1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as decribed in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "subtarget-emitter" 16 17 #include "CodeGenSchedule.h" 18 #include "CodeGenTarget.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Regex.h" 22 #include "llvm/TableGen/Error.h" 23 24 using namespace llvm; 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(const IdxVec &V) { 28 for (unsigned i = 0, e = V.size(); i < e; ++i) { 29 dbgs() << V[i] << ", "; 30 } 31 } 32 static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) { 33 for (unsigned i = 0, e = V.size(); i < e; ++i) { 34 dbgs() << V[i] << ", "; 35 } 36 } 37 #endif 38 39 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 40 struct InstrsOp : public SetTheory::Operator { 41 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 42 ArrayRef<SMLoc> Loc) { 43 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 44 } 45 }; 46 47 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 48 // 49 // TODO: Since this is a prefix match, perform a binary search over the 50 // instruction names using lower_bound. Note that the predefined instrs must be 51 // scanned linearly first. However, this is only safe if the regex pattern has 52 // no top-level bars. The DAG already has a list of patterns, so there's no 53 // reason to use top-level bars, but we need a way to verify they don't exist 54 // before implementing the optimization. 55 struct InstRegexOp : public SetTheory::Operator { 56 const CodeGenTarget &Target; 57 InstRegexOp(const CodeGenTarget &t): Target(t) {} 58 59 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 60 ArrayRef<SMLoc> Loc) { 61 SmallVector<Regex*, 4> RegexList; 62 for (DagInit::const_arg_iterator 63 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 64 StringInit *SI = dyn_cast<StringInit>(*AI); 65 if (!SI) 66 PrintFatalError(Loc, "instregex requires pattern string: " 67 + Expr->getAsString()); 68 std::string pat = SI->getValue(); 69 // Implement a python-style prefix match. 70 if (pat[0] != '^') { 71 pat.insert(0, "^("); 72 pat.insert(pat.end(), ')'); 73 } 74 RegexList.push_back(new Regex(pat)); 75 } 76 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 77 E = Target.inst_end(); I != E; ++I) { 78 for (SmallVectorImpl<Regex*>::iterator 79 RI = RegexList.begin(), RE = RegexList.end(); RI != RE; ++RI) { 80 if ((*RI)->match((*I)->TheDef->getName())) 81 Elts.insert((*I)->TheDef); 82 } 83 } 84 DeleteContainerPointers(RegexList); 85 } 86 }; 87 88 /// CodeGenModels ctor interprets machine model records and populates maps. 89 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 90 const CodeGenTarget &TGT): 91 Records(RK), Target(TGT) { 92 93 Sets.addFieldExpander("InstRW", "Instrs"); 94 95 // Allow Set evaluation to recognize the dags used in InstRW records: 96 // (instrs Op1, Op1...) 97 Sets.addOperator("instrs", new InstrsOp); 98 Sets.addOperator("instregex", new InstRegexOp(Target)); 99 100 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 101 // that are explicitly referenced in tablegen records. Resources associated 102 // with each processor will be derived later. Populate ProcModelMap with the 103 // CodeGenProcModel instances. 104 collectProcModels(); 105 106 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 107 // defined, and populate SchedReads and SchedWrites vectors. Implicit 108 // SchedReadWrites that represent sequences derived from expanded variant will 109 // be inferred later. 110 collectSchedRW(); 111 112 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 113 // required by an instruction definition, and populate SchedClassIdxMap. Set 114 // NumItineraryClasses to the number of explicit itinerary classes referenced 115 // by instructions. Set NumInstrSchedClasses to the number of itinerary 116 // classes plus any classes implied by instructions that derive from class 117 // Sched and provide SchedRW list. This does not infer any new classes from 118 // SchedVariant. 119 collectSchedClasses(); 120 121 // Find instruction itineraries for each processor. Sort and populate 122 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 123 // all itinerary classes to be discovered. 124 collectProcItins(); 125 126 // Find ItinRW records for each processor and itinerary class. 127 // (For per-operand resources mapped to itinerary classes). 128 collectProcItinRW(); 129 130 // Infer new SchedClasses from SchedVariant. 131 inferSchedClasses(); 132 133 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 134 // ProcResourceDefs. 135 collectProcResources(); 136 } 137 138 /// Gather all processor models. 139 void CodeGenSchedModels::collectProcModels() { 140 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 141 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 142 143 // Reserve space because we can. Reallocation would be ok. 144 ProcModels.reserve(ProcRecords.size()+1); 145 146 // Use idx=0 for NoModel/NoItineraries. 147 Record *NoModelDef = Records.getDef("NoSchedModel"); 148 Record *NoItinsDef = Records.getDef("NoItineraries"); 149 ProcModels.push_back(CodeGenProcModel(0, "NoSchedModel", 150 NoModelDef, NoItinsDef)); 151 ProcModelMap[NoModelDef] = 0; 152 153 // For each processor, find a unique machine model. 154 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 155 addProcModel(ProcRecords[i]); 156 } 157 158 /// Get a unique processor model based on the defined MachineModel and 159 /// ProcessorItineraries. 160 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 161 Record *ModelKey = getModelOrItinDef(ProcDef); 162 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 163 return; 164 165 std::string Name = ModelKey->getName(); 166 if (ModelKey->isSubClassOf("SchedMachineModel")) { 167 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 168 ProcModels.push_back( 169 CodeGenProcModel(ProcModels.size(), Name, ModelKey, ItinsDef)); 170 } 171 else { 172 // An itinerary is defined without a machine model. Infer a new model. 173 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 174 Name = Name + "Model"; 175 ProcModels.push_back( 176 CodeGenProcModel(ProcModels.size(), Name, 177 ProcDef->getValueAsDef("SchedModel"), ModelKey)); 178 } 179 DEBUG(ProcModels.back().dump()); 180 } 181 182 // Recursively find all reachable SchedReadWrite records. 183 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 184 SmallPtrSet<Record*, 16> &RWSet) { 185 if (!RWSet.insert(RWDef)) 186 return; 187 RWDefs.push_back(RWDef); 188 // Reads don't current have sequence records, but it can be added later. 189 if (RWDef->isSubClassOf("WriteSequence")) { 190 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 191 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 192 scanSchedRW(*I, RWDefs, RWSet); 193 } 194 else if (RWDef->isSubClassOf("SchedVariant")) { 195 // Visit each variant (guarded by a different predicate). 196 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 197 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 198 // Visit each RW in the sequence selected by the current variant. 199 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 200 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 201 scanSchedRW(*I, RWDefs, RWSet); 202 } 203 } 204 } 205 206 // Collect and sort all SchedReadWrites reachable via tablegen records. 207 // More may be inferred later when inferring new SchedClasses from variants. 208 void CodeGenSchedModels::collectSchedRW() { 209 // Reserve idx=0 for invalid writes/reads. 210 SchedWrites.resize(1); 211 SchedReads.resize(1); 212 213 SmallPtrSet<Record*, 16> RWSet; 214 215 // Find all SchedReadWrites referenced by instruction defs. 216 RecVec SWDefs, SRDefs; 217 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 218 E = Target.inst_end(); I != E; ++I) { 219 Record *SchedDef = (*I)->TheDef; 220 if (SchedDef->isValueUnset("SchedRW")) 221 continue; 222 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 223 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 224 if ((*RWI)->isSubClassOf("SchedWrite")) 225 scanSchedRW(*RWI, SWDefs, RWSet); 226 else { 227 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 228 scanSchedRW(*RWI, SRDefs, RWSet); 229 } 230 } 231 } 232 // Find all ReadWrites referenced by InstRW. 233 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 234 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 235 // For all OperandReadWrites. 236 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 237 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 238 RWI != RWE; ++RWI) { 239 if ((*RWI)->isSubClassOf("SchedWrite")) 240 scanSchedRW(*RWI, SWDefs, RWSet); 241 else { 242 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 243 scanSchedRW(*RWI, SRDefs, RWSet); 244 } 245 } 246 } 247 // Find all ReadWrites referenced by ItinRW. 248 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 249 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 250 // For all OperandReadWrites. 251 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 252 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 253 RWI != RWE; ++RWI) { 254 if ((*RWI)->isSubClassOf("SchedWrite")) 255 scanSchedRW(*RWI, SWDefs, RWSet); 256 else { 257 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 258 scanSchedRW(*RWI, SRDefs, RWSet); 259 } 260 } 261 } 262 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 263 // for the loop below that initializes Alias vectors. 264 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 265 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 266 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 267 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 268 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 269 if (MatchDef->isSubClassOf("SchedWrite")) { 270 if (!AliasDef->isSubClassOf("SchedWrite")) 271 PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 272 scanSchedRW(AliasDef, SWDefs, RWSet); 273 } 274 else { 275 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 276 if (!AliasDef->isSubClassOf("SchedRead")) 277 PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 278 scanSchedRW(AliasDef, SRDefs, RWSet); 279 } 280 } 281 // Sort and add the SchedReadWrites directly referenced by instructions or 282 // itinerary resources. Index reads and writes in separate domains. 283 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 284 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 285 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 286 SchedWrites.push_back(CodeGenSchedRW(SchedWrites.size(), *SWI)); 287 } 288 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 289 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 290 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 291 SchedReads.push_back(CodeGenSchedRW(SchedReads.size(), *SRI)); 292 } 293 // Initialize WriteSequence vectors. 294 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 295 WE = SchedWrites.end(); WI != WE; ++WI) { 296 if (!WI->IsSequence) 297 continue; 298 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 299 /*IsRead=*/false); 300 } 301 // Initialize Aliases vectors. 302 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 303 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 304 getSchedRW(AliasDef).IsAlias = true; 305 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 306 CodeGenSchedRW &RW = getSchedRW(MatchDef); 307 if (RW.IsAlias) 308 PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); 309 RW.Aliases.push_back(*AI); 310 } 311 DEBUG( 312 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 313 dbgs() << WIdx << ": "; 314 SchedWrites[WIdx].dump(); 315 dbgs() << '\n'; 316 } 317 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 318 dbgs() << RIdx << ": "; 319 SchedReads[RIdx].dump(); 320 dbgs() << '\n'; 321 } 322 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 323 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 324 RI != RE; ++RI) { 325 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 326 const std::string &Name = (*RI)->getName(); 327 if (Name != "NoWrite" && Name != "ReadDefault") 328 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 329 } 330 }); 331 } 332 333 /// Compute a SchedWrite name from a sequence of writes. 334 std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) { 335 std::string Name("("); 336 for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) { 337 if (I != Seq.begin()) 338 Name += '_'; 339 Name += getSchedRW(*I, IsRead).Name; 340 } 341 Name += ')'; 342 return Name; 343 } 344 345 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 346 unsigned After) const { 347 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 348 assert(After < RWVec.size() && "start position out of bounds"); 349 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 350 E = RWVec.end(); I != E; ++I) { 351 if (I->TheDef == Def) 352 return I - RWVec.begin(); 353 } 354 return 0; 355 } 356 357 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 358 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 359 Record *ReadDef = SchedReads[i].TheDef; 360 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 361 continue; 362 363 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 364 if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) 365 != ValidWrites.end()) { 366 return true; 367 } 368 } 369 return false; 370 } 371 372 namespace llvm { 373 void splitSchedReadWrites(const RecVec &RWDefs, 374 RecVec &WriteDefs, RecVec &ReadDefs) { 375 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 376 if ((*RWI)->isSubClassOf("SchedWrite")) 377 WriteDefs.push_back(*RWI); 378 else { 379 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 380 ReadDefs.push_back(*RWI); 381 } 382 } 383 } 384 } // namespace llvm 385 386 // Split the SchedReadWrites defs and call findRWs for each list. 387 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 388 IdxVec &Writes, IdxVec &Reads) const { 389 RecVec WriteDefs; 390 RecVec ReadDefs; 391 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 392 findRWs(WriteDefs, Writes, false); 393 findRWs(ReadDefs, Reads, true); 394 } 395 396 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 397 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 398 bool IsRead) const { 399 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 400 unsigned Idx = getSchedRWIdx(*RI, IsRead); 401 assert(Idx && "failed to collect SchedReadWrite"); 402 RWs.push_back(Idx); 403 } 404 } 405 406 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 407 bool IsRead) const { 408 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 409 if (!SchedRW.IsSequence) { 410 RWSeq.push_back(RWIdx); 411 return; 412 } 413 int Repeat = 414 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 415 for (int i = 0; i < Repeat; ++i) { 416 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 417 I != E; ++I) { 418 expandRWSequence(*I, RWSeq, IsRead); 419 } 420 } 421 } 422 423 // Expand a SchedWrite as a sequence following any aliases that coincide with 424 // the given processor model. 425 void CodeGenSchedModels::expandRWSeqForProc( 426 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 427 const CodeGenProcModel &ProcModel) const { 428 429 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 430 Record *AliasDef = 0; 431 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 432 AI != AE; ++AI) { 433 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 434 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 435 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 436 if (&getProcModel(ModelDef) != &ProcModel) 437 continue; 438 } 439 if (AliasDef) 440 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 441 "defined for processor " + ProcModel.ModelName + 442 " Ensure only one SchedAlias exists per RW."); 443 AliasDef = AliasRW.TheDef; 444 } 445 if (AliasDef) { 446 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 447 RWSeq, IsRead,ProcModel); 448 return; 449 } 450 if (!SchedWrite.IsSequence) { 451 RWSeq.push_back(RWIdx); 452 return; 453 } 454 int Repeat = 455 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 456 for (int i = 0; i < Repeat; ++i) { 457 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 458 I != E; ++I) { 459 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 460 } 461 } 462 } 463 464 // Find the existing SchedWrite that models this sequence of writes. 465 unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq, 466 bool IsRead) { 467 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 468 469 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 470 I != E; ++I) { 471 if (I->Sequence == Seq) 472 return I - RWVec.begin(); 473 } 474 // Index zero reserved for invalid RW. 475 return 0; 476 } 477 478 /// Add this ReadWrite if it doesn't already exist. 479 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 480 bool IsRead) { 481 assert(!Seq.empty() && "cannot insert empty sequence"); 482 if (Seq.size() == 1) 483 return Seq.back(); 484 485 unsigned Idx = findRWForSequence(Seq, IsRead); 486 if (Idx) 487 return Idx; 488 489 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 490 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 491 if (IsRead) 492 SchedReads.push_back(SchedRW); 493 else 494 SchedWrites.push_back(SchedRW); 495 return RWIdx; 496 } 497 498 /// Visit all the instruction definitions for this target to gather and 499 /// enumerate the itinerary classes. These are the explicitly specified 500 /// SchedClasses. More SchedClasses may be inferred. 501 void CodeGenSchedModels::collectSchedClasses() { 502 503 // NoItinerary is always the first class at Idx=0 504 SchedClasses.resize(1); 505 SchedClasses.back().Index = 0; 506 SchedClasses.back().Name = "NoInstrModel"; 507 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 508 SchedClasses.back().ProcIndices.push_back(0); 509 510 // Create a SchedClass for each unique combination of itinerary class and 511 // SchedRW list. 512 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 513 E = Target.inst_end(); I != E; ++I) { 514 Record *ItinDef = (*I)->TheDef->getValueAsDef("Itinerary"); 515 IdxVec Writes, Reads; 516 if (!(*I)->TheDef->isValueUnset("SchedRW")) 517 findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 518 519 // ProcIdx == 0 indicates the class applies to all processors. 520 IdxVec ProcIndices(1, 0); 521 522 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 523 InstrClassMap[(*I)->TheDef] = SCIdx; 524 } 525 // Create classes for InstRW defs. 526 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 527 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 528 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 529 createInstRWClass(*OI); 530 531 NumInstrSchedClasses = SchedClasses.size(); 532 533 bool EnableDump = false; 534 DEBUG(EnableDump = true); 535 if (!EnableDump) 536 return; 537 538 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 539 E = Target.inst_end(); I != E; ++I) { 540 541 std::string InstName = (*I)->TheDef->getName(); 542 unsigned SCIdx = InstrClassMap.lookup((*I)->TheDef); 543 if (!SCIdx) { 544 dbgs() << "No machine model for " << (*I)->TheDef->getName() << '\n'; 545 continue; 546 } 547 CodeGenSchedClass &SC = getSchedClass(SCIdx); 548 if (SC.ProcIndices[0] != 0) 549 PrintFatalError((*I)->TheDef->getLoc(), "Instruction's sched class " 550 "must not be subtarget specific."); 551 552 IdxVec ProcIndices; 553 if (SC.ItinClassDef->getName() != "NoItinerary") { 554 ProcIndices.push_back(0); 555 dbgs() << "Itinerary for " << InstName << ": " 556 << SC.ItinClassDef->getName() << '\n'; 557 } 558 if (!SC.Writes.empty()) { 559 ProcIndices.push_back(0); 560 dbgs() << "SchedRW machine model for " << InstName; 561 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 562 dbgs() << " " << SchedWrites[*WI].Name; 563 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 564 dbgs() << " " << SchedReads[*RI].Name; 565 dbgs() << '\n'; 566 } 567 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 568 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 569 RWI != RWE; ++RWI) { 570 const CodeGenProcModel &ProcModel = 571 getProcModel((*RWI)->getValueAsDef("SchedModel")); 572 ProcIndices.push_back(ProcModel.Index); 573 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 574 IdxVec Writes; 575 IdxVec Reads; 576 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 577 Writes, Reads); 578 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 579 dbgs() << " " << SchedWrites[*WI].Name; 580 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 581 dbgs() << " " << SchedReads[*RI].Name; 582 dbgs() << '\n'; 583 } 584 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 585 PE = ProcModels.end(); PI != PE; ++PI) { 586 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) 587 dbgs() << "No machine model for " << (*I)->TheDef->getName() 588 << " on processor " << PI->ModelName << '\n'; 589 } 590 } 591 } 592 593 /// Find an SchedClass that has been inferred from a per-operand list of 594 /// SchedWrites and SchedReads. 595 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 596 const IdxVec &Writes, 597 const IdxVec &Reads) const { 598 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 599 if (I->ItinClassDef == ItinClassDef 600 && I->Writes == Writes && I->Reads == Reads) { 601 return I - schedClassBegin(); 602 } 603 } 604 return 0; 605 } 606 607 // Get the SchedClass index for an instruction. 608 unsigned CodeGenSchedModels::getSchedClassIdx( 609 const CodeGenInstruction &Inst) const { 610 611 return InstrClassMap.lookup(Inst.TheDef); 612 } 613 614 std::string CodeGenSchedModels::createSchedClassName( 615 Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads) { 616 617 std::string Name; 618 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 619 Name = ItinClassDef->getName(); 620 for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) { 621 if (!Name.empty()) 622 Name += '_'; 623 Name += SchedWrites[*WI].Name; 624 } 625 for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) { 626 Name += '_'; 627 Name += SchedReads[*RI].Name; 628 } 629 return Name; 630 } 631 632 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 633 634 std::string Name; 635 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 636 if (I != InstDefs.begin()) 637 Name += '_'; 638 Name += (*I)->getName(); 639 } 640 return Name; 641 } 642 643 /// Add an inferred sched class from an itinerary class and per-operand list of 644 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 645 /// processors that may utilize this class. 646 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 647 const IdxVec &OperWrites, 648 const IdxVec &OperReads, 649 const IdxVec &ProcIndices) 650 { 651 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 652 653 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 654 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 655 IdxVec PI; 656 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 657 SchedClasses[Idx].ProcIndices.end(), 658 ProcIndices.begin(), ProcIndices.end(), 659 std::back_inserter(PI)); 660 SchedClasses[Idx].ProcIndices.swap(PI); 661 return Idx; 662 } 663 Idx = SchedClasses.size(); 664 SchedClasses.resize(Idx+1); 665 CodeGenSchedClass &SC = SchedClasses.back(); 666 SC.Index = Idx; 667 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 668 SC.ItinClassDef = ItinClassDef; 669 SC.Writes = OperWrites; 670 SC.Reads = OperReads; 671 SC.ProcIndices = ProcIndices; 672 673 return Idx; 674 } 675 676 // Create classes for each set of opcodes that are in the same InstReadWrite 677 // definition across all processors. 678 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 679 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 680 // intersects with an existing class via a previous InstRWDef. Instrs that do 681 // not intersect with an existing class refer back to their former class as 682 // determined from ItinDef or SchedRW. 683 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 684 // Sort Instrs into sets. 685 const RecVec *InstDefs = Sets.expand(InstRWDef); 686 if (InstDefs->empty()) 687 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 688 689 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 690 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 691 if (Pos == InstrClassMap.end()) 692 PrintFatalError((*I)->getLoc(), "No sched class for instruction."); 693 unsigned SCIdx = Pos->second; 694 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 695 for (; CIdx != CEnd; ++CIdx) { 696 if (ClassInstrs[CIdx].first == SCIdx) 697 break; 698 } 699 if (CIdx == CEnd) { 700 ClassInstrs.resize(CEnd + 1); 701 ClassInstrs[CIdx].first = SCIdx; 702 } 703 ClassInstrs[CIdx].second.push_back(*I); 704 } 705 // For each set of Instrs, create a new class if necessary, and map or remap 706 // the Instrs to it. 707 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 708 for (; CIdx != CEnd; ++CIdx) { 709 unsigned OldSCIdx = ClassInstrs[CIdx].first; 710 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 711 // If the all instrs in the current class are accounted for, then leave 712 // them mapped to their old class. 713 if (OldSCIdx && SchedClasses[OldSCIdx].InstRWs.size() == InstDefs.size()) { 714 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 715 "expected a generic SchedClass"); 716 continue; 717 } 718 unsigned SCIdx = SchedClasses.size(); 719 SchedClasses.resize(SCIdx+1); 720 CodeGenSchedClass &SC = SchedClasses.back(); 721 SC.Index = SCIdx; 722 SC.Name = createSchedClassName(InstDefs); 723 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 724 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 725 SC.Writes = SchedClasses[OldSCIdx].Writes; 726 SC.Reads = SchedClasses[OldSCIdx].Reads; 727 SC.ProcIndices.push_back(0); 728 // Map each Instr to this new class. 729 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 730 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 731 SmallSet<unsigned, 4> RemappedClassIDs; 732 for (ArrayRef<Record*>::const_iterator 733 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 734 unsigned OldSCIdx = InstrClassMap[*II]; 735 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx)) { 736 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 737 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 738 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 739 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 740 (*II)->getName() + " also matches " + 741 (*RI)->getValue("Instrs")->getValue()->getAsString()); 742 } 743 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 744 SC.InstRWs.push_back(*RI); 745 } 746 } 747 InstrClassMap[*II] = SCIdx; 748 } 749 SC.InstRWs.push_back(InstRWDef); 750 } 751 } 752 753 // True if collectProcItins found anything. 754 bool CodeGenSchedModels::hasItineraries() const { 755 for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); 756 PI != PE; ++PI) { 757 if (PI->hasItineraries()) 758 return true; 759 } 760 return false; 761 } 762 763 // Gather the processor itineraries. 764 void CodeGenSchedModels::collectProcItins() { 765 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 766 PE = ProcModels.end(); PI != PE; ++PI) { 767 CodeGenProcModel &ProcModel = *PI; 768 if (!ProcModel.hasItineraries()) 769 continue; 770 771 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 772 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 773 774 // Populate ItinDefList with Itinerary records. 775 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 776 777 // Insert each itinerary data record in the correct position within 778 // the processor model's ItinDefList. 779 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 780 Record *ItinData = ItinRecords[i]; 781 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 782 bool FoundClass = false; 783 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 784 SCI != SCE; ++SCI) { 785 // Multiple SchedClasses may share an itinerary. Update all of them. 786 if (SCI->ItinClassDef == ItinDef) { 787 ProcModel.ItinDefList[SCI->Index] = ItinData; 788 FoundClass = true; 789 } 790 } 791 if (!FoundClass) { 792 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 793 << " missing class for itinerary " << ItinDef->getName() << '\n'); 794 } 795 } 796 // Check for missing itinerary entries. 797 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 798 DEBUG( 799 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 800 if (!ProcModel.ItinDefList[i]) 801 dbgs() << ProcModel.ItinsDef->getName() 802 << " missing itinerary for class " 803 << SchedClasses[i].Name << '\n'; 804 }); 805 } 806 } 807 808 // Gather the read/write types for each itinerary class. 809 void CodeGenSchedModels::collectProcItinRW() { 810 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 811 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 812 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 813 if (!(*II)->getValueInit("SchedModel")->isComplete()) 814 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 815 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 816 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 817 if (I == ProcModelMap.end()) { 818 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 819 + ModelDef->getName()); 820 } 821 ProcModels[I->second].ItinRWDefs.push_back(*II); 822 } 823 } 824 825 /// Infer new classes from existing classes. In the process, this may create new 826 /// SchedWrites from sequences of existing SchedWrites. 827 void CodeGenSchedModels::inferSchedClasses() { 828 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 829 830 // Visit all existing classes and newly created classes. 831 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 832 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 833 834 if (SchedClasses[Idx].ItinClassDef) 835 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 836 if (!SchedClasses[Idx].InstRWs.empty()) 837 inferFromInstRWs(Idx); 838 if (!SchedClasses[Idx].Writes.empty()) { 839 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 840 Idx, SchedClasses[Idx].ProcIndices); 841 } 842 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 843 "too many SchedVariants"); 844 } 845 } 846 847 /// Infer classes from per-processor itinerary resources. 848 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 849 unsigned FromClassIdx) { 850 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 851 const CodeGenProcModel &PM = ProcModels[PIdx]; 852 // For all ItinRW entries. 853 bool HasMatch = false; 854 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 855 II != IE; ++II) { 856 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 857 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 858 continue; 859 if (HasMatch) 860 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 861 + ItinClassDef->getName() 862 + " in ItinResources for " + PM.ModelName); 863 HasMatch = true; 864 IdxVec Writes, Reads; 865 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 866 IdxVec ProcIndices(1, PIdx); 867 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 868 } 869 } 870 } 871 872 /// Infer classes from per-processor InstReadWrite definitions. 873 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 874 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 875 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 876 const RecVec *InstDefs = Sets.expand(*RWI); 877 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 878 for (; II != IE; ++II) { 879 if (InstrClassMap[*II] == SCIdx) 880 break; 881 } 882 // If this class no longer has any instructions mapped to it, it has become 883 // irrelevant. 884 if (II == IE) 885 continue; 886 IdxVec Writes, Reads; 887 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 888 unsigned PIdx = getProcModel((*RWI)->getValueAsDef("SchedModel")).Index; 889 IdxVec ProcIndices(1, PIdx); 890 inferFromRW(Writes, Reads, SCIdx, ProcIndices); 891 } 892 } 893 894 namespace { 895 // Helper for substituteVariantOperand. 896 struct TransVariant { 897 Record *VarOrSeqDef; // Variant or sequence. 898 unsigned RWIdx; // Index of this variant or sequence's matched type. 899 unsigned ProcIdx; // Processor model index or zero for any. 900 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 901 902 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 903 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 904 }; 905 906 // Associate a predicate with the SchedReadWrite that it guards. 907 // RWIdx is the index of the read/write variant. 908 struct PredCheck { 909 bool IsRead; 910 unsigned RWIdx; 911 Record *Predicate; 912 913 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 914 }; 915 916 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 917 struct PredTransition { 918 // A predicate term is a conjunction of PredChecks. 919 SmallVector<PredCheck, 4> PredTerm; 920 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 921 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 922 SmallVector<unsigned, 4> ProcIndices; 923 }; 924 925 // Encapsulate a set of partially constructed transitions. 926 // The results are built by repeated calls to substituteVariants. 927 class PredTransitions { 928 CodeGenSchedModels &SchedModels; 929 930 public: 931 std::vector<PredTransition> TransVec; 932 933 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 934 935 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 936 bool IsRead, unsigned StartIdx); 937 938 void substituteVariants(const PredTransition &Trans); 939 940 #ifndef NDEBUG 941 void dump() const; 942 #endif 943 944 private: 945 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 946 void getIntersectingVariants( 947 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 948 std::vector<TransVariant> &IntersectingVariants); 949 void pushVariant(const TransVariant &VInfo, bool IsRead); 950 }; 951 } // anonymous 952 953 // Return true if this predicate is mutually exclusive with a PredTerm. This 954 // degenerates into checking if the predicate is mutually exclusive with any 955 // predicate in the Term's conjunction. 956 // 957 // All predicates associated with a given SchedRW are considered mutually 958 // exclusive. This should work even if the conditions expressed by the 959 // predicates are not exclusive because the predicates for a given SchedWrite 960 // are always checked in the order they are defined in the .td file. Later 961 // conditions implicitly negate any prior condition. 962 bool PredTransitions::mutuallyExclusive(Record *PredDef, 963 ArrayRef<PredCheck> Term) { 964 965 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 966 I != E; ++I) { 967 if (I->Predicate == PredDef) 968 return false; 969 970 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 971 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 972 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 973 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 974 if ((*VI)->getValueAsDef("Predicate") == PredDef) 975 return true; 976 } 977 } 978 return false; 979 } 980 981 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 982 CodeGenSchedModels &SchedModels) { 983 if (RW.HasVariants) 984 return true; 985 986 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 987 const CodeGenSchedRW &AliasRW = 988 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 989 if (AliasRW.HasVariants) 990 return true; 991 if (AliasRW.IsSequence) { 992 IdxVec ExpandedRWs; 993 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 994 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 995 SI != SE; ++SI) { 996 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 997 SchedModels)) { 998 return true; 999 } 1000 } 1001 } 1002 } 1003 return false; 1004 } 1005 1006 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1007 CodeGenSchedModels &SchedModels) { 1008 for (ArrayRef<PredTransition>::iterator 1009 PTI = Transitions.begin(), PTE = Transitions.end(); 1010 PTI != PTE; ++PTI) { 1011 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1012 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1013 WSI != WSE; ++WSI) { 1014 for (SmallVectorImpl<unsigned>::const_iterator 1015 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1016 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1017 return true; 1018 } 1019 } 1020 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1021 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1022 RSI != RSE; ++RSI) { 1023 for (SmallVectorImpl<unsigned>::const_iterator 1024 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1025 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1026 return true; 1027 } 1028 } 1029 } 1030 return false; 1031 } 1032 1033 // Populate IntersectingVariants with any variants or aliased sequences of the 1034 // given SchedRW whose processor indices and predicates are not mutually 1035 // exclusive with the given transition, 1036 void PredTransitions::getIntersectingVariants( 1037 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1038 std::vector<TransVariant> &IntersectingVariants) { 1039 1040 std::vector<TransVariant> Variants; 1041 if (SchedRW.HasVariants) { 1042 unsigned VarProcIdx = 0; 1043 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1044 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1045 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1046 } 1047 // Push each variant. Assign TransVecIdx later. 1048 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1049 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1050 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1051 } 1052 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1053 AI != AE; ++AI) { 1054 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1055 // to is defined within a processor model, constrain all variants to 1056 // that processor. 1057 unsigned AliasProcIdx = 0; 1058 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1059 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1060 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1061 } 1062 const CodeGenSchedRW &AliasRW = 1063 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1064 1065 if (AliasRW.HasVariants) { 1066 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1067 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1068 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1069 } 1070 if (AliasRW.IsSequence) { 1071 Variants.push_back( 1072 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1073 } 1074 } 1075 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1076 TransVariant &Variant = Variants[VIdx]; 1077 // Don't expand variants if the processor models don't intersect. 1078 // A zero processor index means any processor. 1079 SmallVector<unsigned, 4> &ProcIndices = TransVec[TransIdx].ProcIndices; 1080 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1081 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1082 Variant.ProcIdx); 1083 if (!Cnt) 1084 continue; 1085 if (Cnt > 1) { 1086 const CodeGenProcModel &PM = 1087 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1088 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1089 "Multiple variants defined for processor " + 1090 PM.ModelName + 1091 " Ensure only one SchedAlias exists per RW."); 1092 } 1093 } 1094 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1095 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1096 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1097 continue; 1098 } 1099 if (IntersectingVariants.empty()) { 1100 // The first variant builds on the existing transition. 1101 Variant.TransVecIdx = TransIdx; 1102 IntersectingVariants.push_back(Variant); 1103 } 1104 else { 1105 // Push another copy of the current transition for more variants. 1106 Variant.TransVecIdx = TransVec.size(); 1107 IntersectingVariants.push_back(Variant); 1108 1109 PredTransition Trans = TransVec[TransIdx]; 1110 TransVec.push_back(Trans); 1111 } 1112 } 1113 } 1114 1115 // Push the Reads/Writes selected by this variant onto the PredTransition 1116 // specified by VInfo. 1117 void PredTransitions:: 1118 pushVariant(const TransVariant &VInfo, bool IsRead) { 1119 1120 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1121 1122 // If this operand transition is reached through a processor-specific alias, 1123 // then the whole transition is specific to this processor. 1124 if (VInfo.ProcIdx != 0) 1125 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1126 1127 IdxVec SelectedRWs; 1128 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1129 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1130 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1131 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1132 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1133 } 1134 else { 1135 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1136 "variant must be a SchedVariant or aliased WriteSequence"); 1137 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1138 } 1139 1140 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1141 1142 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1143 ? Trans.ReadSequences : Trans.WriteSequences; 1144 if (SchedRW.IsVariadic) { 1145 unsigned OperIdx = RWSequences.size()-1; 1146 // Make N-1 copies of this transition's last sequence. 1147 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1148 RWSequences.push_back(RWSequences[OperIdx]); 1149 } 1150 // Push each of the N elements of the SelectedRWs onto a copy of the last 1151 // sequence (split the current operand into N operands). 1152 // Note that write sequences should be expanded within this loop--the entire 1153 // sequence belongs to a single operand. 1154 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1155 RWI != RWE; ++RWI, ++OperIdx) { 1156 IdxVec ExpandedRWs; 1157 if (IsRead) 1158 ExpandedRWs.push_back(*RWI); 1159 else 1160 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1161 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1162 ExpandedRWs.begin(), ExpandedRWs.end()); 1163 } 1164 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1165 } 1166 else { 1167 // Push this transition's expanded sequence onto this transition's last 1168 // sequence (add to the current operand's sequence). 1169 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1170 IdxVec ExpandedRWs; 1171 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1172 RWI != RWE; ++RWI) { 1173 if (IsRead) 1174 ExpandedRWs.push_back(*RWI); 1175 else 1176 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1177 } 1178 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1179 } 1180 } 1181 1182 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1183 // operand. StartIdx is an index into TransVec where partial results 1184 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1185 // of TransVec. 1186 void PredTransitions::substituteVariantOperand( 1187 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1188 1189 // Visit each original RW within the current sequence. 1190 for (SmallVectorImpl<unsigned>::const_iterator 1191 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1192 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1193 // Push this RW on all partial PredTransitions or distribute variants. 1194 // New PredTransitions may be pushed within this loop which should not be 1195 // revisited (TransEnd must be loop invariant). 1196 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1197 TransIdx != TransEnd; ++TransIdx) { 1198 // In the common case, push RW onto the current operand's sequence. 1199 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1200 if (IsRead) 1201 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1202 else 1203 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1204 continue; 1205 } 1206 // Distribute this partial PredTransition across intersecting variants. 1207 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1208 std::vector<TransVariant> IntersectingVariants; 1209 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1210 if (IntersectingVariants.empty()) 1211 PrintFatalError(SchedRW.TheDef->getLoc(), 1212 "No variant of this type has " 1213 "a matching predicate on any processor"); 1214 // Now expand each variant on top of its copy of the transition. 1215 for (std::vector<TransVariant>::const_iterator 1216 IVI = IntersectingVariants.begin(), 1217 IVE = IntersectingVariants.end(); 1218 IVI != IVE; ++IVI) { 1219 pushVariant(*IVI, IsRead); 1220 } 1221 } 1222 } 1223 } 1224 1225 // For each variant of a Read/Write in Trans, substitute the sequence of 1226 // Read/Writes guarded by the variant. This is exponential in the number of 1227 // variant Read/Writes, but in practice detection of mutually exclusive 1228 // predicates should result in linear growth in the total number variants. 1229 // 1230 // This is one step in a breadth-first search of nested variants. 1231 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1232 // Build up a set of partial results starting at the back of 1233 // PredTransitions. Remember the first new transition. 1234 unsigned StartIdx = TransVec.size(); 1235 TransVec.resize(TransVec.size() + 1); 1236 TransVec.back().PredTerm = Trans.PredTerm; 1237 TransVec.back().ProcIndices = Trans.ProcIndices; 1238 1239 // Visit each original write sequence. 1240 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1241 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1242 WSI != WSE; ++WSI) { 1243 // Push a new (empty) write sequence onto all partial Transitions. 1244 for (std::vector<PredTransition>::iterator I = 1245 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1246 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1247 } 1248 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1249 } 1250 // Visit each original read sequence. 1251 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1252 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1253 RSI != RSE; ++RSI) { 1254 // Push a new (empty) read sequence onto all partial Transitions. 1255 for (std::vector<PredTransition>::iterator I = 1256 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1257 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1258 } 1259 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1260 } 1261 } 1262 1263 // Create a new SchedClass for each variant found by inferFromRW. Pass 1264 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1265 unsigned FromClassIdx, 1266 CodeGenSchedModels &SchedModels) { 1267 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1268 // requires creating a new SchedClass. 1269 for (ArrayRef<PredTransition>::iterator 1270 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1271 IdxVec OperWritesVariant; 1272 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1273 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1274 WSI != WSE; ++WSI) { 1275 // Create a new write representing the expanded sequence. 1276 OperWritesVariant.push_back( 1277 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1278 } 1279 IdxVec OperReadsVariant; 1280 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1281 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1282 RSI != RSE; ++RSI) { 1283 // Create a new read representing the expanded sequence. 1284 OperReadsVariant.push_back( 1285 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1286 } 1287 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1288 CodeGenSchedTransition SCTrans; 1289 SCTrans.ToClassIdx = 1290 SchedModels.addSchedClass(/*ItinClassDef=*/0, OperWritesVariant, 1291 OperReadsVariant, ProcIndices); 1292 SCTrans.ProcIndices = ProcIndices; 1293 // The final PredTerm is unique set of predicates guarding the transition. 1294 RecVec Preds; 1295 for (SmallVectorImpl<PredCheck>::const_iterator 1296 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1297 Preds.push_back(PI->Predicate); 1298 } 1299 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1300 Preds.resize(PredsEnd - Preds.begin()); 1301 SCTrans.PredTerm = Preds; 1302 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1303 } 1304 } 1305 1306 // Create new SchedClasses for the given ReadWrite list. If any of the 1307 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1308 // of the ReadWrite list, following Aliases if necessary. 1309 void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites, 1310 const IdxVec &OperReads, 1311 unsigned FromClassIdx, 1312 const IdxVec &ProcIndices) { 1313 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1314 1315 // Create a seed transition with an empty PredTerm and the expanded sequences 1316 // of SchedWrites for the current SchedClass. 1317 std::vector<PredTransition> LastTransitions; 1318 LastTransitions.resize(1); 1319 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1320 ProcIndices.end()); 1321 1322 for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) { 1323 IdxVec WriteSeq; 1324 expandRWSequence(*I, WriteSeq, /*IsRead=*/false); 1325 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1326 LastTransitions[0].WriteSequences.resize(Idx + 1); 1327 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1328 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1329 Seq.push_back(*WI); 1330 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1331 } 1332 DEBUG(dbgs() << " Reads: "); 1333 for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) { 1334 IdxVec ReadSeq; 1335 expandRWSequence(*I, ReadSeq, /*IsRead=*/true); 1336 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1337 LastTransitions[0].ReadSequences.resize(Idx + 1); 1338 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1339 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1340 Seq.push_back(*RI); 1341 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1342 } 1343 DEBUG(dbgs() << '\n'); 1344 1345 // Collect all PredTransitions for individual operands. 1346 // Iterate until no variant writes remain. 1347 while (hasVariant(LastTransitions, *this)) { 1348 PredTransitions Transitions(*this); 1349 for (std::vector<PredTransition>::const_iterator 1350 I = LastTransitions.begin(), E = LastTransitions.end(); 1351 I != E; ++I) { 1352 Transitions.substituteVariants(*I); 1353 } 1354 DEBUG(Transitions.dump()); 1355 LastTransitions.swap(Transitions.TransVec); 1356 } 1357 // If the first transition has no variants, nothing to do. 1358 if (LastTransitions[0].PredTerm.empty()) 1359 return; 1360 1361 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1362 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1363 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1364 } 1365 1366 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1367 void CodeGenSchedModels::collectProcResources() { 1368 // Add any subtarget-specific SchedReadWrites that are directly associated 1369 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1370 // determine which processors they apply to. 1371 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1372 SCI != SCE; ++SCI) { 1373 if (SCI->ItinClassDef) 1374 collectItinProcResources(SCI->ItinClassDef); 1375 else { 1376 // This class may have a default ReadWrite list which can be overriden by 1377 // InstRW definitions. 1378 if (!SCI->InstRWs.empty()) { 1379 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1380 RWI != RWE; ++RWI) { 1381 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1382 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1383 IdxVec Writes, Reads; 1384 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1385 Writes, Reads); 1386 collectRWResources(Writes, Reads, ProcIndices); 1387 } 1388 } 1389 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1390 } 1391 } 1392 // Add resources separately defined by each subtarget. 1393 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1394 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1395 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1396 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1397 } 1398 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1399 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1400 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1401 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1402 } 1403 // Finalize each ProcModel by sorting the record arrays. 1404 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1405 CodeGenProcModel &PM = ProcModels[PIdx]; 1406 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1407 LessRecord()); 1408 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1409 LessRecord()); 1410 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1411 LessRecord()); 1412 DEBUG( 1413 PM.dump(); 1414 dbgs() << "WriteResDefs: "; 1415 for (RecIter RI = PM.WriteResDefs.begin(), 1416 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1417 if ((*RI)->isSubClassOf("WriteRes")) 1418 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1419 else 1420 dbgs() << (*RI)->getName() << " "; 1421 } 1422 dbgs() << "\nReadAdvanceDefs: "; 1423 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1424 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1425 if ((*RI)->isSubClassOf("ReadAdvance")) 1426 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1427 else 1428 dbgs() << (*RI)->getName() << " "; 1429 } 1430 dbgs() << "\nProcResourceDefs: "; 1431 for (RecIter RI = PM.ProcResourceDefs.begin(), 1432 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1433 dbgs() << (*RI)->getName() << " "; 1434 } 1435 dbgs() << '\n'); 1436 } 1437 } 1438 1439 // Collect itinerary class resources for each processor. 1440 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1441 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1442 const CodeGenProcModel &PM = ProcModels[PIdx]; 1443 // For all ItinRW entries. 1444 bool HasMatch = false; 1445 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1446 II != IE; ++II) { 1447 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1448 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1449 continue; 1450 if (HasMatch) 1451 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1452 + ItinClassDef->getName() 1453 + " in ItinResources for " + PM.ModelName); 1454 HasMatch = true; 1455 IdxVec Writes, Reads; 1456 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1457 IdxVec ProcIndices(1, PIdx); 1458 collectRWResources(Writes, Reads, ProcIndices); 1459 } 1460 } 1461 } 1462 1463 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1464 const IdxVec &ProcIndices) { 1465 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1466 if (SchedRW.TheDef) { 1467 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1468 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1469 PI != PE; ++PI) { 1470 addWriteRes(SchedRW.TheDef, *PI); 1471 } 1472 } 1473 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1474 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1475 PI != PE; ++PI) { 1476 addReadAdvance(SchedRW.TheDef, *PI); 1477 } 1478 } 1479 } 1480 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1481 AI != AE; ++AI) { 1482 IdxVec AliasProcIndices; 1483 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1484 AliasProcIndices.push_back( 1485 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1486 } 1487 else 1488 AliasProcIndices = ProcIndices; 1489 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1490 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1491 1492 IdxVec ExpandedRWs; 1493 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1494 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1495 SI != SE; ++SI) { 1496 collectRWResources(*SI, IsRead, AliasProcIndices); 1497 } 1498 } 1499 } 1500 1501 // Collect resources for a set of read/write types and processor indices. 1502 void CodeGenSchedModels::collectRWResources(const IdxVec &Writes, 1503 const IdxVec &Reads, 1504 const IdxVec &ProcIndices) { 1505 1506 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 1507 collectRWResources(*WI, /*IsRead=*/false, ProcIndices); 1508 1509 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 1510 collectRWResources(*RI, /*IsRead=*/true, ProcIndices); 1511 } 1512 1513 1514 // Find the processor's resource units for this kind of resource. 1515 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1516 const CodeGenProcModel &PM) const { 1517 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1518 return ProcResKind; 1519 1520 Record *ProcUnitDef = 0; 1521 RecVec ProcResourceDefs = 1522 Records.getAllDerivedDefinitions("ProcResourceUnits"); 1523 1524 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1525 RI != RE; ++RI) { 1526 1527 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1528 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1529 if (ProcUnitDef) { 1530 PrintFatalError((*RI)->getLoc(), 1531 "Multiple ProcessorResourceUnits associated with " 1532 + ProcResKind->getName()); 1533 } 1534 ProcUnitDef = *RI; 1535 } 1536 } 1537 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1538 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1539 RI != RE; ++RI) { 1540 1541 if (*RI == ProcResKind 1542 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1543 if (ProcUnitDef) { 1544 PrintFatalError((*RI)->getLoc(), 1545 "Multiple ProcessorResourceUnits associated with " 1546 + ProcResKind->getName()); 1547 } 1548 ProcUnitDef = *RI; 1549 } 1550 } 1551 if (!ProcUnitDef) { 1552 PrintFatalError(ProcResKind->getLoc(), 1553 "No ProcessorResources associated with " 1554 + ProcResKind->getName()); 1555 } 1556 return ProcUnitDef; 1557 } 1558 1559 // Iteratively add a resource and its super resources. 1560 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1561 CodeGenProcModel &PM) { 1562 for (;;) { 1563 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1564 1565 // See if this ProcResource is already associated with this processor. 1566 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1567 PM.ProcResourceDefs.end(), ProcResUnits); 1568 if (I != PM.ProcResourceDefs.end()) 1569 return; 1570 1571 PM.ProcResourceDefs.push_back(ProcResUnits); 1572 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1573 return; 1574 1575 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1576 return; 1577 1578 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1579 } 1580 } 1581 1582 // Add resources for a SchedWrite to this processor if they don't exist. 1583 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1584 assert(PIdx && "don't add resources to an invalid Processor model"); 1585 1586 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1587 RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); 1588 if (WRI != WRDefs.end()) 1589 return; 1590 WRDefs.push_back(ProcWriteResDef); 1591 1592 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1593 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1594 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1595 WritePRI != WritePRE; ++WritePRI) { 1596 addProcResource(*WritePRI, ProcModels[PIdx]); 1597 } 1598 } 1599 1600 // Add resources for a ReadAdvance to this processor if they don't exist. 1601 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1602 unsigned PIdx) { 1603 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1604 RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); 1605 if (I != RADefs.end()) 1606 return; 1607 RADefs.push_back(ProcReadAdvanceDef); 1608 } 1609 1610 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1611 RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), 1612 PRDef); 1613 if (PRPos == ProcResourceDefs.end()) 1614 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1615 "the ProcResources list for " + ModelName); 1616 // Idx=0 is reserved for invalid. 1617 return 1 + (PRPos - ProcResourceDefs.begin()); 1618 } 1619 1620 #ifndef NDEBUG 1621 void CodeGenProcModel::dump() const { 1622 dbgs() << Index << ": " << ModelName << " " 1623 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1624 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1625 } 1626 1627 void CodeGenSchedRW::dump() const { 1628 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1629 if (IsSequence) { 1630 dbgs() << "("; 1631 dumpIdxVec(Sequence); 1632 dbgs() << ")"; 1633 } 1634 } 1635 1636 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1637 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1638 << " Writes: "; 1639 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1640 SchedModels->getSchedWrite(Writes[i]).dump(); 1641 if (i < N-1) { 1642 dbgs() << '\n'; 1643 dbgs().indent(10); 1644 } 1645 } 1646 dbgs() << "\n Reads: "; 1647 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1648 SchedModels->getSchedRead(Reads[i]).dump(); 1649 if (i < N-1) { 1650 dbgs() << '\n'; 1651 dbgs().indent(10); 1652 } 1653 } 1654 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1655 if (!Transitions.empty()) { 1656 dbgs() << "\n Transitions for Proc "; 1657 for (std::vector<CodeGenSchedTransition>::const_iterator 1658 TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { 1659 dumpIdxVec(TI->ProcIndices); 1660 } 1661 } 1662 } 1663 1664 void PredTransitions::dump() const { 1665 dbgs() << "Expanded Variants:\n"; 1666 for (std::vector<PredTransition>::const_iterator 1667 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1668 dbgs() << "{"; 1669 for (SmallVectorImpl<PredCheck>::const_iterator 1670 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1671 PCI != PCE; ++PCI) { 1672 if (PCI != TI->PredTerm.begin()) 1673 dbgs() << ", "; 1674 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1675 << ":" << PCI->Predicate->getName(); 1676 } 1677 dbgs() << "},\n => {"; 1678 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1679 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1680 WSI != WSE; ++WSI) { 1681 dbgs() << "("; 1682 for (SmallVectorImpl<unsigned>::const_iterator 1683 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1684 if (WI != WSI->begin()) 1685 dbgs() << ", "; 1686 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1687 } 1688 dbgs() << "),"; 1689 } 1690 dbgs() << "}\n"; 1691 } 1692 } 1693 #endif // NDEBUG 1694