1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 StringRef Original = SI->getValue(); 87 88 // Extract a prefix that we can binary search on. 89 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 90 auto FirstMeta = Original.find_first_of(RegexMetachars); 91 92 // Look for top-level | or ?. We cannot optimize them to binary search. 93 if (removeParens(Original).find_first_of("|?") != std::string::npos) 94 FirstMeta = 0; 95 96 Optional<Regex> Regexpr = None; 97 StringRef Prefix = Original.substr(0, FirstMeta); 98 StringRef PatStr = Original.substr(FirstMeta); 99 if (!PatStr.empty()) { 100 // For the rest use a python-style prefix match. 101 std::string pat = PatStr; 102 if (pat[0] != '^') { 103 pat.insert(0, "^("); 104 pat.insert(pat.end(), ')'); 105 } 106 Regexpr = Regex(pat); 107 } 108 109 int NumMatches = 0; 110 111 unsigned NumGeneric = Target.getNumFixedInstructions(); 112 ArrayRef<const CodeGenInstruction *> Generics = 113 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1); 114 115 // The generic opcodes are unsorted, handle them manually. 116 for (auto *Inst : Generics) { 117 StringRef InstName = Inst->TheDef->getName(); 118 if (InstName.startswith(Prefix) && 119 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 120 Elts.insert(Inst->TheDef); 121 NumMatches++; 122 } 123 } 124 125 ArrayRef<const CodeGenInstruction *> Instructions = 126 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 127 128 // Target instructions are sorted. Find the range that starts with our 129 // prefix. 130 struct Comp { 131 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 132 return LHS->TheDef->getName() < RHS; 133 } 134 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 135 return LHS < RHS->TheDef->getName() && 136 !RHS->TheDef->getName().startswith(LHS); 137 } 138 }; 139 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 140 Prefix, Comp()); 141 142 // For this range we know that it starts with the prefix. Check if there's 143 // a regex that needs to be checked. 144 for (auto *Inst : make_range(Range)) { 145 StringRef InstName = Inst->TheDef->getName(); 146 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 147 Elts.insert(Inst->TheDef); 148 NumMatches++; 149 } 150 } 151 152 if (0 == NumMatches) 153 PrintFatalError(Loc, "instregex has no matches: " + Original); 154 } 155 } 156 }; 157 158 } // end anonymous namespace 159 160 /// CodeGenModels ctor interprets machine model records and populates maps. 161 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 162 const CodeGenTarget &TGT): 163 Records(RK), Target(TGT) { 164 165 Sets.addFieldExpander("InstRW", "Instrs"); 166 167 // Allow Set evaluation to recognize the dags used in InstRW records: 168 // (instrs Op1, Op1...) 169 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 170 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 171 172 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 173 // that are explicitly referenced in tablegen records. Resources associated 174 // with each processor will be derived later. Populate ProcModelMap with the 175 // CodeGenProcModel instances. 176 collectProcModels(); 177 178 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 179 // defined, and populate SchedReads and SchedWrites vectors. Implicit 180 // SchedReadWrites that represent sequences derived from expanded variant will 181 // be inferred later. 182 collectSchedRW(); 183 184 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 185 // required by an instruction definition, and populate SchedClassIdxMap. Set 186 // NumItineraryClasses to the number of explicit itinerary classes referenced 187 // by instructions. Set NumInstrSchedClasses to the number of itinerary 188 // classes plus any classes implied by instructions that derive from class 189 // Sched and provide SchedRW list. This does not infer any new classes from 190 // SchedVariant. 191 collectSchedClasses(); 192 193 // Find instruction itineraries for each processor. Sort and populate 194 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 195 // all itinerary classes to be discovered. 196 collectProcItins(); 197 198 // Find ItinRW records for each processor and itinerary class. 199 // (For per-operand resources mapped to itinerary classes). 200 collectProcItinRW(); 201 202 // Find UnsupportedFeatures records for each processor. 203 // (For per-operand resources mapped to itinerary classes). 204 collectProcUnsupportedFeatures(); 205 206 // Infer new SchedClasses from SchedVariant. 207 inferSchedClasses(); 208 209 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 210 // ProcResourceDefs. 211 LLVM_DEBUG( 212 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 213 collectProcResources(); 214 215 // Collect optional processor description. 216 collectOptionalProcessorInfo(); 217 218 checkCompleteness(); 219 } 220 221 void CodeGenSchedModels::collectRetireControlUnits() { 222 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 223 224 for (Record *RCU : Units) { 225 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 226 if (PM.RetireControlUnit) { 227 PrintError(RCU->getLoc(), 228 "Expected a single RetireControlUnit definition"); 229 PrintNote(PM.RetireControlUnit->getLoc(), 230 "Previous definition of RetireControlUnit was here"); 231 } 232 PM.RetireControlUnit = RCU; 233 } 234 } 235 236 /// Collect optional processor information. 237 void CodeGenSchedModels::collectOptionalProcessorInfo() { 238 // Find register file definitions for each processor. 239 collectRegisterFiles(); 240 241 // Collect processor RetireControlUnit descriptors if available. 242 collectRetireControlUnits(); 243 244 // Find pfm counter definitions for each processor. 245 collectPfmCounters(); 246 247 checkCompleteness(); 248 } 249 250 /// Gather all processor models. 251 void CodeGenSchedModels::collectProcModels() { 252 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 253 llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 254 255 // Reserve space because we can. Reallocation would be ok. 256 ProcModels.reserve(ProcRecords.size()+1); 257 258 // Use idx=0 for NoModel/NoItineraries. 259 Record *NoModelDef = Records.getDef("NoSchedModel"); 260 Record *NoItinsDef = Records.getDef("NoItineraries"); 261 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 262 ProcModelMap[NoModelDef] = 0; 263 264 // For each processor, find a unique machine model. 265 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 266 for (Record *ProcRecord : ProcRecords) 267 addProcModel(ProcRecord); 268 } 269 270 /// Get a unique processor model based on the defined MachineModel and 271 /// ProcessorItineraries. 272 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 273 Record *ModelKey = getModelOrItinDef(ProcDef); 274 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 275 return; 276 277 std::string Name = ModelKey->getName(); 278 if (ModelKey->isSubClassOf("SchedMachineModel")) { 279 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 280 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 281 } 282 else { 283 // An itinerary is defined without a machine model. Infer a new model. 284 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 285 Name = Name + "Model"; 286 ProcModels.emplace_back(ProcModels.size(), Name, 287 ProcDef->getValueAsDef("SchedModel"), ModelKey); 288 } 289 LLVM_DEBUG(ProcModels.back().dump()); 290 } 291 292 // Recursively find all reachable SchedReadWrite records. 293 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 294 SmallPtrSet<Record*, 16> &RWSet) { 295 if (!RWSet.insert(RWDef).second) 296 return; 297 RWDefs.push_back(RWDef); 298 // Reads don't currently have sequence records, but it can be added later. 299 if (RWDef->isSubClassOf("WriteSequence")) { 300 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 301 for (Record *WSRec : Seq) 302 scanSchedRW(WSRec, RWDefs, RWSet); 303 } 304 else if (RWDef->isSubClassOf("SchedVariant")) { 305 // Visit each variant (guarded by a different predicate). 306 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 307 for (Record *Variant : Vars) { 308 // Visit each RW in the sequence selected by the current variant. 309 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 310 for (Record *SelDef : Selected) 311 scanSchedRW(SelDef, RWDefs, RWSet); 312 } 313 } 314 } 315 316 // Collect and sort all SchedReadWrites reachable via tablegen records. 317 // More may be inferred later when inferring new SchedClasses from variants. 318 void CodeGenSchedModels::collectSchedRW() { 319 // Reserve idx=0 for invalid writes/reads. 320 SchedWrites.resize(1); 321 SchedReads.resize(1); 322 323 SmallPtrSet<Record*, 16> RWSet; 324 325 // Find all SchedReadWrites referenced by instruction defs. 326 RecVec SWDefs, SRDefs; 327 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 328 Record *SchedDef = Inst->TheDef; 329 if (SchedDef->isValueUnset("SchedRW")) 330 continue; 331 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 332 for (Record *RW : RWs) { 333 if (RW->isSubClassOf("SchedWrite")) 334 scanSchedRW(RW, SWDefs, RWSet); 335 else { 336 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 337 scanSchedRW(RW, SRDefs, RWSet); 338 } 339 } 340 } 341 // Find all ReadWrites referenced by InstRW. 342 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 343 for (Record *InstRWDef : InstRWDefs) { 344 // For all OperandReadWrites. 345 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 346 for (Record *RWDef : RWDefs) { 347 if (RWDef->isSubClassOf("SchedWrite")) 348 scanSchedRW(RWDef, SWDefs, RWSet); 349 else { 350 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 351 scanSchedRW(RWDef, SRDefs, RWSet); 352 } 353 } 354 } 355 // Find all ReadWrites referenced by ItinRW. 356 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 357 for (Record *ItinRWDef : ItinRWDefs) { 358 // For all OperandReadWrites. 359 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 360 for (Record *RWDef : RWDefs) { 361 if (RWDef->isSubClassOf("SchedWrite")) 362 scanSchedRW(RWDef, SWDefs, RWSet); 363 else { 364 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 365 scanSchedRW(RWDef, SRDefs, RWSet); 366 } 367 } 368 } 369 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 370 // for the loop below that initializes Alias vectors. 371 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 372 llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 373 for (Record *ADef : AliasDefs) { 374 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 375 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 376 if (MatchDef->isSubClassOf("SchedWrite")) { 377 if (!AliasDef->isSubClassOf("SchedWrite")) 378 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 379 scanSchedRW(AliasDef, SWDefs, RWSet); 380 } 381 else { 382 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 383 if (!AliasDef->isSubClassOf("SchedRead")) 384 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 385 scanSchedRW(AliasDef, SRDefs, RWSet); 386 } 387 } 388 // Sort and add the SchedReadWrites directly referenced by instructions or 389 // itinerary resources. Index reads and writes in separate domains. 390 llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 391 for (Record *SWDef : SWDefs) { 392 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 393 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 394 } 395 llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 396 for (Record *SRDef : SRDefs) { 397 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 398 SchedReads.emplace_back(SchedReads.size(), SRDef); 399 } 400 // Initialize WriteSequence vectors. 401 for (CodeGenSchedRW &CGRW : SchedWrites) { 402 if (!CGRW.IsSequence) 403 continue; 404 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 405 /*IsRead=*/false); 406 } 407 // Initialize Aliases vectors. 408 for (Record *ADef : AliasDefs) { 409 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 410 getSchedRW(AliasDef).IsAlias = true; 411 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 412 CodeGenSchedRW &RW = getSchedRW(MatchDef); 413 if (RW.IsAlias) 414 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 415 RW.Aliases.push_back(ADef); 416 } 417 LLVM_DEBUG( 418 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 419 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 420 dbgs() << WIdx << ": "; 421 SchedWrites[WIdx].dump(); 422 dbgs() << '\n'; 423 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; 424 ++RIdx) { 425 dbgs() << RIdx << ": "; 426 SchedReads[RIdx].dump(); 427 dbgs() << '\n'; 428 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 429 for (Record *RWDef 430 : RWDefs) { 431 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 432 StringRef Name = RWDef->getName(); 433 if (Name != "NoWrite" && Name != "ReadDefault") 434 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 435 } 436 }); 437 } 438 439 /// Compute a SchedWrite name from a sequence of writes. 440 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 441 std::string Name("("); 442 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 443 if (I != Seq.begin()) 444 Name += '_'; 445 Name += getSchedRW(*I, IsRead).Name; 446 } 447 Name += ')'; 448 return Name; 449 } 450 451 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, 452 bool IsRead) const { 453 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 454 const auto I = find_if( 455 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); 456 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 457 } 458 459 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 460 for (const CodeGenSchedRW &Read : SchedReads) { 461 Record *ReadDef = Read.TheDef; 462 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 463 continue; 464 465 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 466 if (is_contained(ValidWrites, WriteDef)) { 467 return true; 468 } 469 } 470 return false; 471 } 472 473 static void splitSchedReadWrites(const RecVec &RWDefs, 474 RecVec &WriteDefs, RecVec &ReadDefs) { 475 for (Record *RWDef : RWDefs) { 476 if (RWDef->isSubClassOf("SchedWrite")) 477 WriteDefs.push_back(RWDef); 478 else { 479 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 480 ReadDefs.push_back(RWDef); 481 } 482 } 483 } 484 485 // Split the SchedReadWrites defs and call findRWs for each list. 486 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 487 IdxVec &Writes, IdxVec &Reads) const { 488 RecVec WriteDefs; 489 RecVec ReadDefs; 490 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 491 findRWs(WriteDefs, Writes, false); 492 findRWs(ReadDefs, Reads, true); 493 } 494 495 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 496 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 497 bool IsRead) const { 498 for (Record *RWDef : RWDefs) { 499 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 500 assert(Idx && "failed to collect SchedReadWrite"); 501 RWs.push_back(Idx); 502 } 503 } 504 505 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 506 bool IsRead) const { 507 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 508 if (!SchedRW.IsSequence) { 509 RWSeq.push_back(RWIdx); 510 return; 511 } 512 int Repeat = 513 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 514 for (int i = 0; i < Repeat; ++i) { 515 for (unsigned I : SchedRW.Sequence) { 516 expandRWSequence(I, RWSeq, IsRead); 517 } 518 } 519 } 520 521 // Expand a SchedWrite as a sequence following any aliases that coincide with 522 // the given processor model. 523 void CodeGenSchedModels::expandRWSeqForProc( 524 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 525 const CodeGenProcModel &ProcModel) const { 526 527 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 528 Record *AliasDef = nullptr; 529 for (const Record *Rec : SchedWrite.Aliases) { 530 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); 531 if (Rec->getValueInit("SchedModel")->isComplete()) { 532 Record *ModelDef = Rec->getValueAsDef("SchedModel"); 533 if (&getProcModel(ModelDef) != &ProcModel) 534 continue; 535 } 536 if (AliasDef) 537 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 538 "defined for processor " + ProcModel.ModelName + 539 " Ensure only one SchedAlias exists per RW."); 540 AliasDef = AliasRW.TheDef; 541 } 542 if (AliasDef) { 543 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 544 RWSeq, IsRead,ProcModel); 545 return; 546 } 547 if (!SchedWrite.IsSequence) { 548 RWSeq.push_back(RWIdx); 549 return; 550 } 551 int Repeat = 552 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 553 for (int I = 0, E = Repeat; I < E; ++I) { 554 for (unsigned Idx : SchedWrite.Sequence) { 555 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); 556 } 557 } 558 } 559 560 // Find the existing SchedWrite that models this sequence of writes. 561 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 562 bool IsRead) { 563 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 564 565 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { 566 return makeArrayRef(RW.Sequence) == Seq; 567 }); 568 // Index zero reserved for invalid RW. 569 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 570 } 571 572 /// Add this ReadWrite if it doesn't already exist. 573 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 574 bool IsRead) { 575 assert(!Seq.empty() && "cannot insert empty sequence"); 576 if (Seq.size() == 1) 577 return Seq.back(); 578 579 unsigned Idx = findRWForSequence(Seq, IsRead); 580 if (Idx) 581 return Idx; 582 583 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 584 unsigned RWIdx = RWVec.size(); 585 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 586 RWVec.push_back(SchedRW); 587 return RWIdx; 588 } 589 590 /// Visit all the instruction definitions for this target to gather and 591 /// enumerate the itinerary classes. These are the explicitly specified 592 /// SchedClasses. More SchedClasses may be inferred. 593 void CodeGenSchedModels::collectSchedClasses() { 594 595 // NoItinerary is always the first class at Idx=0 596 assert(SchedClasses.empty() && "Expected empty sched class"); 597 SchedClasses.emplace_back(0, "NoInstrModel", 598 Records.getDef("NoItinerary")); 599 SchedClasses.back().ProcIndices.push_back(0); 600 601 // Create a SchedClass for each unique combination of itinerary class and 602 // SchedRW list. 603 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 604 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 605 IdxVec Writes, Reads; 606 if (!Inst->TheDef->isValueUnset("SchedRW")) 607 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 608 609 // ProcIdx == 0 indicates the class applies to all processors. 610 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 611 InstrClassMap[Inst->TheDef] = SCIdx; 612 } 613 // Create classes for InstRW defs. 614 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 615 llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 616 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 617 for (Record *RWDef : InstRWDefs) 618 createInstRWClass(RWDef); 619 620 NumInstrSchedClasses = SchedClasses.size(); 621 622 bool EnableDump = false; 623 LLVM_DEBUG(EnableDump = true); 624 if (!EnableDump) 625 return; 626 627 LLVM_DEBUG( 628 dbgs() 629 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); 630 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 631 StringRef InstName = Inst->TheDef->getName(); 632 unsigned SCIdx = getSchedClassIdx(*Inst); 633 if (!SCIdx) { 634 LLVM_DEBUG({ 635 if (!Inst->hasNoSchedulingInfo) 636 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 637 }); 638 continue; 639 } 640 CodeGenSchedClass &SC = getSchedClass(SCIdx); 641 if (SC.ProcIndices[0] != 0) 642 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 643 "must not be subtarget specific."); 644 645 IdxVec ProcIndices; 646 if (SC.ItinClassDef->getName() != "NoItinerary") { 647 ProcIndices.push_back(0); 648 dbgs() << "Itinerary for " << InstName << ": " 649 << SC.ItinClassDef->getName() << '\n'; 650 } 651 if (!SC.Writes.empty()) { 652 ProcIndices.push_back(0); 653 LLVM_DEBUG({ 654 dbgs() << "SchedRW machine model for " << InstName; 655 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; 656 ++WI) 657 dbgs() << " " << SchedWrites[*WI].Name; 658 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 659 dbgs() << " " << SchedReads[*RI].Name; 660 dbgs() << '\n'; 661 }); 662 } 663 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 664 for (Record *RWDef : RWDefs) { 665 const CodeGenProcModel &ProcModel = 666 getProcModel(RWDef->getValueAsDef("SchedModel")); 667 ProcIndices.push_back(ProcModel.Index); 668 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " 669 << InstName); 670 IdxVec Writes; 671 IdxVec Reads; 672 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 673 Writes, Reads); 674 LLVM_DEBUG({ 675 for (unsigned WIdx : Writes) 676 dbgs() << " " << SchedWrites[WIdx].Name; 677 for (unsigned RIdx : Reads) 678 dbgs() << " " << SchedReads[RIdx].Name; 679 dbgs() << '\n'; 680 }); 681 } 682 // If ProcIndices contains zero, the class applies to all processors. 683 LLVM_DEBUG({ 684 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 685 for (const CodeGenProcModel &PM : ProcModels) { 686 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 687 dbgs() << "No machine model for " << Inst->TheDef->getName() 688 << " on processor " << PM.ModelName << '\n'; 689 } 690 } 691 }); 692 } 693 } 694 695 // Get the SchedClass index for an instruction. 696 unsigned 697 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { 698 return InstrClassMap.lookup(Inst.TheDef); 699 } 700 701 std::string 702 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 703 ArrayRef<unsigned> OperWrites, 704 ArrayRef<unsigned> OperReads) { 705 706 std::string Name; 707 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 708 Name = ItinClassDef->getName(); 709 for (unsigned Idx : OperWrites) { 710 if (!Name.empty()) 711 Name += '_'; 712 Name += SchedWrites[Idx].Name; 713 } 714 for (unsigned Idx : OperReads) { 715 Name += '_'; 716 Name += SchedReads[Idx].Name; 717 } 718 return Name; 719 } 720 721 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 722 723 std::string Name; 724 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 725 if (I != InstDefs.begin()) 726 Name += '_'; 727 Name += (*I)->getName(); 728 } 729 return Name; 730 } 731 732 /// Add an inferred sched class from an itinerary class and per-operand list of 733 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 734 /// processors that may utilize this class. 735 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 736 ArrayRef<unsigned> OperWrites, 737 ArrayRef<unsigned> OperReads, 738 ArrayRef<unsigned> ProcIndices) { 739 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 740 741 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { 742 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); 743 }; 744 745 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); 746 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); 747 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 748 IdxVec PI; 749 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 750 SchedClasses[Idx].ProcIndices.end(), 751 ProcIndices.begin(), ProcIndices.end(), 752 std::back_inserter(PI)); 753 SchedClasses[Idx].ProcIndices = std::move(PI); 754 return Idx; 755 } 756 Idx = SchedClasses.size(); 757 SchedClasses.emplace_back(Idx, 758 createSchedClassName(ItinClassDef, OperWrites, 759 OperReads), 760 ItinClassDef); 761 CodeGenSchedClass &SC = SchedClasses.back(); 762 SC.Writes = OperWrites; 763 SC.Reads = OperReads; 764 SC.ProcIndices = ProcIndices; 765 766 return Idx; 767 } 768 769 // Create classes for each set of opcodes that are in the same InstReadWrite 770 // definition across all processors. 771 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 772 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 773 // intersects with an existing class via a previous InstRWDef. Instrs that do 774 // not intersect with an existing class refer back to their former class as 775 // determined from ItinDef or SchedRW. 776 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 777 // Sort Instrs into sets. 778 const RecVec *InstDefs = Sets.expand(InstRWDef); 779 if (InstDefs->empty()) 780 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 781 782 for (Record *InstDef : *InstDefs) { 783 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 784 if (Pos == InstrClassMap.end()) 785 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 786 unsigned SCIdx = Pos->second; 787 ClassInstrs[SCIdx].push_back(InstDef); 788 } 789 // For each set of Instrs, create a new class if necessary, and map or remap 790 // the Instrs to it. 791 for (auto &Entry : ClassInstrs) { 792 unsigned OldSCIdx = Entry.first; 793 ArrayRef<Record*> InstDefs = Entry.second; 794 // If the all instrs in the current class are accounted for, then leave 795 // them mapped to their old class. 796 if (OldSCIdx) { 797 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 798 if (!RWDefs.empty()) { 799 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 800 unsigned OrigNumInstrs = 801 count_if(*OrigInstDefs, [&](Record *OIDef) { 802 return InstrClassMap[OIDef] == OldSCIdx; 803 }); 804 if (OrigNumInstrs == InstDefs.size()) { 805 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 806 "expected a generic SchedClass"); 807 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 808 // Make sure we didn't already have a InstRW containing this 809 // instruction on this model. 810 for (Record *RWD : RWDefs) { 811 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 812 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 813 for (Record *Inst : InstDefs) { 814 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 815 Inst->getName() + " also matches " + 816 RWD->getValue("Instrs")->getValue()->getAsString()); 817 } 818 } 819 } 820 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 821 << SchedClasses[OldSCIdx].Name << " on " 822 << RWModelDef->getName() << "\n"); 823 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 824 continue; 825 } 826 } 827 } 828 unsigned SCIdx = SchedClasses.size(); 829 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 830 CodeGenSchedClass &SC = SchedClasses.back(); 831 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 832 << InstRWDef->getValueAsDef("SchedModel")->getName() 833 << "\n"); 834 835 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 836 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 837 SC.Writes = SchedClasses[OldSCIdx].Writes; 838 SC.Reads = SchedClasses[OldSCIdx].Reads; 839 SC.ProcIndices.push_back(0); 840 // If we had an old class, copy it's InstRWs to this new class. 841 if (OldSCIdx) { 842 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 843 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 844 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 845 for (Record *InstDef : InstDefs) { 846 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 847 InstDef->getName() + " also matches " + 848 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 849 } 850 } 851 assert(OldRWDef != InstRWDef && 852 "SchedClass has duplicate InstRW def"); 853 SC.InstRWs.push_back(OldRWDef); 854 } 855 } 856 // Map each Instr to this new class. 857 for (Record *InstDef : InstDefs) 858 InstrClassMap[InstDef] = SCIdx; 859 SC.InstRWs.push_back(InstRWDef); 860 } 861 } 862 863 // True if collectProcItins found anything. 864 bool CodeGenSchedModels::hasItineraries() const { 865 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) 866 if (PM.hasItineraries()) 867 return true; 868 return false; 869 } 870 871 // Gather the processor itineraries. 872 void CodeGenSchedModels::collectProcItins() { 873 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 874 for (CodeGenProcModel &ProcModel : ProcModels) { 875 if (!ProcModel.hasItineraries()) 876 continue; 877 878 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 879 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 880 881 // Populate ItinDefList with Itinerary records. 882 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 883 884 // Insert each itinerary data record in the correct position within 885 // the processor model's ItinDefList. 886 for (Record *ItinData : ItinRecords) { 887 const Record *ItinDef = ItinData->getValueAsDef("TheClass"); 888 bool FoundClass = false; 889 890 for (const CodeGenSchedClass &SC : 891 make_range(schedClassBegin(), schedClassEnd())) { 892 // Multiple SchedClasses may share an itinerary. Update all of them. 893 if (SC.ItinClassDef == ItinDef) { 894 ProcModel.ItinDefList[SC.Index] = ItinData; 895 FoundClass = true; 896 } 897 } 898 if (!FoundClass) { 899 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() 900 << " missing class for itinerary " 901 << ItinDef->getName() << '\n'); 902 } 903 } 904 // Check for missing itinerary entries. 905 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 906 LLVM_DEBUG( 907 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 908 if (!ProcModel.ItinDefList[i]) 909 dbgs() << ProcModel.ItinsDef->getName() 910 << " missing itinerary for class " << SchedClasses[i].Name 911 << '\n'; 912 }); 913 } 914 } 915 916 // Gather the read/write types for each itinerary class. 917 void CodeGenSchedModels::collectProcItinRW() { 918 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 919 llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 920 for (Record *RWDef : ItinRWDefs) { 921 if (!RWDef->getValueInit("SchedModel")->isComplete()) 922 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 923 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 924 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 925 if (I == ProcModelMap.end()) { 926 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 927 + ModelDef->getName()); 928 } 929 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 930 } 931 } 932 933 // Gather the unsupported features for processor models. 934 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 935 for (CodeGenProcModel &ProcModel : ProcModels) { 936 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 937 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 938 } 939 } 940 } 941 942 /// Infer new classes from existing classes. In the process, this may create new 943 /// SchedWrites from sequences of existing SchedWrites. 944 void CodeGenSchedModels::inferSchedClasses() { 945 LLVM_DEBUG( 946 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 947 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 948 949 // Visit all existing classes and newly created classes. 950 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 951 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 952 953 if (SchedClasses[Idx].ItinClassDef) 954 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 955 if (!SchedClasses[Idx].InstRWs.empty()) 956 inferFromInstRWs(Idx); 957 if (!SchedClasses[Idx].Writes.empty()) { 958 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 959 Idx, SchedClasses[Idx].ProcIndices); 960 } 961 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 962 "too many SchedVariants"); 963 } 964 } 965 966 /// Infer classes from per-processor itinerary resources. 967 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 968 unsigned FromClassIdx) { 969 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 970 const CodeGenProcModel &PM = ProcModels[PIdx]; 971 // For all ItinRW entries. 972 bool HasMatch = false; 973 for (const Record *Rec : PM.ItinRWDefs) { 974 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); 975 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 976 continue; 977 if (HasMatch) 978 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class " 979 + ItinClassDef->getName() 980 + " in ItinResources for " + PM.ModelName); 981 HasMatch = true; 982 IdxVec Writes, Reads; 983 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 984 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 985 } 986 } 987 } 988 989 /// Infer classes from per-processor InstReadWrite definitions. 990 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 991 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 992 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 993 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 994 const RecVec *InstDefs = Sets.expand(Rec); 995 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 996 for (; II != IE; ++II) { 997 if (InstrClassMap[*II] == SCIdx) 998 break; 999 } 1000 // If this class no longer has any instructions mapped to it, it has become 1001 // irrelevant. 1002 if (II == IE) 1003 continue; 1004 IdxVec Writes, Reads; 1005 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1006 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1007 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1008 } 1009 } 1010 1011 namespace { 1012 1013 // Helper for substituteVariantOperand. 1014 struct TransVariant { 1015 Record *VarOrSeqDef; // Variant or sequence. 1016 unsigned RWIdx; // Index of this variant or sequence's matched type. 1017 unsigned ProcIdx; // Processor model index or zero for any. 1018 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1019 1020 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1021 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1022 }; 1023 1024 // Associate a predicate with the SchedReadWrite that it guards. 1025 // RWIdx is the index of the read/write variant. 1026 struct PredCheck { 1027 bool IsRead; 1028 unsigned RWIdx; 1029 Record *Predicate; 1030 1031 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1032 }; 1033 1034 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1035 struct PredTransition { 1036 // A predicate term is a conjunction of PredChecks. 1037 SmallVector<PredCheck, 4> PredTerm; 1038 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1039 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1040 SmallVector<unsigned, 4> ProcIndices; 1041 }; 1042 1043 // Encapsulate a set of partially constructed transitions. 1044 // The results are built by repeated calls to substituteVariants. 1045 class PredTransitions { 1046 CodeGenSchedModels &SchedModels; 1047 1048 public: 1049 std::vector<PredTransition> TransVec; 1050 1051 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1052 1053 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1054 bool IsRead, unsigned StartIdx); 1055 1056 void substituteVariants(const PredTransition &Trans); 1057 1058 #ifndef NDEBUG 1059 void dump() const; 1060 #endif 1061 1062 private: 1063 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1064 void getIntersectingVariants( 1065 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1066 std::vector<TransVariant> &IntersectingVariants); 1067 void pushVariant(const TransVariant &VInfo, bool IsRead); 1068 }; 1069 1070 } // end anonymous namespace 1071 1072 // Return true if this predicate is mutually exclusive with a PredTerm. This 1073 // degenerates into checking if the predicate is mutually exclusive with any 1074 // predicate in the Term's conjunction. 1075 // 1076 // All predicates associated with a given SchedRW are considered mutually 1077 // exclusive. This should work even if the conditions expressed by the 1078 // predicates are not exclusive because the predicates for a given SchedWrite 1079 // are always checked in the order they are defined in the .td file. Later 1080 // conditions implicitly negate any prior condition. 1081 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1082 ArrayRef<PredCheck> Term) { 1083 for (const PredCheck &PC: Term) { 1084 if (PC.Predicate == PredDef) 1085 return false; 1086 1087 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1088 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1089 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1090 if (any_of(Variants, [PredDef](const Record *R) { 1091 return R->getValueAsDef("Predicate") == PredDef; 1092 })) 1093 return true; 1094 } 1095 return false; 1096 } 1097 1098 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1099 CodeGenSchedModels &SchedModels) { 1100 if (RW.HasVariants) 1101 return true; 1102 1103 for (Record *Alias : RW.Aliases) { 1104 const CodeGenSchedRW &AliasRW = 1105 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1106 if (AliasRW.HasVariants) 1107 return true; 1108 if (AliasRW.IsSequence) { 1109 IdxVec ExpandedRWs; 1110 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1111 for (unsigned SI : ExpandedRWs) { 1112 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead), 1113 SchedModels)) 1114 return true; 1115 } 1116 } 1117 } 1118 return false; 1119 } 1120 1121 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1122 CodeGenSchedModels &SchedModels) { 1123 for (const PredTransition &PTI : Transitions) { 1124 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences) 1125 for (unsigned WI : WSI) 1126 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels)) 1127 return true; 1128 1129 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences) 1130 for (unsigned RI : RSI) 1131 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels)) 1132 return true; 1133 } 1134 return false; 1135 } 1136 1137 // Populate IntersectingVariants with any variants or aliased sequences of the 1138 // given SchedRW whose processor indices and predicates are not mutually 1139 // exclusive with the given transition. 1140 void PredTransitions::getIntersectingVariants( 1141 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1142 std::vector<TransVariant> &IntersectingVariants) { 1143 1144 bool GenericRW = false; 1145 1146 std::vector<TransVariant> Variants; 1147 if (SchedRW.HasVariants) { 1148 unsigned VarProcIdx = 0; 1149 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1150 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1151 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1152 } 1153 // Push each variant. Assign TransVecIdx later. 1154 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1155 for (Record *VarDef : VarDefs) 1156 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); 1157 if (VarProcIdx == 0) 1158 GenericRW = true; 1159 } 1160 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1161 AI != AE; ++AI) { 1162 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1163 // to is defined within a processor model, constrain all variants to 1164 // that processor. 1165 unsigned AliasProcIdx = 0; 1166 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1167 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1168 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1169 } 1170 const CodeGenSchedRW &AliasRW = 1171 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1172 1173 if (AliasRW.HasVariants) { 1174 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1175 for (Record *VD : VarDefs) 1176 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); 1177 } 1178 if (AliasRW.IsSequence) 1179 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); 1180 if (AliasProcIdx == 0) 1181 GenericRW = true; 1182 } 1183 for (TransVariant &Variant : Variants) { 1184 // Don't expand variants if the processor models don't intersect. 1185 // A zero processor index means any processor. 1186 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1187 if (ProcIndices[0] && Variant.ProcIdx) { 1188 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1189 Variant.ProcIdx); 1190 if (!Cnt) 1191 continue; 1192 if (Cnt > 1) { 1193 const CodeGenProcModel &PM = 1194 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1195 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1196 "Multiple variants defined for processor " + 1197 PM.ModelName + 1198 " Ensure only one SchedAlias exists per RW."); 1199 } 1200 } 1201 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1202 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1203 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1204 continue; 1205 } 1206 if (IntersectingVariants.empty()) { 1207 // The first variant builds on the existing transition. 1208 Variant.TransVecIdx = TransIdx; 1209 IntersectingVariants.push_back(Variant); 1210 } 1211 else { 1212 // Push another copy of the current transition for more variants. 1213 Variant.TransVecIdx = TransVec.size(); 1214 IntersectingVariants.push_back(Variant); 1215 TransVec.push_back(TransVec[TransIdx]); 1216 } 1217 } 1218 if (GenericRW && IntersectingVariants.empty()) { 1219 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1220 "a matching predicate on any processor"); 1221 } 1222 } 1223 1224 // Push the Reads/Writes selected by this variant onto the PredTransition 1225 // specified by VInfo. 1226 void PredTransitions:: 1227 pushVariant(const TransVariant &VInfo, bool IsRead) { 1228 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1229 1230 // If this operand transition is reached through a processor-specific alias, 1231 // then the whole transition is specific to this processor. 1232 if (VInfo.ProcIdx != 0) 1233 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1234 1235 IdxVec SelectedRWs; 1236 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1237 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1238 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef); 1239 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1240 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1241 } 1242 else { 1243 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1244 "variant must be a SchedVariant or aliased WriteSequence"); 1245 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1246 } 1247 1248 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1249 1250 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1251 ? Trans.ReadSequences : Trans.WriteSequences; 1252 if (SchedRW.IsVariadic) { 1253 unsigned OperIdx = RWSequences.size()-1; 1254 // Make N-1 copies of this transition's last sequence. 1255 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, 1256 RWSequences[OperIdx]); 1257 // Push each of the N elements of the SelectedRWs onto a copy of the last 1258 // sequence (split the current operand into N operands). 1259 // Note that write sequences should be expanded within this loop--the entire 1260 // sequence belongs to a single operand. 1261 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1262 RWI != RWE; ++RWI, ++OperIdx) { 1263 IdxVec ExpandedRWs; 1264 if (IsRead) 1265 ExpandedRWs.push_back(*RWI); 1266 else 1267 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1268 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1269 ExpandedRWs.begin(), ExpandedRWs.end()); 1270 } 1271 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1272 } 1273 else { 1274 // Push this transition's expanded sequence onto this transition's last 1275 // sequence (add to the current operand's sequence). 1276 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1277 IdxVec ExpandedRWs; 1278 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1279 RWI != RWE; ++RWI) { 1280 if (IsRead) 1281 ExpandedRWs.push_back(*RWI); 1282 else 1283 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1284 } 1285 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1286 } 1287 } 1288 1289 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1290 // operand. StartIdx is an index into TransVec where partial results 1291 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1292 // of TransVec. 1293 void PredTransitions::substituteVariantOperand( 1294 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1295 1296 // Visit each original RW within the current sequence. 1297 for (SmallVectorImpl<unsigned>::const_iterator 1298 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1299 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1300 // Push this RW on all partial PredTransitions or distribute variants. 1301 // New PredTransitions may be pushed within this loop which should not be 1302 // revisited (TransEnd must be loop invariant). 1303 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1304 TransIdx != TransEnd; ++TransIdx) { 1305 // In the common case, push RW onto the current operand's sequence. 1306 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1307 if (IsRead) 1308 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1309 else 1310 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1311 continue; 1312 } 1313 // Distribute this partial PredTransition across intersecting variants. 1314 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1315 std::vector<TransVariant> IntersectingVariants; 1316 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1317 // Now expand each variant on top of its copy of the transition. 1318 for (std::vector<TransVariant>::const_iterator 1319 IVI = IntersectingVariants.begin(), 1320 IVE = IntersectingVariants.end(); 1321 IVI != IVE; ++IVI) { 1322 pushVariant(*IVI, IsRead); 1323 } 1324 } 1325 } 1326 } 1327 1328 // For each variant of a Read/Write in Trans, substitute the sequence of 1329 // Read/Writes guarded by the variant. This is exponential in the number of 1330 // variant Read/Writes, but in practice detection of mutually exclusive 1331 // predicates should result in linear growth in the total number variants. 1332 // 1333 // This is one step in a breadth-first search of nested variants. 1334 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1335 // Build up a set of partial results starting at the back of 1336 // PredTransitions. Remember the first new transition. 1337 unsigned StartIdx = TransVec.size(); 1338 TransVec.emplace_back(); 1339 TransVec.back().PredTerm = Trans.PredTerm; 1340 TransVec.back().ProcIndices = Trans.ProcIndices; 1341 1342 // Visit each original write sequence. 1343 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1344 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1345 WSI != WSE; ++WSI) { 1346 // Push a new (empty) write sequence onto all partial Transitions. 1347 for (std::vector<PredTransition>::iterator I = 1348 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1349 I->WriteSequences.emplace_back(); 1350 } 1351 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1352 } 1353 // Visit each original read sequence. 1354 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1355 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1356 RSI != RSE; ++RSI) { 1357 // Push a new (empty) read sequence onto all partial Transitions. 1358 for (std::vector<PredTransition>::iterator I = 1359 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1360 I->ReadSequences.emplace_back(); 1361 } 1362 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1363 } 1364 } 1365 1366 // Create a new SchedClass for each variant found by inferFromRW. Pass 1367 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1368 unsigned FromClassIdx, 1369 CodeGenSchedModels &SchedModels) { 1370 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1371 // requires creating a new SchedClass. 1372 for (ArrayRef<PredTransition>::iterator 1373 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1374 IdxVec OperWritesVariant; 1375 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1376 [&SchedModels](ArrayRef<unsigned> WS) { 1377 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1378 }); 1379 IdxVec OperReadsVariant; 1380 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1381 [&SchedModels](ArrayRef<unsigned> RS) { 1382 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1383 }); 1384 CodeGenSchedTransition SCTrans; 1385 SCTrans.ToClassIdx = 1386 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1387 OperReadsVariant, I->ProcIndices); 1388 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1389 // The final PredTerm is unique set of predicates guarding the transition. 1390 RecVec Preds; 1391 transform(I->PredTerm, std::back_inserter(Preds), 1392 [](const PredCheck &P) { 1393 return P.Predicate; 1394 }); 1395 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1396 SCTrans.PredTerm = std::move(Preds); 1397 SchedModels.getSchedClass(FromClassIdx) 1398 .Transitions.push_back(std::move(SCTrans)); 1399 } 1400 } 1401 1402 // Create new SchedClasses for the given ReadWrite list. If any of the 1403 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1404 // of the ReadWrite list, following Aliases if necessary. 1405 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1406 ArrayRef<unsigned> OperReads, 1407 unsigned FromClassIdx, 1408 ArrayRef<unsigned> ProcIndices) { 1409 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); 1410 dbgs() << ") "); 1411 1412 // Create a seed transition with an empty PredTerm and the expanded sequences 1413 // of SchedWrites for the current SchedClass. 1414 std::vector<PredTransition> LastTransitions; 1415 LastTransitions.emplace_back(); 1416 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1417 ProcIndices.end()); 1418 1419 for (unsigned WriteIdx : OperWrites) { 1420 IdxVec WriteSeq; 1421 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1422 LastTransitions[0].WriteSequences.emplace_back(); 1423 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1424 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1425 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1426 } 1427 LLVM_DEBUG(dbgs() << " Reads: "); 1428 for (unsigned ReadIdx : OperReads) { 1429 IdxVec ReadSeq; 1430 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1431 LastTransitions[0].ReadSequences.emplace_back(); 1432 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1433 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1434 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1435 } 1436 LLVM_DEBUG(dbgs() << '\n'); 1437 1438 // Collect all PredTransitions for individual operands. 1439 // Iterate until no variant writes remain. 1440 while (hasVariant(LastTransitions, *this)) { 1441 PredTransitions Transitions(*this); 1442 for (const PredTransition &Trans : LastTransitions) 1443 Transitions.substituteVariants(Trans); 1444 LLVM_DEBUG(Transitions.dump()); 1445 LastTransitions.swap(Transitions.TransVec); 1446 } 1447 // If the first transition has no variants, nothing to do. 1448 if (LastTransitions[0].PredTerm.empty()) 1449 return; 1450 1451 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1452 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1453 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1454 } 1455 1456 // Check if any processor resource group contains all resource records in 1457 // SubUnits. 1458 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1459 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1460 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1461 continue; 1462 RecVec SuperUnits = 1463 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1464 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1465 for ( ; RI != RE; ++RI) { 1466 if (!is_contained(SuperUnits, *RI)) { 1467 break; 1468 } 1469 } 1470 if (RI == RE) 1471 return true; 1472 } 1473 return false; 1474 } 1475 1476 // Verify that overlapping groups have a common supergroup. 1477 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1478 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1479 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1480 continue; 1481 RecVec CheckUnits = 1482 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1483 for (unsigned j = i+1; j < e; ++j) { 1484 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1485 continue; 1486 RecVec OtherUnits = 1487 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1488 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1489 OtherUnits.begin(), OtherUnits.end()) 1490 != CheckUnits.end()) { 1491 // CheckUnits and OtherUnits overlap 1492 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1493 CheckUnits.end()); 1494 if (!hasSuperGroup(OtherUnits, PM)) { 1495 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1496 "proc resource group overlaps with " 1497 + PM.ProcResourceDefs[j]->getName() 1498 + " but no supergroup contains both."); 1499 } 1500 } 1501 } 1502 } 1503 } 1504 1505 // Collect all the RegisterFile definitions available in this target. 1506 void CodeGenSchedModels::collectRegisterFiles() { 1507 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1508 1509 // RegisterFiles is the vector of CodeGenRegisterFile. 1510 for (Record *RF : RegisterFileDefs) { 1511 // For each register file definition, construct a CodeGenRegisterFile object 1512 // and add it to the appropriate scheduling model. 1513 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1514 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1515 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1516 1517 // Now set the number of physical registers as well as the cost of registers 1518 // in each register class. 1519 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1520 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1521 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1522 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1523 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1524 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1525 } 1526 } 1527 } 1528 1529 // Collect all the RegisterFile definitions available in this target. 1530 void CodeGenSchedModels::collectPfmCounters() { 1531 for (Record *Def : Records.getAllDerivedDefinitions("PfmIssueCounter")) { 1532 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1533 PM.PfmIssueCounterDefs.emplace_back(Def); 1534 } 1535 for (Record *Def : Records.getAllDerivedDefinitions("PfmCycleCounter")) { 1536 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1537 if (PM.PfmCycleCounterDef) { 1538 PrintFatalError(Def->getLoc(), 1539 "multiple cycle counters for " + 1540 Def->getValueAsDef("SchedModel")->getName()); 1541 } 1542 PM.PfmCycleCounterDef = Def; 1543 } 1544 } 1545 1546 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1547 void CodeGenSchedModels::collectProcResources() { 1548 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1549 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1550 1551 // Add any subtarget-specific SchedReadWrites that are directly associated 1552 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1553 // determine which processors they apply to. 1554 for (const CodeGenSchedClass &SC : 1555 make_range(schedClassBegin(), schedClassEnd())) { 1556 if (SC.ItinClassDef) { 1557 collectItinProcResources(SC.ItinClassDef); 1558 continue; 1559 } 1560 1561 // This class may have a default ReadWrite list which can be overriden by 1562 // InstRW definitions. 1563 for (Record *RW : SC.InstRWs) { 1564 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1565 unsigned PIdx = getProcModel(RWModelDef).Index; 1566 IdxVec Writes, Reads; 1567 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1568 collectRWResources(Writes, Reads, PIdx); 1569 } 1570 1571 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); 1572 } 1573 // Add resources separately defined by each subtarget. 1574 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1575 for (Record *WR : WRDefs) { 1576 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1577 addWriteRes(WR, getProcModel(ModelDef).Index); 1578 } 1579 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1580 for (Record *SWR : SWRDefs) { 1581 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1582 addWriteRes(SWR, getProcModel(ModelDef).Index); 1583 } 1584 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1585 for (Record *RA : RADefs) { 1586 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1587 addReadAdvance(RA, getProcModel(ModelDef).Index); 1588 } 1589 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1590 for (Record *SRA : SRADefs) { 1591 if (SRA->getValueInit("SchedModel")->isComplete()) { 1592 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1593 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1594 } 1595 } 1596 // Add ProcResGroups that are defined within this processor model, which may 1597 // not be directly referenced but may directly specify a buffer size. 1598 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1599 for (Record *PRG : ProcResGroups) { 1600 if (!PRG->getValueInit("SchedModel")->isComplete()) 1601 continue; 1602 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1603 if (!is_contained(PM.ProcResourceDefs, PRG)) 1604 PM.ProcResourceDefs.push_back(PRG); 1605 } 1606 // Add ProcResourceUnits unconditionally. 1607 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1608 if (!PRU->getValueInit("SchedModel")->isComplete()) 1609 continue; 1610 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1611 if (!is_contained(PM.ProcResourceDefs, PRU)) 1612 PM.ProcResourceDefs.push_back(PRU); 1613 } 1614 // Finalize each ProcModel by sorting the record arrays. 1615 for (CodeGenProcModel &PM : ProcModels) { 1616 llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1617 LessRecord()); 1618 llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1619 LessRecord()); 1620 llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1621 LessRecord()); 1622 LLVM_DEBUG( 1623 PM.dump(); 1624 dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), 1625 RE = PM.WriteResDefs.end(); 1626 RI != RE; ++RI) { 1627 if ((*RI)->isSubClassOf("WriteRes")) 1628 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1629 else 1630 dbgs() << (*RI)->getName() << " "; 1631 } dbgs() << "\nReadAdvanceDefs: "; 1632 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1633 RE = PM.ReadAdvanceDefs.end(); 1634 RI != RE; ++RI) { 1635 if ((*RI)->isSubClassOf("ReadAdvance")) 1636 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1637 else 1638 dbgs() << (*RI)->getName() << " "; 1639 } dbgs() 1640 << "\nProcResourceDefs: "; 1641 for (RecIter RI = PM.ProcResourceDefs.begin(), 1642 RE = PM.ProcResourceDefs.end(); 1643 RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() 1644 << '\n'); 1645 verifyProcResourceGroups(PM); 1646 } 1647 1648 ProcResourceDefs.clear(); 1649 ProcResGroups.clear(); 1650 } 1651 1652 void CodeGenSchedModels::checkCompleteness() { 1653 bool Complete = true; 1654 bool HadCompleteModel = false; 1655 for (const CodeGenProcModel &ProcModel : procModels()) { 1656 const bool HasItineraries = ProcModel.hasItineraries(); 1657 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1658 continue; 1659 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1660 if (Inst->hasNoSchedulingInfo) 1661 continue; 1662 if (ProcModel.isUnsupported(*Inst)) 1663 continue; 1664 unsigned SCIdx = getSchedClassIdx(*Inst); 1665 if (!SCIdx) { 1666 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1667 PrintError("No schedule information for instruction '" 1668 + Inst->TheDef->getName() + "'"); 1669 Complete = false; 1670 } 1671 continue; 1672 } 1673 1674 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1675 if (!SC.Writes.empty()) 1676 continue; 1677 if (HasItineraries && SC.ItinClassDef != nullptr && 1678 SC.ItinClassDef->getName() != "NoItinerary") 1679 continue; 1680 1681 const RecVec &InstRWs = SC.InstRWs; 1682 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1683 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1684 }); 1685 if (I == InstRWs.end()) { 1686 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1687 Inst->TheDef->getName() + "'"); 1688 Complete = false; 1689 } 1690 } 1691 HadCompleteModel = true; 1692 } 1693 if (!Complete) { 1694 errs() << "\n\nIncomplete schedule models found.\n" 1695 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1696 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1697 << "- Instructions should usually have Sched<[...]> as a superclass, " 1698 "you may temporarily use an empty list.\n" 1699 << "- Instructions related to unsupported features can be excluded with " 1700 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1701 "processor model.\n\n"; 1702 PrintFatalError("Incomplete schedule model"); 1703 } 1704 } 1705 1706 // Collect itinerary class resources for each processor. 1707 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1708 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1709 const CodeGenProcModel &PM = ProcModels[PIdx]; 1710 // For all ItinRW entries. 1711 bool HasMatch = false; 1712 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1713 II != IE; ++II) { 1714 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1715 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1716 continue; 1717 if (HasMatch) 1718 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1719 + ItinClassDef->getName() 1720 + " in ItinResources for " + PM.ModelName); 1721 HasMatch = true; 1722 IdxVec Writes, Reads; 1723 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1724 collectRWResources(Writes, Reads, PIdx); 1725 } 1726 } 1727 } 1728 1729 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1730 ArrayRef<unsigned> ProcIndices) { 1731 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1732 if (SchedRW.TheDef) { 1733 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1734 for (unsigned Idx : ProcIndices) 1735 addWriteRes(SchedRW.TheDef, Idx); 1736 } 1737 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1738 for (unsigned Idx : ProcIndices) 1739 addReadAdvance(SchedRW.TheDef, Idx); 1740 } 1741 } 1742 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1743 AI != AE; ++AI) { 1744 IdxVec AliasProcIndices; 1745 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1746 AliasProcIndices.push_back( 1747 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1748 } 1749 else 1750 AliasProcIndices = ProcIndices; 1751 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1752 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1753 1754 IdxVec ExpandedRWs; 1755 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1756 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1757 SI != SE; ++SI) { 1758 collectRWResources(*SI, IsRead, AliasProcIndices); 1759 } 1760 } 1761 } 1762 1763 // Collect resources for a set of read/write types and processor indices. 1764 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1765 ArrayRef<unsigned> Reads, 1766 ArrayRef<unsigned> ProcIndices) { 1767 for (unsigned Idx : Writes) 1768 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1769 1770 for (unsigned Idx : Reads) 1771 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1772 } 1773 1774 // Find the processor's resource units for this kind of resource. 1775 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1776 const CodeGenProcModel &PM, 1777 ArrayRef<SMLoc> Loc) const { 1778 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1779 return ProcResKind; 1780 1781 Record *ProcUnitDef = nullptr; 1782 assert(!ProcResourceDefs.empty()); 1783 assert(!ProcResGroups.empty()); 1784 1785 for (Record *ProcResDef : ProcResourceDefs) { 1786 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1787 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1788 if (ProcUnitDef) { 1789 PrintFatalError(Loc, 1790 "Multiple ProcessorResourceUnits associated with " 1791 + ProcResKind->getName()); 1792 } 1793 ProcUnitDef = ProcResDef; 1794 } 1795 } 1796 for (Record *ProcResGroup : ProcResGroups) { 1797 if (ProcResGroup == ProcResKind 1798 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1799 if (ProcUnitDef) { 1800 PrintFatalError(Loc, 1801 "Multiple ProcessorResourceUnits associated with " 1802 + ProcResKind->getName()); 1803 } 1804 ProcUnitDef = ProcResGroup; 1805 } 1806 } 1807 if (!ProcUnitDef) { 1808 PrintFatalError(Loc, 1809 "No ProcessorResources associated with " 1810 + ProcResKind->getName()); 1811 } 1812 return ProcUnitDef; 1813 } 1814 1815 // Iteratively add a resource and its super resources. 1816 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1817 CodeGenProcModel &PM, 1818 ArrayRef<SMLoc> Loc) { 1819 while (true) { 1820 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1821 1822 // See if this ProcResource is already associated with this processor. 1823 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1824 return; 1825 1826 PM.ProcResourceDefs.push_back(ProcResUnits); 1827 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1828 return; 1829 1830 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1831 return; 1832 1833 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1834 } 1835 } 1836 1837 // Add resources for a SchedWrite to this processor if they don't exist. 1838 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1839 assert(PIdx && "don't add resources to an invalid Processor model"); 1840 1841 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1842 if (is_contained(WRDefs, ProcWriteResDef)) 1843 return; 1844 WRDefs.push_back(ProcWriteResDef); 1845 1846 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1847 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1848 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1849 WritePRI != WritePRE; ++WritePRI) { 1850 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1851 } 1852 } 1853 1854 // Add resources for a ReadAdvance to this processor if they don't exist. 1855 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1856 unsigned PIdx) { 1857 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1858 if (is_contained(RADefs, ProcReadAdvanceDef)) 1859 return; 1860 RADefs.push_back(ProcReadAdvanceDef); 1861 } 1862 1863 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1864 RecIter PRPos = find(ProcResourceDefs, PRDef); 1865 if (PRPos == ProcResourceDefs.end()) 1866 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1867 "the ProcResources list for " + ModelName); 1868 // Idx=0 is reserved for invalid. 1869 return 1 + (PRPos - ProcResourceDefs.begin()); 1870 } 1871 1872 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1873 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1874 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1875 if (TheDef->getName() == PredDef->getName()) 1876 return true; 1877 } 1878 } 1879 return false; 1880 } 1881 1882 #ifndef NDEBUG 1883 void CodeGenProcModel::dump() const { 1884 dbgs() << Index << ": " << ModelName << " " 1885 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1886 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1887 } 1888 1889 void CodeGenSchedRW::dump() const { 1890 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1891 if (IsSequence) { 1892 dbgs() << "("; 1893 dumpIdxVec(Sequence); 1894 dbgs() << ")"; 1895 } 1896 } 1897 1898 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1899 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1900 << " Writes: "; 1901 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1902 SchedModels->getSchedWrite(Writes[i]).dump(); 1903 if (i < N-1) { 1904 dbgs() << '\n'; 1905 dbgs().indent(10); 1906 } 1907 } 1908 dbgs() << "\n Reads: "; 1909 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1910 SchedModels->getSchedRead(Reads[i]).dump(); 1911 if (i < N-1) { 1912 dbgs() << '\n'; 1913 dbgs().indent(10); 1914 } 1915 } 1916 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1917 if (!Transitions.empty()) { 1918 dbgs() << "\n Transitions for Proc "; 1919 for (const CodeGenSchedTransition &Transition : Transitions) { 1920 dumpIdxVec(Transition.ProcIndices); 1921 } 1922 } 1923 } 1924 1925 void PredTransitions::dump() const { 1926 dbgs() << "Expanded Variants:\n"; 1927 for (std::vector<PredTransition>::const_iterator 1928 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1929 dbgs() << "{"; 1930 for (SmallVectorImpl<PredCheck>::const_iterator 1931 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1932 PCI != PCE; ++PCI) { 1933 if (PCI != TI->PredTerm.begin()) 1934 dbgs() << ", "; 1935 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1936 << ":" << PCI->Predicate->getName(); 1937 } 1938 dbgs() << "},\n => {"; 1939 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1940 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1941 WSI != WSE; ++WSI) { 1942 dbgs() << "("; 1943 for (SmallVectorImpl<unsigned>::const_iterator 1944 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1945 if (WI != WSI->begin()) 1946 dbgs() << ", "; 1947 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1948 } 1949 dbgs() << "),"; 1950 } 1951 dbgs() << "}\n"; 1952 } 1953 } 1954 #endif // NDEBUG 1955