1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 ArrayRef<const CodeGenInstruction *> Instructions = 82 Target.getInstructionsByEnumValue(); 83 84 unsigned NumGeneric = Target.getNumFixedInstructions(); 85 unsigned NumPseudos = Target.getNumPseudoInstructions(); 86 auto Generics = Instructions.slice(0, NumGeneric); 87 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos); 88 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos); 89 90 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 91 StringInit *SI = dyn_cast<StringInit>(Arg); 92 if (!SI) 93 PrintFatalError(Loc, "instregex requires pattern string: " + 94 Expr->getAsString()); 95 StringRef Original = SI->getValue(); 96 97 // Extract a prefix that we can binary search on. 98 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 99 auto FirstMeta = Original.find_first_of(RegexMetachars); 100 101 // Look for top-level | or ?. We cannot optimize them to binary search. 102 if (removeParens(Original).find_first_of("|?") != std::string::npos) 103 FirstMeta = 0; 104 105 Optional<Regex> Regexpr = None; 106 StringRef Prefix = Original.substr(0, FirstMeta); 107 StringRef PatStr = Original.substr(FirstMeta); 108 if (!PatStr.empty()) { 109 // For the rest use a python-style prefix match. 110 std::string pat = PatStr; 111 if (pat[0] != '^') { 112 pat.insert(0, "^("); 113 pat.insert(pat.end(), ')'); 114 } 115 Regexpr = Regex(pat); 116 } 117 118 int NumMatches = 0; 119 120 // The generic opcodes are unsorted, handle them manually. 121 for (auto *Inst : Generics) { 122 StringRef InstName = Inst->TheDef->getName(); 123 if (InstName.startswith(Prefix) && 124 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 125 Elts.insert(Inst->TheDef); 126 NumMatches++; 127 } 128 } 129 130 // Target instructions are split into two ranges: pseudo instructions 131 // first, than non-pseudos. Each range is in lexicographical order 132 // sorted by name. Find the sub-ranges that start with our prefix. 133 struct Comp { 134 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 135 return LHS->TheDef->getName() < RHS; 136 } 137 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 138 return LHS < RHS->TheDef->getName() && 139 !RHS->TheDef->getName().startswith(LHS); 140 } 141 }; 142 auto Range1 = 143 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp()); 144 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(), 145 Prefix, Comp()); 146 147 // For these ranges we know that instruction names start with the prefix. 148 // Check if there's a regex that needs to be checked. 149 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { 150 StringRef InstName = Inst->TheDef->getName(); 151 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 152 Elts.insert(Inst->TheDef); 153 NumMatches++; 154 } 155 }; 156 std::for_each(Range1.first, Range1.second, HandleNonGeneric); 157 std::for_each(Range2.first, Range2.second, HandleNonGeneric); 158 159 if (0 == NumMatches) 160 PrintFatalError(Loc, "instregex has no matches: " + Original); 161 } 162 } 163 }; 164 165 } // end anonymous namespace 166 167 /// CodeGenModels ctor interprets machine model records and populates maps. 168 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 169 const CodeGenTarget &TGT): 170 Records(RK), Target(TGT) { 171 172 Sets.addFieldExpander("InstRW", "Instrs"); 173 174 // Allow Set evaluation to recognize the dags used in InstRW records: 175 // (instrs Op1, Op1...) 176 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 177 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 178 179 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 180 // that are explicitly referenced in tablegen records. Resources associated 181 // with each processor will be derived later. Populate ProcModelMap with the 182 // CodeGenProcModel instances. 183 collectProcModels(); 184 185 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 186 // defined, and populate SchedReads and SchedWrites vectors. Implicit 187 // SchedReadWrites that represent sequences derived from expanded variant will 188 // be inferred later. 189 collectSchedRW(); 190 191 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 192 // required by an instruction definition, and populate SchedClassIdxMap. Set 193 // NumItineraryClasses to the number of explicit itinerary classes referenced 194 // by instructions. Set NumInstrSchedClasses to the number of itinerary 195 // classes plus any classes implied by instructions that derive from class 196 // Sched and provide SchedRW list. This does not infer any new classes from 197 // SchedVariant. 198 collectSchedClasses(); 199 200 // Find instruction itineraries for each processor. Sort and populate 201 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 202 // all itinerary classes to be discovered. 203 collectProcItins(); 204 205 // Find ItinRW records for each processor and itinerary class. 206 // (For per-operand resources mapped to itinerary classes). 207 collectProcItinRW(); 208 209 // Find UnsupportedFeatures records for each processor. 210 // (For per-operand resources mapped to itinerary classes). 211 collectProcUnsupportedFeatures(); 212 213 // Infer new SchedClasses from SchedVariant. 214 inferSchedClasses(); 215 216 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 217 // ProcResourceDefs. 218 LLVM_DEBUG( 219 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 220 collectProcResources(); 221 222 // Collect optional processor description. 223 collectOptionalProcessorInfo(); 224 225 checkCompleteness(); 226 } 227 228 void CodeGenSchedModels::collectRetireControlUnits() { 229 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 230 231 for (Record *RCU : Units) { 232 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 233 if (PM.RetireControlUnit) { 234 PrintError(RCU->getLoc(), 235 "Expected a single RetireControlUnit definition"); 236 PrintNote(PM.RetireControlUnit->getLoc(), 237 "Previous definition of RetireControlUnit was here"); 238 } 239 PM.RetireControlUnit = RCU; 240 } 241 } 242 243 /// Collect optional processor information. 244 void CodeGenSchedModels::collectOptionalProcessorInfo() { 245 // Find register file definitions for each processor. 246 collectRegisterFiles(); 247 248 // Collect processor RetireControlUnit descriptors if available. 249 collectRetireControlUnits(); 250 251 // Find pfm counter definitions for each processor. 252 collectPfmCounters(); 253 254 checkCompleteness(); 255 } 256 257 /// Gather all processor models. 258 void CodeGenSchedModels::collectProcModels() { 259 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 260 llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 261 262 // Reserve space because we can. Reallocation would be ok. 263 ProcModels.reserve(ProcRecords.size()+1); 264 265 // Use idx=0 for NoModel/NoItineraries. 266 Record *NoModelDef = Records.getDef("NoSchedModel"); 267 Record *NoItinsDef = Records.getDef("NoItineraries"); 268 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 269 ProcModelMap[NoModelDef] = 0; 270 271 // For each processor, find a unique machine model. 272 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 273 for (Record *ProcRecord : ProcRecords) 274 addProcModel(ProcRecord); 275 } 276 277 /// Get a unique processor model based on the defined MachineModel and 278 /// ProcessorItineraries. 279 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 280 Record *ModelKey = getModelOrItinDef(ProcDef); 281 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 282 return; 283 284 std::string Name = ModelKey->getName(); 285 if (ModelKey->isSubClassOf("SchedMachineModel")) { 286 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 287 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 288 } 289 else { 290 // An itinerary is defined without a machine model. Infer a new model. 291 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 292 Name = Name + "Model"; 293 ProcModels.emplace_back(ProcModels.size(), Name, 294 ProcDef->getValueAsDef("SchedModel"), ModelKey); 295 } 296 LLVM_DEBUG(ProcModels.back().dump()); 297 } 298 299 // Recursively find all reachable SchedReadWrite records. 300 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 301 SmallPtrSet<Record*, 16> &RWSet) { 302 if (!RWSet.insert(RWDef).second) 303 return; 304 RWDefs.push_back(RWDef); 305 // Reads don't currently have sequence records, but it can be added later. 306 if (RWDef->isSubClassOf("WriteSequence")) { 307 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 308 for (Record *WSRec : Seq) 309 scanSchedRW(WSRec, RWDefs, RWSet); 310 } 311 else if (RWDef->isSubClassOf("SchedVariant")) { 312 // Visit each variant (guarded by a different predicate). 313 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 314 for (Record *Variant : Vars) { 315 // Visit each RW in the sequence selected by the current variant. 316 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 317 for (Record *SelDef : Selected) 318 scanSchedRW(SelDef, RWDefs, RWSet); 319 } 320 } 321 } 322 323 // Collect and sort all SchedReadWrites reachable via tablegen records. 324 // More may be inferred later when inferring new SchedClasses from variants. 325 void CodeGenSchedModels::collectSchedRW() { 326 // Reserve idx=0 for invalid writes/reads. 327 SchedWrites.resize(1); 328 SchedReads.resize(1); 329 330 SmallPtrSet<Record*, 16> RWSet; 331 332 // Find all SchedReadWrites referenced by instruction defs. 333 RecVec SWDefs, SRDefs; 334 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 335 Record *SchedDef = Inst->TheDef; 336 if (SchedDef->isValueUnset("SchedRW")) 337 continue; 338 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 339 for (Record *RW : RWs) { 340 if (RW->isSubClassOf("SchedWrite")) 341 scanSchedRW(RW, SWDefs, RWSet); 342 else { 343 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 344 scanSchedRW(RW, SRDefs, RWSet); 345 } 346 } 347 } 348 // Find all ReadWrites referenced by InstRW. 349 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 350 for (Record *InstRWDef : InstRWDefs) { 351 // For all OperandReadWrites. 352 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 353 for (Record *RWDef : RWDefs) { 354 if (RWDef->isSubClassOf("SchedWrite")) 355 scanSchedRW(RWDef, SWDefs, RWSet); 356 else { 357 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 358 scanSchedRW(RWDef, SRDefs, RWSet); 359 } 360 } 361 } 362 // Find all ReadWrites referenced by ItinRW. 363 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 364 for (Record *ItinRWDef : ItinRWDefs) { 365 // For all OperandReadWrites. 366 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 367 for (Record *RWDef : RWDefs) { 368 if (RWDef->isSubClassOf("SchedWrite")) 369 scanSchedRW(RWDef, SWDefs, RWSet); 370 else { 371 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 372 scanSchedRW(RWDef, SRDefs, RWSet); 373 } 374 } 375 } 376 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 377 // for the loop below that initializes Alias vectors. 378 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 379 llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 380 for (Record *ADef : AliasDefs) { 381 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 382 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 383 if (MatchDef->isSubClassOf("SchedWrite")) { 384 if (!AliasDef->isSubClassOf("SchedWrite")) 385 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 386 scanSchedRW(AliasDef, SWDefs, RWSet); 387 } 388 else { 389 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 390 if (!AliasDef->isSubClassOf("SchedRead")) 391 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 392 scanSchedRW(AliasDef, SRDefs, RWSet); 393 } 394 } 395 // Sort and add the SchedReadWrites directly referenced by instructions or 396 // itinerary resources. Index reads and writes in separate domains. 397 llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 398 for (Record *SWDef : SWDefs) { 399 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 400 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 401 } 402 llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 403 for (Record *SRDef : SRDefs) { 404 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 405 SchedReads.emplace_back(SchedReads.size(), SRDef); 406 } 407 // Initialize WriteSequence vectors. 408 for (CodeGenSchedRW &CGRW : SchedWrites) { 409 if (!CGRW.IsSequence) 410 continue; 411 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 412 /*IsRead=*/false); 413 } 414 // Initialize Aliases vectors. 415 for (Record *ADef : AliasDefs) { 416 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 417 getSchedRW(AliasDef).IsAlias = true; 418 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 419 CodeGenSchedRW &RW = getSchedRW(MatchDef); 420 if (RW.IsAlias) 421 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 422 RW.Aliases.push_back(ADef); 423 } 424 LLVM_DEBUG( 425 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 426 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 427 dbgs() << WIdx << ": "; 428 SchedWrites[WIdx].dump(); 429 dbgs() << '\n'; 430 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; 431 ++RIdx) { 432 dbgs() << RIdx << ": "; 433 SchedReads[RIdx].dump(); 434 dbgs() << '\n'; 435 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 436 for (Record *RWDef 437 : RWDefs) { 438 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 439 StringRef Name = RWDef->getName(); 440 if (Name != "NoWrite" && Name != "ReadDefault") 441 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 442 } 443 }); 444 } 445 446 /// Compute a SchedWrite name from a sequence of writes. 447 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 448 std::string Name("("); 449 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 450 if (I != Seq.begin()) 451 Name += '_'; 452 Name += getSchedRW(*I, IsRead).Name; 453 } 454 Name += ')'; 455 return Name; 456 } 457 458 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, 459 bool IsRead) const { 460 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 461 const auto I = find_if( 462 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); 463 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 464 } 465 466 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 467 for (const CodeGenSchedRW &Read : SchedReads) { 468 Record *ReadDef = Read.TheDef; 469 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 470 continue; 471 472 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 473 if (is_contained(ValidWrites, WriteDef)) { 474 return true; 475 } 476 } 477 return false; 478 } 479 480 static void splitSchedReadWrites(const RecVec &RWDefs, 481 RecVec &WriteDefs, RecVec &ReadDefs) { 482 for (Record *RWDef : RWDefs) { 483 if (RWDef->isSubClassOf("SchedWrite")) 484 WriteDefs.push_back(RWDef); 485 else { 486 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 487 ReadDefs.push_back(RWDef); 488 } 489 } 490 } 491 492 // Split the SchedReadWrites defs and call findRWs for each list. 493 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 494 IdxVec &Writes, IdxVec &Reads) const { 495 RecVec WriteDefs; 496 RecVec ReadDefs; 497 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 498 findRWs(WriteDefs, Writes, false); 499 findRWs(ReadDefs, Reads, true); 500 } 501 502 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 503 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 504 bool IsRead) const { 505 for (Record *RWDef : RWDefs) { 506 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 507 assert(Idx && "failed to collect SchedReadWrite"); 508 RWs.push_back(Idx); 509 } 510 } 511 512 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 513 bool IsRead) const { 514 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 515 if (!SchedRW.IsSequence) { 516 RWSeq.push_back(RWIdx); 517 return; 518 } 519 int Repeat = 520 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 521 for (int i = 0; i < Repeat; ++i) { 522 for (unsigned I : SchedRW.Sequence) { 523 expandRWSequence(I, RWSeq, IsRead); 524 } 525 } 526 } 527 528 // Expand a SchedWrite as a sequence following any aliases that coincide with 529 // the given processor model. 530 void CodeGenSchedModels::expandRWSeqForProc( 531 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 532 const CodeGenProcModel &ProcModel) const { 533 534 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 535 Record *AliasDef = nullptr; 536 for (const Record *Rec : SchedWrite.Aliases) { 537 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); 538 if (Rec->getValueInit("SchedModel")->isComplete()) { 539 Record *ModelDef = Rec->getValueAsDef("SchedModel"); 540 if (&getProcModel(ModelDef) != &ProcModel) 541 continue; 542 } 543 if (AliasDef) 544 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 545 "defined for processor " + ProcModel.ModelName + 546 " Ensure only one SchedAlias exists per RW."); 547 AliasDef = AliasRW.TheDef; 548 } 549 if (AliasDef) { 550 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 551 RWSeq, IsRead,ProcModel); 552 return; 553 } 554 if (!SchedWrite.IsSequence) { 555 RWSeq.push_back(RWIdx); 556 return; 557 } 558 int Repeat = 559 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 560 for (int I = 0, E = Repeat; I < E; ++I) { 561 for (unsigned Idx : SchedWrite.Sequence) { 562 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); 563 } 564 } 565 } 566 567 // Find the existing SchedWrite that models this sequence of writes. 568 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 569 bool IsRead) { 570 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 571 572 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { 573 return makeArrayRef(RW.Sequence) == Seq; 574 }); 575 // Index zero reserved for invalid RW. 576 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 577 } 578 579 /// Add this ReadWrite if it doesn't already exist. 580 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 581 bool IsRead) { 582 assert(!Seq.empty() && "cannot insert empty sequence"); 583 if (Seq.size() == 1) 584 return Seq.back(); 585 586 unsigned Idx = findRWForSequence(Seq, IsRead); 587 if (Idx) 588 return Idx; 589 590 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 591 unsigned RWIdx = RWVec.size(); 592 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 593 RWVec.push_back(SchedRW); 594 return RWIdx; 595 } 596 597 /// Visit all the instruction definitions for this target to gather and 598 /// enumerate the itinerary classes. These are the explicitly specified 599 /// SchedClasses. More SchedClasses may be inferred. 600 void CodeGenSchedModels::collectSchedClasses() { 601 602 // NoItinerary is always the first class at Idx=0 603 assert(SchedClasses.empty() && "Expected empty sched class"); 604 SchedClasses.emplace_back(0, "NoInstrModel", 605 Records.getDef("NoItinerary")); 606 SchedClasses.back().ProcIndices.push_back(0); 607 608 // Create a SchedClass for each unique combination of itinerary class and 609 // SchedRW list. 610 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 611 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 612 IdxVec Writes, Reads; 613 if (!Inst->TheDef->isValueUnset("SchedRW")) 614 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 615 616 // ProcIdx == 0 indicates the class applies to all processors. 617 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 618 InstrClassMap[Inst->TheDef] = SCIdx; 619 } 620 // Create classes for InstRW defs. 621 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 622 llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 623 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 624 for (Record *RWDef : InstRWDefs) 625 createInstRWClass(RWDef); 626 627 NumInstrSchedClasses = SchedClasses.size(); 628 629 bool EnableDump = false; 630 LLVM_DEBUG(EnableDump = true); 631 if (!EnableDump) 632 return; 633 634 LLVM_DEBUG( 635 dbgs() 636 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); 637 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 638 StringRef InstName = Inst->TheDef->getName(); 639 unsigned SCIdx = getSchedClassIdx(*Inst); 640 if (!SCIdx) { 641 LLVM_DEBUG({ 642 if (!Inst->hasNoSchedulingInfo) 643 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 644 }); 645 continue; 646 } 647 CodeGenSchedClass &SC = getSchedClass(SCIdx); 648 if (SC.ProcIndices[0] != 0) 649 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 650 "must not be subtarget specific."); 651 652 IdxVec ProcIndices; 653 if (SC.ItinClassDef->getName() != "NoItinerary") { 654 ProcIndices.push_back(0); 655 dbgs() << "Itinerary for " << InstName << ": " 656 << SC.ItinClassDef->getName() << '\n'; 657 } 658 if (!SC.Writes.empty()) { 659 ProcIndices.push_back(0); 660 LLVM_DEBUG({ 661 dbgs() << "SchedRW machine model for " << InstName; 662 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; 663 ++WI) 664 dbgs() << " " << SchedWrites[*WI].Name; 665 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 666 dbgs() << " " << SchedReads[*RI].Name; 667 dbgs() << '\n'; 668 }); 669 } 670 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 671 for (Record *RWDef : RWDefs) { 672 const CodeGenProcModel &ProcModel = 673 getProcModel(RWDef->getValueAsDef("SchedModel")); 674 ProcIndices.push_back(ProcModel.Index); 675 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " 676 << InstName); 677 IdxVec Writes; 678 IdxVec Reads; 679 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 680 Writes, Reads); 681 LLVM_DEBUG({ 682 for (unsigned WIdx : Writes) 683 dbgs() << " " << SchedWrites[WIdx].Name; 684 for (unsigned RIdx : Reads) 685 dbgs() << " " << SchedReads[RIdx].Name; 686 dbgs() << '\n'; 687 }); 688 } 689 // If ProcIndices contains zero, the class applies to all processors. 690 LLVM_DEBUG({ 691 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 692 for (const CodeGenProcModel &PM : ProcModels) { 693 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 694 dbgs() << "No machine model for " << Inst->TheDef->getName() 695 << " on processor " << PM.ModelName << '\n'; 696 } 697 } 698 }); 699 } 700 } 701 702 // Get the SchedClass index for an instruction. 703 unsigned 704 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { 705 return InstrClassMap.lookup(Inst.TheDef); 706 } 707 708 std::string 709 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 710 ArrayRef<unsigned> OperWrites, 711 ArrayRef<unsigned> OperReads) { 712 713 std::string Name; 714 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 715 Name = ItinClassDef->getName(); 716 for (unsigned Idx : OperWrites) { 717 if (!Name.empty()) 718 Name += '_'; 719 Name += SchedWrites[Idx].Name; 720 } 721 for (unsigned Idx : OperReads) { 722 Name += '_'; 723 Name += SchedReads[Idx].Name; 724 } 725 return Name; 726 } 727 728 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 729 730 std::string Name; 731 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 732 if (I != InstDefs.begin()) 733 Name += '_'; 734 Name += (*I)->getName(); 735 } 736 return Name; 737 } 738 739 /// Add an inferred sched class from an itinerary class and per-operand list of 740 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 741 /// processors that may utilize this class. 742 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 743 ArrayRef<unsigned> OperWrites, 744 ArrayRef<unsigned> OperReads, 745 ArrayRef<unsigned> ProcIndices) { 746 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 747 748 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { 749 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); 750 }; 751 752 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); 753 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); 754 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 755 IdxVec PI; 756 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 757 SchedClasses[Idx].ProcIndices.end(), 758 ProcIndices.begin(), ProcIndices.end(), 759 std::back_inserter(PI)); 760 SchedClasses[Idx].ProcIndices = std::move(PI); 761 return Idx; 762 } 763 Idx = SchedClasses.size(); 764 SchedClasses.emplace_back(Idx, 765 createSchedClassName(ItinClassDef, OperWrites, 766 OperReads), 767 ItinClassDef); 768 CodeGenSchedClass &SC = SchedClasses.back(); 769 SC.Writes = OperWrites; 770 SC.Reads = OperReads; 771 SC.ProcIndices = ProcIndices; 772 773 return Idx; 774 } 775 776 // Create classes for each set of opcodes that are in the same InstReadWrite 777 // definition across all processors. 778 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 779 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 780 // intersects with an existing class via a previous InstRWDef. Instrs that do 781 // not intersect with an existing class refer back to their former class as 782 // determined from ItinDef or SchedRW. 783 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 784 // Sort Instrs into sets. 785 const RecVec *InstDefs = Sets.expand(InstRWDef); 786 if (InstDefs->empty()) 787 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 788 789 for (Record *InstDef : *InstDefs) { 790 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 791 if (Pos == InstrClassMap.end()) 792 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 793 unsigned SCIdx = Pos->second; 794 ClassInstrs[SCIdx].push_back(InstDef); 795 } 796 // For each set of Instrs, create a new class if necessary, and map or remap 797 // the Instrs to it. 798 for (auto &Entry : ClassInstrs) { 799 unsigned OldSCIdx = Entry.first; 800 ArrayRef<Record*> InstDefs = Entry.second; 801 // If the all instrs in the current class are accounted for, then leave 802 // them mapped to their old class. 803 if (OldSCIdx) { 804 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 805 if (!RWDefs.empty()) { 806 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 807 unsigned OrigNumInstrs = 808 count_if(*OrigInstDefs, [&](Record *OIDef) { 809 return InstrClassMap[OIDef] == OldSCIdx; 810 }); 811 if (OrigNumInstrs == InstDefs.size()) { 812 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 813 "expected a generic SchedClass"); 814 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 815 // Make sure we didn't already have a InstRW containing this 816 // instruction on this model. 817 for (Record *RWD : RWDefs) { 818 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 819 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 820 for (Record *Inst : InstDefs) { 821 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 822 Inst->getName() + " also matches " + 823 RWD->getValue("Instrs")->getValue()->getAsString()); 824 } 825 } 826 } 827 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 828 << SchedClasses[OldSCIdx].Name << " on " 829 << RWModelDef->getName() << "\n"); 830 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 831 continue; 832 } 833 } 834 } 835 unsigned SCIdx = SchedClasses.size(); 836 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 837 CodeGenSchedClass &SC = SchedClasses.back(); 838 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 839 << InstRWDef->getValueAsDef("SchedModel")->getName() 840 << "\n"); 841 842 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 843 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 844 SC.Writes = SchedClasses[OldSCIdx].Writes; 845 SC.Reads = SchedClasses[OldSCIdx].Reads; 846 SC.ProcIndices.push_back(0); 847 // If we had an old class, copy it's InstRWs to this new class. 848 if (OldSCIdx) { 849 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 850 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 851 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 852 for (Record *InstDef : InstDefs) { 853 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 854 InstDef->getName() + " also matches " + 855 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 856 } 857 } 858 assert(OldRWDef != InstRWDef && 859 "SchedClass has duplicate InstRW def"); 860 SC.InstRWs.push_back(OldRWDef); 861 } 862 } 863 // Map each Instr to this new class. 864 for (Record *InstDef : InstDefs) 865 InstrClassMap[InstDef] = SCIdx; 866 SC.InstRWs.push_back(InstRWDef); 867 } 868 } 869 870 // True if collectProcItins found anything. 871 bool CodeGenSchedModels::hasItineraries() const { 872 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) 873 if (PM.hasItineraries()) 874 return true; 875 return false; 876 } 877 878 // Gather the processor itineraries. 879 void CodeGenSchedModels::collectProcItins() { 880 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 881 for (CodeGenProcModel &ProcModel : ProcModels) { 882 if (!ProcModel.hasItineraries()) 883 continue; 884 885 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 886 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 887 888 // Populate ItinDefList with Itinerary records. 889 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 890 891 // Insert each itinerary data record in the correct position within 892 // the processor model's ItinDefList. 893 for (Record *ItinData : ItinRecords) { 894 const Record *ItinDef = ItinData->getValueAsDef("TheClass"); 895 bool FoundClass = false; 896 897 for (const CodeGenSchedClass &SC : 898 make_range(schedClassBegin(), schedClassEnd())) { 899 // Multiple SchedClasses may share an itinerary. Update all of them. 900 if (SC.ItinClassDef == ItinDef) { 901 ProcModel.ItinDefList[SC.Index] = ItinData; 902 FoundClass = true; 903 } 904 } 905 if (!FoundClass) { 906 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() 907 << " missing class for itinerary " 908 << ItinDef->getName() << '\n'); 909 } 910 } 911 // Check for missing itinerary entries. 912 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 913 LLVM_DEBUG( 914 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 915 if (!ProcModel.ItinDefList[i]) 916 dbgs() << ProcModel.ItinsDef->getName() 917 << " missing itinerary for class " << SchedClasses[i].Name 918 << '\n'; 919 }); 920 } 921 } 922 923 // Gather the read/write types for each itinerary class. 924 void CodeGenSchedModels::collectProcItinRW() { 925 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 926 llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 927 for (Record *RWDef : ItinRWDefs) { 928 if (!RWDef->getValueInit("SchedModel")->isComplete()) 929 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 930 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 931 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 932 if (I == ProcModelMap.end()) { 933 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 934 + ModelDef->getName()); 935 } 936 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 937 } 938 } 939 940 // Gather the unsupported features for processor models. 941 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 942 for (CodeGenProcModel &ProcModel : ProcModels) { 943 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 944 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 945 } 946 } 947 } 948 949 /// Infer new classes from existing classes. In the process, this may create new 950 /// SchedWrites from sequences of existing SchedWrites. 951 void CodeGenSchedModels::inferSchedClasses() { 952 LLVM_DEBUG( 953 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 954 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 955 956 // Visit all existing classes and newly created classes. 957 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 958 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 959 960 if (SchedClasses[Idx].ItinClassDef) 961 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 962 if (!SchedClasses[Idx].InstRWs.empty()) 963 inferFromInstRWs(Idx); 964 if (!SchedClasses[Idx].Writes.empty()) { 965 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 966 Idx, SchedClasses[Idx].ProcIndices); 967 } 968 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 969 "too many SchedVariants"); 970 } 971 } 972 973 /// Infer classes from per-processor itinerary resources. 974 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 975 unsigned FromClassIdx) { 976 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 977 const CodeGenProcModel &PM = ProcModels[PIdx]; 978 // For all ItinRW entries. 979 bool HasMatch = false; 980 for (const Record *Rec : PM.ItinRWDefs) { 981 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); 982 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 983 continue; 984 if (HasMatch) 985 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class " 986 + ItinClassDef->getName() 987 + " in ItinResources for " + PM.ModelName); 988 HasMatch = true; 989 IdxVec Writes, Reads; 990 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 991 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 992 } 993 } 994 } 995 996 /// Infer classes from per-processor InstReadWrite definitions. 997 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 998 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 999 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 1000 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 1001 const RecVec *InstDefs = Sets.expand(Rec); 1002 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 1003 for (; II != IE; ++II) { 1004 if (InstrClassMap[*II] == SCIdx) 1005 break; 1006 } 1007 // If this class no longer has any instructions mapped to it, it has become 1008 // irrelevant. 1009 if (II == IE) 1010 continue; 1011 IdxVec Writes, Reads; 1012 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1013 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1014 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1015 } 1016 } 1017 1018 namespace { 1019 1020 // Helper for substituteVariantOperand. 1021 struct TransVariant { 1022 Record *VarOrSeqDef; // Variant or sequence. 1023 unsigned RWIdx; // Index of this variant or sequence's matched type. 1024 unsigned ProcIdx; // Processor model index or zero for any. 1025 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1026 1027 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1028 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1029 }; 1030 1031 // Associate a predicate with the SchedReadWrite that it guards. 1032 // RWIdx is the index of the read/write variant. 1033 struct PredCheck { 1034 bool IsRead; 1035 unsigned RWIdx; 1036 Record *Predicate; 1037 1038 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1039 }; 1040 1041 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1042 struct PredTransition { 1043 // A predicate term is a conjunction of PredChecks. 1044 SmallVector<PredCheck, 4> PredTerm; 1045 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1046 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1047 SmallVector<unsigned, 4> ProcIndices; 1048 }; 1049 1050 // Encapsulate a set of partially constructed transitions. 1051 // The results are built by repeated calls to substituteVariants. 1052 class PredTransitions { 1053 CodeGenSchedModels &SchedModels; 1054 1055 public: 1056 std::vector<PredTransition> TransVec; 1057 1058 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1059 1060 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1061 bool IsRead, unsigned StartIdx); 1062 1063 void substituteVariants(const PredTransition &Trans); 1064 1065 #ifndef NDEBUG 1066 void dump() const; 1067 #endif 1068 1069 private: 1070 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1071 void getIntersectingVariants( 1072 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1073 std::vector<TransVariant> &IntersectingVariants); 1074 void pushVariant(const TransVariant &VInfo, bool IsRead); 1075 }; 1076 1077 } // end anonymous namespace 1078 1079 // Return true if this predicate is mutually exclusive with a PredTerm. This 1080 // degenerates into checking if the predicate is mutually exclusive with any 1081 // predicate in the Term's conjunction. 1082 // 1083 // All predicates associated with a given SchedRW are considered mutually 1084 // exclusive. This should work even if the conditions expressed by the 1085 // predicates are not exclusive because the predicates for a given SchedWrite 1086 // are always checked in the order they are defined in the .td file. Later 1087 // conditions implicitly negate any prior condition. 1088 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1089 ArrayRef<PredCheck> Term) { 1090 for (const PredCheck &PC: Term) { 1091 if (PC.Predicate == PredDef) 1092 return false; 1093 1094 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1095 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1096 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1097 if (any_of(Variants, [PredDef](const Record *R) { 1098 return R->getValueAsDef("Predicate") == PredDef; 1099 })) 1100 return true; 1101 } 1102 return false; 1103 } 1104 1105 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1106 CodeGenSchedModels &SchedModels) { 1107 if (RW.HasVariants) 1108 return true; 1109 1110 for (Record *Alias : RW.Aliases) { 1111 const CodeGenSchedRW &AliasRW = 1112 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1113 if (AliasRW.HasVariants) 1114 return true; 1115 if (AliasRW.IsSequence) { 1116 IdxVec ExpandedRWs; 1117 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1118 for (unsigned SI : ExpandedRWs) { 1119 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead), 1120 SchedModels)) 1121 return true; 1122 } 1123 } 1124 } 1125 return false; 1126 } 1127 1128 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1129 CodeGenSchedModels &SchedModels) { 1130 for (const PredTransition &PTI : Transitions) { 1131 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences) 1132 for (unsigned WI : WSI) 1133 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels)) 1134 return true; 1135 1136 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences) 1137 for (unsigned RI : RSI) 1138 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels)) 1139 return true; 1140 } 1141 return false; 1142 } 1143 1144 // Populate IntersectingVariants with any variants or aliased sequences of the 1145 // given SchedRW whose processor indices and predicates are not mutually 1146 // exclusive with the given transition. 1147 void PredTransitions::getIntersectingVariants( 1148 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1149 std::vector<TransVariant> &IntersectingVariants) { 1150 1151 bool GenericRW = false; 1152 1153 std::vector<TransVariant> Variants; 1154 if (SchedRW.HasVariants) { 1155 unsigned VarProcIdx = 0; 1156 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1157 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1158 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1159 } 1160 // Push each variant. Assign TransVecIdx later. 1161 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1162 for (Record *VarDef : VarDefs) 1163 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); 1164 if (VarProcIdx == 0) 1165 GenericRW = true; 1166 } 1167 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1168 AI != AE; ++AI) { 1169 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1170 // to is defined within a processor model, constrain all variants to 1171 // that processor. 1172 unsigned AliasProcIdx = 0; 1173 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1174 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1175 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1176 } 1177 const CodeGenSchedRW &AliasRW = 1178 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1179 1180 if (AliasRW.HasVariants) { 1181 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1182 for (Record *VD : VarDefs) 1183 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); 1184 } 1185 if (AliasRW.IsSequence) 1186 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); 1187 if (AliasProcIdx == 0) 1188 GenericRW = true; 1189 } 1190 for (TransVariant &Variant : Variants) { 1191 // Don't expand variants if the processor models don't intersect. 1192 // A zero processor index means any processor. 1193 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1194 if (ProcIndices[0] && Variant.ProcIdx) { 1195 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1196 Variant.ProcIdx); 1197 if (!Cnt) 1198 continue; 1199 if (Cnt > 1) { 1200 const CodeGenProcModel &PM = 1201 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1202 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1203 "Multiple variants defined for processor " + 1204 PM.ModelName + 1205 " Ensure only one SchedAlias exists per RW."); 1206 } 1207 } 1208 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1209 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1210 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1211 continue; 1212 } 1213 if (IntersectingVariants.empty()) { 1214 // The first variant builds on the existing transition. 1215 Variant.TransVecIdx = TransIdx; 1216 IntersectingVariants.push_back(Variant); 1217 } 1218 else { 1219 // Push another copy of the current transition for more variants. 1220 Variant.TransVecIdx = TransVec.size(); 1221 IntersectingVariants.push_back(Variant); 1222 TransVec.push_back(TransVec[TransIdx]); 1223 } 1224 } 1225 if (GenericRW && IntersectingVariants.empty()) { 1226 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1227 "a matching predicate on any processor"); 1228 } 1229 } 1230 1231 // Push the Reads/Writes selected by this variant onto the PredTransition 1232 // specified by VInfo. 1233 void PredTransitions:: 1234 pushVariant(const TransVariant &VInfo, bool IsRead) { 1235 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1236 1237 // If this operand transition is reached through a processor-specific alias, 1238 // then the whole transition is specific to this processor. 1239 if (VInfo.ProcIdx != 0) 1240 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1241 1242 IdxVec SelectedRWs; 1243 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1244 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1245 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef); 1246 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1247 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1248 } 1249 else { 1250 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1251 "variant must be a SchedVariant or aliased WriteSequence"); 1252 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1253 } 1254 1255 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1256 1257 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1258 ? Trans.ReadSequences : Trans.WriteSequences; 1259 if (SchedRW.IsVariadic) { 1260 unsigned OperIdx = RWSequences.size()-1; 1261 // Make N-1 copies of this transition's last sequence. 1262 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, 1263 RWSequences[OperIdx]); 1264 // Push each of the N elements of the SelectedRWs onto a copy of the last 1265 // sequence (split the current operand into N operands). 1266 // Note that write sequences should be expanded within this loop--the entire 1267 // sequence belongs to a single operand. 1268 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1269 RWI != RWE; ++RWI, ++OperIdx) { 1270 IdxVec ExpandedRWs; 1271 if (IsRead) 1272 ExpandedRWs.push_back(*RWI); 1273 else 1274 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1275 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1276 ExpandedRWs.begin(), ExpandedRWs.end()); 1277 } 1278 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1279 } 1280 else { 1281 // Push this transition's expanded sequence onto this transition's last 1282 // sequence (add to the current operand's sequence). 1283 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1284 IdxVec ExpandedRWs; 1285 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1286 RWI != RWE; ++RWI) { 1287 if (IsRead) 1288 ExpandedRWs.push_back(*RWI); 1289 else 1290 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1291 } 1292 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1293 } 1294 } 1295 1296 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1297 // operand. StartIdx is an index into TransVec where partial results 1298 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1299 // of TransVec. 1300 void PredTransitions::substituteVariantOperand( 1301 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1302 1303 // Visit each original RW within the current sequence. 1304 for (SmallVectorImpl<unsigned>::const_iterator 1305 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1306 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1307 // Push this RW on all partial PredTransitions or distribute variants. 1308 // New PredTransitions may be pushed within this loop which should not be 1309 // revisited (TransEnd must be loop invariant). 1310 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1311 TransIdx != TransEnd; ++TransIdx) { 1312 // In the common case, push RW onto the current operand's sequence. 1313 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1314 if (IsRead) 1315 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1316 else 1317 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1318 continue; 1319 } 1320 // Distribute this partial PredTransition across intersecting variants. 1321 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1322 std::vector<TransVariant> IntersectingVariants; 1323 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1324 // Now expand each variant on top of its copy of the transition. 1325 for (std::vector<TransVariant>::const_iterator 1326 IVI = IntersectingVariants.begin(), 1327 IVE = IntersectingVariants.end(); 1328 IVI != IVE; ++IVI) { 1329 pushVariant(*IVI, IsRead); 1330 } 1331 } 1332 } 1333 } 1334 1335 // For each variant of a Read/Write in Trans, substitute the sequence of 1336 // Read/Writes guarded by the variant. This is exponential in the number of 1337 // variant Read/Writes, but in practice detection of mutually exclusive 1338 // predicates should result in linear growth in the total number variants. 1339 // 1340 // This is one step in a breadth-first search of nested variants. 1341 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1342 // Build up a set of partial results starting at the back of 1343 // PredTransitions. Remember the first new transition. 1344 unsigned StartIdx = TransVec.size(); 1345 TransVec.emplace_back(); 1346 TransVec.back().PredTerm = Trans.PredTerm; 1347 TransVec.back().ProcIndices = Trans.ProcIndices; 1348 1349 // Visit each original write sequence. 1350 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1351 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1352 WSI != WSE; ++WSI) { 1353 // Push a new (empty) write sequence onto all partial Transitions. 1354 for (std::vector<PredTransition>::iterator I = 1355 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1356 I->WriteSequences.emplace_back(); 1357 } 1358 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1359 } 1360 // Visit each original read sequence. 1361 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1362 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1363 RSI != RSE; ++RSI) { 1364 // Push a new (empty) read sequence onto all partial Transitions. 1365 for (std::vector<PredTransition>::iterator I = 1366 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1367 I->ReadSequences.emplace_back(); 1368 } 1369 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1370 } 1371 } 1372 1373 // Create a new SchedClass for each variant found by inferFromRW. Pass 1374 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1375 unsigned FromClassIdx, 1376 CodeGenSchedModels &SchedModels) { 1377 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1378 // requires creating a new SchedClass. 1379 for (ArrayRef<PredTransition>::iterator 1380 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1381 IdxVec OperWritesVariant; 1382 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1383 [&SchedModels](ArrayRef<unsigned> WS) { 1384 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1385 }); 1386 IdxVec OperReadsVariant; 1387 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1388 [&SchedModels](ArrayRef<unsigned> RS) { 1389 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1390 }); 1391 CodeGenSchedTransition SCTrans; 1392 SCTrans.ToClassIdx = 1393 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1394 OperReadsVariant, I->ProcIndices); 1395 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1396 // The final PredTerm is unique set of predicates guarding the transition. 1397 RecVec Preds; 1398 transform(I->PredTerm, std::back_inserter(Preds), 1399 [](const PredCheck &P) { 1400 return P.Predicate; 1401 }); 1402 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1403 SCTrans.PredTerm = std::move(Preds); 1404 SchedModels.getSchedClass(FromClassIdx) 1405 .Transitions.push_back(std::move(SCTrans)); 1406 } 1407 } 1408 1409 // Create new SchedClasses for the given ReadWrite list. If any of the 1410 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1411 // of the ReadWrite list, following Aliases if necessary. 1412 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1413 ArrayRef<unsigned> OperReads, 1414 unsigned FromClassIdx, 1415 ArrayRef<unsigned> ProcIndices) { 1416 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); 1417 dbgs() << ") "); 1418 1419 // Create a seed transition with an empty PredTerm and the expanded sequences 1420 // of SchedWrites for the current SchedClass. 1421 std::vector<PredTransition> LastTransitions; 1422 LastTransitions.emplace_back(); 1423 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1424 ProcIndices.end()); 1425 1426 for (unsigned WriteIdx : OperWrites) { 1427 IdxVec WriteSeq; 1428 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1429 LastTransitions[0].WriteSequences.emplace_back(); 1430 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1431 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1432 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1433 } 1434 LLVM_DEBUG(dbgs() << " Reads: "); 1435 for (unsigned ReadIdx : OperReads) { 1436 IdxVec ReadSeq; 1437 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1438 LastTransitions[0].ReadSequences.emplace_back(); 1439 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1440 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1441 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1442 } 1443 LLVM_DEBUG(dbgs() << '\n'); 1444 1445 // Collect all PredTransitions for individual operands. 1446 // Iterate until no variant writes remain. 1447 while (hasVariant(LastTransitions, *this)) { 1448 PredTransitions Transitions(*this); 1449 for (const PredTransition &Trans : LastTransitions) 1450 Transitions.substituteVariants(Trans); 1451 LLVM_DEBUG(Transitions.dump()); 1452 LastTransitions.swap(Transitions.TransVec); 1453 } 1454 // If the first transition has no variants, nothing to do. 1455 if (LastTransitions[0].PredTerm.empty()) 1456 return; 1457 1458 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1459 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1460 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1461 } 1462 1463 // Check if any processor resource group contains all resource records in 1464 // SubUnits. 1465 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1466 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1467 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1468 continue; 1469 RecVec SuperUnits = 1470 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1471 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1472 for ( ; RI != RE; ++RI) { 1473 if (!is_contained(SuperUnits, *RI)) { 1474 break; 1475 } 1476 } 1477 if (RI == RE) 1478 return true; 1479 } 1480 return false; 1481 } 1482 1483 // Verify that overlapping groups have a common supergroup. 1484 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1485 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1486 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1487 continue; 1488 RecVec CheckUnits = 1489 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1490 for (unsigned j = i+1; j < e; ++j) { 1491 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1492 continue; 1493 RecVec OtherUnits = 1494 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1495 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1496 OtherUnits.begin(), OtherUnits.end()) 1497 != CheckUnits.end()) { 1498 // CheckUnits and OtherUnits overlap 1499 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1500 CheckUnits.end()); 1501 if (!hasSuperGroup(OtherUnits, PM)) { 1502 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1503 "proc resource group overlaps with " 1504 + PM.ProcResourceDefs[j]->getName() 1505 + " but no supergroup contains both."); 1506 } 1507 } 1508 } 1509 } 1510 } 1511 1512 // Collect all the RegisterFile definitions available in this target. 1513 void CodeGenSchedModels::collectRegisterFiles() { 1514 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1515 1516 // RegisterFiles is the vector of CodeGenRegisterFile. 1517 for (Record *RF : RegisterFileDefs) { 1518 // For each register file definition, construct a CodeGenRegisterFile object 1519 // and add it to the appropriate scheduling model. 1520 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1521 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1522 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1523 1524 // Now set the number of physical registers as well as the cost of registers 1525 // in each register class. 1526 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1527 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1528 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1529 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1530 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1531 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1532 } 1533 } 1534 } 1535 1536 // Collect all the RegisterFile definitions available in this target. 1537 void CodeGenSchedModels::collectPfmCounters() { 1538 for (Record *Def : Records.getAllDerivedDefinitions("PfmIssueCounter")) { 1539 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1540 PM.PfmIssueCounterDefs.emplace_back(Def); 1541 } 1542 for (Record *Def : Records.getAllDerivedDefinitions("PfmCycleCounter")) { 1543 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1544 if (PM.PfmCycleCounterDef) { 1545 PrintFatalError(Def->getLoc(), 1546 "multiple cycle counters for " + 1547 Def->getValueAsDef("SchedModel")->getName()); 1548 } 1549 PM.PfmCycleCounterDef = Def; 1550 } 1551 } 1552 1553 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1554 void CodeGenSchedModels::collectProcResources() { 1555 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1556 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1557 1558 // Add any subtarget-specific SchedReadWrites that are directly associated 1559 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1560 // determine which processors they apply to. 1561 for (const CodeGenSchedClass &SC : 1562 make_range(schedClassBegin(), schedClassEnd())) { 1563 if (SC.ItinClassDef) { 1564 collectItinProcResources(SC.ItinClassDef); 1565 continue; 1566 } 1567 1568 // This class may have a default ReadWrite list which can be overriden by 1569 // InstRW definitions. 1570 for (Record *RW : SC.InstRWs) { 1571 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1572 unsigned PIdx = getProcModel(RWModelDef).Index; 1573 IdxVec Writes, Reads; 1574 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1575 collectRWResources(Writes, Reads, PIdx); 1576 } 1577 1578 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); 1579 } 1580 // Add resources separately defined by each subtarget. 1581 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1582 for (Record *WR : WRDefs) { 1583 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1584 addWriteRes(WR, getProcModel(ModelDef).Index); 1585 } 1586 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1587 for (Record *SWR : SWRDefs) { 1588 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1589 addWriteRes(SWR, getProcModel(ModelDef).Index); 1590 } 1591 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1592 for (Record *RA : RADefs) { 1593 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1594 addReadAdvance(RA, getProcModel(ModelDef).Index); 1595 } 1596 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1597 for (Record *SRA : SRADefs) { 1598 if (SRA->getValueInit("SchedModel")->isComplete()) { 1599 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1600 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1601 } 1602 } 1603 // Add ProcResGroups that are defined within this processor model, which may 1604 // not be directly referenced but may directly specify a buffer size. 1605 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1606 for (Record *PRG : ProcResGroups) { 1607 if (!PRG->getValueInit("SchedModel")->isComplete()) 1608 continue; 1609 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1610 if (!is_contained(PM.ProcResourceDefs, PRG)) 1611 PM.ProcResourceDefs.push_back(PRG); 1612 } 1613 // Add ProcResourceUnits unconditionally. 1614 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1615 if (!PRU->getValueInit("SchedModel")->isComplete()) 1616 continue; 1617 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1618 if (!is_contained(PM.ProcResourceDefs, PRU)) 1619 PM.ProcResourceDefs.push_back(PRU); 1620 } 1621 // Finalize each ProcModel by sorting the record arrays. 1622 for (CodeGenProcModel &PM : ProcModels) { 1623 llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1624 LessRecord()); 1625 llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1626 LessRecord()); 1627 llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1628 LessRecord()); 1629 LLVM_DEBUG( 1630 PM.dump(); 1631 dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), 1632 RE = PM.WriteResDefs.end(); 1633 RI != RE; ++RI) { 1634 if ((*RI)->isSubClassOf("WriteRes")) 1635 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1636 else 1637 dbgs() << (*RI)->getName() << " "; 1638 } dbgs() << "\nReadAdvanceDefs: "; 1639 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1640 RE = PM.ReadAdvanceDefs.end(); 1641 RI != RE; ++RI) { 1642 if ((*RI)->isSubClassOf("ReadAdvance")) 1643 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1644 else 1645 dbgs() << (*RI)->getName() << " "; 1646 } dbgs() 1647 << "\nProcResourceDefs: "; 1648 for (RecIter RI = PM.ProcResourceDefs.begin(), 1649 RE = PM.ProcResourceDefs.end(); 1650 RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() 1651 << '\n'); 1652 verifyProcResourceGroups(PM); 1653 } 1654 1655 ProcResourceDefs.clear(); 1656 ProcResGroups.clear(); 1657 } 1658 1659 void CodeGenSchedModels::checkCompleteness() { 1660 bool Complete = true; 1661 bool HadCompleteModel = false; 1662 for (const CodeGenProcModel &ProcModel : procModels()) { 1663 const bool HasItineraries = ProcModel.hasItineraries(); 1664 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1665 continue; 1666 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1667 if (Inst->hasNoSchedulingInfo) 1668 continue; 1669 if (ProcModel.isUnsupported(*Inst)) 1670 continue; 1671 unsigned SCIdx = getSchedClassIdx(*Inst); 1672 if (!SCIdx) { 1673 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1674 PrintError("No schedule information for instruction '" 1675 + Inst->TheDef->getName() + "'"); 1676 Complete = false; 1677 } 1678 continue; 1679 } 1680 1681 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1682 if (!SC.Writes.empty()) 1683 continue; 1684 if (HasItineraries && SC.ItinClassDef != nullptr && 1685 SC.ItinClassDef->getName() != "NoItinerary") 1686 continue; 1687 1688 const RecVec &InstRWs = SC.InstRWs; 1689 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1690 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1691 }); 1692 if (I == InstRWs.end()) { 1693 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1694 Inst->TheDef->getName() + "'"); 1695 Complete = false; 1696 } 1697 } 1698 HadCompleteModel = true; 1699 } 1700 if (!Complete) { 1701 errs() << "\n\nIncomplete schedule models found.\n" 1702 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1703 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1704 << "- Instructions should usually have Sched<[...]> as a superclass, " 1705 "you may temporarily use an empty list.\n" 1706 << "- Instructions related to unsupported features can be excluded with " 1707 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1708 "processor model.\n\n"; 1709 PrintFatalError("Incomplete schedule model"); 1710 } 1711 } 1712 1713 // Collect itinerary class resources for each processor. 1714 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1715 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1716 const CodeGenProcModel &PM = ProcModels[PIdx]; 1717 // For all ItinRW entries. 1718 bool HasMatch = false; 1719 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1720 II != IE; ++II) { 1721 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1722 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1723 continue; 1724 if (HasMatch) 1725 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1726 + ItinClassDef->getName() 1727 + " in ItinResources for " + PM.ModelName); 1728 HasMatch = true; 1729 IdxVec Writes, Reads; 1730 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1731 collectRWResources(Writes, Reads, PIdx); 1732 } 1733 } 1734 } 1735 1736 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1737 ArrayRef<unsigned> ProcIndices) { 1738 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1739 if (SchedRW.TheDef) { 1740 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1741 for (unsigned Idx : ProcIndices) 1742 addWriteRes(SchedRW.TheDef, Idx); 1743 } 1744 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1745 for (unsigned Idx : ProcIndices) 1746 addReadAdvance(SchedRW.TheDef, Idx); 1747 } 1748 } 1749 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1750 AI != AE; ++AI) { 1751 IdxVec AliasProcIndices; 1752 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1753 AliasProcIndices.push_back( 1754 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1755 } 1756 else 1757 AliasProcIndices = ProcIndices; 1758 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1759 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1760 1761 IdxVec ExpandedRWs; 1762 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1763 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1764 SI != SE; ++SI) { 1765 collectRWResources(*SI, IsRead, AliasProcIndices); 1766 } 1767 } 1768 } 1769 1770 // Collect resources for a set of read/write types and processor indices. 1771 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1772 ArrayRef<unsigned> Reads, 1773 ArrayRef<unsigned> ProcIndices) { 1774 for (unsigned Idx : Writes) 1775 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1776 1777 for (unsigned Idx : Reads) 1778 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1779 } 1780 1781 // Find the processor's resource units for this kind of resource. 1782 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1783 const CodeGenProcModel &PM, 1784 ArrayRef<SMLoc> Loc) const { 1785 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1786 return ProcResKind; 1787 1788 Record *ProcUnitDef = nullptr; 1789 assert(!ProcResourceDefs.empty()); 1790 assert(!ProcResGroups.empty()); 1791 1792 for (Record *ProcResDef : ProcResourceDefs) { 1793 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1794 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1795 if (ProcUnitDef) { 1796 PrintFatalError(Loc, 1797 "Multiple ProcessorResourceUnits associated with " 1798 + ProcResKind->getName()); 1799 } 1800 ProcUnitDef = ProcResDef; 1801 } 1802 } 1803 for (Record *ProcResGroup : ProcResGroups) { 1804 if (ProcResGroup == ProcResKind 1805 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1806 if (ProcUnitDef) { 1807 PrintFatalError(Loc, 1808 "Multiple ProcessorResourceUnits associated with " 1809 + ProcResKind->getName()); 1810 } 1811 ProcUnitDef = ProcResGroup; 1812 } 1813 } 1814 if (!ProcUnitDef) { 1815 PrintFatalError(Loc, 1816 "No ProcessorResources associated with " 1817 + ProcResKind->getName()); 1818 } 1819 return ProcUnitDef; 1820 } 1821 1822 // Iteratively add a resource and its super resources. 1823 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1824 CodeGenProcModel &PM, 1825 ArrayRef<SMLoc> Loc) { 1826 while (true) { 1827 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1828 1829 // See if this ProcResource is already associated with this processor. 1830 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1831 return; 1832 1833 PM.ProcResourceDefs.push_back(ProcResUnits); 1834 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1835 return; 1836 1837 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1838 return; 1839 1840 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1841 } 1842 } 1843 1844 // Add resources for a SchedWrite to this processor if they don't exist. 1845 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1846 assert(PIdx && "don't add resources to an invalid Processor model"); 1847 1848 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1849 if (is_contained(WRDefs, ProcWriteResDef)) 1850 return; 1851 WRDefs.push_back(ProcWriteResDef); 1852 1853 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1854 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1855 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1856 WritePRI != WritePRE; ++WritePRI) { 1857 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1858 } 1859 } 1860 1861 // Add resources for a ReadAdvance to this processor if they don't exist. 1862 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1863 unsigned PIdx) { 1864 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1865 if (is_contained(RADefs, ProcReadAdvanceDef)) 1866 return; 1867 RADefs.push_back(ProcReadAdvanceDef); 1868 } 1869 1870 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1871 RecIter PRPos = find(ProcResourceDefs, PRDef); 1872 if (PRPos == ProcResourceDefs.end()) 1873 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1874 "the ProcResources list for " + ModelName); 1875 // Idx=0 is reserved for invalid. 1876 return 1 + (PRPos - ProcResourceDefs.begin()); 1877 } 1878 1879 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1880 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1881 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1882 if (TheDef->getName() == PredDef->getName()) 1883 return true; 1884 } 1885 } 1886 return false; 1887 } 1888 1889 #ifndef NDEBUG 1890 void CodeGenProcModel::dump() const { 1891 dbgs() << Index << ": " << ModelName << " " 1892 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1893 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1894 } 1895 1896 void CodeGenSchedRW::dump() const { 1897 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1898 if (IsSequence) { 1899 dbgs() << "("; 1900 dumpIdxVec(Sequence); 1901 dbgs() << ")"; 1902 } 1903 } 1904 1905 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1906 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1907 << " Writes: "; 1908 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1909 SchedModels->getSchedWrite(Writes[i]).dump(); 1910 if (i < N-1) { 1911 dbgs() << '\n'; 1912 dbgs().indent(10); 1913 } 1914 } 1915 dbgs() << "\n Reads: "; 1916 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1917 SchedModels->getSchedRead(Reads[i]).dump(); 1918 if (i < N-1) { 1919 dbgs() << '\n'; 1920 dbgs().indent(10); 1921 } 1922 } 1923 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1924 if (!Transitions.empty()) { 1925 dbgs() << "\n Transitions for Proc "; 1926 for (const CodeGenSchedTransition &Transition : Transitions) { 1927 dumpIdxVec(Transition.ProcIndices); 1928 } 1929 } 1930 } 1931 1932 void PredTransitions::dump() const { 1933 dbgs() << "Expanded Variants:\n"; 1934 for (std::vector<PredTransition>::const_iterator 1935 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1936 dbgs() << "{"; 1937 for (SmallVectorImpl<PredCheck>::const_iterator 1938 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1939 PCI != PCE; ++PCI) { 1940 if (PCI != TI->PredTerm.begin()) 1941 dbgs() << ", "; 1942 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1943 << ":" << PCI->Predicate->getName(); 1944 } 1945 dbgs() << "},\n => {"; 1946 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1947 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1948 WSI != WSE; ++WSI) { 1949 dbgs() << "("; 1950 for (SmallVectorImpl<unsigned>::const_iterator 1951 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1952 if (WI != WSI->begin()) 1953 dbgs() << ", "; 1954 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1955 } 1956 dbgs() << "),"; 1957 } 1958 dbgs() << "}\n"; 1959 } 1960 } 1961 #endif // NDEBUG 1962