1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Regex.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include <algorithm> 28 #include <iterator> 29 #include <utility> 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "subtarget-emitter" 34 35 #ifndef NDEBUG 36 static void dumpIdxVec(ArrayRef<unsigned> V) { 37 for (unsigned Idx : V) 38 dbgs() << Idx << ", "; 39 } 40 #endif 41 42 namespace { 43 44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 45 struct InstrsOp : public SetTheory::Operator { 46 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 47 ArrayRef<SMLoc> Loc) override { 48 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 49 } 50 }; 51 52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 53 struct InstRegexOp : public SetTheory::Operator { 54 const CodeGenTarget &Target; 55 InstRegexOp(const CodeGenTarget &t): Target(t) {} 56 57 /// Remove any text inside of parentheses from S. 58 static std::string removeParens(llvm::StringRef S) { 59 std::string Result; 60 unsigned Paren = 0; 61 // NB: We don't care about escaped parens here. 62 for (char C : S) { 63 switch (C) { 64 case '(': 65 ++Paren; 66 break; 67 case ')': 68 --Paren; 69 break; 70 default: 71 if (Paren == 0) 72 Result += C; 73 } 74 } 75 return Result; 76 } 77 78 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 79 ArrayRef<SMLoc> Loc) override { 80 SmallVector<std::pair<StringRef, Optional<Regex>>, 4> RegexList; 81 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 82 StringInit *SI = dyn_cast<StringInit>(Arg); 83 if (!SI) 84 PrintFatalError(Loc, "instregex requires pattern string: " + 85 Expr->getAsString()); 86 // Extract a prefix that we can binary search on. 87 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 88 auto FirstMeta = SI->getValue().find_first_of(RegexMetachars); 89 // Look for top-level | or ?. We cannot optimize them to binary search. 90 if (removeParens(SI->getValue()).find_first_of("|?") != std::string::npos) 91 FirstMeta = 0; 92 StringRef Prefix = SI->getValue().substr(0, FirstMeta); 93 std::string pat = SI->getValue().substr(FirstMeta); 94 if (pat.empty()) { 95 RegexList.push_back(std::make_pair(Prefix, None)); 96 continue; 97 } 98 // For the rest use a python-style prefix match. 99 if (pat[0] != '^') { 100 pat.insert(0, "^("); 101 pat.insert(pat.end(), ')'); 102 } 103 RegexList.push_back(std::make_pair(Prefix, Regex(pat))); 104 } 105 for (auto &R : RegexList) { 106 unsigned NumGeneric = Target.getNumFixedInstructions(); 107 // The generic opcodes are unsorted, handle them manually. 108 for (auto *Inst : 109 Target.getInstructionsByEnumValue().slice(0, NumGeneric + 1)) { 110 if (Inst->TheDef->getName().startswith(R.first) && 111 (!R.second || 112 R.second->match(Inst->TheDef->getName().substr(R.first.size())))) 113 Elts.insert(Inst->TheDef); 114 } 115 116 ArrayRef<const CodeGenInstruction *> Instructions = 117 Target.getInstructionsByEnumValue().slice(NumGeneric + 1); 118 119 // Target instructions are sorted. Find the range that starts with our 120 // prefix. 121 struct Comp { 122 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 123 return LHS->TheDef->getName() < RHS; 124 } 125 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 126 return LHS < RHS->TheDef->getName() && 127 !RHS->TheDef->getName().startswith(LHS); 128 } 129 }; 130 auto Range = std::equal_range(Instructions.begin(), Instructions.end(), 131 R.first, Comp()); 132 133 // For this range we know that it starts with the prefix. Check if there's 134 // a regex that needs to be checked. 135 for (auto *Inst : make_range(Range)) { 136 if (!R.second || 137 R.second->match(Inst->TheDef->getName().substr(R.first.size()))) 138 Elts.insert(Inst->TheDef); 139 } 140 } 141 } 142 }; 143 144 } // end anonymous namespace 145 146 /// CodeGenModels ctor interprets machine model records and populates maps. 147 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 148 const CodeGenTarget &TGT): 149 Records(RK), Target(TGT) { 150 151 Sets.addFieldExpander("InstRW", "Instrs"); 152 153 // Allow Set evaluation to recognize the dags used in InstRW records: 154 // (instrs Op1, Op1...) 155 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 156 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 157 158 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 159 // that are explicitly referenced in tablegen records. Resources associated 160 // with each processor will be derived later. Populate ProcModelMap with the 161 // CodeGenProcModel instances. 162 collectProcModels(); 163 164 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 165 // defined, and populate SchedReads and SchedWrites vectors. Implicit 166 // SchedReadWrites that represent sequences derived from expanded variant will 167 // be inferred later. 168 collectSchedRW(); 169 170 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 171 // required by an instruction definition, and populate SchedClassIdxMap. Set 172 // NumItineraryClasses to the number of explicit itinerary classes referenced 173 // by instructions. Set NumInstrSchedClasses to the number of itinerary 174 // classes plus any classes implied by instructions that derive from class 175 // Sched and provide SchedRW list. This does not infer any new classes from 176 // SchedVariant. 177 collectSchedClasses(); 178 179 // Find instruction itineraries for each processor. Sort and populate 180 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 181 // all itinerary classes to be discovered. 182 collectProcItins(); 183 184 // Find ItinRW records for each processor and itinerary class. 185 // (For per-operand resources mapped to itinerary classes). 186 collectProcItinRW(); 187 188 // Find UnsupportedFeatures records for each processor. 189 // (For per-operand resources mapped to itinerary classes). 190 collectProcUnsupportedFeatures(); 191 192 // Infer new SchedClasses from SchedVariant. 193 inferSchedClasses(); 194 195 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 196 // ProcResourceDefs. 197 DEBUG(dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 198 collectProcResources(); 199 200 checkCompleteness(); 201 } 202 203 /// Gather all processor models. 204 void CodeGenSchedModels::collectProcModels() { 205 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 206 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 207 208 // Reserve space because we can. Reallocation would be ok. 209 ProcModels.reserve(ProcRecords.size()+1); 210 211 // Use idx=0 for NoModel/NoItineraries. 212 Record *NoModelDef = Records.getDef("NoSchedModel"); 213 Record *NoItinsDef = Records.getDef("NoItineraries"); 214 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 215 ProcModelMap[NoModelDef] = 0; 216 217 // For each processor, find a unique machine model. 218 DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 219 for (Record *ProcRecord : ProcRecords) 220 addProcModel(ProcRecord); 221 } 222 223 /// Get a unique processor model based on the defined MachineModel and 224 /// ProcessorItineraries. 225 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 226 Record *ModelKey = getModelOrItinDef(ProcDef); 227 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 228 return; 229 230 std::string Name = ModelKey->getName(); 231 if (ModelKey->isSubClassOf("SchedMachineModel")) { 232 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 233 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 234 } 235 else { 236 // An itinerary is defined without a machine model. Infer a new model. 237 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 238 Name = Name + "Model"; 239 ProcModels.emplace_back(ProcModels.size(), Name, 240 ProcDef->getValueAsDef("SchedModel"), ModelKey); 241 } 242 DEBUG(ProcModels.back().dump()); 243 } 244 245 // Recursively find all reachable SchedReadWrite records. 246 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 247 SmallPtrSet<Record*, 16> &RWSet) { 248 if (!RWSet.insert(RWDef).second) 249 return; 250 RWDefs.push_back(RWDef); 251 // Reads don't currently have sequence records, but it can be added later. 252 if (RWDef->isSubClassOf("WriteSequence")) { 253 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 254 for (Record *WSRec : Seq) 255 scanSchedRW(WSRec, RWDefs, RWSet); 256 } 257 else if (RWDef->isSubClassOf("SchedVariant")) { 258 // Visit each variant (guarded by a different predicate). 259 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 260 for (Record *Variant : Vars) { 261 // Visit each RW in the sequence selected by the current variant. 262 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 263 for (Record *SelDef : Selected) 264 scanSchedRW(SelDef, RWDefs, RWSet); 265 } 266 } 267 } 268 269 // Collect and sort all SchedReadWrites reachable via tablegen records. 270 // More may be inferred later when inferring new SchedClasses from variants. 271 void CodeGenSchedModels::collectSchedRW() { 272 // Reserve idx=0 for invalid writes/reads. 273 SchedWrites.resize(1); 274 SchedReads.resize(1); 275 276 SmallPtrSet<Record*, 16> RWSet; 277 278 // Find all SchedReadWrites referenced by instruction defs. 279 RecVec SWDefs, SRDefs; 280 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 281 Record *SchedDef = Inst->TheDef; 282 if (SchedDef->isValueUnset("SchedRW")) 283 continue; 284 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 285 for (Record *RW : RWs) { 286 if (RW->isSubClassOf("SchedWrite")) 287 scanSchedRW(RW, SWDefs, RWSet); 288 else { 289 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 290 scanSchedRW(RW, SRDefs, RWSet); 291 } 292 } 293 } 294 // Find all ReadWrites referenced by InstRW. 295 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 296 for (Record *InstRWDef : InstRWDefs) { 297 // For all OperandReadWrites. 298 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 299 for (Record *RWDef : RWDefs) { 300 if (RWDef->isSubClassOf("SchedWrite")) 301 scanSchedRW(RWDef, SWDefs, RWSet); 302 else { 303 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 304 scanSchedRW(RWDef, SRDefs, RWSet); 305 } 306 } 307 } 308 // Find all ReadWrites referenced by ItinRW. 309 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 310 for (Record *ItinRWDef : ItinRWDefs) { 311 // For all OperandReadWrites. 312 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 313 for (Record *RWDef : RWDefs) { 314 if (RWDef->isSubClassOf("SchedWrite")) 315 scanSchedRW(RWDef, SWDefs, RWSet); 316 else { 317 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 318 scanSchedRW(RWDef, SRDefs, RWSet); 319 } 320 } 321 } 322 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 323 // for the loop below that initializes Alias vectors. 324 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 325 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 326 for (Record *ADef : AliasDefs) { 327 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 328 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 329 if (MatchDef->isSubClassOf("SchedWrite")) { 330 if (!AliasDef->isSubClassOf("SchedWrite")) 331 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 332 scanSchedRW(AliasDef, SWDefs, RWSet); 333 } 334 else { 335 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 336 if (!AliasDef->isSubClassOf("SchedRead")) 337 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 338 scanSchedRW(AliasDef, SRDefs, RWSet); 339 } 340 } 341 // Sort and add the SchedReadWrites directly referenced by instructions or 342 // itinerary resources. Index reads and writes in separate domains. 343 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 344 for (Record *SWDef : SWDefs) { 345 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 346 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 347 } 348 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 349 for (Record *SRDef : SRDefs) { 350 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 351 SchedReads.emplace_back(SchedReads.size(), SRDef); 352 } 353 // Initialize WriteSequence vectors. 354 for (CodeGenSchedRW &CGRW : SchedWrites) { 355 if (!CGRW.IsSequence) 356 continue; 357 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 358 /*IsRead=*/false); 359 } 360 // Initialize Aliases vectors. 361 for (Record *ADef : AliasDefs) { 362 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 363 getSchedRW(AliasDef).IsAlias = true; 364 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 365 CodeGenSchedRW &RW = getSchedRW(MatchDef); 366 if (RW.IsAlias) 367 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 368 RW.Aliases.push_back(ADef); 369 } 370 DEBUG( 371 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 372 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 373 dbgs() << WIdx << ": "; 374 SchedWrites[WIdx].dump(); 375 dbgs() << '\n'; 376 } 377 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 378 dbgs() << RIdx << ": "; 379 SchedReads[RIdx].dump(); 380 dbgs() << '\n'; 381 } 382 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 383 for (Record *RWDef : RWDefs) { 384 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 385 const std::string &Name = RWDef->getName(); 386 if (Name != "NoWrite" && Name != "ReadDefault") 387 dbgs() << "Unused SchedReadWrite " << RWDef->getName() << '\n'; 388 } 389 }); 390 } 391 392 /// Compute a SchedWrite name from a sequence of writes. 393 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 394 std::string Name("("); 395 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 396 if (I != Seq.begin()) 397 Name += '_'; 398 Name += getSchedRW(*I, IsRead).Name; 399 } 400 Name += ')'; 401 return Name; 402 } 403 404 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 405 unsigned After) const { 406 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 407 assert(After < RWVec.size() && "start position out of bounds"); 408 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 409 E = RWVec.end(); I != E; ++I) { 410 if (I->TheDef == Def) 411 return I - RWVec.begin(); 412 } 413 return 0; 414 } 415 416 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 417 for (const CodeGenSchedRW &Read : SchedReads) { 418 Record *ReadDef = Read.TheDef; 419 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 420 continue; 421 422 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 423 if (is_contained(ValidWrites, WriteDef)) { 424 return true; 425 } 426 } 427 return false; 428 } 429 430 namespace llvm { 431 432 void splitSchedReadWrites(const RecVec &RWDefs, 433 RecVec &WriteDefs, RecVec &ReadDefs) { 434 for (Record *RWDef : RWDefs) { 435 if (RWDef->isSubClassOf("SchedWrite")) 436 WriteDefs.push_back(RWDef); 437 else { 438 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 439 ReadDefs.push_back(RWDef); 440 } 441 } 442 } 443 444 } // end namespace llvm 445 446 // Split the SchedReadWrites defs and call findRWs for each list. 447 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 448 IdxVec &Writes, IdxVec &Reads) const { 449 RecVec WriteDefs; 450 RecVec ReadDefs; 451 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 452 findRWs(WriteDefs, Writes, false); 453 findRWs(ReadDefs, Reads, true); 454 } 455 456 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 457 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 458 bool IsRead) const { 459 for (Record *RWDef : RWDefs) { 460 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 461 assert(Idx && "failed to collect SchedReadWrite"); 462 RWs.push_back(Idx); 463 } 464 } 465 466 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 467 bool IsRead) const { 468 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 469 if (!SchedRW.IsSequence) { 470 RWSeq.push_back(RWIdx); 471 return; 472 } 473 int Repeat = 474 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 475 for (int i = 0; i < Repeat; ++i) { 476 for (unsigned I : SchedRW.Sequence) { 477 expandRWSequence(I, RWSeq, IsRead); 478 } 479 } 480 } 481 482 // Expand a SchedWrite as a sequence following any aliases that coincide with 483 // the given processor model. 484 void CodeGenSchedModels::expandRWSeqForProc( 485 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 486 const CodeGenProcModel &ProcModel) const { 487 488 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 489 Record *AliasDef = nullptr; 490 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 491 AI != AE; ++AI) { 492 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 493 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 494 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 495 if (&getProcModel(ModelDef) != &ProcModel) 496 continue; 497 } 498 if (AliasDef) 499 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 500 "defined for processor " + ProcModel.ModelName + 501 " Ensure only one SchedAlias exists per RW."); 502 AliasDef = AliasRW.TheDef; 503 } 504 if (AliasDef) { 505 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 506 RWSeq, IsRead,ProcModel); 507 return; 508 } 509 if (!SchedWrite.IsSequence) { 510 RWSeq.push_back(RWIdx); 511 return; 512 } 513 int Repeat = 514 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 515 for (int i = 0; i < Repeat; ++i) { 516 for (unsigned I : SchedWrite.Sequence) { 517 expandRWSeqForProc(I, RWSeq, IsRead, ProcModel); 518 } 519 } 520 } 521 522 // Find the existing SchedWrite that models this sequence of writes. 523 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 524 bool IsRead) { 525 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 526 527 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 528 I != E; ++I) { 529 if (makeArrayRef(I->Sequence) == Seq) 530 return I - RWVec.begin(); 531 } 532 // Index zero reserved for invalid RW. 533 return 0; 534 } 535 536 /// Add this ReadWrite if it doesn't already exist. 537 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 538 bool IsRead) { 539 assert(!Seq.empty() && "cannot insert empty sequence"); 540 if (Seq.size() == 1) 541 return Seq.back(); 542 543 unsigned Idx = findRWForSequence(Seq, IsRead); 544 if (Idx) 545 return Idx; 546 547 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 548 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 549 if (IsRead) 550 SchedReads.push_back(SchedRW); 551 else 552 SchedWrites.push_back(SchedRW); 553 return RWIdx; 554 } 555 556 /// Visit all the instruction definitions for this target to gather and 557 /// enumerate the itinerary classes. These are the explicitly specified 558 /// SchedClasses. More SchedClasses may be inferred. 559 void CodeGenSchedModels::collectSchedClasses() { 560 561 // NoItinerary is always the first class at Idx=0 562 SchedClasses.resize(1); 563 SchedClasses.back().Index = 0; 564 SchedClasses.back().Name = "NoInstrModel"; 565 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 566 SchedClasses.back().ProcIndices.push_back(0); 567 568 // Create a SchedClass for each unique combination of itinerary class and 569 // SchedRW list. 570 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 571 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 572 IdxVec Writes, Reads; 573 if (!Inst->TheDef->isValueUnset("SchedRW")) 574 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 575 576 // ProcIdx == 0 indicates the class applies to all processors. 577 IdxVec ProcIndices(1, 0); 578 579 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 580 InstrClassMap[Inst->TheDef] = SCIdx; 581 } 582 // Create classes for InstRW defs. 583 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 584 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 585 DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 586 for (Record *RWDef : InstRWDefs) 587 createInstRWClass(RWDef); 588 589 NumInstrSchedClasses = SchedClasses.size(); 590 591 bool EnableDump = false; 592 DEBUG(EnableDump = true); 593 if (!EnableDump) 594 return; 595 596 dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"; 597 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 598 StringRef InstName = Inst->TheDef->getName(); 599 unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); 600 if (!SCIdx) { 601 if (!Inst->hasNoSchedulingInfo) 602 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 603 continue; 604 } 605 CodeGenSchedClass &SC = getSchedClass(SCIdx); 606 if (SC.ProcIndices[0] != 0) 607 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 608 "must not be subtarget specific."); 609 610 IdxVec ProcIndices; 611 if (SC.ItinClassDef->getName() != "NoItinerary") { 612 ProcIndices.push_back(0); 613 dbgs() << "Itinerary for " << InstName << ": " 614 << SC.ItinClassDef->getName() << '\n'; 615 } 616 if (!SC.Writes.empty()) { 617 ProcIndices.push_back(0); 618 dbgs() << "SchedRW machine model for " << InstName; 619 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 620 dbgs() << " " << SchedWrites[*WI].Name; 621 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 622 dbgs() << " " << SchedReads[*RI].Name; 623 dbgs() << '\n'; 624 } 625 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 626 for (Record *RWDef : RWDefs) { 627 const CodeGenProcModel &ProcModel = 628 getProcModel(RWDef->getValueAsDef("SchedModel")); 629 ProcIndices.push_back(ProcModel.Index); 630 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 631 IdxVec Writes; 632 IdxVec Reads; 633 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 634 Writes, Reads); 635 for (unsigned WIdx : Writes) 636 dbgs() << " " << SchedWrites[WIdx].Name; 637 for (unsigned RIdx : Reads) 638 dbgs() << " " << SchedReads[RIdx].Name; 639 dbgs() << '\n'; 640 } 641 // If ProcIndices contains zero, the class applies to all processors. 642 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 643 for (const CodeGenProcModel &PM : ProcModels) { 644 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 645 dbgs() << "No machine model for " << Inst->TheDef->getName() 646 << " on processor " << PM.ModelName << '\n'; 647 } 648 } 649 } 650 } 651 652 /// Find an SchedClass that has been inferred from a per-operand list of 653 /// SchedWrites and SchedReads. 654 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 655 ArrayRef<unsigned> Writes, 656 ArrayRef<unsigned> Reads) const { 657 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 658 if (I->ItinClassDef == ItinClassDef && makeArrayRef(I->Writes) == Writes && 659 makeArrayRef(I->Reads) == Reads) { 660 return I - schedClassBegin(); 661 } 662 } 663 return 0; 664 } 665 666 // Get the SchedClass index for an instruction. 667 unsigned CodeGenSchedModels::getSchedClassIdx( 668 const CodeGenInstruction &Inst) const { 669 670 return InstrClassMap.lookup(Inst.TheDef); 671 } 672 673 std::string 674 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 675 ArrayRef<unsigned> OperWrites, 676 ArrayRef<unsigned> OperReads) { 677 678 std::string Name; 679 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 680 Name = ItinClassDef->getName(); 681 for (unsigned Idx : OperWrites) { 682 if (!Name.empty()) 683 Name += '_'; 684 Name += SchedWrites[Idx].Name; 685 } 686 for (unsigned Idx : OperReads) { 687 Name += '_'; 688 Name += SchedReads[Idx].Name; 689 } 690 return Name; 691 } 692 693 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 694 695 std::string Name; 696 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 697 if (I != InstDefs.begin()) 698 Name += '_'; 699 Name += (*I)->getName(); 700 } 701 return Name; 702 } 703 704 /// Add an inferred sched class from an itinerary class and per-operand list of 705 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 706 /// processors that may utilize this class. 707 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 708 ArrayRef<unsigned> OperWrites, 709 ArrayRef<unsigned> OperReads, 710 ArrayRef<unsigned> ProcIndices) { 711 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 712 713 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 714 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 715 IdxVec PI; 716 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 717 SchedClasses[Idx].ProcIndices.end(), 718 ProcIndices.begin(), ProcIndices.end(), 719 std::back_inserter(PI)); 720 SchedClasses[Idx].ProcIndices.swap(PI); 721 return Idx; 722 } 723 Idx = SchedClasses.size(); 724 SchedClasses.resize(Idx+1); 725 CodeGenSchedClass &SC = SchedClasses.back(); 726 SC.Index = Idx; 727 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 728 SC.ItinClassDef = ItinClassDef; 729 SC.Writes = OperWrites; 730 SC.Reads = OperReads; 731 SC.ProcIndices = ProcIndices; 732 733 return Idx; 734 } 735 736 // Create classes for each set of opcodes that are in the same InstReadWrite 737 // definition across all processors. 738 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 739 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 740 // intersects with an existing class via a previous InstRWDef. Instrs that do 741 // not intersect with an existing class refer back to their former class as 742 // determined from ItinDef or SchedRW. 743 SmallVector<std::pair<unsigned, SmallVector<Record *, 8>>, 4> ClassInstrs; 744 // Sort Instrs into sets. 745 const RecVec *InstDefs = Sets.expand(InstRWDef); 746 if (InstDefs->empty()) 747 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 748 749 for (Record *InstDef : *InstDefs) { 750 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 751 if (Pos == InstrClassMap.end()) 752 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 753 unsigned SCIdx = Pos->second; 754 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 755 for (; CIdx != CEnd; ++CIdx) { 756 if (ClassInstrs[CIdx].first == SCIdx) 757 break; 758 } 759 if (CIdx == CEnd) { 760 ClassInstrs.resize(CEnd + 1); 761 ClassInstrs[CIdx].first = SCIdx; 762 } 763 ClassInstrs[CIdx].second.push_back(InstDef); 764 } 765 // For each set of Instrs, create a new class if necessary, and map or remap 766 // the Instrs to it. 767 for (unsigned CIdx = 0, CEnd = ClassInstrs.size(); CIdx != CEnd; ++CIdx) { 768 unsigned OldSCIdx = ClassInstrs[CIdx].first; 769 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 770 // If the all instrs in the current class are accounted for, then leave 771 // them mapped to their old class. 772 if (OldSCIdx) { 773 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 774 if (!RWDefs.empty()) { 775 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 776 unsigned OrigNumInstrs = 0; 777 for (Record *OIDef : *OrigInstDefs) { 778 if (InstrClassMap[OIDef] == OldSCIdx) 779 ++OrigNumInstrs; 780 } 781 if (OrigNumInstrs == InstDefs.size()) { 782 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 783 "expected a generic SchedClass"); 784 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 785 // Make sure we didn't already have a InstRW containing this 786 // instruction on this model. 787 for (Record *RWD : RWDefs) { 788 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 789 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 790 for (Record *Inst : InstDefs) { 791 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 792 Inst->getName() + " also matches " + 793 RWD->getValue("Instrs")->getValue()->getAsString()); 794 } 795 } 796 } 797 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 798 << SchedClasses[OldSCIdx].Name << " on " 799 << RWModelDef->getName() << "\n"); 800 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 801 continue; 802 } 803 } 804 } 805 unsigned SCIdx = SchedClasses.size(); 806 SchedClasses.resize(SCIdx+1); 807 CodeGenSchedClass &SC = SchedClasses.back(); 808 SC.Index = SCIdx; 809 SC.Name = createSchedClassName(InstDefs); 810 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 811 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 812 813 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 814 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 815 SC.Writes = SchedClasses[OldSCIdx].Writes; 816 SC.Reads = SchedClasses[OldSCIdx].Reads; 817 SC.ProcIndices.push_back(0); 818 // Map each Instr to this new class. 819 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 820 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 821 SmallSet<unsigned, 4> RemappedClassIDs; 822 for (ArrayRef<Record*>::const_iterator 823 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 824 unsigned OldSCIdx = InstrClassMap[*II]; 825 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { 826 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 827 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 828 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 829 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 830 (*II)->getName() + " also matches " + 831 (*RI)->getValue("Instrs")->getValue()->getAsString()); 832 } 833 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 834 SC.InstRWs.push_back(*RI); 835 } 836 } 837 InstrClassMap[*II] = SCIdx; 838 } 839 SC.InstRWs.push_back(InstRWDef); 840 } 841 } 842 843 // True if collectProcItins found anything. 844 bool CodeGenSchedModels::hasItineraries() const { 845 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) { 846 if (PM.hasItineraries()) 847 return true; 848 } 849 return false; 850 } 851 852 // Gather the processor itineraries. 853 void CodeGenSchedModels::collectProcItins() { 854 DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 855 for (CodeGenProcModel &ProcModel : ProcModels) { 856 if (!ProcModel.hasItineraries()) 857 continue; 858 859 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 860 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 861 862 // Populate ItinDefList with Itinerary records. 863 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 864 865 // Insert each itinerary data record in the correct position within 866 // the processor model's ItinDefList. 867 for (Record *ItinData : ItinRecords) { 868 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 869 bool FoundClass = false; 870 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 871 SCI != SCE; ++SCI) { 872 // Multiple SchedClasses may share an itinerary. Update all of them. 873 if (SCI->ItinClassDef == ItinDef) { 874 ProcModel.ItinDefList[SCI->Index] = ItinData; 875 FoundClass = true; 876 } 877 } 878 if (!FoundClass) { 879 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 880 << " missing class for itinerary " << ItinDef->getName() << '\n'); 881 } 882 } 883 // Check for missing itinerary entries. 884 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 885 DEBUG( 886 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 887 if (!ProcModel.ItinDefList[i]) 888 dbgs() << ProcModel.ItinsDef->getName() 889 << " missing itinerary for class " 890 << SchedClasses[i].Name << '\n'; 891 }); 892 } 893 } 894 895 // Gather the read/write types for each itinerary class. 896 void CodeGenSchedModels::collectProcItinRW() { 897 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 898 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 899 for (Record *RWDef : ItinRWDefs) { 900 if (!RWDef->getValueInit("SchedModel")->isComplete()) 901 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 902 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 903 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 904 if (I == ProcModelMap.end()) { 905 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 906 + ModelDef->getName()); 907 } 908 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 909 } 910 } 911 912 // Gather the unsupported features for processor models. 913 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 914 for (CodeGenProcModel &ProcModel : ProcModels) { 915 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 916 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 917 } 918 } 919 } 920 921 /// Infer new classes from existing classes. In the process, this may create new 922 /// SchedWrites from sequences of existing SchedWrites. 923 void CodeGenSchedModels::inferSchedClasses() { 924 DEBUG(dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 925 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 926 927 // Visit all existing classes and newly created classes. 928 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 929 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 930 931 if (SchedClasses[Idx].ItinClassDef) 932 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 933 if (!SchedClasses[Idx].InstRWs.empty()) 934 inferFromInstRWs(Idx); 935 if (!SchedClasses[Idx].Writes.empty()) { 936 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 937 Idx, SchedClasses[Idx].ProcIndices); 938 } 939 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 940 "too many SchedVariants"); 941 } 942 } 943 944 /// Infer classes from per-processor itinerary resources. 945 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 946 unsigned FromClassIdx) { 947 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 948 const CodeGenProcModel &PM = ProcModels[PIdx]; 949 // For all ItinRW entries. 950 bool HasMatch = false; 951 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 952 II != IE; ++II) { 953 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 954 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 955 continue; 956 if (HasMatch) 957 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 958 + ItinClassDef->getName() 959 + " in ItinResources for " + PM.ModelName); 960 HasMatch = true; 961 IdxVec Writes, Reads; 962 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 963 IdxVec ProcIndices(1, PIdx); 964 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 965 } 966 } 967 } 968 969 /// Infer classes from per-processor InstReadWrite definitions. 970 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 971 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 972 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 973 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 974 const RecVec *InstDefs = Sets.expand(Rec); 975 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 976 for (; II != IE; ++II) { 977 if (InstrClassMap[*II] == SCIdx) 978 break; 979 } 980 // If this class no longer has any instructions mapped to it, it has become 981 // irrelevant. 982 if (II == IE) 983 continue; 984 IdxVec Writes, Reads; 985 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 986 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 987 IdxVec ProcIndices(1, PIdx); 988 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 989 } 990 } 991 992 namespace { 993 994 // Helper for substituteVariantOperand. 995 struct TransVariant { 996 Record *VarOrSeqDef; // Variant or sequence. 997 unsigned RWIdx; // Index of this variant or sequence's matched type. 998 unsigned ProcIdx; // Processor model index or zero for any. 999 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1000 1001 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1002 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1003 }; 1004 1005 // Associate a predicate with the SchedReadWrite that it guards. 1006 // RWIdx is the index of the read/write variant. 1007 struct PredCheck { 1008 bool IsRead; 1009 unsigned RWIdx; 1010 Record *Predicate; 1011 1012 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1013 }; 1014 1015 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1016 struct PredTransition { 1017 // A predicate term is a conjunction of PredChecks. 1018 SmallVector<PredCheck, 4> PredTerm; 1019 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1020 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1021 SmallVector<unsigned, 4> ProcIndices; 1022 }; 1023 1024 // Encapsulate a set of partially constructed transitions. 1025 // The results are built by repeated calls to substituteVariants. 1026 class PredTransitions { 1027 CodeGenSchedModels &SchedModels; 1028 1029 public: 1030 std::vector<PredTransition> TransVec; 1031 1032 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1033 1034 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1035 bool IsRead, unsigned StartIdx); 1036 1037 void substituteVariants(const PredTransition &Trans); 1038 1039 #ifndef NDEBUG 1040 void dump() const; 1041 #endif 1042 1043 private: 1044 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1045 void getIntersectingVariants( 1046 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1047 std::vector<TransVariant> &IntersectingVariants); 1048 void pushVariant(const TransVariant &VInfo, bool IsRead); 1049 }; 1050 1051 } // end anonymous namespace 1052 1053 // Return true if this predicate is mutually exclusive with a PredTerm. This 1054 // degenerates into checking if the predicate is mutually exclusive with any 1055 // predicate in the Term's conjunction. 1056 // 1057 // All predicates associated with a given SchedRW are considered mutually 1058 // exclusive. This should work even if the conditions expressed by the 1059 // predicates are not exclusive because the predicates for a given SchedWrite 1060 // are always checked in the order they are defined in the .td file. Later 1061 // conditions implicitly negate any prior condition. 1062 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1063 ArrayRef<PredCheck> Term) { 1064 for (const PredCheck &PC: Term) { 1065 if (PC.Predicate == PredDef) 1066 return false; 1067 1068 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1069 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1070 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1071 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 1072 if ((*VI)->getValueAsDef("Predicate") == PredDef) 1073 return true; 1074 } 1075 } 1076 return false; 1077 } 1078 1079 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1080 CodeGenSchedModels &SchedModels) { 1081 if (RW.HasVariants) 1082 return true; 1083 1084 for (Record *Alias : RW.Aliases) { 1085 const CodeGenSchedRW &AliasRW = 1086 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1087 if (AliasRW.HasVariants) 1088 return true; 1089 if (AliasRW.IsSequence) { 1090 IdxVec ExpandedRWs; 1091 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1092 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1093 SI != SE; ++SI) { 1094 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1095 SchedModels)) { 1096 return true; 1097 } 1098 } 1099 } 1100 } 1101 return false; 1102 } 1103 1104 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1105 CodeGenSchedModels &SchedModels) { 1106 for (ArrayRef<PredTransition>::iterator 1107 PTI = Transitions.begin(), PTE = Transitions.end(); 1108 PTI != PTE; ++PTI) { 1109 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1110 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1111 WSI != WSE; ++WSI) { 1112 for (SmallVectorImpl<unsigned>::const_iterator 1113 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1114 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1115 return true; 1116 } 1117 } 1118 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1119 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1120 RSI != RSE; ++RSI) { 1121 for (SmallVectorImpl<unsigned>::const_iterator 1122 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1123 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1124 return true; 1125 } 1126 } 1127 } 1128 return false; 1129 } 1130 1131 // Populate IntersectingVariants with any variants or aliased sequences of the 1132 // given SchedRW whose processor indices and predicates are not mutually 1133 // exclusive with the given transition. 1134 void PredTransitions::getIntersectingVariants( 1135 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1136 std::vector<TransVariant> &IntersectingVariants) { 1137 1138 bool GenericRW = false; 1139 1140 std::vector<TransVariant> Variants; 1141 if (SchedRW.HasVariants) { 1142 unsigned VarProcIdx = 0; 1143 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1144 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1145 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1146 } 1147 // Push each variant. Assign TransVecIdx later. 1148 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1149 for (Record *VarDef : VarDefs) 1150 Variants.push_back(TransVariant(VarDef, SchedRW.Index, VarProcIdx, 0)); 1151 if (VarProcIdx == 0) 1152 GenericRW = true; 1153 } 1154 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1155 AI != AE; ++AI) { 1156 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1157 // to is defined within a processor model, constrain all variants to 1158 // that processor. 1159 unsigned AliasProcIdx = 0; 1160 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1161 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1162 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1163 } 1164 const CodeGenSchedRW &AliasRW = 1165 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1166 1167 if (AliasRW.HasVariants) { 1168 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1169 for (Record *VD : VarDefs) 1170 Variants.push_back(TransVariant(VD, AliasRW.Index, AliasProcIdx, 0)); 1171 } 1172 if (AliasRW.IsSequence) { 1173 Variants.push_back( 1174 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1175 } 1176 if (AliasProcIdx == 0) 1177 GenericRW = true; 1178 } 1179 for (TransVariant &Variant : Variants) { 1180 // Don't expand variants if the processor models don't intersect. 1181 // A zero processor index means any processor. 1182 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1183 if (ProcIndices[0] && Variant.ProcIdx) { 1184 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1185 Variant.ProcIdx); 1186 if (!Cnt) 1187 continue; 1188 if (Cnt > 1) { 1189 const CodeGenProcModel &PM = 1190 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1191 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1192 "Multiple variants defined for processor " + 1193 PM.ModelName + 1194 " Ensure only one SchedAlias exists per RW."); 1195 } 1196 } 1197 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1198 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1199 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1200 continue; 1201 } 1202 if (IntersectingVariants.empty()) { 1203 // The first variant builds on the existing transition. 1204 Variant.TransVecIdx = TransIdx; 1205 IntersectingVariants.push_back(Variant); 1206 } 1207 else { 1208 // Push another copy of the current transition for more variants. 1209 Variant.TransVecIdx = TransVec.size(); 1210 IntersectingVariants.push_back(Variant); 1211 TransVec.push_back(TransVec[TransIdx]); 1212 } 1213 } 1214 if (GenericRW && IntersectingVariants.empty()) { 1215 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1216 "a matching predicate on any processor"); 1217 } 1218 } 1219 1220 // Push the Reads/Writes selected by this variant onto the PredTransition 1221 // specified by VInfo. 1222 void PredTransitions:: 1223 pushVariant(const TransVariant &VInfo, bool IsRead) { 1224 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1225 1226 // If this operand transition is reached through a processor-specific alias, 1227 // then the whole transition is specific to this processor. 1228 if (VInfo.ProcIdx != 0) 1229 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1230 1231 IdxVec SelectedRWs; 1232 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1233 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1234 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1235 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1236 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1237 } 1238 else { 1239 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1240 "variant must be a SchedVariant or aliased WriteSequence"); 1241 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1242 } 1243 1244 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1245 1246 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1247 ? Trans.ReadSequences : Trans.WriteSequences; 1248 if (SchedRW.IsVariadic) { 1249 unsigned OperIdx = RWSequences.size()-1; 1250 // Make N-1 copies of this transition's last sequence. 1251 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1252 // Create a temporary copy the vector could reallocate. 1253 RWSequences.reserve(RWSequences.size() + 1); 1254 RWSequences.push_back(RWSequences[OperIdx]); 1255 } 1256 // Push each of the N elements of the SelectedRWs onto a copy of the last 1257 // sequence (split the current operand into N operands). 1258 // Note that write sequences should be expanded within this loop--the entire 1259 // sequence belongs to a single operand. 1260 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1261 RWI != RWE; ++RWI, ++OperIdx) { 1262 IdxVec ExpandedRWs; 1263 if (IsRead) 1264 ExpandedRWs.push_back(*RWI); 1265 else 1266 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1267 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1268 ExpandedRWs.begin(), ExpandedRWs.end()); 1269 } 1270 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1271 } 1272 else { 1273 // Push this transition's expanded sequence onto this transition's last 1274 // sequence (add to the current operand's sequence). 1275 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1276 IdxVec ExpandedRWs; 1277 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1278 RWI != RWE; ++RWI) { 1279 if (IsRead) 1280 ExpandedRWs.push_back(*RWI); 1281 else 1282 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1283 } 1284 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1285 } 1286 } 1287 1288 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1289 // operand. StartIdx is an index into TransVec where partial results 1290 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1291 // of TransVec. 1292 void PredTransitions::substituteVariantOperand( 1293 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1294 1295 // Visit each original RW within the current sequence. 1296 for (SmallVectorImpl<unsigned>::const_iterator 1297 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1298 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1299 // Push this RW on all partial PredTransitions or distribute variants. 1300 // New PredTransitions may be pushed within this loop which should not be 1301 // revisited (TransEnd must be loop invariant). 1302 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1303 TransIdx != TransEnd; ++TransIdx) { 1304 // In the common case, push RW onto the current operand's sequence. 1305 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1306 if (IsRead) 1307 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1308 else 1309 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1310 continue; 1311 } 1312 // Distribute this partial PredTransition across intersecting variants. 1313 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1314 std::vector<TransVariant> IntersectingVariants; 1315 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1316 // Now expand each variant on top of its copy of the transition. 1317 for (std::vector<TransVariant>::const_iterator 1318 IVI = IntersectingVariants.begin(), 1319 IVE = IntersectingVariants.end(); 1320 IVI != IVE; ++IVI) { 1321 pushVariant(*IVI, IsRead); 1322 } 1323 } 1324 } 1325 } 1326 1327 // For each variant of a Read/Write in Trans, substitute the sequence of 1328 // Read/Writes guarded by the variant. This is exponential in the number of 1329 // variant Read/Writes, but in practice detection of mutually exclusive 1330 // predicates should result in linear growth in the total number variants. 1331 // 1332 // This is one step in a breadth-first search of nested variants. 1333 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1334 // Build up a set of partial results starting at the back of 1335 // PredTransitions. Remember the first new transition. 1336 unsigned StartIdx = TransVec.size(); 1337 TransVec.resize(TransVec.size() + 1); 1338 TransVec.back().PredTerm = Trans.PredTerm; 1339 TransVec.back().ProcIndices = Trans.ProcIndices; 1340 1341 // Visit each original write sequence. 1342 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1343 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1344 WSI != WSE; ++WSI) { 1345 // Push a new (empty) write sequence onto all partial Transitions. 1346 for (std::vector<PredTransition>::iterator I = 1347 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1348 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1349 } 1350 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1351 } 1352 // Visit each original read sequence. 1353 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1354 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1355 RSI != RSE; ++RSI) { 1356 // Push a new (empty) read sequence onto all partial Transitions. 1357 for (std::vector<PredTransition>::iterator I = 1358 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1359 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1360 } 1361 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1362 } 1363 } 1364 1365 // Create a new SchedClass for each variant found by inferFromRW. Pass 1366 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1367 unsigned FromClassIdx, 1368 CodeGenSchedModels &SchedModels) { 1369 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1370 // requires creating a new SchedClass. 1371 for (ArrayRef<PredTransition>::iterator 1372 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1373 IdxVec OperWritesVariant; 1374 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1375 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1376 WSI != WSE; ++WSI) { 1377 // Create a new write representing the expanded sequence. 1378 OperWritesVariant.push_back( 1379 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1380 } 1381 IdxVec OperReadsVariant; 1382 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1383 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1384 RSI != RSE; ++RSI) { 1385 // Create a new read representing the expanded sequence. 1386 OperReadsVariant.push_back( 1387 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1388 } 1389 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1390 CodeGenSchedTransition SCTrans; 1391 SCTrans.ToClassIdx = 1392 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1393 OperReadsVariant, ProcIndices); 1394 SCTrans.ProcIndices = ProcIndices; 1395 // The final PredTerm is unique set of predicates guarding the transition. 1396 RecVec Preds; 1397 for (SmallVectorImpl<PredCheck>::const_iterator 1398 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1399 Preds.push_back(PI->Predicate); 1400 } 1401 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1402 Preds.resize(PredsEnd - Preds.begin()); 1403 SCTrans.PredTerm = Preds; 1404 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1405 } 1406 } 1407 1408 // Create new SchedClasses for the given ReadWrite list. If any of the 1409 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1410 // of the ReadWrite list, following Aliases if necessary. 1411 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1412 ArrayRef<unsigned> OperReads, 1413 unsigned FromClassIdx, 1414 ArrayRef<unsigned> ProcIndices) { 1415 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1416 1417 // Create a seed transition with an empty PredTerm and the expanded sequences 1418 // of SchedWrites for the current SchedClass. 1419 std::vector<PredTransition> LastTransitions; 1420 LastTransitions.resize(1); 1421 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1422 ProcIndices.end()); 1423 1424 for (unsigned WriteIdx : OperWrites) { 1425 IdxVec WriteSeq; 1426 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1427 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1428 LastTransitions[0].WriteSequences.resize(Idx + 1); 1429 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1430 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1431 Seq.push_back(*WI); 1432 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1433 } 1434 DEBUG(dbgs() << " Reads: "); 1435 for (unsigned ReadIdx : OperReads) { 1436 IdxVec ReadSeq; 1437 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1438 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1439 LastTransitions[0].ReadSequences.resize(Idx + 1); 1440 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1441 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1442 Seq.push_back(*RI); 1443 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1444 } 1445 DEBUG(dbgs() << '\n'); 1446 1447 // Collect all PredTransitions for individual operands. 1448 // Iterate until no variant writes remain. 1449 while (hasVariant(LastTransitions, *this)) { 1450 PredTransitions Transitions(*this); 1451 for (std::vector<PredTransition>::const_iterator 1452 I = LastTransitions.begin(), E = LastTransitions.end(); 1453 I != E; ++I) { 1454 Transitions.substituteVariants(*I); 1455 } 1456 DEBUG(Transitions.dump()); 1457 LastTransitions.swap(Transitions.TransVec); 1458 } 1459 // If the first transition has no variants, nothing to do. 1460 if (LastTransitions[0].PredTerm.empty()) 1461 return; 1462 1463 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1464 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1465 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1466 } 1467 1468 // Check if any processor resource group contains all resource records in 1469 // SubUnits. 1470 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1471 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1472 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1473 continue; 1474 RecVec SuperUnits = 1475 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1476 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1477 for ( ; RI != RE; ++RI) { 1478 if (!is_contained(SuperUnits, *RI)) { 1479 break; 1480 } 1481 } 1482 if (RI == RE) 1483 return true; 1484 } 1485 return false; 1486 } 1487 1488 // Verify that overlapping groups have a common supergroup. 1489 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1490 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1491 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1492 continue; 1493 RecVec CheckUnits = 1494 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1495 for (unsigned j = i+1; j < e; ++j) { 1496 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1497 continue; 1498 RecVec OtherUnits = 1499 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1500 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1501 OtherUnits.begin(), OtherUnits.end()) 1502 != CheckUnits.end()) { 1503 // CheckUnits and OtherUnits overlap 1504 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1505 CheckUnits.end()); 1506 if (!hasSuperGroup(OtherUnits, PM)) { 1507 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1508 "proc resource group overlaps with " 1509 + PM.ProcResourceDefs[j]->getName() 1510 + " but no supergroup contains both."); 1511 } 1512 } 1513 } 1514 } 1515 } 1516 1517 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1518 void CodeGenSchedModels::collectProcResources() { 1519 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1520 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1521 1522 // Add any subtarget-specific SchedReadWrites that are directly associated 1523 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1524 // determine which processors they apply to. 1525 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1526 SCI != SCE; ++SCI) { 1527 if (SCI->ItinClassDef) 1528 collectItinProcResources(SCI->ItinClassDef); 1529 else { 1530 // This class may have a default ReadWrite list which can be overriden by 1531 // InstRW definitions. 1532 if (!SCI->InstRWs.empty()) { 1533 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1534 RWI != RWE; ++RWI) { 1535 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1536 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1537 IdxVec Writes, Reads; 1538 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1539 Writes, Reads); 1540 collectRWResources(Writes, Reads, ProcIndices); 1541 } 1542 } 1543 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1544 } 1545 } 1546 // Add resources separately defined by each subtarget. 1547 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1548 for (Record *WR : WRDefs) { 1549 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1550 addWriteRes(WR, getProcModel(ModelDef).Index); 1551 } 1552 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1553 for (Record *SWR : SWRDefs) { 1554 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1555 addWriteRes(SWR, getProcModel(ModelDef).Index); 1556 } 1557 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1558 for (Record *RA : RADefs) { 1559 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1560 addReadAdvance(RA, getProcModel(ModelDef).Index); 1561 } 1562 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1563 for (Record *SRA : SRADefs) { 1564 if (SRA->getValueInit("SchedModel")->isComplete()) { 1565 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1566 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1567 } 1568 } 1569 // Add ProcResGroups that are defined within this processor model, which may 1570 // not be directly referenced but may directly specify a buffer size. 1571 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1572 for (Record *PRG : ProcResGroups) { 1573 if (!PRG->getValueInit("SchedModel")->isComplete()) 1574 continue; 1575 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1576 if (!is_contained(PM.ProcResourceDefs, PRG)) 1577 PM.ProcResourceDefs.push_back(PRG); 1578 } 1579 // Add ProcResourceUnits unconditionally. 1580 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1581 if (!PRU->getValueInit("SchedModel")->isComplete()) 1582 continue; 1583 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1584 if (!is_contained(PM.ProcResourceDefs, PRU)) 1585 PM.ProcResourceDefs.push_back(PRU); 1586 } 1587 // Finalize each ProcModel by sorting the record arrays. 1588 for (CodeGenProcModel &PM : ProcModels) { 1589 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1590 LessRecord()); 1591 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1592 LessRecord()); 1593 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1594 LessRecord()); 1595 DEBUG( 1596 PM.dump(); 1597 dbgs() << "WriteResDefs: "; 1598 for (RecIter RI = PM.WriteResDefs.begin(), 1599 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1600 if ((*RI)->isSubClassOf("WriteRes")) 1601 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1602 else 1603 dbgs() << (*RI)->getName() << " "; 1604 } 1605 dbgs() << "\nReadAdvanceDefs: "; 1606 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1607 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1608 if ((*RI)->isSubClassOf("ReadAdvance")) 1609 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1610 else 1611 dbgs() << (*RI)->getName() << " "; 1612 } 1613 dbgs() << "\nProcResourceDefs: "; 1614 for (RecIter RI = PM.ProcResourceDefs.begin(), 1615 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1616 dbgs() << (*RI)->getName() << " "; 1617 } 1618 dbgs() << '\n'); 1619 verifyProcResourceGroups(PM); 1620 } 1621 1622 ProcResourceDefs.clear(); 1623 ProcResGroups.clear(); 1624 } 1625 1626 void CodeGenSchedModels::checkCompleteness() { 1627 bool Complete = true; 1628 bool HadCompleteModel = false; 1629 for (const CodeGenProcModel &ProcModel : procModels()) { 1630 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1631 continue; 1632 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1633 if (Inst->hasNoSchedulingInfo) 1634 continue; 1635 if (ProcModel.isUnsupported(*Inst)) 1636 continue; 1637 unsigned SCIdx = getSchedClassIdx(*Inst); 1638 if (!SCIdx) { 1639 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1640 PrintError("No schedule information for instruction '" 1641 + Inst->TheDef->getName() + "'"); 1642 Complete = false; 1643 } 1644 continue; 1645 } 1646 1647 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1648 if (!SC.Writes.empty()) 1649 continue; 1650 if (SC.ItinClassDef != nullptr && 1651 SC.ItinClassDef->getName() != "NoItinerary") 1652 continue; 1653 1654 const RecVec &InstRWs = SC.InstRWs; 1655 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1656 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1657 }); 1658 if (I == InstRWs.end()) { 1659 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1660 Inst->TheDef->getName() + "'"); 1661 Complete = false; 1662 } 1663 } 1664 HadCompleteModel = true; 1665 } 1666 if (!Complete) { 1667 errs() << "\n\nIncomplete schedule models found.\n" 1668 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1669 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1670 << "- Instructions should usually have Sched<[...]> as a superclass, " 1671 "you may temporarily use an empty list.\n" 1672 << "- Instructions related to unsupported features can be excluded with " 1673 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1674 "processor model.\n\n"; 1675 PrintFatalError("Incomplete schedule model"); 1676 } 1677 } 1678 1679 // Collect itinerary class resources for each processor. 1680 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1681 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1682 const CodeGenProcModel &PM = ProcModels[PIdx]; 1683 // For all ItinRW entries. 1684 bool HasMatch = false; 1685 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1686 II != IE; ++II) { 1687 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1688 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1689 continue; 1690 if (HasMatch) 1691 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1692 + ItinClassDef->getName() 1693 + " in ItinResources for " + PM.ModelName); 1694 HasMatch = true; 1695 IdxVec Writes, Reads; 1696 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1697 IdxVec ProcIndices(1, PIdx); 1698 collectRWResources(Writes, Reads, ProcIndices); 1699 } 1700 } 1701 } 1702 1703 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1704 ArrayRef<unsigned> ProcIndices) { 1705 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1706 if (SchedRW.TheDef) { 1707 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1708 for (unsigned Idx : ProcIndices) 1709 addWriteRes(SchedRW.TheDef, Idx); 1710 } 1711 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1712 for (unsigned Idx : ProcIndices) 1713 addReadAdvance(SchedRW.TheDef, Idx); 1714 } 1715 } 1716 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1717 AI != AE; ++AI) { 1718 IdxVec AliasProcIndices; 1719 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1720 AliasProcIndices.push_back( 1721 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1722 } 1723 else 1724 AliasProcIndices = ProcIndices; 1725 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1726 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1727 1728 IdxVec ExpandedRWs; 1729 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1730 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1731 SI != SE; ++SI) { 1732 collectRWResources(*SI, IsRead, AliasProcIndices); 1733 } 1734 } 1735 } 1736 1737 // Collect resources for a set of read/write types and processor indices. 1738 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1739 ArrayRef<unsigned> Reads, 1740 ArrayRef<unsigned> ProcIndices) { 1741 for (unsigned Idx : Writes) 1742 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1743 1744 for (unsigned Idx : Reads) 1745 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1746 } 1747 1748 // Find the processor's resource units for this kind of resource. 1749 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1750 const CodeGenProcModel &PM, 1751 ArrayRef<SMLoc> Loc) const { 1752 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1753 return ProcResKind; 1754 1755 Record *ProcUnitDef = nullptr; 1756 assert(!ProcResourceDefs.empty()); 1757 assert(!ProcResGroups.empty()); 1758 1759 for (Record *ProcResDef : ProcResourceDefs) { 1760 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1761 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1762 if (ProcUnitDef) { 1763 PrintFatalError(Loc, 1764 "Multiple ProcessorResourceUnits associated with " 1765 + ProcResKind->getName()); 1766 } 1767 ProcUnitDef = ProcResDef; 1768 } 1769 } 1770 for (Record *ProcResGroup : ProcResGroups) { 1771 if (ProcResGroup == ProcResKind 1772 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1773 if (ProcUnitDef) { 1774 PrintFatalError(Loc, 1775 "Multiple ProcessorResourceUnits associated with " 1776 + ProcResKind->getName()); 1777 } 1778 ProcUnitDef = ProcResGroup; 1779 } 1780 } 1781 if (!ProcUnitDef) { 1782 PrintFatalError(Loc, 1783 "No ProcessorResources associated with " 1784 + ProcResKind->getName()); 1785 } 1786 return ProcUnitDef; 1787 } 1788 1789 // Iteratively add a resource and its super resources. 1790 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1791 CodeGenProcModel &PM, 1792 ArrayRef<SMLoc> Loc) { 1793 while (true) { 1794 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1795 1796 // See if this ProcResource is already associated with this processor. 1797 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1798 return; 1799 1800 PM.ProcResourceDefs.push_back(ProcResUnits); 1801 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1802 return; 1803 1804 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1805 return; 1806 1807 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1808 } 1809 } 1810 1811 // Add resources for a SchedWrite to this processor if they don't exist. 1812 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1813 assert(PIdx && "don't add resources to an invalid Processor model"); 1814 1815 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1816 if (is_contained(WRDefs, ProcWriteResDef)) 1817 return; 1818 WRDefs.push_back(ProcWriteResDef); 1819 1820 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1821 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1822 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1823 WritePRI != WritePRE; ++WritePRI) { 1824 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1825 } 1826 } 1827 1828 // Add resources for a ReadAdvance to this processor if they don't exist. 1829 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1830 unsigned PIdx) { 1831 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1832 if (is_contained(RADefs, ProcReadAdvanceDef)) 1833 return; 1834 RADefs.push_back(ProcReadAdvanceDef); 1835 } 1836 1837 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1838 RecIter PRPos = find(ProcResourceDefs, PRDef); 1839 if (PRPos == ProcResourceDefs.end()) 1840 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1841 "the ProcResources list for " + ModelName); 1842 // Idx=0 is reserved for invalid. 1843 return 1 + (PRPos - ProcResourceDefs.begin()); 1844 } 1845 1846 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1847 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1848 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1849 if (TheDef->getName() == PredDef->getName()) 1850 return true; 1851 } 1852 } 1853 return false; 1854 } 1855 1856 #ifndef NDEBUG 1857 void CodeGenProcModel::dump() const { 1858 dbgs() << Index << ": " << ModelName << " " 1859 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1860 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1861 } 1862 1863 void CodeGenSchedRW::dump() const { 1864 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1865 if (IsSequence) { 1866 dbgs() << "("; 1867 dumpIdxVec(Sequence); 1868 dbgs() << ")"; 1869 } 1870 } 1871 1872 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1873 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1874 << " Writes: "; 1875 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1876 SchedModels->getSchedWrite(Writes[i]).dump(); 1877 if (i < N-1) { 1878 dbgs() << '\n'; 1879 dbgs().indent(10); 1880 } 1881 } 1882 dbgs() << "\n Reads: "; 1883 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1884 SchedModels->getSchedRead(Reads[i]).dump(); 1885 if (i < N-1) { 1886 dbgs() << '\n'; 1887 dbgs().indent(10); 1888 } 1889 } 1890 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1891 if (!Transitions.empty()) { 1892 dbgs() << "\n Transitions for Proc "; 1893 for (const CodeGenSchedTransition &Transition : Transitions) { 1894 dumpIdxVec(Transition.ProcIndices); 1895 } 1896 } 1897 } 1898 1899 void PredTransitions::dump() const { 1900 dbgs() << "Expanded Variants:\n"; 1901 for (std::vector<PredTransition>::const_iterator 1902 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1903 dbgs() << "{"; 1904 for (SmallVectorImpl<PredCheck>::const_iterator 1905 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1906 PCI != PCE; ++PCI) { 1907 if (PCI != TI->PredTerm.begin()) 1908 dbgs() << ", "; 1909 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1910 << ":" << PCI->Predicate->getName(); 1911 } 1912 dbgs() << "},\n => {"; 1913 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1914 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1915 WSI != WSE; ++WSI) { 1916 dbgs() << "("; 1917 for (SmallVectorImpl<unsigned>::const_iterator 1918 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1919 if (WI != WSI->begin()) 1920 dbgs() << ", "; 1921 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1922 } 1923 dbgs() << "),"; 1924 } 1925 dbgs() << "}\n"; 1926 } 1927 } 1928 #endif // NDEBUG 1929