1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 StringRef Original = SI->getValue(); 87 88 // Extract a prefix that we can binary search on. 89 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 90 auto FirstMeta = Original.find_first_of(RegexMetachars); 91 92 // Look for top-level | or ?. We cannot optimize them to binary search. 93 if (removeParens(Original).find_first_of("|?") != std::string::npos) 94 FirstMeta = 0; 95 96 Optional<Regex> Regexpr = None; 97 StringRef Prefix = Original.substr(0, FirstMeta); 98 StringRef PatStr = Original.substr(FirstMeta); 99 if (!PatStr.empty()) { 100 // For the rest use a python-style prefix match. 101 std::string pat = PatStr; 102 if (pat[0] != '^') { 103 pat.insert(0, "^("); 104 pat.insert(pat.end(), ')'); 105 } 106 Regexpr = Regex(pat); 107 } 108 109 int NumMatches = 0; 110 111 unsigned NumGeneric = Target.getNumFixedInstructions(); 112 ArrayRef<const CodeGenInstruction *> Generics = 113 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1); 114 115 // The generic opcodes are unsorted, handle them manually. 116 for (auto *Inst : Generics) { 117 StringRef InstName = Inst->TheDef->getName(); 118 if (InstName.startswith(Prefix) && 119 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 120 Elts.insert(Inst->TheDef); 121 NumMatches++; 122 } 123 } 124 125 ArrayRef<const CodeGenInstruction *> Instructions = 126 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 127 128 // Target instructions are sorted. Find the range that starts with our 129 // prefix. 130 struct Comp { 131 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 132 return LHS->TheDef->getName() < RHS; 133 } 134 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 135 return LHS < RHS->TheDef->getName() && 136 !RHS->TheDef->getName().startswith(LHS); 137 } 138 }; 139 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 140 Prefix, Comp()); 141 142 // For this range we know that it starts with the prefix. Check if there's 143 // a regex that needs to be checked. 144 for (auto *Inst : make_range(Range)) { 145 StringRef InstName = Inst->TheDef->getName(); 146 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 147 Elts.insert(Inst->TheDef); 148 NumMatches++; 149 } 150 } 151 152 if (0 == NumMatches) 153 PrintFatalError(Loc, "instregex has no matches: " + Original); 154 } 155 } 156 }; 157 158 } // end anonymous namespace 159 160 /// CodeGenModels ctor interprets machine model records and populates maps. 161 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 162 const CodeGenTarget &TGT): 163 Records(RK), Target(TGT) { 164 165 Sets.addFieldExpander("InstRW", "Instrs"); 166 167 // Allow Set evaluation to recognize the dags used in InstRW records: 168 // (instrs Op1, Op1...) 169 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 170 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 171 172 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 173 // that are explicitly referenced in tablegen records. Resources associated 174 // with each processor will be derived later. Populate ProcModelMap with the 175 // CodeGenProcModel instances. 176 collectProcModels(); 177 178 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 179 // defined, and populate SchedReads and SchedWrites vectors. Implicit 180 // SchedReadWrites that represent sequences derived from expanded variant will 181 // be inferred later. 182 collectSchedRW(); 183 184 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 185 // required by an instruction definition, and populate SchedClassIdxMap. Set 186 // NumItineraryClasses to the number of explicit itinerary classes referenced 187 // by instructions. Set NumInstrSchedClasses to the number of itinerary 188 // classes plus any classes implied by instructions that derive from class 189 // Sched and provide SchedRW list. This does not infer any new classes from 190 // SchedVariant. 191 collectSchedClasses(); 192 193 // Find instruction itineraries for each processor. Sort and populate 194 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 195 // all itinerary classes to be discovered. 196 collectProcItins(); 197 198 // Find ItinRW records for each processor and itinerary class. 199 // (For per-operand resources mapped to itinerary classes). 200 collectProcItinRW(); 201 202 // Find UnsupportedFeatures records for each processor. 203 // (For per-operand resources mapped to itinerary classes). 204 collectProcUnsupportedFeatures(); 205 206 // Infer new SchedClasses from SchedVariant. 207 inferSchedClasses(); 208 209 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 210 // ProcResourceDefs. 211 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 212 collectProcResources(); 213 214 // Collect optional processor description. 215 collectOptionalProcessorInfo(); 216 217 checkCompleteness(); 218 } 219 220 void CodeGenSchedModels::collectRetireControlUnits() { 221 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 222 223 for (Record *RCU : Units) { 224 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 225 if (PM.RetireControlUnit) { 226 PrintError(RCU->getLoc(), 227 "Expected a single RetireControlUnit definition"); 228 PrintNote(PM.RetireControlUnit->getLoc(), 229 "Previous definition of RetireControlUnit was here"); 230 } 231 PM.RetireControlUnit = RCU; 232 } 233 } 234 235 /// Collect optional processor information. 236 void CodeGenSchedModels::collectOptionalProcessorInfo() { 237 // Find register file definitions for each processor. 238 collectRegisterFiles(); 239 240 // Collect processor RetireControlUnit descriptors if available. 241 collectRetireControlUnits(); 242 } 243 244 /// Gather all processor models. 245 void CodeGenSchedModels::collectProcModels() { 246 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 247 llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 248 249 // Reserve space because we can. Reallocation would be ok. 250 ProcModels.reserve(ProcRecords.size()+1); 251 252 // Use idx=0 for NoModel/NoItineraries. 253 Record *NoModelDef = Records.getDef("NoSchedModel"); 254 Record *NoItinsDef = Records.getDef("NoItineraries"); 255 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 256 ProcModelMap[NoModelDef] = 0; 257 258 // For each processor, find a unique machine model. 259 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 260 for (Record *ProcRecord : ProcRecords) 261 addProcModel(ProcRecord); 262 } 263 264 /// Get a unique processor model based on the defined MachineModel and 265 /// ProcessorItineraries. 266 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 267 Record *ModelKey = getModelOrItinDef(ProcDef); 268 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 269 return; 270 271 std::string Name = ModelKey->getName(); 272 if (ModelKey->isSubClassOf("SchedMachineModel")) { 273 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 274 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 275 } 276 else { 277 // An itinerary is defined without a machine model. Infer a new model. 278 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 279 Name = Name + "Model"; 280 ProcModels.emplace_back(ProcModels.size(), Name, 281 ProcDef->getValueAsDef("SchedModel"), ModelKey); 282 } 283 DEBUG(ProcModels.back().dump()); 284 } 285 286 // Recursively find all reachable SchedReadWrite records. 287 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 288 SmallPtrSet<Record*, 16> &RWSet) { 289 if (!RWSet.insert(RWDef).second) 290 return; 291 RWDefs.push_back(RWDef); 292 // Reads don't currently have sequence records, but it can be added later. 293 if (RWDef->isSubClassOf("WriteSequence")) { 294 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 295 for (Record *WSRec : Seq) 296 scanSchedRW(WSRec, RWDefs, RWSet); 297 } 298 else if (RWDef->isSubClassOf("SchedVariant")) { 299 // Visit each variant (guarded by a different predicate). 300 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 301 for (Record *Variant : Vars) { 302 // Visit each RW in the sequence selected by the current variant. 303 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 304 for (Record *SelDef : Selected) 305 scanSchedRW(SelDef, RWDefs, RWSet); 306 } 307 } 308 } 309 310 // Collect and sort all SchedReadWrites reachable via tablegen records. 311 // More may be inferred later when inferring new SchedClasses from variants. 312 void CodeGenSchedModels::collectSchedRW() { 313 // Reserve idx=0 for invalid writes/reads. 314 SchedWrites.resize(1); 315 SchedReads.resize(1); 316 317 SmallPtrSet<Record*, 16> RWSet; 318 319 // Find all SchedReadWrites referenced by instruction defs. 320 RecVec SWDefs, SRDefs; 321 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 322 Record *SchedDef = Inst->TheDef; 323 if (SchedDef->isValueUnset("SchedRW")) 324 continue; 325 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 326 for (Record *RW : RWs) { 327 if (RW->isSubClassOf("SchedWrite")) 328 scanSchedRW(RW, SWDefs, RWSet); 329 else { 330 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 331 scanSchedRW(RW, SRDefs, RWSet); 332 } 333 } 334 } 335 // Find all ReadWrites referenced by InstRW. 336 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 337 for (Record *InstRWDef : InstRWDefs) { 338 // For all OperandReadWrites. 339 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 340 for (Record *RWDef : RWDefs) { 341 if (RWDef->isSubClassOf("SchedWrite")) 342 scanSchedRW(RWDef, SWDefs, RWSet); 343 else { 344 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 345 scanSchedRW(RWDef, SRDefs, RWSet); 346 } 347 } 348 } 349 // Find all ReadWrites referenced by ItinRW. 350 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 351 for (Record *ItinRWDef : ItinRWDefs) { 352 // For all OperandReadWrites. 353 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 354 for (Record *RWDef : RWDefs) { 355 if (RWDef->isSubClassOf("SchedWrite")) 356 scanSchedRW(RWDef, SWDefs, RWSet); 357 else { 358 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 359 scanSchedRW(RWDef, SRDefs, RWSet); 360 } 361 } 362 } 363 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 364 // for the loop below that initializes Alias vectors. 365 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 366 llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 367 for (Record *ADef : AliasDefs) { 368 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 369 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 370 if (MatchDef->isSubClassOf("SchedWrite")) { 371 if (!AliasDef->isSubClassOf("SchedWrite")) 372 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 373 scanSchedRW(AliasDef, SWDefs, RWSet); 374 } 375 else { 376 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 377 if (!AliasDef->isSubClassOf("SchedRead")) 378 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 379 scanSchedRW(AliasDef, SRDefs, RWSet); 380 } 381 } 382 // Sort and add the SchedReadWrites directly referenced by instructions or 383 // itinerary resources. Index reads and writes in separate domains. 384 llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 385 for (Record *SWDef : SWDefs) { 386 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 387 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 388 } 389 llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 390 for (Record *SRDef : SRDefs) { 391 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 392 SchedReads.emplace_back(SchedReads.size(), SRDef); 393 } 394 // Initialize WriteSequence vectors. 395 for (CodeGenSchedRW &CGRW : SchedWrites) { 396 if (!CGRW.IsSequence) 397 continue; 398 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 399 /*IsRead=*/false); 400 } 401 // Initialize Aliases vectors. 402 for (Record *ADef : AliasDefs) { 403 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 404 getSchedRW(AliasDef).IsAlias = true; 405 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 406 CodeGenSchedRW &RW = getSchedRW(MatchDef); 407 if (RW.IsAlias) 408 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 409 RW.Aliases.push_back(ADef); 410 } 411 DEBUG( 412 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 413 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 414 dbgs() << WIdx << ": "; 415 SchedWrites[WIdx].dump(); 416 dbgs() << '\n'; 417 } 418 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 419 dbgs() << RIdx << ": "; 420 SchedReads[RIdx].dump(); 421 dbgs() << '\n'; 422 } 423 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 424 for (Record *RWDef : RWDefs) { 425 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 426 StringRef Name = RWDef->getName(); 427 if (Name != "NoWrite" && Name != "ReadDefault") 428 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 429 } 430 }); 431 } 432 433 /// Compute a SchedWrite name from a sequence of writes. 434 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 435 std::string Name("("); 436 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 437 if (I != Seq.begin()) 438 Name += '_'; 439 Name += getSchedRW(*I, IsRead).Name; 440 } 441 Name += ')'; 442 return Name; 443 } 444 445 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead) const { 446 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 447 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin(), 448 E = RWVec.end(); I != E; ++I) { 449 if (I->TheDef == Def) 450 return I - RWVec.begin(); 451 } 452 return 0; 453 } 454 455 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 456 for (const CodeGenSchedRW &Read : SchedReads) { 457 Record *ReadDef = Read.TheDef; 458 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 459 continue; 460 461 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 462 if (is_contained(ValidWrites, WriteDef)) { 463 return true; 464 } 465 } 466 return false; 467 } 468 469 static void splitSchedReadWrites(const RecVec &RWDefs, 470 RecVec &WriteDefs, RecVec &ReadDefs) { 471 for (Record *RWDef : RWDefs) { 472 if (RWDef->isSubClassOf("SchedWrite")) 473 WriteDefs.push_back(RWDef); 474 else { 475 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 476 ReadDefs.push_back(RWDef); 477 } 478 } 479 } 480 481 // Split the SchedReadWrites defs and call findRWs for each list. 482 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 483 IdxVec &Writes, IdxVec &Reads) const { 484 RecVec WriteDefs; 485 RecVec ReadDefs; 486 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 487 findRWs(WriteDefs, Writes, false); 488 findRWs(ReadDefs, Reads, true); 489 } 490 491 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 492 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 493 bool IsRead) const { 494 for (Record *RWDef : RWDefs) { 495 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 496 assert(Idx && "failed to collect SchedReadWrite"); 497 RWs.push_back(Idx); 498 } 499 } 500 501 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 502 bool IsRead) const { 503 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 504 if (!SchedRW.IsSequence) { 505 RWSeq.push_back(RWIdx); 506 return; 507 } 508 int Repeat = 509 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 510 for (int i = 0; i < Repeat; ++i) { 511 for (unsigned I : SchedRW.Sequence) { 512 expandRWSequence(I, RWSeq, IsRead); 513 } 514 } 515 } 516 517 // Expand a SchedWrite as a sequence following any aliases that coincide with 518 // the given processor model. 519 void CodeGenSchedModels::expandRWSeqForProc( 520 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 521 const CodeGenProcModel &ProcModel) const { 522 523 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 524 Record *AliasDef = nullptr; 525 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 526 AI != AE; ++AI) { 527 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 528 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 529 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 530 if (&getProcModel(ModelDef) != &ProcModel) 531 continue; 532 } 533 if (AliasDef) 534 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 535 "defined for processor " + ProcModel.ModelName + 536 " Ensure only one SchedAlias exists per RW."); 537 AliasDef = AliasRW.TheDef; 538 } 539 if (AliasDef) { 540 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 541 RWSeq, IsRead,ProcModel); 542 return; 543 } 544 if (!SchedWrite.IsSequence) { 545 RWSeq.push_back(RWIdx); 546 return; 547 } 548 int Repeat = 549 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 550 for (int i = 0; i < Repeat; ++i) { 551 for (unsigned I : SchedWrite.Sequence) { 552 expandRWSeqForProc(I, RWSeq, IsRead, ProcModel); 553 } 554 } 555 } 556 557 // Find the existing SchedWrite that models this sequence of writes. 558 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 559 bool IsRead) { 560 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 561 562 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 563 I != E; ++I) { 564 if (makeArrayRef(I->Sequence) == Seq) 565 return I - RWVec.begin(); 566 } 567 // Index zero reserved for invalid RW. 568 return 0; 569 } 570 571 /// Add this ReadWrite if it doesn't already exist. 572 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 573 bool IsRead) { 574 assert(!Seq.empty() && "cannot insert empty sequence"); 575 if (Seq.size() == 1) 576 return Seq.back(); 577 578 unsigned Idx = findRWForSequence(Seq, IsRead); 579 if (Idx) 580 return Idx; 581 582 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 583 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 584 if (IsRead) 585 SchedReads.push_back(SchedRW); 586 else 587 SchedWrites.push_back(SchedRW); 588 return RWIdx; 589 } 590 591 /// Visit all the instruction definitions for this target to gather and 592 /// enumerate the itinerary classes. These are the explicitly specified 593 /// SchedClasses. More SchedClasses may be inferred. 594 void CodeGenSchedModels::collectSchedClasses() { 595 596 // NoItinerary is always the first class at Idx=0 597 assert(SchedClasses.empty() && "Expected empty sched class"); 598 SchedClasses.emplace_back(0, "NoInstrModel", 599 Records.getDef("NoItinerary")); 600 SchedClasses.back().ProcIndices.push_back(0); 601 602 // Create a SchedClass for each unique combination of itinerary class and 603 // SchedRW list. 604 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 605 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 606 IdxVec Writes, Reads; 607 if (!Inst->TheDef->isValueUnset("SchedRW")) 608 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 609 610 // ProcIdx == 0 indicates the class applies to all processors. 611 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 612 InstrClassMap[Inst->TheDef] = SCIdx; 613 } 614 // Create classes for InstRW defs. 615 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 616 llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 617 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 618 for (Record *RWDef : InstRWDefs) 619 createInstRWClass(RWDef); 620 621 NumInstrSchedClasses = SchedClasses.size(); 622 623 bool EnableDump = false; 624 DEBUG(EnableDump = true); 625 if (!EnableDump) 626 return; 627 628 dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"; 629 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 630 StringRef InstName = Inst->TheDef->getName(); 631 unsigned SCIdx = getSchedClassIdx(*Inst); 632 if (!SCIdx) { 633 if (!Inst->hasNoSchedulingInfo) 634 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 635 continue; 636 } 637 CodeGenSchedClass &SC = getSchedClass(SCIdx); 638 if (SC.ProcIndices[0] != 0) 639 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 640 "must not be subtarget specific."); 641 642 IdxVec ProcIndices; 643 if (SC.ItinClassDef->getName() != "NoItinerary") { 644 ProcIndices.push_back(0); 645 dbgs() << "Itinerary for " << InstName << ": " 646 << SC.ItinClassDef->getName() << '\n'; 647 } 648 if (!SC.Writes.empty()) { 649 ProcIndices.push_back(0); 650 dbgs() << "SchedRW machine model for " << InstName; 651 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 652 dbgs() << " " << SchedWrites[*WI].Name; 653 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 654 dbgs() << " " << SchedReads[*RI].Name; 655 dbgs() << '\n'; 656 } 657 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 658 for (Record *RWDef : RWDefs) { 659 const CodeGenProcModel &ProcModel = 660 getProcModel(RWDef->getValueAsDef("SchedModel")); 661 ProcIndices.push_back(ProcModel.Index); 662 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 663 IdxVec Writes; 664 IdxVec Reads; 665 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 666 Writes, Reads); 667 for (unsigned WIdx : Writes) 668 dbgs() << " " << SchedWrites[WIdx].Name; 669 for (unsigned RIdx : Reads) 670 dbgs() << " " << SchedReads[RIdx].Name; 671 dbgs() << '\n'; 672 } 673 // If ProcIndices contains zero, the class applies to all processors. 674 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 675 for (const CodeGenProcModel &PM : ProcModels) { 676 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 677 dbgs() << "No machine model for " << Inst->TheDef->getName() 678 << " on processor " << PM.ModelName << '\n'; 679 } 680 } 681 } 682 } 683 684 /// Find an SchedClass that has been inferred from a per-operand list of 685 /// SchedWrites and SchedReads. 686 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 687 ArrayRef<unsigned> Writes, 688 ArrayRef<unsigned> Reads) const { 689 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) 690 if (I->isKeyEqual(ItinClassDef, Writes, Reads)) 691 return I - schedClassBegin(); 692 return 0; 693 } 694 695 // Get the SchedClass index for an instruction. 696 unsigned CodeGenSchedModels::getSchedClassIdx( 697 const CodeGenInstruction &Inst) const { 698 699 return InstrClassMap.lookup(Inst.TheDef); 700 } 701 702 std::string 703 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 704 ArrayRef<unsigned> OperWrites, 705 ArrayRef<unsigned> OperReads) { 706 707 std::string Name; 708 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 709 Name = ItinClassDef->getName(); 710 for (unsigned Idx : OperWrites) { 711 if (!Name.empty()) 712 Name += '_'; 713 Name += SchedWrites[Idx].Name; 714 } 715 for (unsigned Idx : OperReads) { 716 Name += '_'; 717 Name += SchedReads[Idx].Name; 718 } 719 return Name; 720 } 721 722 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 723 724 std::string Name; 725 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 726 if (I != InstDefs.begin()) 727 Name += '_'; 728 Name += (*I)->getName(); 729 } 730 return Name; 731 } 732 733 /// Add an inferred sched class from an itinerary class and per-operand list of 734 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 735 /// processors that may utilize this class. 736 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 737 ArrayRef<unsigned> OperWrites, 738 ArrayRef<unsigned> OperReads, 739 ArrayRef<unsigned> ProcIndices) { 740 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 741 742 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 743 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 744 IdxVec PI; 745 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 746 SchedClasses[Idx].ProcIndices.end(), 747 ProcIndices.begin(), ProcIndices.end(), 748 std::back_inserter(PI)); 749 SchedClasses[Idx].ProcIndices = std::move(PI); 750 return Idx; 751 } 752 Idx = SchedClasses.size(); 753 SchedClasses.emplace_back(Idx, 754 createSchedClassName(ItinClassDef, OperWrites, 755 OperReads), 756 ItinClassDef); 757 CodeGenSchedClass &SC = SchedClasses.back(); 758 SC.Writes = OperWrites; 759 SC.Reads = OperReads; 760 SC.ProcIndices = ProcIndices; 761 762 return Idx; 763 } 764 765 // Create classes for each set of opcodes that are in the same InstReadWrite 766 // definition across all processors. 767 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 768 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 769 // intersects with an existing class via a previous InstRWDef. Instrs that do 770 // not intersect with an existing class refer back to their former class as 771 // determined from ItinDef or SchedRW. 772 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 773 // Sort Instrs into sets. 774 const RecVec *InstDefs = Sets.expand(InstRWDef); 775 if (InstDefs->empty()) 776 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 777 778 for (Record *InstDef : *InstDefs) { 779 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 780 if (Pos == InstrClassMap.end()) 781 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 782 unsigned SCIdx = Pos->second; 783 ClassInstrs[SCIdx].push_back(InstDef); 784 } 785 // For each set of Instrs, create a new class if necessary, and map or remap 786 // the Instrs to it. 787 for (auto &Entry : ClassInstrs) { 788 unsigned OldSCIdx = Entry.first; 789 ArrayRef<Record*> InstDefs = Entry.second; 790 // If the all instrs in the current class are accounted for, then leave 791 // them mapped to their old class. 792 if (OldSCIdx) { 793 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 794 if (!RWDefs.empty()) { 795 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 796 unsigned OrigNumInstrs = 797 count_if(*OrigInstDefs, [&](Record *OIDef) { 798 return InstrClassMap[OIDef] == OldSCIdx; 799 }); 800 if (OrigNumInstrs == InstDefs.size()) { 801 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 802 "expected a generic SchedClass"); 803 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 804 // Make sure we didn't already have a InstRW containing this 805 // instruction on this model. 806 for (Record *RWD : RWDefs) { 807 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 808 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 809 for (Record *Inst : InstDefs) { 810 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 811 Inst->getName() + " also matches " + 812 RWD->getValue("Instrs")->getValue()->getAsString()); 813 } 814 } 815 } 816 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 817 << SchedClasses[OldSCIdx].Name << " on " 818 << RWModelDef->getName() << "\n"); 819 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 820 continue; 821 } 822 } 823 } 824 unsigned SCIdx = SchedClasses.size(); 825 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 826 CodeGenSchedClass &SC = SchedClasses.back(); 827 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 828 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 829 830 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 831 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 832 SC.Writes = SchedClasses[OldSCIdx].Writes; 833 SC.Reads = SchedClasses[OldSCIdx].Reads; 834 SC.ProcIndices.push_back(0); 835 // If we had an old class, copy it's InstRWs to this new class. 836 if (OldSCIdx) { 837 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 838 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 839 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 840 for (Record *InstDef : InstDefs) { 841 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 842 InstDef->getName() + " also matches " + 843 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 844 } 845 } 846 assert(OldRWDef != InstRWDef && 847 "SchedClass has duplicate InstRW def"); 848 SC.InstRWs.push_back(OldRWDef); 849 } 850 } 851 // Map each Instr to this new class. 852 for (Record *InstDef : InstDefs) 853 InstrClassMap[InstDef] = SCIdx; 854 SC.InstRWs.push_back(InstRWDef); 855 } 856 } 857 858 // True if collectProcItins found anything. 859 bool CodeGenSchedModels::hasItineraries() const { 860 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) { 861 if (PM.hasItineraries()) 862 return true; 863 } 864 return false; 865 } 866 867 // Gather the processor itineraries. 868 void CodeGenSchedModels::collectProcItins() { 869 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 870 for (CodeGenProcModel &ProcModel : ProcModels) { 871 if (!ProcModel.hasItineraries()) 872 continue; 873 874 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 875 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 876 877 // Populate ItinDefList with Itinerary records. 878 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 879 880 // Insert each itinerary data record in the correct position within 881 // the processor model's ItinDefList. 882 for (Record *ItinData : ItinRecords) { 883 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 884 bool FoundClass = false; 885 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 886 SCI != SCE; ++SCI) { 887 // Multiple SchedClasses may share an itinerary. Update all of them. 888 if (SCI->ItinClassDef == ItinDef) { 889 ProcModel.ItinDefList[SCI->Index] = ItinData; 890 FoundClass = true; 891 } 892 } 893 if (!FoundClass) { 894 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 895 << " missing class for itinerary " << ItinDef->getName() << '\n'); 896 } 897 } 898 // Check for missing itinerary entries. 899 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 900 DEBUG( 901 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 902 if (!ProcModel.ItinDefList[i]) 903 dbgs() << ProcModel.ItinsDef->getName() 904 << " missing itinerary for class " 905 << SchedClasses[i].Name << '\n'; 906 }); 907 } 908 } 909 910 // Gather the read/write types for each itinerary class. 911 void CodeGenSchedModels::collectProcItinRW() { 912 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 913 llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 914 for (Record *RWDef : ItinRWDefs) { 915 if (!RWDef->getValueInit("SchedModel")->isComplete()) 916 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 917 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 918 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 919 if (I == ProcModelMap.end()) { 920 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 921 + ModelDef->getName()); 922 } 923 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 924 } 925 } 926 927 // Gather the unsupported features for processor models. 928 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 929 for (CodeGenProcModel &ProcModel : ProcModels) { 930 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 931 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 932 } 933 } 934 } 935 936 /// Infer new classes from existing classes. In the process, this may create new 937 /// SchedWrites from sequences of existing SchedWrites. 938 void CodeGenSchedModels::inferSchedClasses() { 939 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 940 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 941 942 // Visit all existing classes and newly created classes. 943 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 944 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 945 946 if (SchedClasses[Idx].ItinClassDef) 947 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 948 if (!SchedClasses[Idx].InstRWs.empty()) 949 inferFromInstRWs(Idx); 950 if (!SchedClasses[Idx].Writes.empty()) { 951 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 952 Idx, SchedClasses[Idx].ProcIndices); 953 } 954 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 955 "too many SchedVariants"); 956 } 957 } 958 959 /// Infer classes from per-processor itinerary resources. 960 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 961 unsigned FromClassIdx) { 962 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 963 const CodeGenProcModel &PM = ProcModels[PIdx]; 964 // For all ItinRW entries. 965 bool HasMatch = false; 966 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 967 II != IE; ++II) { 968 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 969 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 970 continue; 971 if (HasMatch) 972 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 973 + ItinClassDef->getName() 974 + " in ItinResources for " + PM.ModelName); 975 HasMatch = true; 976 IdxVec Writes, Reads; 977 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 978 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 979 } 980 } 981 } 982 983 /// Infer classes from per-processor InstReadWrite definitions. 984 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 985 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 986 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 987 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 988 const RecVec *InstDefs = Sets.expand(Rec); 989 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 990 for (; II != IE; ++II) { 991 if (InstrClassMap[*II] == SCIdx) 992 break; 993 } 994 // If this class no longer has any instructions mapped to it, it has become 995 // irrelevant. 996 if (II == IE) 997 continue; 998 IdxVec Writes, Reads; 999 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1000 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1001 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1002 } 1003 } 1004 1005 namespace { 1006 1007 // Helper for substituteVariantOperand. 1008 struct TransVariant { 1009 Record *VarOrSeqDef; // Variant or sequence. 1010 unsigned RWIdx; // Index of this variant or sequence's matched type. 1011 unsigned ProcIdx; // Processor model index or zero for any. 1012 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1013 1014 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1015 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1016 }; 1017 1018 // Associate a predicate with the SchedReadWrite that it guards. 1019 // RWIdx is the index of the read/write variant. 1020 struct PredCheck { 1021 bool IsRead; 1022 unsigned RWIdx; 1023 Record *Predicate; 1024 1025 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1026 }; 1027 1028 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1029 struct PredTransition { 1030 // A predicate term is a conjunction of PredChecks. 1031 SmallVector<PredCheck, 4> PredTerm; 1032 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1033 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1034 SmallVector<unsigned, 4> ProcIndices; 1035 }; 1036 1037 // Encapsulate a set of partially constructed transitions. 1038 // The results are built by repeated calls to substituteVariants. 1039 class PredTransitions { 1040 CodeGenSchedModels &SchedModels; 1041 1042 public: 1043 std::vector<PredTransition> TransVec; 1044 1045 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1046 1047 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1048 bool IsRead, unsigned StartIdx); 1049 1050 void substituteVariants(const PredTransition &Trans); 1051 1052 #ifndef NDEBUG 1053 void dump() const; 1054 #endif 1055 1056 private: 1057 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1058 void getIntersectingVariants( 1059 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1060 std::vector<TransVariant> &IntersectingVariants); 1061 void pushVariant(const TransVariant &VInfo, bool IsRead); 1062 }; 1063 1064 } // end anonymous namespace 1065 1066 // Return true if this predicate is mutually exclusive with a PredTerm. This 1067 // degenerates into checking if the predicate is mutually exclusive with any 1068 // predicate in the Term's conjunction. 1069 // 1070 // All predicates associated with a given SchedRW are considered mutually 1071 // exclusive. This should work even if the conditions expressed by the 1072 // predicates are not exclusive because the predicates for a given SchedWrite 1073 // are always checked in the order they are defined in the .td file. Later 1074 // conditions implicitly negate any prior condition. 1075 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1076 ArrayRef<PredCheck> Term) { 1077 for (const PredCheck &PC: Term) { 1078 if (PC.Predicate == PredDef) 1079 return false; 1080 1081 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1082 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1083 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1084 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 1085 if ((*VI)->getValueAsDef("Predicate") == PredDef) 1086 return true; 1087 } 1088 } 1089 return false; 1090 } 1091 1092 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1093 CodeGenSchedModels &SchedModels) { 1094 if (RW.HasVariants) 1095 return true; 1096 1097 for (Record *Alias : RW.Aliases) { 1098 const CodeGenSchedRW &AliasRW = 1099 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1100 if (AliasRW.HasVariants) 1101 return true; 1102 if (AliasRW.IsSequence) { 1103 IdxVec ExpandedRWs; 1104 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1105 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1106 SI != SE; ++SI) { 1107 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1108 SchedModels)) { 1109 return true; 1110 } 1111 } 1112 } 1113 } 1114 return false; 1115 } 1116 1117 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1118 CodeGenSchedModels &SchedModels) { 1119 for (ArrayRef<PredTransition>::iterator 1120 PTI = Transitions.begin(), PTE = Transitions.end(); 1121 PTI != PTE; ++PTI) { 1122 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1123 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1124 WSI != WSE; ++WSI) { 1125 for (SmallVectorImpl<unsigned>::const_iterator 1126 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1127 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1128 return true; 1129 } 1130 } 1131 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1132 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1133 RSI != RSE; ++RSI) { 1134 for (SmallVectorImpl<unsigned>::const_iterator 1135 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1136 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1137 return true; 1138 } 1139 } 1140 } 1141 return false; 1142 } 1143 1144 // Populate IntersectingVariants with any variants or aliased sequences of the 1145 // given SchedRW whose processor indices and predicates are not mutually 1146 // exclusive with the given transition. 1147 void PredTransitions::getIntersectingVariants( 1148 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1149 std::vector<TransVariant> &IntersectingVariants) { 1150 1151 bool GenericRW = false; 1152 1153 std::vector<TransVariant> Variants; 1154 if (SchedRW.HasVariants) { 1155 unsigned VarProcIdx = 0; 1156 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1157 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1158 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1159 } 1160 // Push each variant. Assign TransVecIdx later. 1161 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1162 for (Record *VarDef : VarDefs) 1163 Variants.push_back(TransVariant(VarDef, SchedRW.Index, VarProcIdx, 0)); 1164 if (VarProcIdx == 0) 1165 GenericRW = true; 1166 } 1167 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1168 AI != AE; ++AI) { 1169 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1170 // to is defined within a processor model, constrain all variants to 1171 // that processor. 1172 unsigned AliasProcIdx = 0; 1173 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1174 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1175 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1176 } 1177 const CodeGenSchedRW &AliasRW = 1178 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1179 1180 if (AliasRW.HasVariants) { 1181 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1182 for (Record *VD : VarDefs) 1183 Variants.push_back(TransVariant(VD, AliasRW.Index, AliasProcIdx, 0)); 1184 } 1185 if (AliasRW.IsSequence) { 1186 Variants.push_back( 1187 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1188 } 1189 if (AliasProcIdx == 0) 1190 GenericRW = true; 1191 } 1192 for (TransVariant &Variant : Variants) { 1193 // Don't expand variants if the processor models don't intersect. 1194 // A zero processor index means any processor. 1195 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1196 if (ProcIndices[0] && Variant.ProcIdx) { 1197 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1198 Variant.ProcIdx); 1199 if (!Cnt) 1200 continue; 1201 if (Cnt > 1) { 1202 const CodeGenProcModel &PM = 1203 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1204 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1205 "Multiple variants defined for processor " + 1206 PM.ModelName + 1207 " Ensure only one SchedAlias exists per RW."); 1208 } 1209 } 1210 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1211 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1212 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1213 continue; 1214 } 1215 if (IntersectingVariants.empty()) { 1216 // The first variant builds on the existing transition. 1217 Variant.TransVecIdx = TransIdx; 1218 IntersectingVariants.push_back(Variant); 1219 } 1220 else { 1221 // Push another copy of the current transition for more variants. 1222 Variant.TransVecIdx = TransVec.size(); 1223 IntersectingVariants.push_back(Variant); 1224 TransVec.push_back(TransVec[TransIdx]); 1225 } 1226 } 1227 if (GenericRW && IntersectingVariants.empty()) { 1228 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1229 "a matching predicate on any processor"); 1230 } 1231 } 1232 1233 // Push the Reads/Writes selected by this variant onto the PredTransition 1234 // specified by VInfo. 1235 void PredTransitions:: 1236 pushVariant(const TransVariant &VInfo, bool IsRead) { 1237 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1238 1239 // If this operand transition is reached through a processor-specific alias, 1240 // then the whole transition is specific to this processor. 1241 if (VInfo.ProcIdx != 0) 1242 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1243 1244 IdxVec SelectedRWs; 1245 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1246 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1247 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1248 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1249 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1250 } 1251 else { 1252 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1253 "variant must be a SchedVariant or aliased WriteSequence"); 1254 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1255 } 1256 1257 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1258 1259 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1260 ? Trans.ReadSequences : Trans.WriteSequences; 1261 if (SchedRW.IsVariadic) { 1262 unsigned OperIdx = RWSequences.size()-1; 1263 // Make N-1 copies of this transition's last sequence. 1264 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1265 // Create a temporary copy the vector could reallocate. 1266 RWSequences.reserve(RWSequences.size() + 1); 1267 RWSequences.push_back(RWSequences[OperIdx]); 1268 } 1269 // Push each of the N elements of the SelectedRWs onto a copy of the last 1270 // sequence (split the current operand into N operands). 1271 // Note that write sequences should be expanded within this loop--the entire 1272 // sequence belongs to a single operand. 1273 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1274 RWI != RWE; ++RWI, ++OperIdx) { 1275 IdxVec ExpandedRWs; 1276 if (IsRead) 1277 ExpandedRWs.push_back(*RWI); 1278 else 1279 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1280 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1281 ExpandedRWs.begin(), ExpandedRWs.end()); 1282 } 1283 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1284 } 1285 else { 1286 // Push this transition's expanded sequence onto this transition's last 1287 // sequence (add to the current operand's sequence). 1288 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1289 IdxVec ExpandedRWs; 1290 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1291 RWI != RWE; ++RWI) { 1292 if (IsRead) 1293 ExpandedRWs.push_back(*RWI); 1294 else 1295 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1296 } 1297 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1298 } 1299 } 1300 1301 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1302 // operand. StartIdx is an index into TransVec where partial results 1303 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1304 // of TransVec. 1305 void PredTransitions::substituteVariantOperand( 1306 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1307 1308 // Visit each original RW within the current sequence. 1309 for (SmallVectorImpl<unsigned>::const_iterator 1310 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1311 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1312 // Push this RW on all partial PredTransitions or distribute variants. 1313 // New PredTransitions may be pushed within this loop which should not be 1314 // revisited (TransEnd must be loop invariant). 1315 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1316 TransIdx != TransEnd; ++TransIdx) { 1317 // In the common case, push RW onto the current operand's sequence. 1318 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1319 if (IsRead) 1320 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1321 else 1322 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1323 continue; 1324 } 1325 // Distribute this partial PredTransition across intersecting variants. 1326 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1327 std::vector<TransVariant> IntersectingVariants; 1328 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1329 // Now expand each variant on top of its copy of the transition. 1330 for (std::vector<TransVariant>::const_iterator 1331 IVI = IntersectingVariants.begin(), 1332 IVE = IntersectingVariants.end(); 1333 IVI != IVE; ++IVI) { 1334 pushVariant(*IVI, IsRead); 1335 } 1336 } 1337 } 1338 } 1339 1340 // For each variant of a Read/Write in Trans, substitute the sequence of 1341 // Read/Writes guarded by the variant. This is exponential in the number of 1342 // variant Read/Writes, but in practice detection of mutually exclusive 1343 // predicates should result in linear growth in the total number variants. 1344 // 1345 // This is one step in a breadth-first search of nested variants. 1346 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1347 // Build up a set of partial results starting at the back of 1348 // PredTransitions. Remember the first new transition. 1349 unsigned StartIdx = TransVec.size(); 1350 TransVec.emplace_back(); 1351 TransVec.back().PredTerm = Trans.PredTerm; 1352 TransVec.back().ProcIndices = Trans.ProcIndices; 1353 1354 // Visit each original write sequence. 1355 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1356 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1357 WSI != WSE; ++WSI) { 1358 // Push a new (empty) write sequence onto all partial Transitions. 1359 for (std::vector<PredTransition>::iterator I = 1360 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1361 I->WriteSequences.emplace_back(); 1362 } 1363 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1364 } 1365 // Visit each original read sequence. 1366 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1367 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1368 RSI != RSE; ++RSI) { 1369 // Push a new (empty) read sequence onto all partial Transitions. 1370 for (std::vector<PredTransition>::iterator I = 1371 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1372 I->ReadSequences.emplace_back(); 1373 } 1374 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1375 } 1376 } 1377 1378 // Create a new SchedClass for each variant found by inferFromRW. Pass 1379 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1380 unsigned FromClassIdx, 1381 CodeGenSchedModels &SchedModels) { 1382 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1383 // requires creating a new SchedClass. 1384 for (ArrayRef<PredTransition>::iterator 1385 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1386 IdxVec OperWritesVariant; 1387 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1388 [&SchedModels](ArrayRef<unsigned> WS) { 1389 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1390 }); 1391 IdxVec OperReadsVariant; 1392 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1393 [&SchedModels](ArrayRef<unsigned> RS) { 1394 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1395 }); 1396 CodeGenSchedTransition SCTrans; 1397 SCTrans.ToClassIdx = 1398 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1399 OperReadsVariant, I->ProcIndices); 1400 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1401 // The final PredTerm is unique set of predicates guarding the transition. 1402 RecVec Preds; 1403 transform(I->PredTerm, std::back_inserter(Preds), 1404 [](const PredCheck &P) { 1405 return P.Predicate; 1406 }); 1407 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1408 SCTrans.PredTerm = std::move(Preds); 1409 SchedModels.getSchedClass(FromClassIdx) 1410 .Transitions.push_back(std::move(SCTrans)); 1411 } 1412 } 1413 1414 // Create new SchedClasses for the given ReadWrite list. If any of the 1415 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1416 // of the ReadWrite list, following Aliases if necessary. 1417 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1418 ArrayRef<unsigned> OperReads, 1419 unsigned FromClassIdx, 1420 ArrayRef<unsigned> ProcIndices) { 1421 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1422 1423 // Create a seed transition with an empty PredTerm and the expanded sequences 1424 // of SchedWrites for the current SchedClass. 1425 std::vector<PredTransition> LastTransitions; 1426 LastTransitions.emplace_back(); 1427 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1428 ProcIndices.end()); 1429 1430 for (unsigned WriteIdx : OperWrites) { 1431 IdxVec WriteSeq; 1432 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1433 LastTransitions[0].WriteSequences.emplace_back(); 1434 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1435 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1436 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1437 } 1438 DEBUG(dbgs() << " Reads: "); 1439 for (unsigned ReadIdx : OperReads) { 1440 IdxVec ReadSeq; 1441 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1442 LastTransitions[0].ReadSequences.emplace_back(); 1443 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1444 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1445 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1446 } 1447 DEBUG(dbgs() << '\n'); 1448 1449 // Collect all PredTransitions for individual operands. 1450 // Iterate until no variant writes remain. 1451 while (hasVariant(LastTransitions, *this)) { 1452 PredTransitions Transitions(*this); 1453 for (const PredTransition &Trans : LastTransitions) 1454 Transitions.substituteVariants(Trans); 1455 DEBUG(Transitions.dump()); 1456 LastTransitions.swap(Transitions.TransVec); 1457 } 1458 // If the first transition has no variants, nothing to do. 1459 if (LastTransitions[0].PredTerm.empty()) 1460 return; 1461 1462 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1463 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1464 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1465 } 1466 1467 // Check if any processor resource group contains all resource records in 1468 // SubUnits. 1469 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1470 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1471 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1472 continue; 1473 RecVec SuperUnits = 1474 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1475 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1476 for ( ; RI != RE; ++RI) { 1477 if (!is_contained(SuperUnits, *RI)) { 1478 break; 1479 } 1480 } 1481 if (RI == RE) 1482 return true; 1483 } 1484 return false; 1485 } 1486 1487 // Verify that overlapping groups have a common supergroup. 1488 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1489 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1490 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1491 continue; 1492 RecVec CheckUnits = 1493 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1494 for (unsigned j = i+1; j < e; ++j) { 1495 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1496 continue; 1497 RecVec OtherUnits = 1498 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1499 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1500 OtherUnits.begin(), OtherUnits.end()) 1501 != CheckUnits.end()) { 1502 // CheckUnits and OtherUnits overlap 1503 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1504 CheckUnits.end()); 1505 if (!hasSuperGroup(OtherUnits, PM)) { 1506 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1507 "proc resource group overlaps with " 1508 + PM.ProcResourceDefs[j]->getName() 1509 + " but no supergroup contains both."); 1510 } 1511 } 1512 } 1513 } 1514 } 1515 1516 // Collect all the RegisterFile definitions available in this target. 1517 void CodeGenSchedModels::collectRegisterFiles() { 1518 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1519 1520 // RegisterFiles is the vector of CodeGenRegisterFile. 1521 for (Record *RF : RegisterFileDefs) { 1522 // For each register file definition, construct a CodeGenRegisterFile object 1523 // and add it to the appropriate scheduling model. 1524 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1525 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1526 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1527 1528 // Now set the number of physical registers as well as the cost of registers 1529 // in each register class. 1530 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1531 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1532 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1533 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1534 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1535 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1536 } 1537 } 1538 } 1539 1540 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1541 void CodeGenSchedModels::collectProcResources() { 1542 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1543 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1544 1545 // Add any subtarget-specific SchedReadWrites that are directly associated 1546 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1547 // determine which processors they apply to. 1548 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1549 SCI != SCE; ++SCI) { 1550 if (SCI->ItinClassDef) 1551 collectItinProcResources(SCI->ItinClassDef); 1552 else { 1553 // This class may have a default ReadWrite list which can be overriden by 1554 // InstRW definitions. 1555 if (!SCI->InstRWs.empty()) { 1556 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1557 RWI != RWE; ++RWI) { 1558 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1559 unsigned PIdx = getProcModel(RWModelDef).Index; 1560 IdxVec Writes, Reads; 1561 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1562 Writes, Reads); 1563 collectRWResources(Writes, Reads, PIdx); 1564 } 1565 } 1566 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1567 } 1568 } 1569 // Add resources separately defined by each subtarget. 1570 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1571 for (Record *WR : WRDefs) { 1572 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1573 addWriteRes(WR, getProcModel(ModelDef).Index); 1574 } 1575 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1576 for (Record *SWR : SWRDefs) { 1577 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1578 addWriteRes(SWR, getProcModel(ModelDef).Index); 1579 } 1580 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1581 for (Record *RA : RADefs) { 1582 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1583 addReadAdvance(RA, getProcModel(ModelDef).Index); 1584 } 1585 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1586 for (Record *SRA : SRADefs) { 1587 if (SRA->getValueInit("SchedModel")->isComplete()) { 1588 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1589 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1590 } 1591 } 1592 // Add ProcResGroups that are defined within this processor model, which may 1593 // not be directly referenced but may directly specify a buffer size. 1594 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1595 for (Record *PRG : ProcResGroups) { 1596 if (!PRG->getValueInit("SchedModel")->isComplete()) 1597 continue; 1598 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1599 if (!is_contained(PM.ProcResourceDefs, PRG)) 1600 PM.ProcResourceDefs.push_back(PRG); 1601 } 1602 // Add ProcResourceUnits unconditionally. 1603 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1604 if (!PRU->getValueInit("SchedModel")->isComplete()) 1605 continue; 1606 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1607 if (!is_contained(PM.ProcResourceDefs, PRU)) 1608 PM.ProcResourceDefs.push_back(PRU); 1609 } 1610 // Finalize each ProcModel by sorting the record arrays. 1611 for (CodeGenProcModel &PM : ProcModels) { 1612 llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1613 LessRecord()); 1614 llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1615 LessRecord()); 1616 llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1617 LessRecord()); 1618 DEBUG( 1619 PM.dump(); 1620 dbgs() << "WriteResDefs: "; 1621 for (RecIter RI = PM.WriteResDefs.begin(), 1622 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1623 if ((*RI)->isSubClassOf("WriteRes")) 1624 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1625 else 1626 dbgs() << (*RI)->getName() << " "; 1627 } 1628 dbgs() << "\nReadAdvanceDefs: "; 1629 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1630 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1631 if ((*RI)->isSubClassOf("ReadAdvance")) 1632 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1633 else 1634 dbgs() << (*RI)->getName() << " "; 1635 } 1636 dbgs() << "\nProcResourceDefs: "; 1637 for (RecIter RI = PM.ProcResourceDefs.begin(), 1638 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1639 dbgs() << (*RI)->getName() << " "; 1640 } 1641 dbgs() << '\n'); 1642 verifyProcResourceGroups(PM); 1643 } 1644 1645 ProcResourceDefs.clear(); 1646 ProcResGroups.clear(); 1647 } 1648 1649 void CodeGenSchedModels::checkCompleteness() { 1650 bool Complete = true; 1651 bool HadCompleteModel = false; 1652 for (const CodeGenProcModel &ProcModel : procModels()) { 1653 const bool HasItineraries = ProcModel.hasItineraries(); 1654 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1655 continue; 1656 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1657 if (Inst->hasNoSchedulingInfo) 1658 continue; 1659 if (ProcModel.isUnsupported(*Inst)) 1660 continue; 1661 unsigned SCIdx = getSchedClassIdx(*Inst); 1662 if (!SCIdx) { 1663 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1664 PrintError("No schedule information for instruction '" 1665 + Inst->TheDef->getName() + "'"); 1666 Complete = false; 1667 } 1668 continue; 1669 } 1670 1671 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1672 if (!SC.Writes.empty()) 1673 continue; 1674 if (HasItineraries && SC.ItinClassDef != nullptr && 1675 SC.ItinClassDef->getName() != "NoItinerary") 1676 continue; 1677 1678 const RecVec &InstRWs = SC.InstRWs; 1679 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1680 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1681 }); 1682 if (I == InstRWs.end()) { 1683 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1684 Inst->TheDef->getName() + "'"); 1685 Complete = false; 1686 } 1687 } 1688 HadCompleteModel = true; 1689 } 1690 if (!Complete) { 1691 errs() << "\n\nIncomplete schedule models found.\n" 1692 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1693 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1694 << "- Instructions should usually have Sched<[...]> as a superclass, " 1695 "you may temporarily use an empty list.\n" 1696 << "- Instructions related to unsupported features can be excluded with " 1697 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1698 "processor model.\n\n"; 1699 PrintFatalError("Incomplete schedule model"); 1700 } 1701 } 1702 1703 // Collect itinerary class resources for each processor. 1704 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1705 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1706 const CodeGenProcModel &PM = ProcModels[PIdx]; 1707 // For all ItinRW entries. 1708 bool HasMatch = false; 1709 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1710 II != IE; ++II) { 1711 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1712 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1713 continue; 1714 if (HasMatch) 1715 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1716 + ItinClassDef->getName() 1717 + " in ItinResources for " + PM.ModelName); 1718 HasMatch = true; 1719 IdxVec Writes, Reads; 1720 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1721 collectRWResources(Writes, Reads, PIdx); 1722 } 1723 } 1724 } 1725 1726 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1727 ArrayRef<unsigned> ProcIndices) { 1728 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1729 if (SchedRW.TheDef) { 1730 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1731 for (unsigned Idx : ProcIndices) 1732 addWriteRes(SchedRW.TheDef, Idx); 1733 } 1734 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1735 for (unsigned Idx : ProcIndices) 1736 addReadAdvance(SchedRW.TheDef, Idx); 1737 } 1738 } 1739 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1740 AI != AE; ++AI) { 1741 IdxVec AliasProcIndices; 1742 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1743 AliasProcIndices.push_back( 1744 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1745 } 1746 else 1747 AliasProcIndices = ProcIndices; 1748 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1749 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1750 1751 IdxVec ExpandedRWs; 1752 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1753 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1754 SI != SE; ++SI) { 1755 collectRWResources(*SI, IsRead, AliasProcIndices); 1756 } 1757 } 1758 } 1759 1760 // Collect resources for a set of read/write types and processor indices. 1761 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1762 ArrayRef<unsigned> Reads, 1763 ArrayRef<unsigned> ProcIndices) { 1764 for (unsigned Idx : Writes) 1765 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1766 1767 for (unsigned Idx : Reads) 1768 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1769 } 1770 1771 // Find the processor's resource units for this kind of resource. 1772 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1773 const CodeGenProcModel &PM, 1774 ArrayRef<SMLoc> Loc) const { 1775 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1776 return ProcResKind; 1777 1778 Record *ProcUnitDef = nullptr; 1779 assert(!ProcResourceDefs.empty()); 1780 assert(!ProcResGroups.empty()); 1781 1782 for (Record *ProcResDef : ProcResourceDefs) { 1783 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1784 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1785 if (ProcUnitDef) { 1786 PrintFatalError(Loc, 1787 "Multiple ProcessorResourceUnits associated with " 1788 + ProcResKind->getName()); 1789 } 1790 ProcUnitDef = ProcResDef; 1791 } 1792 } 1793 for (Record *ProcResGroup : ProcResGroups) { 1794 if (ProcResGroup == ProcResKind 1795 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1796 if (ProcUnitDef) { 1797 PrintFatalError(Loc, 1798 "Multiple ProcessorResourceUnits associated with " 1799 + ProcResKind->getName()); 1800 } 1801 ProcUnitDef = ProcResGroup; 1802 } 1803 } 1804 if (!ProcUnitDef) { 1805 PrintFatalError(Loc, 1806 "No ProcessorResources associated with " 1807 + ProcResKind->getName()); 1808 } 1809 return ProcUnitDef; 1810 } 1811 1812 // Iteratively add a resource and its super resources. 1813 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1814 CodeGenProcModel &PM, 1815 ArrayRef<SMLoc> Loc) { 1816 while (true) { 1817 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1818 1819 // See if this ProcResource is already associated with this processor. 1820 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1821 return; 1822 1823 PM.ProcResourceDefs.push_back(ProcResUnits); 1824 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1825 return; 1826 1827 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1828 return; 1829 1830 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1831 } 1832 } 1833 1834 // Add resources for a SchedWrite to this processor if they don't exist. 1835 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1836 assert(PIdx && "don't add resources to an invalid Processor model"); 1837 1838 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1839 if (is_contained(WRDefs, ProcWriteResDef)) 1840 return; 1841 WRDefs.push_back(ProcWriteResDef); 1842 1843 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1844 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1845 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1846 WritePRI != WritePRE; ++WritePRI) { 1847 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1848 } 1849 } 1850 1851 // Add resources for a ReadAdvance to this processor if they don't exist. 1852 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1853 unsigned PIdx) { 1854 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1855 if (is_contained(RADefs, ProcReadAdvanceDef)) 1856 return; 1857 RADefs.push_back(ProcReadAdvanceDef); 1858 } 1859 1860 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1861 RecIter PRPos = find(ProcResourceDefs, PRDef); 1862 if (PRPos == ProcResourceDefs.end()) 1863 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1864 "the ProcResources list for " + ModelName); 1865 // Idx=0 is reserved for invalid. 1866 return 1 + (PRPos - ProcResourceDefs.begin()); 1867 } 1868 1869 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1870 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1871 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1872 if (TheDef->getName() == PredDef->getName()) 1873 return true; 1874 } 1875 } 1876 return false; 1877 } 1878 1879 #ifndef NDEBUG 1880 void CodeGenProcModel::dump() const { 1881 dbgs() << Index << ": " << ModelName << " " 1882 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1883 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1884 } 1885 1886 void CodeGenSchedRW::dump() const { 1887 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1888 if (IsSequence) { 1889 dbgs() << "("; 1890 dumpIdxVec(Sequence); 1891 dbgs() << ")"; 1892 } 1893 } 1894 1895 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1896 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1897 << " Writes: "; 1898 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1899 SchedModels->getSchedWrite(Writes[i]).dump(); 1900 if (i < N-1) { 1901 dbgs() << '\n'; 1902 dbgs().indent(10); 1903 } 1904 } 1905 dbgs() << "\n Reads: "; 1906 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1907 SchedModels->getSchedRead(Reads[i]).dump(); 1908 if (i < N-1) { 1909 dbgs() << '\n'; 1910 dbgs().indent(10); 1911 } 1912 } 1913 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1914 if (!Transitions.empty()) { 1915 dbgs() << "\n Transitions for Proc "; 1916 for (const CodeGenSchedTransition &Transition : Transitions) { 1917 dumpIdxVec(Transition.ProcIndices); 1918 } 1919 } 1920 } 1921 1922 void PredTransitions::dump() const { 1923 dbgs() << "Expanded Variants:\n"; 1924 for (std::vector<PredTransition>::const_iterator 1925 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1926 dbgs() << "{"; 1927 for (SmallVectorImpl<PredCheck>::const_iterator 1928 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1929 PCI != PCE; ++PCI) { 1930 if (PCI != TI->PredTerm.begin()) 1931 dbgs() << ", "; 1932 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1933 << ":" << PCI->Predicate->getName(); 1934 } 1935 dbgs() << "},\n => {"; 1936 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1937 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1938 WSI != WSE; ++WSI) { 1939 dbgs() << "("; 1940 for (SmallVectorImpl<unsigned>::const_iterator 1941 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1942 if (WI != WSI->begin()) 1943 dbgs() << ", "; 1944 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1945 } 1946 dbgs() << "),"; 1947 } 1948 dbgs() << "}\n"; 1949 } 1950 } 1951 #endif // NDEBUG 1952