1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 StringRef Original = SI->getValue(); 87 88 // Extract a prefix that we can binary search on. 89 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 90 auto FirstMeta = Original.find_first_of(RegexMetachars); 91 92 // Look for top-level | or ?. We cannot optimize them to binary search. 93 if (removeParens(Original).find_first_of("|?") != std::string::npos) 94 FirstMeta = 0; 95 96 Optional<Regex> Regexpr = None; 97 StringRef Prefix = Original.substr(0, FirstMeta); 98 StringRef PatStr = Original.substr(FirstMeta); 99 if (!PatStr.empty()) { 100 // For the rest use a python-style prefix match. 101 std::string pat = PatStr; 102 if (pat[0] != '^') { 103 pat.insert(0, "^("); 104 pat.insert(pat.end(), ')'); 105 } 106 Regexpr = Regex(pat); 107 } 108 109 int NumMatches = 0; 110 111 unsigned NumGeneric = Target.getNumFixedInstructions(); 112 ArrayRef<const CodeGenInstruction *> Generics = 113 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1); 114 115 // The generic opcodes are unsorted, handle them manually. 116 for (auto *Inst : Generics) { 117 StringRef InstName = Inst->TheDef->getName(); 118 if (InstName.startswith(Prefix) && 119 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 120 Elts.insert(Inst->TheDef); 121 NumMatches++; 122 } 123 } 124 125 ArrayRef<const CodeGenInstruction *> Instructions = 126 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 127 128 // Target instructions are sorted. Find the range that starts with our 129 // prefix. 130 struct Comp { 131 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 132 return LHS->TheDef->getName() < RHS; 133 } 134 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 135 return LHS < RHS->TheDef->getName() && 136 !RHS->TheDef->getName().startswith(LHS); 137 } 138 }; 139 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 140 Prefix, Comp()); 141 142 // For this range we know that it starts with the prefix. Check if there's 143 // a regex that needs to be checked. 144 for (auto *Inst : make_range(Range)) { 145 StringRef InstName = Inst->TheDef->getName(); 146 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 147 Elts.insert(Inst->TheDef); 148 NumMatches++; 149 } 150 } 151 152 if (0 == NumMatches) 153 PrintFatalError(Loc, "instregex has no matches: " + Original); 154 } 155 } 156 }; 157 158 } // end anonymous namespace 159 160 /// CodeGenModels ctor interprets machine model records and populates maps. 161 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 162 const CodeGenTarget &TGT): 163 Records(RK), Target(TGT) { 164 165 Sets.addFieldExpander("InstRW", "Instrs"); 166 167 // Allow Set evaluation to recognize the dags used in InstRW records: 168 // (instrs Op1, Op1...) 169 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 170 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 171 172 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 173 // that are explicitly referenced in tablegen records. Resources associated 174 // with each processor will be derived later. Populate ProcModelMap with the 175 // CodeGenProcModel instances. 176 collectProcModels(); 177 178 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 179 // defined, and populate SchedReads and SchedWrites vectors. Implicit 180 // SchedReadWrites that represent sequences derived from expanded variant will 181 // be inferred later. 182 collectSchedRW(); 183 184 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 185 // required by an instruction definition, and populate SchedClassIdxMap. Set 186 // NumItineraryClasses to the number of explicit itinerary classes referenced 187 // by instructions. Set NumInstrSchedClasses to the number of itinerary 188 // classes plus any classes implied by instructions that derive from class 189 // Sched and provide SchedRW list. This does not infer any new classes from 190 // SchedVariant. 191 collectSchedClasses(); 192 193 // Find instruction itineraries for each processor. Sort and populate 194 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 195 // all itinerary classes to be discovered. 196 collectProcItins(); 197 198 // Find ItinRW records for each processor and itinerary class. 199 // (For per-operand resources mapped to itinerary classes). 200 collectProcItinRW(); 201 202 // Find UnsupportedFeatures records for each processor. 203 // (For per-operand resources mapped to itinerary classes). 204 collectProcUnsupportedFeatures(); 205 206 // Infer new SchedClasses from SchedVariant. 207 inferSchedClasses(); 208 209 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 210 // ProcResourceDefs. 211 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 212 collectProcResources(); 213 214 // Collect optional processor description. 215 collectOptionalProcessorInfo(); 216 217 checkCompleteness(); 218 } 219 220 void CodeGenSchedModels::collectRetireControlUnits() { 221 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 222 223 for (Record *RCU : Units) { 224 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 225 if (PM.RetireControlUnit) { 226 PrintError(RCU->getLoc(), 227 "Expected a single RetireControlUnit definition"); 228 PrintNote(PM.RetireControlUnit->getLoc(), 229 "Previous definition of RetireControlUnit was here"); 230 } 231 PM.RetireControlUnit = RCU; 232 } 233 } 234 235 /// Collect optional processor information. 236 void CodeGenSchedModels::collectOptionalProcessorInfo() { 237 // Find register file definitions for each processor. 238 collectRegisterFiles(); 239 240 // Collect processor RetireControlUnit descriptors if available. 241 collectRetireControlUnits(); 242 243 // Find pfm counter definitions for each processor. 244 collectPfmCounters(); 245 246 checkCompleteness(); 247 } 248 249 /// Gather all processor models. 250 void CodeGenSchedModels::collectProcModels() { 251 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 252 llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 253 254 // Reserve space because we can. Reallocation would be ok. 255 ProcModels.reserve(ProcRecords.size()+1); 256 257 // Use idx=0 for NoModel/NoItineraries. 258 Record *NoModelDef = Records.getDef("NoSchedModel"); 259 Record *NoItinsDef = Records.getDef("NoItineraries"); 260 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 261 ProcModelMap[NoModelDef] = 0; 262 263 // For each processor, find a unique machine model. 264 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 265 for (Record *ProcRecord : ProcRecords) 266 addProcModel(ProcRecord); 267 } 268 269 /// Get a unique processor model based on the defined MachineModel and 270 /// ProcessorItineraries. 271 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 272 Record *ModelKey = getModelOrItinDef(ProcDef); 273 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 274 return; 275 276 std::string Name = ModelKey->getName(); 277 if (ModelKey->isSubClassOf("SchedMachineModel")) { 278 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 279 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 280 } 281 else { 282 // An itinerary is defined without a machine model. Infer a new model. 283 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 284 Name = Name + "Model"; 285 ProcModels.emplace_back(ProcModels.size(), Name, 286 ProcDef->getValueAsDef("SchedModel"), ModelKey); 287 } 288 DEBUG(ProcModels.back().dump()); 289 } 290 291 // Recursively find all reachable SchedReadWrite records. 292 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 293 SmallPtrSet<Record*, 16> &RWSet) { 294 if (!RWSet.insert(RWDef).second) 295 return; 296 RWDefs.push_back(RWDef); 297 // Reads don't currently have sequence records, but it can be added later. 298 if (RWDef->isSubClassOf("WriteSequence")) { 299 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 300 for (Record *WSRec : Seq) 301 scanSchedRW(WSRec, RWDefs, RWSet); 302 } 303 else if (RWDef->isSubClassOf("SchedVariant")) { 304 // Visit each variant (guarded by a different predicate). 305 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 306 for (Record *Variant : Vars) { 307 // Visit each RW in the sequence selected by the current variant. 308 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 309 for (Record *SelDef : Selected) 310 scanSchedRW(SelDef, RWDefs, RWSet); 311 } 312 } 313 } 314 315 // Collect and sort all SchedReadWrites reachable via tablegen records. 316 // More may be inferred later when inferring new SchedClasses from variants. 317 void CodeGenSchedModels::collectSchedRW() { 318 // Reserve idx=0 for invalid writes/reads. 319 SchedWrites.resize(1); 320 SchedReads.resize(1); 321 322 SmallPtrSet<Record*, 16> RWSet; 323 324 // Find all SchedReadWrites referenced by instruction defs. 325 RecVec SWDefs, SRDefs; 326 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 327 Record *SchedDef = Inst->TheDef; 328 if (SchedDef->isValueUnset("SchedRW")) 329 continue; 330 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 331 for (Record *RW : RWs) { 332 if (RW->isSubClassOf("SchedWrite")) 333 scanSchedRW(RW, SWDefs, RWSet); 334 else { 335 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 336 scanSchedRW(RW, SRDefs, RWSet); 337 } 338 } 339 } 340 // Find all ReadWrites referenced by InstRW. 341 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 342 for (Record *InstRWDef : InstRWDefs) { 343 // For all OperandReadWrites. 344 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 345 for (Record *RWDef : RWDefs) { 346 if (RWDef->isSubClassOf("SchedWrite")) 347 scanSchedRW(RWDef, SWDefs, RWSet); 348 else { 349 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 350 scanSchedRW(RWDef, SRDefs, RWSet); 351 } 352 } 353 } 354 // Find all ReadWrites referenced by ItinRW. 355 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 356 for (Record *ItinRWDef : ItinRWDefs) { 357 // For all OperandReadWrites. 358 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 359 for (Record *RWDef : RWDefs) { 360 if (RWDef->isSubClassOf("SchedWrite")) 361 scanSchedRW(RWDef, SWDefs, RWSet); 362 else { 363 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 364 scanSchedRW(RWDef, SRDefs, RWSet); 365 } 366 } 367 } 368 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 369 // for the loop below that initializes Alias vectors. 370 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 371 llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 372 for (Record *ADef : AliasDefs) { 373 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 374 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 375 if (MatchDef->isSubClassOf("SchedWrite")) { 376 if (!AliasDef->isSubClassOf("SchedWrite")) 377 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 378 scanSchedRW(AliasDef, SWDefs, RWSet); 379 } 380 else { 381 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 382 if (!AliasDef->isSubClassOf("SchedRead")) 383 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 384 scanSchedRW(AliasDef, SRDefs, RWSet); 385 } 386 } 387 // Sort and add the SchedReadWrites directly referenced by instructions or 388 // itinerary resources. Index reads and writes in separate domains. 389 llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 390 for (Record *SWDef : SWDefs) { 391 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 392 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 393 } 394 llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 395 for (Record *SRDef : SRDefs) { 396 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 397 SchedReads.emplace_back(SchedReads.size(), SRDef); 398 } 399 // Initialize WriteSequence vectors. 400 for (CodeGenSchedRW &CGRW : SchedWrites) { 401 if (!CGRW.IsSequence) 402 continue; 403 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 404 /*IsRead=*/false); 405 } 406 // Initialize Aliases vectors. 407 for (Record *ADef : AliasDefs) { 408 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 409 getSchedRW(AliasDef).IsAlias = true; 410 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 411 CodeGenSchedRW &RW = getSchedRW(MatchDef); 412 if (RW.IsAlias) 413 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 414 RW.Aliases.push_back(ADef); 415 } 416 DEBUG( 417 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 418 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 419 dbgs() << WIdx << ": "; 420 SchedWrites[WIdx].dump(); 421 dbgs() << '\n'; 422 } 423 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 424 dbgs() << RIdx << ": "; 425 SchedReads[RIdx].dump(); 426 dbgs() << '\n'; 427 } 428 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 429 for (Record *RWDef : RWDefs) { 430 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 431 StringRef Name = RWDef->getName(); 432 if (Name != "NoWrite" && Name != "ReadDefault") 433 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 434 } 435 }); 436 } 437 438 /// Compute a SchedWrite name from a sequence of writes. 439 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 440 std::string Name("("); 441 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 442 if (I != Seq.begin()) 443 Name += '_'; 444 Name += getSchedRW(*I, IsRead).Name; 445 } 446 Name += ')'; 447 return Name; 448 } 449 450 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, 451 bool IsRead) const { 452 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 453 const auto I = find_if( 454 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); 455 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 456 } 457 458 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 459 for (const CodeGenSchedRW &Read : SchedReads) { 460 Record *ReadDef = Read.TheDef; 461 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 462 continue; 463 464 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 465 if (is_contained(ValidWrites, WriteDef)) { 466 return true; 467 } 468 } 469 return false; 470 } 471 472 static void splitSchedReadWrites(const RecVec &RWDefs, 473 RecVec &WriteDefs, RecVec &ReadDefs) { 474 for (Record *RWDef : RWDefs) { 475 if (RWDef->isSubClassOf("SchedWrite")) 476 WriteDefs.push_back(RWDef); 477 else { 478 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 479 ReadDefs.push_back(RWDef); 480 } 481 } 482 } 483 484 // Split the SchedReadWrites defs and call findRWs for each list. 485 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 486 IdxVec &Writes, IdxVec &Reads) const { 487 RecVec WriteDefs; 488 RecVec ReadDefs; 489 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 490 findRWs(WriteDefs, Writes, false); 491 findRWs(ReadDefs, Reads, true); 492 } 493 494 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 495 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 496 bool IsRead) const { 497 for (Record *RWDef : RWDefs) { 498 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 499 assert(Idx && "failed to collect SchedReadWrite"); 500 RWs.push_back(Idx); 501 } 502 } 503 504 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 505 bool IsRead) const { 506 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 507 if (!SchedRW.IsSequence) { 508 RWSeq.push_back(RWIdx); 509 return; 510 } 511 int Repeat = 512 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 513 for (int i = 0; i < Repeat; ++i) { 514 for (unsigned I : SchedRW.Sequence) { 515 expandRWSequence(I, RWSeq, IsRead); 516 } 517 } 518 } 519 520 // Expand a SchedWrite as a sequence following any aliases that coincide with 521 // the given processor model. 522 void CodeGenSchedModels::expandRWSeqForProc( 523 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 524 const CodeGenProcModel &ProcModel) const { 525 526 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 527 Record *AliasDef = nullptr; 528 for (const Record *Rec : SchedWrite.Aliases) { 529 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); 530 if (Rec->getValueInit("SchedModel")->isComplete()) { 531 Record *ModelDef = Rec->getValueAsDef("SchedModel"); 532 if (&getProcModel(ModelDef) != &ProcModel) 533 continue; 534 } 535 if (AliasDef) 536 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 537 "defined for processor " + ProcModel.ModelName + 538 " Ensure only one SchedAlias exists per RW."); 539 AliasDef = AliasRW.TheDef; 540 } 541 if (AliasDef) { 542 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 543 RWSeq, IsRead,ProcModel); 544 return; 545 } 546 if (!SchedWrite.IsSequence) { 547 RWSeq.push_back(RWIdx); 548 return; 549 } 550 int Repeat = 551 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 552 for (int I = 0, E = Repeat; I < E; ++I) { 553 for (unsigned Idx : SchedWrite.Sequence) { 554 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); 555 } 556 } 557 } 558 559 // Find the existing SchedWrite that models this sequence of writes. 560 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 561 bool IsRead) { 562 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 563 564 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { 565 return makeArrayRef(RW.Sequence) == Seq; 566 }); 567 // Index zero reserved for invalid RW. 568 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 569 } 570 571 /// Add this ReadWrite if it doesn't already exist. 572 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 573 bool IsRead) { 574 assert(!Seq.empty() && "cannot insert empty sequence"); 575 if (Seq.size() == 1) 576 return Seq.back(); 577 578 unsigned Idx = findRWForSequence(Seq, IsRead); 579 if (Idx) 580 return Idx; 581 582 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 583 unsigned RWIdx = RWVec.size(); 584 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 585 RWVec.push_back(SchedRW); 586 return RWIdx; 587 } 588 589 /// Visit all the instruction definitions for this target to gather and 590 /// enumerate the itinerary classes. These are the explicitly specified 591 /// SchedClasses. More SchedClasses may be inferred. 592 void CodeGenSchedModels::collectSchedClasses() { 593 594 // NoItinerary is always the first class at Idx=0 595 assert(SchedClasses.empty() && "Expected empty sched class"); 596 SchedClasses.emplace_back(0, "NoInstrModel", 597 Records.getDef("NoItinerary")); 598 SchedClasses.back().ProcIndices.push_back(0); 599 600 // Create a SchedClass for each unique combination of itinerary class and 601 // SchedRW list. 602 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 603 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 604 IdxVec Writes, Reads; 605 if (!Inst->TheDef->isValueUnset("SchedRW")) 606 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 607 608 // ProcIdx == 0 indicates the class applies to all processors. 609 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 610 InstrClassMap[Inst->TheDef] = SCIdx; 611 } 612 // Create classes for InstRW defs. 613 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 614 llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 615 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 616 for (Record *RWDef : InstRWDefs) 617 createInstRWClass(RWDef); 618 619 NumInstrSchedClasses = SchedClasses.size(); 620 621 bool EnableDump = false; 622 DEBUG(EnableDump = true); 623 if (!EnableDump) 624 return; 625 626 DEBUG( 627 dbgs() 628 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); 629 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 630 StringRef InstName = Inst->TheDef->getName(); 631 unsigned SCIdx = getSchedClassIdx(*Inst); 632 if (!SCIdx) { 633 DEBUG({ 634 if (!Inst->hasNoSchedulingInfo) 635 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 636 }); 637 continue; 638 } 639 CodeGenSchedClass &SC = getSchedClass(SCIdx); 640 if (SC.ProcIndices[0] != 0) 641 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 642 "must not be subtarget specific."); 643 644 IdxVec ProcIndices; 645 if (SC.ItinClassDef->getName() != "NoItinerary") { 646 ProcIndices.push_back(0); 647 dbgs() << "Itinerary for " << InstName << ": " 648 << SC.ItinClassDef->getName() << '\n'; 649 } 650 if (!SC.Writes.empty()) { 651 ProcIndices.push_back(0); 652 DEBUG({ 653 dbgs() << "SchedRW machine model for " << InstName; 654 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; 655 ++WI) 656 dbgs() << " " << SchedWrites[*WI].Name; 657 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 658 dbgs() << " " << SchedReads[*RI].Name; 659 dbgs() << '\n'; 660 }); 661 } 662 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 663 for (Record *RWDef : RWDefs) { 664 const CodeGenProcModel &ProcModel = 665 getProcModel(RWDef->getValueAsDef("SchedModel")); 666 ProcIndices.push_back(ProcModel.Index); 667 DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName); 668 IdxVec Writes; 669 IdxVec Reads; 670 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 671 Writes, Reads); 672 DEBUG({ 673 for (unsigned WIdx : Writes) 674 dbgs() << " " << SchedWrites[WIdx].Name; 675 for (unsigned RIdx : Reads) 676 dbgs() << " " << SchedReads[RIdx].Name; 677 dbgs() << '\n'; 678 }); 679 } 680 // If ProcIndices contains zero, the class applies to all processors. 681 DEBUG({ 682 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 683 for (const CodeGenProcModel &PM : ProcModels) { 684 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 685 dbgs() << "No machine model for " << Inst->TheDef->getName() 686 << " on processor " << PM.ModelName << '\n'; 687 } 688 } 689 }); 690 } 691 } 692 693 // Get the SchedClass index for an instruction. 694 unsigned 695 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { 696 return InstrClassMap.lookup(Inst.TheDef); 697 } 698 699 std::string 700 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 701 ArrayRef<unsigned> OperWrites, 702 ArrayRef<unsigned> OperReads) { 703 704 std::string Name; 705 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 706 Name = ItinClassDef->getName(); 707 for (unsigned Idx : OperWrites) { 708 if (!Name.empty()) 709 Name += '_'; 710 Name += SchedWrites[Idx].Name; 711 } 712 for (unsigned Idx : OperReads) { 713 Name += '_'; 714 Name += SchedReads[Idx].Name; 715 } 716 return Name; 717 } 718 719 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 720 721 std::string Name; 722 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 723 if (I != InstDefs.begin()) 724 Name += '_'; 725 Name += (*I)->getName(); 726 } 727 return Name; 728 } 729 730 /// Add an inferred sched class from an itinerary class and per-operand list of 731 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 732 /// processors that may utilize this class. 733 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 734 ArrayRef<unsigned> OperWrites, 735 ArrayRef<unsigned> OperReads, 736 ArrayRef<unsigned> ProcIndices) { 737 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 738 739 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { 740 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); 741 }; 742 743 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); 744 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); 745 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 746 IdxVec PI; 747 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 748 SchedClasses[Idx].ProcIndices.end(), 749 ProcIndices.begin(), ProcIndices.end(), 750 std::back_inserter(PI)); 751 SchedClasses[Idx].ProcIndices = std::move(PI); 752 return Idx; 753 } 754 Idx = SchedClasses.size(); 755 SchedClasses.emplace_back(Idx, 756 createSchedClassName(ItinClassDef, OperWrites, 757 OperReads), 758 ItinClassDef); 759 CodeGenSchedClass &SC = SchedClasses.back(); 760 SC.Writes = OperWrites; 761 SC.Reads = OperReads; 762 SC.ProcIndices = ProcIndices; 763 764 return Idx; 765 } 766 767 // Create classes for each set of opcodes that are in the same InstReadWrite 768 // definition across all processors. 769 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 770 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 771 // intersects with an existing class via a previous InstRWDef. Instrs that do 772 // not intersect with an existing class refer back to their former class as 773 // determined from ItinDef or SchedRW. 774 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 775 // Sort Instrs into sets. 776 const RecVec *InstDefs = Sets.expand(InstRWDef); 777 if (InstDefs->empty()) 778 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 779 780 for (Record *InstDef : *InstDefs) { 781 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 782 if (Pos == InstrClassMap.end()) 783 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 784 unsigned SCIdx = Pos->second; 785 ClassInstrs[SCIdx].push_back(InstDef); 786 } 787 // For each set of Instrs, create a new class if necessary, and map or remap 788 // the Instrs to it. 789 for (auto &Entry : ClassInstrs) { 790 unsigned OldSCIdx = Entry.first; 791 ArrayRef<Record*> InstDefs = Entry.second; 792 // If the all instrs in the current class are accounted for, then leave 793 // them mapped to their old class. 794 if (OldSCIdx) { 795 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 796 if (!RWDefs.empty()) { 797 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 798 unsigned OrigNumInstrs = 799 count_if(*OrigInstDefs, [&](Record *OIDef) { 800 return InstrClassMap[OIDef] == OldSCIdx; 801 }); 802 if (OrigNumInstrs == InstDefs.size()) { 803 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 804 "expected a generic SchedClass"); 805 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 806 // Make sure we didn't already have a InstRW containing this 807 // instruction on this model. 808 for (Record *RWD : RWDefs) { 809 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 810 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 811 for (Record *Inst : InstDefs) { 812 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 813 Inst->getName() + " also matches " + 814 RWD->getValue("Instrs")->getValue()->getAsString()); 815 } 816 } 817 } 818 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 819 << SchedClasses[OldSCIdx].Name << " on " 820 << RWModelDef->getName() << "\n"); 821 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 822 continue; 823 } 824 } 825 } 826 unsigned SCIdx = SchedClasses.size(); 827 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 828 CodeGenSchedClass &SC = SchedClasses.back(); 829 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 830 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 831 832 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 833 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 834 SC.Writes = SchedClasses[OldSCIdx].Writes; 835 SC.Reads = SchedClasses[OldSCIdx].Reads; 836 SC.ProcIndices.push_back(0); 837 // If we had an old class, copy it's InstRWs to this new class. 838 if (OldSCIdx) { 839 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 840 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 841 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 842 for (Record *InstDef : InstDefs) { 843 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 844 InstDef->getName() + " also matches " + 845 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 846 } 847 } 848 assert(OldRWDef != InstRWDef && 849 "SchedClass has duplicate InstRW def"); 850 SC.InstRWs.push_back(OldRWDef); 851 } 852 } 853 // Map each Instr to this new class. 854 for (Record *InstDef : InstDefs) 855 InstrClassMap[InstDef] = SCIdx; 856 SC.InstRWs.push_back(InstRWDef); 857 } 858 } 859 860 // True if collectProcItins found anything. 861 bool CodeGenSchedModels::hasItineraries() const { 862 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) 863 if (PM.hasItineraries()) 864 return true; 865 return false; 866 } 867 868 // Gather the processor itineraries. 869 void CodeGenSchedModels::collectProcItins() { 870 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 871 for (CodeGenProcModel &ProcModel : ProcModels) { 872 if (!ProcModel.hasItineraries()) 873 continue; 874 875 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 876 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 877 878 // Populate ItinDefList with Itinerary records. 879 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 880 881 // Insert each itinerary data record in the correct position within 882 // the processor model's ItinDefList. 883 for (Record *ItinData : ItinRecords) { 884 const Record *ItinDef = ItinData->getValueAsDef("TheClass"); 885 bool FoundClass = false; 886 887 for (const CodeGenSchedClass &SC : 888 make_range(schedClassBegin(), schedClassEnd())) { 889 // Multiple SchedClasses may share an itinerary. Update all of them. 890 if (SC.ItinClassDef == ItinDef) { 891 ProcModel.ItinDefList[SC.Index] = ItinData; 892 FoundClass = true; 893 } 894 } 895 if (!FoundClass) { 896 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 897 << " missing class for itinerary " << ItinDef->getName() << '\n'); 898 } 899 } 900 // Check for missing itinerary entries. 901 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 902 DEBUG( 903 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 904 if (!ProcModel.ItinDefList[i]) 905 dbgs() << ProcModel.ItinsDef->getName() 906 << " missing itinerary for class " 907 << SchedClasses[i].Name << '\n'; 908 }); 909 } 910 } 911 912 // Gather the read/write types for each itinerary class. 913 void CodeGenSchedModels::collectProcItinRW() { 914 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 915 llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 916 for (Record *RWDef : ItinRWDefs) { 917 if (!RWDef->getValueInit("SchedModel")->isComplete()) 918 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 919 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 920 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 921 if (I == ProcModelMap.end()) { 922 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 923 + ModelDef->getName()); 924 } 925 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 926 } 927 } 928 929 // Gather the unsupported features for processor models. 930 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 931 for (CodeGenProcModel &ProcModel : ProcModels) { 932 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 933 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 934 } 935 } 936 } 937 938 /// Infer new classes from existing classes. In the process, this may create new 939 /// SchedWrites from sequences of existing SchedWrites. 940 void CodeGenSchedModels::inferSchedClasses() { 941 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 942 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 943 944 // Visit all existing classes and newly created classes. 945 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 946 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 947 948 if (SchedClasses[Idx].ItinClassDef) 949 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 950 if (!SchedClasses[Idx].InstRWs.empty()) 951 inferFromInstRWs(Idx); 952 if (!SchedClasses[Idx].Writes.empty()) { 953 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 954 Idx, SchedClasses[Idx].ProcIndices); 955 } 956 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 957 "too many SchedVariants"); 958 } 959 } 960 961 /// Infer classes from per-processor itinerary resources. 962 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 963 unsigned FromClassIdx) { 964 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 965 const CodeGenProcModel &PM = ProcModels[PIdx]; 966 // For all ItinRW entries. 967 bool HasMatch = false; 968 for (const Record *Rec : PM.ItinRWDefs) { 969 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); 970 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 971 continue; 972 if (HasMatch) 973 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class " 974 + ItinClassDef->getName() 975 + " in ItinResources for " + PM.ModelName); 976 HasMatch = true; 977 IdxVec Writes, Reads; 978 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 979 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 980 } 981 } 982 } 983 984 /// Infer classes from per-processor InstReadWrite definitions. 985 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 986 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 987 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 988 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 989 const RecVec *InstDefs = Sets.expand(Rec); 990 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 991 for (; II != IE; ++II) { 992 if (InstrClassMap[*II] == SCIdx) 993 break; 994 } 995 // If this class no longer has any instructions mapped to it, it has become 996 // irrelevant. 997 if (II == IE) 998 continue; 999 IdxVec Writes, Reads; 1000 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1001 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1002 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1003 } 1004 } 1005 1006 namespace { 1007 1008 // Helper for substituteVariantOperand. 1009 struct TransVariant { 1010 Record *VarOrSeqDef; // Variant or sequence. 1011 unsigned RWIdx; // Index of this variant or sequence's matched type. 1012 unsigned ProcIdx; // Processor model index or zero for any. 1013 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1014 1015 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1016 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1017 }; 1018 1019 // Associate a predicate with the SchedReadWrite that it guards. 1020 // RWIdx is the index of the read/write variant. 1021 struct PredCheck { 1022 bool IsRead; 1023 unsigned RWIdx; 1024 Record *Predicate; 1025 1026 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1027 }; 1028 1029 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1030 struct PredTransition { 1031 // A predicate term is a conjunction of PredChecks. 1032 SmallVector<PredCheck, 4> PredTerm; 1033 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1034 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1035 SmallVector<unsigned, 4> ProcIndices; 1036 }; 1037 1038 // Encapsulate a set of partially constructed transitions. 1039 // The results are built by repeated calls to substituteVariants. 1040 class PredTransitions { 1041 CodeGenSchedModels &SchedModels; 1042 1043 public: 1044 std::vector<PredTransition> TransVec; 1045 1046 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1047 1048 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1049 bool IsRead, unsigned StartIdx); 1050 1051 void substituteVariants(const PredTransition &Trans); 1052 1053 #ifndef NDEBUG 1054 void dump() const; 1055 #endif 1056 1057 private: 1058 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1059 void getIntersectingVariants( 1060 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1061 std::vector<TransVariant> &IntersectingVariants); 1062 void pushVariant(const TransVariant &VInfo, bool IsRead); 1063 }; 1064 1065 } // end anonymous namespace 1066 1067 // Return true if this predicate is mutually exclusive with a PredTerm. This 1068 // degenerates into checking if the predicate is mutually exclusive with any 1069 // predicate in the Term's conjunction. 1070 // 1071 // All predicates associated with a given SchedRW are considered mutually 1072 // exclusive. This should work even if the conditions expressed by the 1073 // predicates are not exclusive because the predicates for a given SchedWrite 1074 // are always checked in the order they are defined in the .td file. Later 1075 // conditions implicitly negate any prior condition. 1076 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1077 ArrayRef<PredCheck> Term) { 1078 for (const PredCheck &PC: Term) { 1079 if (PC.Predicate == PredDef) 1080 return false; 1081 1082 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1083 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1084 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1085 if (any_of(Variants, [PredDef](const Record *R) { 1086 return R->getValueAsDef("Predicate") == PredDef; 1087 })) 1088 return true; 1089 } 1090 return false; 1091 } 1092 1093 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1094 CodeGenSchedModels &SchedModels) { 1095 if (RW.HasVariants) 1096 return true; 1097 1098 for (Record *Alias : RW.Aliases) { 1099 const CodeGenSchedRW &AliasRW = 1100 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1101 if (AliasRW.HasVariants) 1102 return true; 1103 if (AliasRW.IsSequence) { 1104 IdxVec ExpandedRWs; 1105 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1106 for (unsigned SI : ExpandedRWs) { 1107 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead), 1108 SchedModels)) 1109 return true; 1110 } 1111 } 1112 } 1113 return false; 1114 } 1115 1116 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1117 CodeGenSchedModels &SchedModels) { 1118 for (const PredTransition &PTI : Transitions) { 1119 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences) 1120 for (unsigned WI : WSI) 1121 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels)) 1122 return true; 1123 1124 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences) 1125 for (unsigned RI : RSI) 1126 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels)) 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 // Populate IntersectingVariants with any variants or aliased sequences of the 1133 // given SchedRW whose processor indices and predicates are not mutually 1134 // exclusive with the given transition. 1135 void PredTransitions::getIntersectingVariants( 1136 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1137 std::vector<TransVariant> &IntersectingVariants) { 1138 1139 bool GenericRW = false; 1140 1141 std::vector<TransVariant> Variants; 1142 if (SchedRW.HasVariants) { 1143 unsigned VarProcIdx = 0; 1144 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1145 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1146 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1147 } 1148 // Push each variant. Assign TransVecIdx later. 1149 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1150 for (Record *VarDef : VarDefs) 1151 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); 1152 if (VarProcIdx == 0) 1153 GenericRW = true; 1154 } 1155 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1156 AI != AE; ++AI) { 1157 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1158 // to is defined within a processor model, constrain all variants to 1159 // that processor. 1160 unsigned AliasProcIdx = 0; 1161 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1162 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1163 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1164 } 1165 const CodeGenSchedRW &AliasRW = 1166 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1167 1168 if (AliasRW.HasVariants) { 1169 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1170 for (Record *VD : VarDefs) 1171 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); 1172 } 1173 if (AliasRW.IsSequence) 1174 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); 1175 if (AliasProcIdx == 0) 1176 GenericRW = true; 1177 } 1178 for (TransVariant &Variant : Variants) { 1179 // Don't expand variants if the processor models don't intersect. 1180 // A zero processor index means any processor. 1181 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1182 if (ProcIndices[0] && Variant.ProcIdx) { 1183 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1184 Variant.ProcIdx); 1185 if (!Cnt) 1186 continue; 1187 if (Cnt > 1) { 1188 const CodeGenProcModel &PM = 1189 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1190 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1191 "Multiple variants defined for processor " + 1192 PM.ModelName + 1193 " Ensure only one SchedAlias exists per RW."); 1194 } 1195 } 1196 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1197 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1198 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1199 continue; 1200 } 1201 if (IntersectingVariants.empty()) { 1202 // The first variant builds on the existing transition. 1203 Variant.TransVecIdx = TransIdx; 1204 IntersectingVariants.push_back(Variant); 1205 } 1206 else { 1207 // Push another copy of the current transition for more variants. 1208 Variant.TransVecIdx = TransVec.size(); 1209 IntersectingVariants.push_back(Variant); 1210 TransVec.push_back(TransVec[TransIdx]); 1211 } 1212 } 1213 if (GenericRW && IntersectingVariants.empty()) { 1214 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1215 "a matching predicate on any processor"); 1216 } 1217 } 1218 1219 // Push the Reads/Writes selected by this variant onto the PredTransition 1220 // specified by VInfo. 1221 void PredTransitions:: 1222 pushVariant(const TransVariant &VInfo, bool IsRead) { 1223 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1224 1225 // If this operand transition is reached through a processor-specific alias, 1226 // then the whole transition is specific to this processor. 1227 if (VInfo.ProcIdx != 0) 1228 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1229 1230 IdxVec SelectedRWs; 1231 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1232 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1233 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef); 1234 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1235 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1236 } 1237 else { 1238 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1239 "variant must be a SchedVariant or aliased WriteSequence"); 1240 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1241 } 1242 1243 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1244 1245 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1246 ? Trans.ReadSequences : Trans.WriteSequences; 1247 if (SchedRW.IsVariadic) { 1248 unsigned OperIdx = RWSequences.size()-1; 1249 // Make N-1 copies of this transition's last sequence. 1250 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, 1251 RWSequences[OperIdx]); 1252 // Push each of the N elements of the SelectedRWs onto a copy of the last 1253 // sequence (split the current operand into N operands). 1254 // Note that write sequences should be expanded within this loop--the entire 1255 // sequence belongs to a single operand. 1256 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1257 RWI != RWE; ++RWI, ++OperIdx) { 1258 IdxVec ExpandedRWs; 1259 if (IsRead) 1260 ExpandedRWs.push_back(*RWI); 1261 else 1262 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1263 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1264 ExpandedRWs.begin(), ExpandedRWs.end()); 1265 } 1266 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1267 } 1268 else { 1269 // Push this transition's expanded sequence onto this transition's last 1270 // sequence (add to the current operand's sequence). 1271 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1272 IdxVec ExpandedRWs; 1273 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1274 RWI != RWE; ++RWI) { 1275 if (IsRead) 1276 ExpandedRWs.push_back(*RWI); 1277 else 1278 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1279 } 1280 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1281 } 1282 } 1283 1284 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1285 // operand. StartIdx is an index into TransVec where partial results 1286 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1287 // of TransVec. 1288 void PredTransitions::substituteVariantOperand( 1289 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1290 1291 // Visit each original RW within the current sequence. 1292 for (SmallVectorImpl<unsigned>::const_iterator 1293 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1294 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1295 // Push this RW on all partial PredTransitions or distribute variants. 1296 // New PredTransitions may be pushed within this loop which should not be 1297 // revisited (TransEnd must be loop invariant). 1298 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1299 TransIdx != TransEnd; ++TransIdx) { 1300 // In the common case, push RW onto the current operand's sequence. 1301 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1302 if (IsRead) 1303 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1304 else 1305 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1306 continue; 1307 } 1308 // Distribute this partial PredTransition across intersecting variants. 1309 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1310 std::vector<TransVariant> IntersectingVariants; 1311 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1312 // Now expand each variant on top of its copy of the transition. 1313 for (std::vector<TransVariant>::const_iterator 1314 IVI = IntersectingVariants.begin(), 1315 IVE = IntersectingVariants.end(); 1316 IVI != IVE; ++IVI) { 1317 pushVariant(*IVI, IsRead); 1318 } 1319 } 1320 } 1321 } 1322 1323 // For each variant of a Read/Write in Trans, substitute the sequence of 1324 // Read/Writes guarded by the variant. This is exponential in the number of 1325 // variant Read/Writes, but in practice detection of mutually exclusive 1326 // predicates should result in linear growth in the total number variants. 1327 // 1328 // This is one step in a breadth-first search of nested variants. 1329 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1330 // Build up a set of partial results starting at the back of 1331 // PredTransitions. Remember the first new transition. 1332 unsigned StartIdx = TransVec.size(); 1333 TransVec.emplace_back(); 1334 TransVec.back().PredTerm = Trans.PredTerm; 1335 TransVec.back().ProcIndices = Trans.ProcIndices; 1336 1337 // Visit each original write sequence. 1338 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1339 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1340 WSI != WSE; ++WSI) { 1341 // Push a new (empty) write sequence onto all partial Transitions. 1342 for (std::vector<PredTransition>::iterator I = 1343 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1344 I->WriteSequences.emplace_back(); 1345 } 1346 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1347 } 1348 // Visit each original read sequence. 1349 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1350 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1351 RSI != RSE; ++RSI) { 1352 // Push a new (empty) read sequence onto all partial Transitions. 1353 for (std::vector<PredTransition>::iterator I = 1354 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1355 I->ReadSequences.emplace_back(); 1356 } 1357 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1358 } 1359 } 1360 1361 // Create a new SchedClass for each variant found by inferFromRW. Pass 1362 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1363 unsigned FromClassIdx, 1364 CodeGenSchedModels &SchedModels) { 1365 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1366 // requires creating a new SchedClass. 1367 for (ArrayRef<PredTransition>::iterator 1368 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1369 IdxVec OperWritesVariant; 1370 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1371 [&SchedModels](ArrayRef<unsigned> WS) { 1372 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1373 }); 1374 IdxVec OperReadsVariant; 1375 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1376 [&SchedModels](ArrayRef<unsigned> RS) { 1377 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1378 }); 1379 CodeGenSchedTransition SCTrans; 1380 SCTrans.ToClassIdx = 1381 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1382 OperReadsVariant, I->ProcIndices); 1383 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1384 // The final PredTerm is unique set of predicates guarding the transition. 1385 RecVec Preds; 1386 transform(I->PredTerm, std::back_inserter(Preds), 1387 [](const PredCheck &P) { 1388 return P.Predicate; 1389 }); 1390 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1391 SCTrans.PredTerm = std::move(Preds); 1392 SchedModels.getSchedClass(FromClassIdx) 1393 .Transitions.push_back(std::move(SCTrans)); 1394 } 1395 } 1396 1397 // Create new SchedClasses for the given ReadWrite list. If any of the 1398 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1399 // of the ReadWrite list, following Aliases if necessary. 1400 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1401 ArrayRef<unsigned> OperReads, 1402 unsigned FromClassIdx, 1403 ArrayRef<unsigned> ProcIndices) { 1404 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1405 1406 // Create a seed transition with an empty PredTerm and the expanded sequences 1407 // of SchedWrites for the current SchedClass. 1408 std::vector<PredTransition> LastTransitions; 1409 LastTransitions.emplace_back(); 1410 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1411 ProcIndices.end()); 1412 1413 for (unsigned WriteIdx : OperWrites) { 1414 IdxVec WriteSeq; 1415 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1416 LastTransitions[0].WriteSequences.emplace_back(); 1417 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1418 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1419 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1420 } 1421 DEBUG(dbgs() << " Reads: "); 1422 for (unsigned ReadIdx : OperReads) { 1423 IdxVec ReadSeq; 1424 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1425 LastTransitions[0].ReadSequences.emplace_back(); 1426 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1427 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1428 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1429 } 1430 DEBUG(dbgs() << '\n'); 1431 1432 // Collect all PredTransitions for individual operands. 1433 // Iterate until no variant writes remain. 1434 while (hasVariant(LastTransitions, *this)) { 1435 PredTransitions Transitions(*this); 1436 for (const PredTransition &Trans : LastTransitions) 1437 Transitions.substituteVariants(Trans); 1438 DEBUG(Transitions.dump()); 1439 LastTransitions.swap(Transitions.TransVec); 1440 } 1441 // If the first transition has no variants, nothing to do. 1442 if (LastTransitions[0].PredTerm.empty()) 1443 return; 1444 1445 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1446 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1447 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1448 } 1449 1450 // Check if any processor resource group contains all resource records in 1451 // SubUnits. 1452 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1453 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1454 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1455 continue; 1456 RecVec SuperUnits = 1457 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1458 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1459 for ( ; RI != RE; ++RI) { 1460 if (!is_contained(SuperUnits, *RI)) { 1461 break; 1462 } 1463 } 1464 if (RI == RE) 1465 return true; 1466 } 1467 return false; 1468 } 1469 1470 // Verify that overlapping groups have a common supergroup. 1471 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1472 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1473 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1474 continue; 1475 RecVec CheckUnits = 1476 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1477 for (unsigned j = i+1; j < e; ++j) { 1478 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1479 continue; 1480 RecVec OtherUnits = 1481 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1482 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1483 OtherUnits.begin(), OtherUnits.end()) 1484 != CheckUnits.end()) { 1485 // CheckUnits and OtherUnits overlap 1486 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1487 CheckUnits.end()); 1488 if (!hasSuperGroup(OtherUnits, PM)) { 1489 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1490 "proc resource group overlaps with " 1491 + PM.ProcResourceDefs[j]->getName() 1492 + " but no supergroup contains both."); 1493 } 1494 } 1495 } 1496 } 1497 } 1498 1499 // Collect all the RegisterFile definitions available in this target. 1500 void CodeGenSchedModels::collectRegisterFiles() { 1501 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1502 1503 // RegisterFiles is the vector of CodeGenRegisterFile. 1504 for (Record *RF : RegisterFileDefs) { 1505 // For each register file definition, construct a CodeGenRegisterFile object 1506 // and add it to the appropriate scheduling model. 1507 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1508 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1509 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1510 1511 // Now set the number of physical registers as well as the cost of registers 1512 // in each register class. 1513 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1514 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1515 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1516 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1517 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1518 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1519 } 1520 } 1521 } 1522 1523 // Collect all the RegisterFile definitions available in this target. 1524 void CodeGenSchedModels::collectPfmCounters() { 1525 for (Record *Def : Records.getAllDerivedDefinitions("PfmIssueCounter")) { 1526 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1527 PM.PfmIssueCounterDefs.emplace_back(Def); 1528 } 1529 for (Record *Def : Records.getAllDerivedDefinitions("PfmCycleCounter")) { 1530 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1531 if (PM.PfmCycleCounterDef) { 1532 PrintFatalError(Def->getLoc(), 1533 "multiple cycle counters for " + 1534 Def->getValueAsDef("SchedModel")->getName()); 1535 } 1536 PM.PfmCycleCounterDef = Def; 1537 } 1538 } 1539 1540 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1541 void CodeGenSchedModels::collectProcResources() { 1542 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1543 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1544 1545 // Add any subtarget-specific SchedReadWrites that are directly associated 1546 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1547 // determine which processors they apply to. 1548 for (const CodeGenSchedClass &SC : 1549 make_range(schedClassBegin(), schedClassEnd())) { 1550 if (SC.ItinClassDef) { 1551 collectItinProcResources(SC.ItinClassDef); 1552 continue; 1553 } 1554 1555 // This class may have a default ReadWrite list which can be overriden by 1556 // InstRW definitions. 1557 for (Record *RW : SC.InstRWs) { 1558 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1559 unsigned PIdx = getProcModel(RWModelDef).Index; 1560 IdxVec Writes, Reads; 1561 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1562 collectRWResources(Writes, Reads, PIdx); 1563 } 1564 1565 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); 1566 } 1567 // Add resources separately defined by each subtarget. 1568 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1569 for (Record *WR : WRDefs) { 1570 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1571 addWriteRes(WR, getProcModel(ModelDef).Index); 1572 } 1573 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1574 for (Record *SWR : SWRDefs) { 1575 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1576 addWriteRes(SWR, getProcModel(ModelDef).Index); 1577 } 1578 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1579 for (Record *RA : RADefs) { 1580 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1581 addReadAdvance(RA, getProcModel(ModelDef).Index); 1582 } 1583 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1584 for (Record *SRA : SRADefs) { 1585 if (SRA->getValueInit("SchedModel")->isComplete()) { 1586 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1587 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1588 } 1589 } 1590 // Add ProcResGroups that are defined within this processor model, which may 1591 // not be directly referenced but may directly specify a buffer size. 1592 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1593 for (Record *PRG : ProcResGroups) { 1594 if (!PRG->getValueInit("SchedModel")->isComplete()) 1595 continue; 1596 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1597 if (!is_contained(PM.ProcResourceDefs, PRG)) 1598 PM.ProcResourceDefs.push_back(PRG); 1599 } 1600 // Add ProcResourceUnits unconditionally. 1601 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1602 if (!PRU->getValueInit("SchedModel")->isComplete()) 1603 continue; 1604 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1605 if (!is_contained(PM.ProcResourceDefs, PRU)) 1606 PM.ProcResourceDefs.push_back(PRU); 1607 } 1608 // Finalize each ProcModel by sorting the record arrays. 1609 for (CodeGenProcModel &PM : ProcModels) { 1610 llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1611 LessRecord()); 1612 llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1613 LessRecord()); 1614 llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1615 LessRecord()); 1616 DEBUG( 1617 PM.dump(); 1618 dbgs() << "WriteResDefs: "; 1619 for (RecIter RI = PM.WriteResDefs.begin(), 1620 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1621 if ((*RI)->isSubClassOf("WriteRes")) 1622 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1623 else 1624 dbgs() << (*RI)->getName() << " "; 1625 } 1626 dbgs() << "\nReadAdvanceDefs: "; 1627 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1628 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1629 if ((*RI)->isSubClassOf("ReadAdvance")) 1630 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1631 else 1632 dbgs() << (*RI)->getName() << " "; 1633 } 1634 dbgs() << "\nProcResourceDefs: "; 1635 for (RecIter RI = PM.ProcResourceDefs.begin(), 1636 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1637 dbgs() << (*RI)->getName() << " "; 1638 } 1639 dbgs() << '\n'); 1640 verifyProcResourceGroups(PM); 1641 } 1642 1643 ProcResourceDefs.clear(); 1644 ProcResGroups.clear(); 1645 } 1646 1647 void CodeGenSchedModels::checkCompleteness() { 1648 bool Complete = true; 1649 bool HadCompleteModel = false; 1650 for (const CodeGenProcModel &ProcModel : procModels()) { 1651 const bool HasItineraries = ProcModel.hasItineraries(); 1652 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1653 continue; 1654 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1655 if (Inst->hasNoSchedulingInfo) 1656 continue; 1657 if (ProcModel.isUnsupported(*Inst)) 1658 continue; 1659 unsigned SCIdx = getSchedClassIdx(*Inst); 1660 if (!SCIdx) { 1661 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1662 PrintError("No schedule information for instruction '" 1663 + Inst->TheDef->getName() + "'"); 1664 Complete = false; 1665 } 1666 continue; 1667 } 1668 1669 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1670 if (!SC.Writes.empty()) 1671 continue; 1672 if (HasItineraries && SC.ItinClassDef != nullptr && 1673 SC.ItinClassDef->getName() != "NoItinerary") 1674 continue; 1675 1676 const RecVec &InstRWs = SC.InstRWs; 1677 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1678 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1679 }); 1680 if (I == InstRWs.end()) { 1681 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1682 Inst->TheDef->getName() + "'"); 1683 Complete = false; 1684 } 1685 } 1686 HadCompleteModel = true; 1687 } 1688 if (!Complete) { 1689 errs() << "\n\nIncomplete schedule models found.\n" 1690 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1691 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1692 << "- Instructions should usually have Sched<[...]> as a superclass, " 1693 "you may temporarily use an empty list.\n" 1694 << "- Instructions related to unsupported features can be excluded with " 1695 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1696 "processor model.\n\n"; 1697 PrintFatalError("Incomplete schedule model"); 1698 } 1699 } 1700 1701 // Collect itinerary class resources for each processor. 1702 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1703 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1704 const CodeGenProcModel &PM = ProcModels[PIdx]; 1705 // For all ItinRW entries. 1706 bool HasMatch = false; 1707 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1708 II != IE; ++II) { 1709 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1710 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1711 continue; 1712 if (HasMatch) 1713 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1714 + ItinClassDef->getName() 1715 + " in ItinResources for " + PM.ModelName); 1716 HasMatch = true; 1717 IdxVec Writes, Reads; 1718 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1719 collectRWResources(Writes, Reads, PIdx); 1720 } 1721 } 1722 } 1723 1724 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1725 ArrayRef<unsigned> ProcIndices) { 1726 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1727 if (SchedRW.TheDef) { 1728 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1729 for (unsigned Idx : ProcIndices) 1730 addWriteRes(SchedRW.TheDef, Idx); 1731 } 1732 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1733 for (unsigned Idx : ProcIndices) 1734 addReadAdvance(SchedRW.TheDef, Idx); 1735 } 1736 } 1737 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1738 AI != AE; ++AI) { 1739 IdxVec AliasProcIndices; 1740 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1741 AliasProcIndices.push_back( 1742 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1743 } 1744 else 1745 AliasProcIndices = ProcIndices; 1746 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1747 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1748 1749 IdxVec ExpandedRWs; 1750 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1751 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1752 SI != SE; ++SI) { 1753 collectRWResources(*SI, IsRead, AliasProcIndices); 1754 } 1755 } 1756 } 1757 1758 // Collect resources for a set of read/write types and processor indices. 1759 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1760 ArrayRef<unsigned> Reads, 1761 ArrayRef<unsigned> ProcIndices) { 1762 for (unsigned Idx : Writes) 1763 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1764 1765 for (unsigned Idx : Reads) 1766 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1767 } 1768 1769 // Find the processor's resource units for this kind of resource. 1770 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1771 const CodeGenProcModel &PM, 1772 ArrayRef<SMLoc> Loc) const { 1773 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1774 return ProcResKind; 1775 1776 Record *ProcUnitDef = nullptr; 1777 assert(!ProcResourceDefs.empty()); 1778 assert(!ProcResGroups.empty()); 1779 1780 for (Record *ProcResDef : ProcResourceDefs) { 1781 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1782 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1783 if (ProcUnitDef) { 1784 PrintFatalError(Loc, 1785 "Multiple ProcessorResourceUnits associated with " 1786 + ProcResKind->getName()); 1787 } 1788 ProcUnitDef = ProcResDef; 1789 } 1790 } 1791 for (Record *ProcResGroup : ProcResGroups) { 1792 if (ProcResGroup == ProcResKind 1793 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1794 if (ProcUnitDef) { 1795 PrintFatalError(Loc, 1796 "Multiple ProcessorResourceUnits associated with " 1797 + ProcResKind->getName()); 1798 } 1799 ProcUnitDef = ProcResGroup; 1800 } 1801 } 1802 if (!ProcUnitDef) { 1803 PrintFatalError(Loc, 1804 "No ProcessorResources associated with " 1805 + ProcResKind->getName()); 1806 } 1807 return ProcUnitDef; 1808 } 1809 1810 // Iteratively add a resource and its super resources. 1811 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1812 CodeGenProcModel &PM, 1813 ArrayRef<SMLoc> Loc) { 1814 while (true) { 1815 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1816 1817 // See if this ProcResource is already associated with this processor. 1818 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1819 return; 1820 1821 PM.ProcResourceDefs.push_back(ProcResUnits); 1822 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1823 return; 1824 1825 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1826 return; 1827 1828 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1829 } 1830 } 1831 1832 // Add resources for a SchedWrite to this processor if they don't exist. 1833 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1834 assert(PIdx && "don't add resources to an invalid Processor model"); 1835 1836 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1837 if (is_contained(WRDefs, ProcWriteResDef)) 1838 return; 1839 WRDefs.push_back(ProcWriteResDef); 1840 1841 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1842 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1843 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1844 WritePRI != WritePRE; ++WritePRI) { 1845 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1846 } 1847 } 1848 1849 // Add resources for a ReadAdvance to this processor if they don't exist. 1850 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1851 unsigned PIdx) { 1852 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1853 if (is_contained(RADefs, ProcReadAdvanceDef)) 1854 return; 1855 RADefs.push_back(ProcReadAdvanceDef); 1856 } 1857 1858 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1859 RecIter PRPos = find(ProcResourceDefs, PRDef); 1860 if (PRPos == ProcResourceDefs.end()) 1861 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1862 "the ProcResources list for " + ModelName); 1863 // Idx=0 is reserved for invalid. 1864 return 1 + (PRPos - ProcResourceDefs.begin()); 1865 } 1866 1867 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1868 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1869 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1870 if (TheDef->getName() == PredDef->getName()) 1871 return true; 1872 } 1873 } 1874 return false; 1875 } 1876 1877 #ifndef NDEBUG 1878 void CodeGenProcModel::dump() const { 1879 dbgs() << Index << ": " << ModelName << " " 1880 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1881 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1882 } 1883 1884 void CodeGenSchedRW::dump() const { 1885 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1886 if (IsSequence) { 1887 dbgs() << "("; 1888 dumpIdxVec(Sequence); 1889 dbgs() << ")"; 1890 } 1891 } 1892 1893 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1894 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1895 << " Writes: "; 1896 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1897 SchedModels->getSchedWrite(Writes[i]).dump(); 1898 if (i < N-1) { 1899 dbgs() << '\n'; 1900 dbgs().indent(10); 1901 } 1902 } 1903 dbgs() << "\n Reads: "; 1904 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1905 SchedModels->getSchedRead(Reads[i]).dump(); 1906 if (i < N-1) { 1907 dbgs() << '\n'; 1908 dbgs().indent(10); 1909 } 1910 } 1911 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1912 if (!Transitions.empty()) { 1913 dbgs() << "\n Transitions for Proc "; 1914 for (const CodeGenSchedTransition &Transition : Transitions) { 1915 dumpIdxVec(Transition.ProcIndices); 1916 } 1917 } 1918 } 1919 1920 void PredTransitions::dump() const { 1921 dbgs() << "Expanded Variants:\n"; 1922 for (std::vector<PredTransition>::const_iterator 1923 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1924 dbgs() << "{"; 1925 for (SmallVectorImpl<PredCheck>::const_iterator 1926 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1927 PCI != PCE; ++PCI) { 1928 if (PCI != TI->PredTerm.begin()) 1929 dbgs() << ", "; 1930 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1931 << ":" << PCI->Predicate->getName(); 1932 } 1933 dbgs() << "},\n => {"; 1934 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1935 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1936 WSI != WSE; ++WSI) { 1937 dbgs() << "("; 1938 for (SmallVectorImpl<unsigned>::const_iterator 1939 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1940 if (WI != WSI->begin()) 1941 dbgs() << ", "; 1942 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1943 } 1944 dbgs() << "),"; 1945 } 1946 dbgs() << "}\n"; 1947 } 1948 } 1949 #endif // NDEBUG 1950