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1033 void getIntersectingVariants( 1034 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1035 std::vector<TransVariant> &IntersectingVariants); 1036 void pushVariant(const TransVariant &VInfo, bool IsRead); 1037 }; 1038 1039 } // end anonymous namespace 1040 1041 // Return true if this predicate is mutually exclusive with a PredTerm. This 1042 // degenerates into checking if the predicate is mutually exclusive with any 1043 // predicate in the Term's conjunction. 1044 // 1045 // All predicates associated with a given SchedRW are considered mutually 1046 // exclusive. This should work even if the conditions expressed by the 1047 // predicates are not exclusive because the predicates for a given SchedWrite 1048 // are always checked in the order they are defined in the .td file. Later 1049 // conditions implicitly negate any prior condition. 1050 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1051 ArrayRef<PredCheck> Term) { 1052 for (const PredCheck &PC: Term) { 1053 if (PC.Predicate == PredDef) 1054 return false; 1055 1056 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1057 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1058 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1059 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 1060 if ((*VI)->getValueAsDef("Predicate") == PredDef) 1061 return true; 1062 } 1063 } 1064 return false; 1065 } 1066 1067 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1068 CodeGenSchedModels &SchedModels) { 1069 if (RW.HasVariants) 1070 return true; 1071 1072 for (Record *Alias : RW.Aliases) { 1073 const CodeGenSchedRW &AliasRW = 1074 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1075 if (AliasRW.HasVariants) 1076 return true; 1077 if (AliasRW.IsSequence) { 1078 IdxVec ExpandedRWs; 1079 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1080 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1081 SI != SE; ++SI) { 1082 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1083 SchedModels)) { 1084 return true; 1085 } 1086 } 1087 } 1088 } 1089 return false; 1090 } 1091 1092 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1093 CodeGenSchedModels &SchedModels) { 1094 for (ArrayRef<PredTransition>::iterator 1095 PTI = Transitions.begin(), PTE = Transitions.end(); 1096 PTI != PTE; ++PTI) { 1097 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1098 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1099 WSI != WSE; ++WSI) { 1100 for (SmallVectorImpl<unsigned>::const_iterator 1101 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1102 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1103 return true; 1104 } 1105 } 1106 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1107 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1108 RSI != RSE; ++RSI) { 1109 for (SmallVectorImpl<unsigned>::const_iterator 1110 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1111 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1112 return true; 1113 } 1114 } 1115 } 1116 return false; 1117 } 1118 1119 // Populate IntersectingVariants with any variants or aliased sequences of the 1120 // given SchedRW whose processor indices and predicates are not mutually 1121 // exclusive with the given transition. 1122 void PredTransitions::getIntersectingVariants( 1123 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1124 std::vector<TransVariant> &IntersectingVariants) { 1125 1126 bool GenericRW = false; 1127 1128 std::vector<TransVariant> Variants; 1129 if (SchedRW.HasVariants) { 1130 unsigned VarProcIdx = 0; 1131 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1132 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1133 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1134 } 1135 // Push each variant. Assign TransVecIdx later. 1136 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1137 for (Record *VarDef : VarDefs) 1138 Variants.push_back(TransVariant(VarDef, SchedRW.Index, VarProcIdx, 0)); 1139 if (VarProcIdx == 0) 1140 GenericRW = true; 1141 } 1142 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1143 AI != AE; ++AI) { 1144 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1145 // to is defined within a processor model, constrain all variants to 1146 // that processor. 1147 unsigned AliasProcIdx = 0; 1148 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1149 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1150 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1151 } 1152 const CodeGenSchedRW &AliasRW = 1153 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1154 1155 if (AliasRW.HasVariants) { 1156 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1157 for (Record *VD : VarDefs) 1158 Variants.push_back(TransVariant(VD, AliasRW.Index, AliasProcIdx, 0)); 1159 } 1160 if (AliasRW.IsSequence) { 1161 Variants.push_back( 1162 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1163 } 1164 if (AliasProcIdx == 0) 1165 GenericRW = true; 1166 } 1167 for (TransVariant &Variant : Variants) { 1168 // Don't expand variants if the processor models don't intersect. 1169 // A zero processor index means any processor. 1170 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1171 if (ProcIndices[0] && Variant.ProcIdx) { 1172 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1173 Variant.ProcIdx); 1174 if (!Cnt) 1175 continue; 1176 if (Cnt > 1) { 1177 const CodeGenProcModel &PM = 1178 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1179 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1180 "Multiple variants defined for processor " + 1181 PM.ModelName + 1182 " Ensure only one SchedAlias exists per RW."); 1183 } 1184 } 1185 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1186 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1187 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1188 continue; 1189 } 1190 if (IntersectingVariants.empty()) { 1191 // The first variant builds on the existing transition. 1192 Variant.TransVecIdx = TransIdx; 1193 IntersectingVariants.push_back(Variant); 1194 } 1195 else { 1196 // Push another copy of the current transition for more variants. 1197 Variant.TransVecIdx = TransVec.size(); 1198 IntersectingVariants.push_back(Variant); 1199 TransVec.push_back(TransVec[TransIdx]); 1200 } 1201 } 1202 if (GenericRW && IntersectingVariants.empty()) { 1203 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1204 "a matching predicate on any processor"); 1205 } 1206 } 1207 1208 // Push the Reads/Writes selected by this variant onto the PredTransition 1209 // specified by VInfo. 1210 void PredTransitions:: 1211 pushVariant(const TransVariant &VInfo, bool IsRead) { 1212 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1213 1214 // If this operand transition is reached through a processor-specific alias, 1215 // then the whole transition is specific to this processor. 1216 if (VInfo.ProcIdx != 0) 1217 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1218 1219 IdxVec SelectedRWs; 1220 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1221 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1222 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1223 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1224 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1225 } 1226 else { 1227 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1228 "variant must be a SchedVariant or aliased WriteSequence"); 1229 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1230 } 1231 1232 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1233 1234 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1235 ? Trans.ReadSequences : Trans.WriteSequences; 1236 if (SchedRW.IsVariadic) { 1237 unsigned OperIdx = RWSequences.size()-1; 1238 // Make N-1 copies of this transition's last sequence. 1239 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1240 // Create a temporary copy the vector could reallocate. 1241 RWSequences.reserve(RWSequences.size() + 1); 1242 RWSequences.push_back(RWSequences[OperIdx]); 1243 } 1244 // Push each of the N elements of the SelectedRWs onto a copy of the last 1245 // sequence (split the current operand into N operands). 1246 // Note that write sequences should be expanded within this loop--the entire 1247 // sequence belongs to a single operand. 1248 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1249 RWI != RWE; ++RWI, ++OperIdx) { 1250 IdxVec ExpandedRWs; 1251 if (IsRead) 1252 ExpandedRWs.push_back(*RWI); 1253 else 1254 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1255 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1256 ExpandedRWs.begin(), ExpandedRWs.end()); 1257 } 1258 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1259 } 1260 else { 1261 // Push this transition's expanded sequence onto this transition's last 1262 // sequence (add to the current operand's sequence). 1263 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1264 IdxVec ExpandedRWs; 1265 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1266 RWI != RWE; ++RWI) { 1267 if (IsRead) 1268 ExpandedRWs.push_back(*RWI); 1269 else 1270 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1271 } 1272 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1273 } 1274 } 1275 1276 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1277 // operand. StartIdx is an index into TransVec where partial results 1278 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1279 // of TransVec. 1280 void PredTransitions::substituteVariantOperand( 1281 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1282 1283 // Visit each original RW within the current sequence. 1284 for (SmallVectorImpl<unsigned>::const_iterator 1285 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1286 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1287 // Push this RW on all partial PredTransitions or distribute variants. 1288 // New PredTransitions may be pushed within this loop which should not be 1289 // revisited (TransEnd must be loop invariant). 1290 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1291 TransIdx != TransEnd; ++TransIdx) { 1292 // In the common case, push RW onto the current operand's sequence. 1293 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1294 if (IsRead) 1295 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1296 else 1297 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1298 continue; 1299 } 1300 // Distribute this partial PredTransition across intersecting variants. 1301 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1302 std::vector<TransVariant> IntersectingVariants; 1303 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1304 // Now expand each variant on top of its copy of the transition. 1305 for (std::vector<TransVariant>::const_iterator 1306 IVI = IntersectingVariants.begin(), 1307 IVE = IntersectingVariants.end(); 1308 IVI != IVE; ++IVI) { 1309 pushVariant(*IVI, IsRead); 1310 } 1311 } 1312 } 1313 } 1314 1315 // For each variant of a Read/Write in Trans, substitute the sequence of 1316 // Read/Writes guarded by the variant. This is exponential in the number of 1317 // variant Read/Writes, but in practice detection of mutually exclusive 1318 // predicates should result in linear growth in the total number variants. 1319 // 1320 // This is one step in a breadth-first search of nested variants. 1321 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1322 // Build up a set of partial results starting at the back of 1323 // PredTransitions. Remember the first new transition. 1324 unsigned StartIdx = TransVec.size(); 1325 TransVec.resize(TransVec.size() + 1); 1326 TransVec.back().PredTerm = Trans.PredTerm; 1327 TransVec.back().ProcIndices = Trans.ProcIndices; 1328 1329 // Visit each original write sequence. 1330 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1331 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1332 WSI != WSE; ++WSI) { 1333 // Push a new (empty) write sequence onto all partial Transitions. 1334 for (std::vector<PredTransition>::iterator I = 1335 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1336 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1337 } 1338 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1339 } 1340 // Visit each original read sequence. 1341 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1342 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1343 RSI != RSE; ++RSI) { 1344 // Push a new (empty) read sequence onto all partial Transitions. 1345 for (std::vector<PredTransition>::iterator I = 1346 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1347 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1348 } 1349 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1350 } 1351 } 1352 1353 // Create a new SchedClass for each variant found by inferFromRW. Pass 1354 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1355 unsigned FromClassIdx, 1356 CodeGenSchedModels &SchedModels) { 1357 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1358 // requires creating a new SchedClass. 1359 for (ArrayRef<PredTransition>::iterator 1360 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1361 IdxVec OperWritesVariant; 1362 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1363 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1364 WSI != WSE; ++WSI) { 1365 // Create a new write representing the expanded sequence. 1366 OperWritesVariant.push_back( 1367 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1368 } 1369 IdxVec OperReadsVariant; 1370 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1371 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1372 RSI != RSE; ++RSI) { 1373 // Create a new read representing the expanded sequence. 1374 OperReadsVariant.push_back( 1375 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1376 } 1377 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1378 CodeGenSchedTransition SCTrans; 1379 SCTrans.ToClassIdx = 1380 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1381 OperReadsVariant, ProcIndices); 1382 SCTrans.ProcIndices = ProcIndices; 1383 // The final PredTerm is unique set of predicates guarding the transition. 1384 RecVec Preds; 1385 for (SmallVectorImpl<PredCheck>::const_iterator 1386 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1387 Preds.push_back(PI->Predicate); 1388 } 1389 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1390 Preds.resize(PredsEnd - Preds.begin()); 1391 SCTrans.PredTerm = Preds; 1392 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1393 } 1394 } 1395 1396 // Create new SchedClasses for the given ReadWrite list. If any of the 1397 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1398 // of the ReadWrite list, following Aliases if necessary. 1399 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1400 ArrayRef<unsigned> OperReads, 1401 unsigned FromClassIdx, 1402 ArrayRef<unsigned> ProcIndices) { 1403 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1404 1405 // Create a seed transition with an empty PredTerm and the expanded sequences 1406 // of SchedWrites for the current SchedClass. 1407 std::vector<PredTransition> LastTransitions; 1408 LastTransitions.resize(1); 1409 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1410 ProcIndices.end()); 1411 1412 for (unsigned WriteIdx : OperWrites) { 1413 IdxVec WriteSeq; 1414 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1415 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1416 LastTransitions[0].WriteSequences.resize(Idx + 1); 1417 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1418 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1419 Seq.push_back(*WI); 1420 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1421 } 1422 DEBUG(dbgs() << " Reads: "); 1423 for (unsigned ReadIdx : OperReads) { 1424 IdxVec ReadSeq; 1425 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1426 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1427 LastTransitions[0].ReadSequences.resize(Idx + 1); 1428 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1429 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1430 Seq.push_back(*RI); 1431 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1432 } 1433 DEBUG(dbgs() << '\n'); 1434 1435 // Collect all PredTransitions for individual operands. 1436 // Iterate until no variant writes remain. 1437 while (hasVariant(LastTransitions, *this)) { 1438 PredTransitions Transitions(*this); 1439 for (std::vector<PredTransition>::const_iterator 1440 I = LastTransitions.begin(), E = LastTransitions.end(); 1441 I != E; ++I) { 1442 Transitions.substituteVariants(*I); 1443 } 1444 DEBUG(Transitions.dump()); 1445 LastTransitions.swap(Transitions.TransVec); 1446 } 1447 // If the first transition has no variants, nothing to do. 1448 if (LastTransitions[0].PredTerm.empty()) 1449 return; 1450 1451 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1452 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1453 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1454 } 1455 1456 // Check if any processor resource group contains all resource records in 1457 // SubUnits. 1458 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1459 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1460 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1461 continue; 1462 RecVec SuperUnits = 1463 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1464 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1465 for ( ; RI != RE; ++RI) { 1466 if (!is_contained(SuperUnits, *RI)) { 1467 break; 1468 } 1469 } 1470 if (RI == RE) 1471 return true; 1472 } 1473 return false; 1474 } 1475 1476 // Verify that overlapping groups have a common supergroup. 1477 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1478 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1479 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1480 continue; 1481 RecVec CheckUnits = 1482 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1483 for (unsigned j = i+1; j < e; ++j) { 1484 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1485 continue; 1486 RecVec OtherUnits = 1487 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1488 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1489 OtherUnits.begin(), OtherUnits.end()) 1490 != CheckUnits.end()) { 1491 // CheckUnits and OtherUnits overlap 1492 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1493 CheckUnits.end()); 1494 if (!hasSuperGroup(OtherUnits, PM)) { 1495 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1496 "proc resource group overlaps with " 1497 + PM.ProcResourceDefs[j]->getName() 1498 + " but no supergroup contains both."); 1499 } 1500 } 1501 } 1502 } 1503 } 1504 1505 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1506 void CodeGenSchedModels::collectProcResources() { 1507 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1508 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1509 1510 // Add any subtarget-specific SchedReadWrites that are directly associated 1511 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1512 // determine which processors they apply to. 1513 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1514 SCI != SCE; ++SCI) { 1515 if (SCI->ItinClassDef) 1516 collectItinProcResources(SCI->ItinClassDef); 1517 else { 1518 // This class may have a default ReadWrite list which can be overriden by 1519 // InstRW definitions. 1520 if (!SCI->InstRWs.empty()) { 1521 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1522 RWI != RWE; ++RWI) { 1523 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1524 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1525 IdxVec Writes, Reads; 1526 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1527 Writes, Reads); 1528 collectRWResources(Writes, Reads, ProcIndices); 1529 } 1530 } 1531 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1532 } 1533 } 1534 // Add resources separately defined by each subtarget. 1535 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1536 for (Record *WR : WRDefs) { 1537 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1538 addWriteRes(WR, getProcModel(ModelDef).Index); 1539 } 1540 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1541 for (Record *SWR : SWRDefs) { 1542 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1543 addWriteRes(SWR, getProcModel(ModelDef).Index); 1544 } 1545 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1546 for (Record *RA : RADefs) { 1547 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1548 addReadAdvance(RA, getProcModel(ModelDef).Index); 1549 } 1550 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1551 for (Record *SRA : SRADefs) { 1552 if (SRA->getValueInit("SchedModel")->isComplete()) { 1553 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1554 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1555 } 1556 } 1557 // Add ProcResGroups that are defined within this processor model, which may 1558 // not be directly referenced but may directly specify a buffer size. 1559 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1560 for (Record *PRG : ProcResGroups) { 1561 if (!PRG->getValueInit("SchedModel")->isComplete()) 1562 continue; 1563 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1564 if (!is_contained(PM.ProcResourceDefs, PRG)) 1565 PM.ProcResourceDefs.push_back(PRG); 1566 } 1567 // Finalize each ProcModel by sorting the record arrays. 1568 for (CodeGenProcModel &PM : ProcModels) { 1569 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1570 LessRecord()); 1571 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1572 LessRecord()); 1573 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1574 LessRecord()); 1575 DEBUG( 1576 PM.dump(); 1577 dbgs() << "WriteResDefs: "; 1578 for (RecIter RI = PM.WriteResDefs.begin(), 1579 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1580 if ((*RI)->isSubClassOf("WriteRes")) 1581 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1582 else 1583 dbgs() << (*RI)->getName() << " "; 1584 } 1585 dbgs() << "\nReadAdvanceDefs: "; 1586 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1587 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1588 if ((*RI)->isSubClassOf("ReadAdvance")) 1589 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1590 else 1591 dbgs() << (*RI)->getName() << " "; 1592 } 1593 dbgs() << "\nProcResourceDefs: "; 1594 for (RecIter RI = PM.ProcResourceDefs.begin(), 1595 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1596 dbgs() << (*RI)->getName() << " "; 1597 } 1598 dbgs() << '\n'); 1599 verifyProcResourceGroups(PM); 1600 } 1601 1602 ProcResourceDefs.clear(); 1603 ProcResGroups.clear(); 1604 } 1605 1606 void CodeGenSchedModels::checkCompleteness() { 1607 bool Complete = true; 1608 bool HadCompleteModel = false; 1609 for (const CodeGenProcModel &ProcModel : procModels()) { 1610 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1611 continue; 1612 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1613 if (Inst->hasNoSchedulingInfo) 1614 continue; 1615 if (ProcModel.isUnsupported(*Inst)) 1616 continue; 1617 unsigned SCIdx = getSchedClassIdx(*Inst); 1618 if (!SCIdx) { 1619 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1620 PrintError("No schedule information for instruction '" 1621 + Inst->TheDef->getName() + "'"); 1622 Complete = false; 1623 } 1624 continue; 1625 } 1626 1627 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1628 if (!SC.Writes.empty()) 1629 continue; 1630 if (SC.ItinClassDef != nullptr && 1631 SC.ItinClassDef->getName() != "NoItinerary") 1632 continue; 1633 1634 const RecVec &InstRWs = SC.InstRWs; 1635 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1636 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1637 }); 1638 if (I == InstRWs.end()) { 1639 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1640 Inst->TheDef->getName() + "'"); 1641 Complete = false; 1642 } 1643 } 1644 HadCompleteModel = true; 1645 } 1646 if (!Complete) { 1647 errs() << "\n\nIncomplete schedule models found.\n" 1648 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1649 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1650 << "- Instructions should usually have Sched<[...]> as a superclass, " 1651 "you may temporarily use an empty list.\n" 1652 << "- Instructions related to unsupported features can be excluded with " 1653 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1654 "processor model.\n\n"; 1655 PrintFatalError("Incomplete schedule model"); 1656 } 1657 } 1658 1659 // Collect itinerary class resources for each processor. 1660 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1661 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1662 const CodeGenProcModel &PM = ProcModels[PIdx]; 1663 // For all ItinRW entries. 1664 bool HasMatch = false; 1665 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1666 II != IE; ++II) { 1667 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1668 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1669 continue; 1670 if (HasMatch) 1671 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1672 + ItinClassDef->getName() 1673 + " in ItinResources for " + PM.ModelName); 1674 HasMatch = true; 1675 IdxVec Writes, Reads; 1676 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1677 IdxVec ProcIndices(1, PIdx); 1678 collectRWResources(Writes, Reads, ProcIndices); 1679 } 1680 } 1681 } 1682 1683 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1684 ArrayRef<unsigned> ProcIndices) { 1685 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1686 if (SchedRW.TheDef) { 1687 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1688 for (unsigned Idx : ProcIndices) 1689 addWriteRes(SchedRW.TheDef, Idx); 1690 } 1691 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1692 for (unsigned Idx : ProcIndices) 1693 addReadAdvance(SchedRW.TheDef, Idx); 1694 } 1695 } 1696 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1697 AI != AE; ++AI) { 1698 IdxVec AliasProcIndices; 1699 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1700 AliasProcIndices.push_back( 1701 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1702 } 1703 else 1704 AliasProcIndices = ProcIndices; 1705 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1706 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1707 1708 IdxVec ExpandedRWs; 1709 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1710 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1711 SI != SE; ++SI) { 1712 collectRWResources(*SI, IsRead, AliasProcIndices); 1713 } 1714 } 1715 } 1716 1717 // Collect resources for a set of read/write types and processor indices. 1718 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1719 ArrayRef<unsigned> Reads, 1720 ArrayRef<unsigned> ProcIndices) { 1721 for (unsigned Idx : Writes) 1722 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1723 1724 for (unsigned Idx : Reads) 1725 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1726 } 1727 1728 // Find the processor's resource units for this kind of resource. 1729 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1730 const CodeGenProcModel &PM, 1731 ArrayRef<SMLoc> Loc) const { 1732 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1733 return ProcResKind; 1734 1735 Record *ProcUnitDef = nullptr; 1736 assert(!ProcResourceDefs.empty()); 1737 assert(!ProcResGroups.empty()); 1738 1739 for (Record *ProcResDef : ProcResourceDefs) { 1740 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1741 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1742 if (ProcUnitDef) { 1743 PrintFatalError(Loc, 1744 "Multiple ProcessorResourceUnits associated with " 1745 + ProcResKind->getName()); 1746 } 1747 ProcUnitDef = ProcResDef; 1748 } 1749 } 1750 for (Record *ProcResGroup : ProcResGroups) { 1751 if (ProcResGroup == ProcResKind 1752 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1753 if (ProcUnitDef) { 1754 PrintFatalError(Loc, 1755 "Multiple ProcessorResourceUnits associated with " 1756 + ProcResKind->getName()); 1757 } 1758 ProcUnitDef = ProcResGroup; 1759 } 1760 } 1761 if (!ProcUnitDef) { 1762 PrintFatalError(Loc, 1763 "No ProcessorResources associated with " 1764 + ProcResKind->getName()); 1765 } 1766 return ProcUnitDef; 1767 } 1768 1769 // Iteratively add a resource and its super resources. 1770 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1771 CodeGenProcModel &PM, 1772 ArrayRef<SMLoc> Loc) { 1773 while (true) { 1774 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1775 1776 // See if this ProcResource is already associated with this processor. 1777 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1778 return; 1779 1780 PM.ProcResourceDefs.push_back(ProcResUnits); 1781 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1782 return; 1783 1784 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1785 return; 1786 1787 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1788 } 1789 } 1790 1791 // Add resources for a SchedWrite to this processor if they don't exist. 1792 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1793 assert(PIdx && "don't add resources to an invalid Processor model"); 1794 1795 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1796 if (is_contained(WRDefs, ProcWriteResDef)) 1797 return; 1798 WRDefs.push_back(ProcWriteResDef); 1799 1800 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1801 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1802 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1803 WritePRI != WritePRE; ++WritePRI) { 1804 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1805 } 1806 } 1807 1808 // Add resources for a ReadAdvance to this processor if they don't exist. 1809 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1810 unsigned PIdx) { 1811 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1812 if (is_contained(RADefs, ProcReadAdvanceDef)) 1813 return; 1814 RADefs.push_back(ProcReadAdvanceDef); 1815 } 1816 1817 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1818 RecIter PRPos = find(ProcResourceDefs, PRDef); 1819 if (PRPos == ProcResourceDefs.end()) 1820 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1821 "the ProcResources list for " + ModelName); 1822 // Idx=0 is reserved for invalid. 1823 return 1 + (PRPos - ProcResourceDefs.begin()); 1824 } 1825 1826 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1827 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1828 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1829 if (TheDef->getName() == PredDef->getName()) 1830 return true; 1831 } 1832 } 1833 return false; 1834 } 1835 1836 #ifndef NDEBUG 1837 void CodeGenProcModel::dump() const { 1838 dbgs() << Index << ": " << ModelName << " " 1839 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1840 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1841 } 1842 1843 void CodeGenSchedRW::dump() const { 1844 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1845 if (IsSequence) { 1846 dbgs() << "("; 1847 dumpIdxVec(Sequence); 1848 dbgs() << ")"; 1849 } 1850 } 1851 1852 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1853 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1854 << " Writes: "; 1855 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1856 SchedModels->getSchedWrite(Writes[i]).dump(); 1857 if (i < N-1) { 1858 dbgs() << '\n'; 1859 dbgs().indent(10); 1860 } 1861 } 1862 dbgs() << "\n Reads: "; 1863 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1864 SchedModels->getSchedRead(Reads[i]).dump(); 1865 if (i < N-1) { 1866 dbgs() << '\n'; 1867 dbgs().indent(10); 1868 } 1869 } 1870 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1871 if (!Transitions.empty()) { 1872 dbgs() << "\n Transitions for Proc "; 1873 for (const CodeGenSchedTransition &Transition : Transitions) { 1874 dumpIdxVec(Transition.ProcIndices); 1875 } 1876 } 1877 } 1878 1879 void PredTransitions::dump() const { 1880 dbgs() << "Expanded Variants:\n"; 1881 for (std::vector<PredTransition>::const_iterator 1882 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1883 dbgs() << "{"; 1884 for (SmallVectorImpl<PredCheck>::const_iterator 1885 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1886 PCI != PCE; ++PCI) { 1887 if (PCI != TI->PredTerm.begin()) 1888 dbgs() << ", "; 1889 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1890 << ":" << PCI->Predicate->getName(); 1891 } 1892 dbgs() << "},\n => {"; 1893 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1894 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1895 WSI != WSE; ++WSI) { 1896 dbgs() << "("; 1897 for (SmallVectorImpl<unsigned>::const_iterator 1898 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1899 if (WI != WSI->begin()) 1900 dbgs() << ", "; 1901 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1902 } 1903 dbgs() << "),"; 1904 } 1905 dbgs() << "}\n"; 1906 } 1907 } 1908 #endif // NDEBUG 1909