1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/Regex.h" 20 #include "llvm/TableGen/Error.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "subtarget-emitter" 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(ArrayRef<unsigned> V) { 28 for (unsigned Idx : V) 29 dbgs() << Idx << ", "; 30 } 31 #endif 32 33 namespace { 34 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 35 struct InstrsOp : public SetTheory::Operator { 36 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 37 ArrayRef<SMLoc> Loc) override { 38 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 39 } 40 }; 41 42 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 43 // 44 // TODO: Since this is a prefix match, perform a binary search over the 45 // instruction names using lower_bound. Note that the predefined instrs must be 46 // scanned linearly first. However, this is only safe if the regex pattern has 47 // no top-level bars. The DAG already has a list of patterns, so there's no 48 // reason to use top-level bars, but we need a way to verify they don't exist 49 // before implementing the optimization. 50 struct InstRegexOp : public SetTheory::Operator { 51 const CodeGenTarget &Target; 52 InstRegexOp(const CodeGenTarget &t): Target(t) {} 53 54 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 55 ArrayRef<SMLoc> Loc) override { 56 SmallVector<Regex, 4> RegexList; 57 for (DagInit::const_arg_iterator 58 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 59 StringInit *SI = dyn_cast<StringInit>(*AI); 60 if (!SI) 61 PrintFatalError(Loc, "instregex requires pattern string: " 62 + Expr->getAsString()); 63 std::string pat = SI->getValue(); 64 // Implement a python-style prefix match. 65 if (pat[0] != '^') { 66 pat.insert(0, "^("); 67 pat.insert(pat.end(), ')'); 68 } 69 RegexList.push_back(Regex(pat)); 70 } 71 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 72 for (auto &R : RegexList) { 73 if (R.match(Inst->TheDef->getName())) 74 Elts.insert(Inst->TheDef); 75 } 76 } 77 } 78 }; 79 } // end anonymous namespace 80 81 /// CodeGenModels ctor interprets machine model records and populates maps. 82 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 83 const CodeGenTarget &TGT): 84 Records(RK), Target(TGT) { 85 86 Sets.addFieldExpander("InstRW", "Instrs"); 87 88 // Allow Set evaluation to recognize the dags used in InstRW records: 89 // (instrs Op1, Op1...) 90 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 91 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 92 93 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 94 // that are explicitly referenced in tablegen records. Resources associated 95 // with each processor will be derived later. Populate ProcModelMap with the 96 // CodeGenProcModel instances. 97 collectProcModels(); 98 99 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 100 // defined, and populate SchedReads and SchedWrites vectors. Implicit 101 // SchedReadWrites that represent sequences derived from expanded variant will 102 // be inferred later. 103 collectSchedRW(); 104 105 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 106 // required by an instruction definition, and populate SchedClassIdxMap. Set 107 // NumItineraryClasses to the number of explicit itinerary classes referenced 108 // by instructions. Set NumInstrSchedClasses to the number of itinerary 109 // classes plus any classes implied by instructions that derive from class 110 // Sched and provide SchedRW list. This does not infer any new classes from 111 // SchedVariant. 112 collectSchedClasses(); 113 114 // Find instruction itineraries for each processor. Sort and populate 115 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 116 // all itinerary classes to be discovered. 117 collectProcItins(); 118 119 // Find ItinRW records for each processor and itinerary class. 120 // (For per-operand resources mapped to itinerary classes). 121 collectProcItinRW(); 122 123 // Find UnsupportedFeatures records for each processor. 124 // (For per-operand resources mapped to itinerary classes). 125 collectProcUnsupportedFeatures(); 126 127 // Infer new SchedClasses from SchedVariant. 128 inferSchedClasses(); 129 130 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 131 // ProcResourceDefs. 132 collectProcResources(); 133 134 checkCompleteness(); 135 } 136 137 /// Gather all processor models. 138 void CodeGenSchedModels::collectProcModels() { 139 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 140 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 141 142 // Reserve space because we can. Reallocation would be ok. 143 ProcModels.reserve(ProcRecords.size()+1); 144 145 // Use idx=0 for NoModel/NoItineraries. 146 Record *NoModelDef = Records.getDef("NoSchedModel"); 147 Record *NoItinsDef = Records.getDef("NoItineraries"); 148 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 149 ProcModelMap[NoModelDef] = 0; 150 151 // For each processor, find a unique machine model. 152 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 153 addProcModel(ProcRecords[i]); 154 } 155 156 /// Get a unique processor model based on the defined MachineModel and 157 /// ProcessorItineraries. 158 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 159 Record *ModelKey = getModelOrItinDef(ProcDef); 160 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 161 return; 162 163 std::string Name = ModelKey->getName(); 164 if (ModelKey->isSubClassOf("SchedMachineModel")) { 165 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 166 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 167 } 168 else { 169 // An itinerary is defined without a machine model. Infer a new model. 170 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 171 Name = Name + "Model"; 172 ProcModels.emplace_back(ProcModels.size(), Name, 173 ProcDef->getValueAsDef("SchedModel"), ModelKey); 174 } 175 DEBUG(ProcModels.back().dump()); 176 } 177 178 // Recursively find all reachable SchedReadWrite records. 179 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 180 SmallPtrSet<Record*, 16> &RWSet) { 181 if (!RWSet.insert(RWDef).second) 182 return; 183 RWDefs.push_back(RWDef); 184 // Reads don't current have sequence records, but it can be added later. 185 if (RWDef->isSubClassOf("WriteSequence")) { 186 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 187 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 188 scanSchedRW(*I, RWDefs, RWSet); 189 } 190 else if (RWDef->isSubClassOf("SchedVariant")) { 191 // Visit each variant (guarded by a different predicate). 192 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 193 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 194 // Visit each RW in the sequence selected by the current variant. 195 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 196 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 197 scanSchedRW(*I, RWDefs, RWSet); 198 } 199 } 200 } 201 202 // Collect and sort all SchedReadWrites reachable via tablegen records. 203 // More may be inferred later when inferring new SchedClasses from variants. 204 void CodeGenSchedModels::collectSchedRW() { 205 // Reserve idx=0 for invalid writes/reads. 206 SchedWrites.resize(1); 207 SchedReads.resize(1); 208 209 SmallPtrSet<Record*, 16> RWSet; 210 211 // Find all SchedReadWrites referenced by instruction defs. 212 RecVec SWDefs, SRDefs; 213 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 214 Record *SchedDef = Inst->TheDef; 215 if (SchedDef->isValueUnset("SchedRW")) 216 continue; 217 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 218 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 219 if ((*RWI)->isSubClassOf("SchedWrite")) 220 scanSchedRW(*RWI, SWDefs, RWSet); 221 else { 222 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 223 scanSchedRW(*RWI, SRDefs, RWSet); 224 } 225 } 226 } 227 // Find all ReadWrites referenced by InstRW. 228 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 229 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 230 // For all OperandReadWrites. 231 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 232 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 233 RWI != RWE; ++RWI) { 234 if ((*RWI)->isSubClassOf("SchedWrite")) 235 scanSchedRW(*RWI, SWDefs, RWSet); 236 else { 237 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 238 scanSchedRW(*RWI, SRDefs, RWSet); 239 } 240 } 241 } 242 // Find all ReadWrites referenced by ItinRW. 243 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 244 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 245 // For all OperandReadWrites. 246 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 247 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 248 RWI != RWE; ++RWI) { 249 if ((*RWI)->isSubClassOf("SchedWrite")) 250 scanSchedRW(*RWI, SWDefs, RWSet); 251 else { 252 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 253 scanSchedRW(*RWI, SRDefs, RWSet); 254 } 255 } 256 } 257 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 258 // for the loop below that initializes Alias vectors. 259 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 260 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 261 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 262 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 263 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 264 if (MatchDef->isSubClassOf("SchedWrite")) { 265 if (!AliasDef->isSubClassOf("SchedWrite")) 266 PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 267 scanSchedRW(AliasDef, SWDefs, RWSet); 268 } 269 else { 270 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 271 if (!AliasDef->isSubClassOf("SchedRead")) 272 PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 273 scanSchedRW(AliasDef, SRDefs, RWSet); 274 } 275 } 276 // Sort and add the SchedReadWrites directly referenced by instructions or 277 // itinerary resources. Index reads and writes in separate domains. 278 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 279 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 280 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 281 SchedWrites.emplace_back(SchedWrites.size(), *SWI); 282 } 283 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 284 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 285 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 286 SchedReads.emplace_back(SchedReads.size(), *SRI); 287 } 288 // Initialize WriteSequence vectors. 289 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 290 WE = SchedWrites.end(); WI != WE; ++WI) { 291 if (!WI->IsSequence) 292 continue; 293 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 294 /*IsRead=*/false); 295 } 296 // Initialize Aliases vectors. 297 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 298 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 299 getSchedRW(AliasDef).IsAlias = true; 300 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 301 CodeGenSchedRW &RW = getSchedRW(MatchDef); 302 if (RW.IsAlias) 303 PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); 304 RW.Aliases.push_back(*AI); 305 } 306 DEBUG( 307 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 308 dbgs() << WIdx << ": "; 309 SchedWrites[WIdx].dump(); 310 dbgs() << '\n'; 311 } 312 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 313 dbgs() << RIdx << ": "; 314 SchedReads[RIdx].dump(); 315 dbgs() << '\n'; 316 } 317 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 318 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 319 RI != RE; ++RI) { 320 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 321 const std::string &Name = (*RI)->getName(); 322 if (Name != "NoWrite" && Name != "ReadDefault") 323 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 324 } 325 }); 326 } 327 328 /// Compute a SchedWrite name from a sequence of writes. 329 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 330 std::string Name("("); 331 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 332 if (I != Seq.begin()) 333 Name += '_'; 334 Name += getSchedRW(*I, IsRead).Name; 335 } 336 Name += ')'; 337 return Name; 338 } 339 340 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 341 unsigned After) const { 342 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 343 assert(After < RWVec.size() && "start position out of bounds"); 344 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 345 E = RWVec.end(); I != E; ++I) { 346 if (I->TheDef == Def) 347 return I - RWVec.begin(); 348 } 349 return 0; 350 } 351 352 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 353 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 354 Record *ReadDef = SchedReads[i].TheDef; 355 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 356 continue; 357 358 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 359 if (is_contained(ValidWrites, WriteDef)) { 360 return true; 361 } 362 } 363 return false; 364 } 365 366 namespace llvm { 367 void splitSchedReadWrites(const RecVec &RWDefs, 368 RecVec &WriteDefs, RecVec &ReadDefs) { 369 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 370 if ((*RWI)->isSubClassOf("SchedWrite")) 371 WriteDefs.push_back(*RWI); 372 else { 373 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 374 ReadDefs.push_back(*RWI); 375 } 376 } 377 } 378 } // namespace llvm 379 380 // Split the SchedReadWrites defs and call findRWs for each list. 381 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 382 IdxVec &Writes, IdxVec &Reads) const { 383 RecVec WriteDefs; 384 RecVec ReadDefs; 385 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 386 findRWs(WriteDefs, Writes, false); 387 findRWs(ReadDefs, Reads, true); 388 } 389 390 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 391 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 392 bool IsRead) const { 393 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 394 unsigned Idx = getSchedRWIdx(*RI, IsRead); 395 assert(Idx && "failed to collect SchedReadWrite"); 396 RWs.push_back(Idx); 397 } 398 } 399 400 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 401 bool IsRead) const { 402 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 403 if (!SchedRW.IsSequence) { 404 RWSeq.push_back(RWIdx); 405 return; 406 } 407 int Repeat = 408 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 409 for (int i = 0; i < Repeat; ++i) { 410 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 411 I != E; ++I) { 412 expandRWSequence(*I, RWSeq, IsRead); 413 } 414 } 415 } 416 417 // Expand a SchedWrite as a sequence following any aliases that coincide with 418 // the given processor model. 419 void CodeGenSchedModels::expandRWSeqForProc( 420 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 421 const CodeGenProcModel &ProcModel) const { 422 423 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 424 Record *AliasDef = nullptr; 425 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 426 AI != AE; ++AI) { 427 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 428 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 429 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 430 if (&getProcModel(ModelDef) != &ProcModel) 431 continue; 432 } 433 if (AliasDef) 434 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 435 "defined for processor " + ProcModel.ModelName + 436 " Ensure only one SchedAlias exists per RW."); 437 AliasDef = AliasRW.TheDef; 438 } 439 if (AliasDef) { 440 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 441 RWSeq, IsRead,ProcModel); 442 return; 443 } 444 if (!SchedWrite.IsSequence) { 445 RWSeq.push_back(RWIdx); 446 return; 447 } 448 int Repeat = 449 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 450 for (int i = 0; i < Repeat; ++i) { 451 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 452 I != E; ++I) { 453 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 454 } 455 } 456 } 457 458 // Find the existing SchedWrite that models this sequence of writes. 459 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 460 bool IsRead) { 461 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 462 463 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 464 I != E; ++I) { 465 if (makeArrayRef(I->Sequence) == Seq) 466 return I - RWVec.begin(); 467 } 468 // Index zero reserved for invalid RW. 469 return 0; 470 } 471 472 /// Add this ReadWrite if it doesn't already exist. 473 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 474 bool IsRead) { 475 assert(!Seq.empty() && "cannot insert empty sequence"); 476 if (Seq.size() == 1) 477 return Seq.back(); 478 479 unsigned Idx = findRWForSequence(Seq, IsRead); 480 if (Idx) 481 return Idx; 482 483 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 484 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 485 if (IsRead) 486 SchedReads.push_back(SchedRW); 487 else 488 SchedWrites.push_back(SchedRW); 489 return RWIdx; 490 } 491 492 /// Visit all the instruction definitions for this target to gather and 493 /// enumerate the itinerary classes. These are the explicitly specified 494 /// SchedClasses. More SchedClasses may be inferred. 495 void CodeGenSchedModels::collectSchedClasses() { 496 497 // NoItinerary is always the first class at Idx=0 498 SchedClasses.resize(1); 499 SchedClasses.back().Index = 0; 500 SchedClasses.back().Name = "NoInstrModel"; 501 SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); 502 SchedClasses.back().ProcIndices.push_back(0); 503 504 // Create a SchedClass for each unique combination of itinerary class and 505 // SchedRW list. 506 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 507 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 508 IdxVec Writes, Reads; 509 if (!Inst->TheDef->isValueUnset("SchedRW")) 510 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 511 512 // ProcIdx == 0 indicates the class applies to all processors. 513 IdxVec ProcIndices(1, 0); 514 515 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); 516 InstrClassMap[Inst->TheDef] = SCIdx; 517 } 518 // Create classes for InstRW defs. 519 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 520 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 521 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 522 createInstRWClass(*OI); 523 524 NumInstrSchedClasses = SchedClasses.size(); 525 526 bool EnableDump = false; 527 DEBUG(EnableDump = true); 528 if (!EnableDump) 529 return; 530 531 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 532 std::string InstName = Inst->TheDef->getName(); 533 unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); 534 if (!SCIdx) { 535 if (!Inst->hasNoSchedulingInfo) 536 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 537 continue; 538 } 539 CodeGenSchedClass &SC = getSchedClass(SCIdx); 540 if (SC.ProcIndices[0] != 0) 541 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 542 "must not be subtarget specific."); 543 544 IdxVec ProcIndices; 545 if (SC.ItinClassDef->getName() != "NoItinerary") { 546 ProcIndices.push_back(0); 547 dbgs() << "Itinerary for " << InstName << ": " 548 << SC.ItinClassDef->getName() << '\n'; 549 } 550 if (!SC.Writes.empty()) { 551 ProcIndices.push_back(0); 552 dbgs() << "SchedRW machine model for " << InstName; 553 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) 554 dbgs() << " " << SchedWrites[*WI].Name; 555 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 556 dbgs() << " " << SchedReads[*RI].Name; 557 dbgs() << '\n'; 558 } 559 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 560 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 561 RWI != RWE; ++RWI) { 562 const CodeGenProcModel &ProcModel = 563 getProcModel((*RWI)->getValueAsDef("SchedModel")); 564 ProcIndices.push_back(ProcModel.Index); 565 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 566 IdxVec Writes; 567 IdxVec Reads; 568 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 569 Writes, Reads); 570 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 571 dbgs() << " " << SchedWrites[*WI].Name; 572 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 573 dbgs() << " " << SchedReads[*RI].Name; 574 dbgs() << '\n'; 575 } 576 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 577 PE = ProcModels.end(); PI != PE; ++PI) { 578 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) 579 dbgs() << "No machine model for " << Inst->TheDef->getName() 580 << " on processor " << PI->ModelName << '\n'; 581 } 582 } 583 } 584 585 /// Find an SchedClass that has been inferred from a per-operand list of 586 /// SchedWrites and SchedReads. 587 unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, 588 ArrayRef<unsigned> Writes, 589 ArrayRef<unsigned> Reads) const { 590 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 591 if (I->ItinClassDef == ItinClassDef && makeArrayRef(I->Writes) == Writes && 592 makeArrayRef(I->Reads) == Reads) { 593 return I - schedClassBegin(); 594 } 595 } 596 return 0; 597 } 598 599 // Get the SchedClass index for an instruction. 600 unsigned CodeGenSchedModels::getSchedClassIdx( 601 const CodeGenInstruction &Inst) const { 602 603 return InstrClassMap.lookup(Inst.TheDef); 604 } 605 606 std::string 607 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 608 ArrayRef<unsigned> OperWrites, 609 ArrayRef<unsigned> OperReads) { 610 611 std::string Name; 612 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 613 Name = ItinClassDef->getName(); 614 for (unsigned Idx : OperWrites) { 615 if (!Name.empty()) 616 Name += '_'; 617 Name += SchedWrites[Idx].Name; 618 } 619 for (unsigned Idx : OperReads) { 620 Name += '_'; 621 Name += SchedReads[Idx].Name; 622 } 623 return Name; 624 } 625 626 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 627 628 std::string Name; 629 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 630 if (I != InstDefs.begin()) 631 Name += '_'; 632 Name += (*I)->getName(); 633 } 634 return Name; 635 } 636 637 /// Add an inferred sched class from an itinerary class and per-operand list of 638 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 639 /// processors that may utilize this class. 640 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 641 ArrayRef<unsigned> OperWrites, 642 ArrayRef<unsigned> OperReads, 643 ArrayRef<unsigned> ProcIndices) { 644 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 645 646 unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); 647 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 648 IdxVec PI; 649 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 650 SchedClasses[Idx].ProcIndices.end(), 651 ProcIndices.begin(), ProcIndices.end(), 652 std::back_inserter(PI)); 653 SchedClasses[Idx].ProcIndices.swap(PI); 654 return Idx; 655 } 656 Idx = SchedClasses.size(); 657 SchedClasses.resize(Idx+1); 658 CodeGenSchedClass &SC = SchedClasses.back(); 659 SC.Index = Idx; 660 SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); 661 SC.ItinClassDef = ItinClassDef; 662 SC.Writes = OperWrites; 663 SC.Reads = OperReads; 664 SC.ProcIndices = ProcIndices; 665 666 return Idx; 667 } 668 669 // Create classes for each set of opcodes that are in the same InstReadWrite 670 // definition across all processors. 671 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 672 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 673 // intersects with an existing class via a previous InstRWDef. Instrs that do 674 // not intersect with an existing class refer back to their former class as 675 // determined from ItinDef or SchedRW. 676 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 677 // Sort Instrs into sets. 678 const RecVec *InstDefs = Sets.expand(InstRWDef); 679 if (InstDefs->empty()) 680 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 681 682 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 683 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 684 if (Pos == InstrClassMap.end()) 685 PrintFatalError((*I)->getLoc(), "No sched class for instruction."); 686 unsigned SCIdx = Pos->second; 687 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 688 for (; CIdx != CEnd; ++CIdx) { 689 if (ClassInstrs[CIdx].first == SCIdx) 690 break; 691 } 692 if (CIdx == CEnd) { 693 ClassInstrs.resize(CEnd + 1); 694 ClassInstrs[CIdx].first = SCIdx; 695 } 696 ClassInstrs[CIdx].second.push_back(*I); 697 } 698 // For each set of Instrs, create a new class if necessary, and map or remap 699 // the Instrs to it. 700 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 701 for (; CIdx != CEnd; ++CIdx) { 702 unsigned OldSCIdx = ClassInstrs[CIdx].first; 703 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 704 // If the all instrs in the current class are accounted for, then leave 705 // them mapped to their old class. 706 if (OldSCIdx) { 707 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 708 if (!RWDefs.empty()) { 709 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 710 unsigned OrigNumInstrs = 0; 711 for (RecIter I = OrigInstDefs->begin(), E = OrigInstDefs->end(); 712 I != E; ++I) { 713 if (InstrClassMap[*I] == OldSCIdx) 714 ++OrigNumInstrs; 715 } 716 if (OrigNumInstrs == InstDefs.size()) { 717 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 718 "expected a generic SchedClass"); 719 DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 720 << SchedClasses[OldSCIdx].Name << " on " 721 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 722 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 723 continue; 724 } 725 } 726 } 727 unsigned SCIdx = SchedClasses.size(); 728 SchedClasses.resize(SCIdx+1); 729 CodeGenSchedClass &SC = SchedClasses.back(); 730 SC.Index = SCIdx; 731 SC.Name = createSchedClassName(InstDefs); 732 DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 733 << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); 734 735 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 736 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 737 SC.Writes = SchedClasses[OldSCIdx].Writes; 738 SC.Reads = SchedClasses[OldSCIdx].Reads; 739 SC.ProcIndices.push_back(0); 740 // Map each Instr to this new class. 741 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 742 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 743 SmallSet<unsigned, 4> RemappedClassIDs; 744 for (ArrayRef<Record*>::const_iterator 745 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 746 unsigned OldSCIdx = InstrClassMap[*II]; 747 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { 748 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 749 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 750 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 751 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 752 (*II)->getName() + " also matches " + 753 (*RI)->getValue("Instrs")->getValue()->getAsString()); 754 } 755 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 756 SC.InstRWs.push_back(*RI); 757 } 758 } 759 InstrClassMap[*II] = SCIdx; 760 } 761 SC.InstRWs.push_back(InstRWDef); 762 } 763 } 764 765 // True if collectProcItins found anything. 766 bool CodeGenSchedModels::hasItineraries() const { 767 for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); 768 PI != PE; ++PI) { 769 if (PI->hasItineraries()) 770 return true; 771 } 772 return false; 773 } 774 775 // Gather the processor itineraries. 776 void CodeGenSchedModels::collectProcItins() { 777 for (CodeGenProcModel &ProcModel : ProcModels) { 778 if (!ProcModel.hasItineraries()) 779 continue; 780 781 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 782 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 783 784 // Populate ItinDefList with Itinerary records. 785 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 786 787 // Insert each itinerary data record in the correct position within 788 // the processor model's ItinDefList. 789 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 790 Record *ItinData = ItinRecords[i]; 791 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 792 bool FoundClass = false; 793 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 794 SCI != SCE; ++SCI) { 795 // Multiple SchedClasses may share an itinerary. Update all of them. 796 if (SCI->ItinClassDef == ItinDef) { 797 ProcModel.ItinDefList[SCI->Index] = ItinData; 798 FoundClass = true; 799 } 800 } 801 if (!FoundClass) { 802 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 803 << " missing class for itinerary " << ItinDef->getName() << '\n'); 804 } 805 } 806 // Check for missing itinerary entries. 807 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 808 DEBUG( 809 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 810 if (!ProcModel.ItinDefList[i]) 811 dbgs() << ProcModel.ItinsDef->getName() 812 << " missing itinerary for class " 813 << SchedClasses[i].Name << '\n'; 814 }); 815 } 816 } 817 818 // Gather the read/write types for each itinerary class. 819 void CodeGenSchedModels::collectProcItinRW() { 820 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 821 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 822 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 823 if (!(*II)->getValueInit("SchedModel")->isComplete()) 824 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 825 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 826 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 827 if (I == ProcModelMap.end()) { 828 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 829 + ModelDef->getName()); 830 } 831 ProcModels[I->second].ItinRWDefs.push_back(*II); 832 } 833 } 834 835 // Gather the unsupported features for processor models. 836 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 837 for (CodeGenProcModel &ProcModel : ProcModels) { 838 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 839 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 840 } 841 } 842 } 843 844 /// Infer new classes from existing classes. In the process, this may create new 845 /// SchedWrites from sequences of existing SchedWrites. 846 void CodeGenSchedModels::inferSchedClasses() { 847 DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 848 849 // Visit all existing classes and newly created classes. 850 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 851 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 852 853 if (SchedClasses[Idx].ItinClassDef) 854 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 855 if (!SchedClasses[Idx].InstRWs.empty()) 856 inferFromInstRWs(Idx); 857 if (!SchedClasses[Idx].Writes.empty()) { 858 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 859 Idx, SchedClasses[Idx].ProcIndices); 860 } 861 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 862 "too many SchedVariants"); 863 } 864 } 865 866 /// Infer classes from per-processor itinerary resources. 867 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 868 unsigned FromClassIdx) { 869 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 870 const CodeGenProcModel &PM = ProcModels[PIdx]; 871 // For all ItinRW entries. 872 bool HasMatch = false; 873 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 874 II != IE; ++II) { 875 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 876 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 877 continue; 878 if (HasMatch) 879 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 880 + ItinClassDef->getName() 881 + " in ItinResources for " + PM.ModelName); 882 HasMatch = true; 883 IdxVec Writes, Reads; 884 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 885 IdxVec ProcIndices(1, PIdx); 886 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 887 } 888 } 889 } 890 891 /// Infer classes from per-processor InstReadWrite definitions. 892 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 893 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 894 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 895 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 896 const RecVec *InstDefs = Sets.expand(Rec); 897 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 898 for (; II != IE; ++II) { 899 if (InstrClassMap[*II] == SCIdx) 900 break; 901 } 902 // If this class no longer has any instructions mapped to it, it has become 903 // irrelevant. 904 if (II == IE) 905 continue; 906 IdxVec Writes, Reads; 907 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 908 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 909 IdxVec ProcIndices(1, PIdx); 910 inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. 911 } 912 } 913 914 namespace { 915 // Helper for substituteVariantOperand. 916 struct TransVariant { 917 Record *VarOrSeqDef; // Variant or sequence. 918 unsigned RWIdx; // Index of this variant or sequence's matched type. 919 unsigned ProcIdx; // Processor model index or zero for any. 920 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 921 922 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 923 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 924 }; 925 926 // Associate a predicate with the SchedReadWrite that it guards. 927 // RWIdx is the index of the read/write variant. 928 struct PredCheck { 929 bool IsRead; 930 unsigned RWIdx; 931 Record *Predicate; 932 933 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 934 }; 935 936 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 937 struct PredTransition { 938 // A predicate term is a conjunction of PredChecks. 939 SmallVector<PredCheck, 4> PredTerm; 940 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 941 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 942 SmallVector<unsigned, 4> ProcIndices; 943 }; 944 945 // Encapsulate a set of partially constructed transitions. 946 // The results are built by repeated calls to substituteVariants. 947 class PredTransitions { 948 CodeGenSchedModels &SchedModels; 949 950 public: 951 std::vector<PredTransition> TransVec; 952 953 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 954 955 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 956 bool IsRead, unsigned StartIdx); 957 958 void substituteVariants(const PredTransition &Trans); 959 960 #ifndef NDEBUG 961 void dump() const; 962 #endif 963 964 private: 965 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 966 void getIntersectingVariants( 967 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 968 std::vector<TransVariant> &IntersectingVariants); 969 void pushVariant(const TransVariant &VInfo, bool IsRead); 970 }; 971 } // anonymous 972 973 // Return true if this predicate is mutually exclusive with a PredTerm. This 974 // degenerates into checking if the predicate is mutually exclusive with any 975 // predicate in the Term's conjunction. 976 // 977 // All predicates associated with a given SchedRW are considered mutually 978 // exclusive. This should work even if the conditions expressed by the 979 // predicates are not exclusive because the predicates for a given SchedWrite 980 // are always checked in the order they are defined in the .td file. Later 981 // conditions implicitly negate any prior condition. 982 bool PredTransitions::mutuallyExclusive(Record *PredDef, 983 ArrayRef<PredCheck> Term) { 984 985 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 986 I != E; ++I) { 987 if (I->Predicate == PredDef) 988 return false; 989 990 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 991 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 992 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 993 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 994 if ((*VI)->getValueAsDef("Predicate") == PredDef) 995 return true; 996 } 997 } 998 return false; 999 } 1000 1001 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1002 CodeGenSchedModels &SchedModels) { 1003 if (RW.HasVariants) 1004 return true; 1005 1006 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 1007 const CodeGenSchedRW &AliasRW = 1008 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 1009 if (AliasRW.HasVariants) 1010 return true; 1011 if (AliasRW.IsSequence) { 1012 IdxVec ExpandedRWs; 1013 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1014 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1015 SI != SE; ++SI) { 1016 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1017 SchedModels)) { 1018 return true; 1019 } 1020 } 1021 } 1022 } 1023 return false; 1024 } 1025 1026 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1027 CodeGenSchedModels &SchedModels) { 1028 for (ArrayRef<PredTransition>::iterator 1029 PTI = Transitions.begin(), PTE = Transitions.end(); 1030 PTI != PTE; ++PTI) { 1031 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1032 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1033 WSI != WSE; ++WSI) { 1034 for (SmallVectorImpl<unsigned>::const_iterator 1035 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1036 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1037 return true; 1038 } 1039 } 1040 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1041 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1042 RSI != RSE; ++RSI) { 1043 for (SmallVectorImpl<unsigned>::const_iterator 1044 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1045 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1046 return true; 1047 } 1048 } 1049 } 1050 return false; 1051 } 1052 1053 // Populate IntersectingVariants with any variants or aliased sequences of the 1054 // given SchedRW whose processor indices and predicates are not mutually 1055 // exclusive with the given transition. 1056 void PredTransitions::getIntersectingVariants( 1057 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1058 std::vector<TransVariant> &IntersectingVariants) { 1059 1060 bool GenericRW = false; 1061 1062 std::vector<TransVariant> Variants; 1063 if (SchedRW.HasVariants) { 1064 unsigned VarProcIdx = 0; 1065 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1066 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1067 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1068 } 1069 // Push each variant. Assign TransVecIdx later. 1070 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1071 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1072 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1073 if (VarProcIdx == 0) 1074 GenericRW = true; 1075 } 1076 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1077 AI != AE; ++AI) { 1078 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1079 // to is defined within a processor model, constrain all variants to 1080 // that processor. 1081 unsigned AliasProcIdx = 0; 1082 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1083 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1084 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1085 } 1086 const CodeGenSchedRW &AliasRW = 1087 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1088 1089 if (AliasRW.HasVariants) { 1090 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1091 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1092 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1093 } 1094 if (AliasRW.IsSequence) { 1095 Variants.push_back( 1096 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1097 } 1098 if (AliasProcIdx == 0) 1099 GenericRW = true; 1100 } 1101 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1102 TransVariant &Variant = Variants[VIdx]; 1103 // Don't expand variants if the processor models don't intersect. 1104 // A zero processor index means any processor. 1105 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1106 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1107 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1108 Variant.ProcIdx); 1109 if (!Cnt) 1110 continue; 1111 if (Cnt > 1) { 1112 const CodeGenProcModel &PM = 1113 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1114 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1115 "Multiple variants defined for processor " + 1116 PM.ModelName + 1117 " Ensure only one SchedAlias exists per RW."); 1118 } 1119 } 1120 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1121 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1122 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1123 continue; 1124 } 1125 if (IntersectingVariants.empty()) { 1126 // The first variant builds on the existing transition. 1127 Variant.TransVecIdx = TransIdx; 1128 IntersectingVariants.push_back(Variant); 1129 } 1130 else { 1131 // Push another copy of the current transition for more variants. 1132 Variant.TransVecIdx = TransVec.size(); 1133 IntersectingVariants.push_back(Variant); 1134 TransVec.push_back(TransVec[TransIdx]); 1135 } 1136 } 1137 if (GenericRW && IntersectingVariants.empty()) { 1138 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1139 "a matching predicate on any processor"); 1140 } 1141 } 1142 1143 // Push the Reads/Writes selected by this variant onto the PredTransition 1144 // specified by VInfo. 1145 void PredTransitions:: 1146 pushVariant(const TransVariant &VInfo, bool IsRead) { 1147 1148 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1149 1150 // If this operand transition is reached through a processor-specific alias, 1151 // then the whole transition is specific to this processor. 1152 if (VInfo.ProcIdx != 0) 1153 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1154 1155 IdxVec SelectedRWs; 1156 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1157 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1158 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1159 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1160 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1161 } 1162 else { 1163 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1164 "variant must be a SchedVariant or aliased WriteSequence"); 1165 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1166 } 1167 1168 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1169 1170 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1171 ? Trans.ReadSequences : Trans.WriteSequences; 1172 if (SchedRW.IsVariadic) { 1173 unsigned OperIdx = RWSequences.size()-1; 1174 // Make N-1 copies of this transition's last sequence. 1175 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1176 // Create a temporary copy the vector could reallocate. 1177 RWSequences.reserve(RWSequences.size() + 1); 1178 RWSequences.push_back(RWSequences[OperIdx]); 1179 } 1180 // Push each of the N elements of the SelectedRWs onto a copy of the last 1181 // sequence (split the current operand into N operands). 1182 // Note that write sequences should be expanded within this loop--the entire 1183 // sequence belongs to a single operand. 1184 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1185 RWI != RWE; ++RWI, ++OperIdx) { 1186 IdxVec ExpandedRWs; 1187 if (IsRead) 1188 ExpandedRWs.push_back(*RWI); 1189 else 1190 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1191 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1192 ExpandedRWs.begin(), ExpandedRWs.end()); 1193 } 1194 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1195 } 1196 else { 1197 // Push this transition's expanded sequence onto this transition's last 1198 // sequence (add to the current operand's sequence). 1199 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1200 IdxVec ExpandedRWs; 1201 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1202 RWI != RWE; ++RWI) { 1203 if (IsRead) 1204 ExpandedRWs.push_back(*RWI); 1205 else 1206 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1207 } 1208 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1209 } 1210 } 1211 1212 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1213 // operand. StartIdx is an index into TransVec where partial results 1214 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1215 // of TransVec. 1216 void PredTransitions::substituteVariantOperand( 1217 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1218 1219 // Visit each original RW within the current sequence. 1220 for (SmallVectorImpl<unsigned>::const_iterator 1221 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1222 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1223 // Push this RW on all partial PredTransitions or distribute variants. 1224 // New PredTransitions may be pushed within this loop which should not be 1225 // revisited (TransEnd must be loop invariant). 1226 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1227 TransIdx != TransEnd; ++TransIdx) { 1228 // In the common case, push RW onto the current operand's sequence. 1229 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1230 if (IsRead) 1231 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1232 else 1233 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1234 continue; 1235 } 1236 // Distribute this partial PredTransition across intersecting variants. 1237 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1238 std::vector<TransVariant> IntersectingVariants; 1239 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1240 // Now expand each variant on top of its copy of the transition. 1241 for (std::vector<TransVariant>::const_iterator 1242 IVI = IntersectingVariants.begin(), 1243 IVE = IntersectingVariants.end(); 1244 IVI != IVE; ++IVI) { 1245 pushVariant(*IVI, IsRead); 1246 } 1247 } 1248 } 1249 } 1250 1251 // For each variant of a Read/Write in Trans, substitute the sequence of 1252 // Read/Writes guarded by the variant. This is exponential in the number of 1253 // variant Read/Writes, but in practice detection of mutually exclusive 1254 // predicates should result in linear growth in the total number variants. 1255 // 1256 // This is one step in a breadth-first search of nested variants. 1257 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1258 // Build up a set of partial results starting at the back of 1259 // PredTransitions. Remember the first new transition. 1260 unsigned StartIdx = TransVec.size(); 1261 TransVec.resize(TransVec.size() + 1); 1262 TransVec.back().PredTerm = Trans.PredTerm; 1263 TransVec.back().ProcIndices = Trans.ProcIndices; 1264 1265 // Visit each original write sequence. 1266 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1267 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1268 WSI != WSE; ++WSI) { 1269 // Push a new (empty) write sequence onto all partial Transitions. 1270 for (std::vector<PredTransition>::iterator I = 1271 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1272 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1273 } 1274 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1275 } 1276 // Visit each original read sequence. 1277 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1278 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1279 RSI != RSE; ++RSI) { 1280 // Push a new (empty) read sequence onto all partial Transitions. 1281 for (std::vector<PredTransition>::iterator I = 1282 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1283 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1284 } 1285 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1286 } 1287 } 1288 1289 // Create a new SchedClass for each variant found by inferFromRW. Pass 1290 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1291 unsigned FromClassIdx, 1292 CodeGenSchedModels &SchedModels) { 1293 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1294 // requires creating a new SchedClass. 1295 for (ArrayRef<PredTransition>::iterator 1296 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1297 IdxVec OperWritesVariant; 1298 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1299 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1300 WSI != WSE; ++WSI) { 1301 // Create a new write representing the expanded sequence. 1302 OperWritesVariant.push_back( 1303 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1304 } 1305 IdxVec OperReadsVariant; 1306 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1307 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1308 RSI != RSE; ++RSI) { 1309 // Create a new read representing the expanded sequence. 1310 OperReadsVariant.push_back( 1311 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1312 } 1313 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1314 CodeGenSchedTransition SCTrans; 1315 SCTrans.ToClassIdx = 1316 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1317 OperReadsVariant, ProcIndices); 1318 SCTrans.ProcIndices = ProcIndices; 1319 // The final PredTerm is unique set of predicates guarding the transition. 1320 RecVec Preds; 1321 for (SmallVectorImpl<PredCheck>::const_iterator 1322 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1323 Preds.push_back(PI->Predicate); 1324 } 1325 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1326 Preds.resize(PredsEnd - Preds.begin()); 1327 SCTrans.PredTerm = Preds; 1328 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1329 } 1330 } 1331 1332 // Create new SchedClasses for the given ReadWrite list. If any of the 1333 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1334 // of the ReadWrite list, following Aliases if necessary. 1335 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1336 ArrayRef<unsigned> OperReads, 1337 unsigned FromClassIdx, 1338 ArrayRef<unsigned> ProcIndices) { 1339 DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); 1340 1341 // Create a seed transition with an empty PredTerm and the expanded sequences 1342 // of SchedWrites for the current SchedClass. 1343 std::vector<PredTransition> LastTransitions; 1344 LastTransitions.resize(1); 1345 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1346 ProcIndices.end()); 1347 1348 for (unsigned WriteIdx : OperWrites) { 1349 IdxVec WriteSeq; 1350 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1351 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1352 LastTransitions[0].WriteSequences.resize(Idx + 1); 1353 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1354 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1355 Seq.push_back(*WI); 1356 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1357 } 1358 DEBUG(dbgs() << " Reads: "); 1359 for (unsigned ReadIdx : OperReads) { 1360 IdxVec ReadSeq; 1361 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1362 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1363 LastTransitions[0].ReadSequences.resize(Idx + 1); 1364 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1365 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1366 Seq.push_back(*RI); 1367 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1368 } 1369 DEBUG(dbgs() << '\n'); 1370 1371 // Collect all PredTransitions for individual operands. 1372 // Iterate until no variant writes remain. 1373 while (hasVariant(LastTransitions, *this)) { 1374 PredTransitions Transitions(*this); 1375 for (std::vector<PredTransition>::const_iterator 1376 I = LastTransitions.begin(), E = LastTransitions.end(); 1377 I != E; ++I) { 1378 Transitions.substituteVariants(*I); 1379 } 1380 DEBUG(Transitions.dump()); 1381 LastTransitions.swap(Transitions.TransVec); 1382 } 1383 // If the first transition has no variants, nothing to do. 1384 if (LastTransitions[0].PredTerm.empty()) 1385 return; 1386 1387 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1388 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1389 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1390 } 1391 1392 // Check if any processor resource group contains all resource records in 1393 // SubUnits. 1394 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1395 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1396 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1397 continue; 1398 RecVec SuperUnits = 1399 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1400 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1401 for ( ; RI != RE; ++RI) { 1402 if (!is_contained(SuperUnits, *RI)) { 1403 break; 1404 } 1405 } 1406 if (RI == RE) 1407 return true; 1408 } 1409 return false; 1410 } 1411 1412 // Verify that overlapping groups have a common supergroup. 1413 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1414 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1415 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1416 continue; 1417 RecVec CheckUnits = 1418 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1419 for (unsigned j = i+1; j < e; ++j) { 1420 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1421 continue; 1422 RecVec OtherUnits = 1423 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1424 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1425 OtherUnits.begin(), OtherUnits.end()) 1426 != CheckUnits.end()) { 1427 // CheckUnits and OtherUnits overlap 1428 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1429 CheckUnits.end()); 1430 if (!hasSuperGroup(OtherUnits, PM)) { 1431 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1432 "proc resource group overlaps with " 1433 + PM.ProcResourceDefs[j]->getName() 1434 + " but no supergroup contains both."); 1435 } 1436 } 1437 } 1438 } 1439 } 1440 1441 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1442 void CodeGenSchedModels::collectProcResources() { 1443 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1444 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1445 1446 // Add any subtarget-specific SchedReadWrites that are directly associated 1447 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1448 // determine which processors they apply to. 1449 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1450 SCI != SCE; ++SCI) { 1451 if (SCI->ItinClassDef) 1452 collectItinProcResources(SCI->ItinClassDef); 1453 else { 1454 // This class may have a default ReadWrite list which can be overriden by 1455 // InstRW definitions. 1456 if (!SCI->InstRWs.empty()) { 1457 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 1458 RWI != RWE; ++RWI) { 1459 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 1460 IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); 1461 IdxVec Writes, Reads; 1462 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 1463 Writes, Reads); 1464 collectRWResources(Writes, Reads, ProcIndices); 1465 } 1466 } 1467 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1468 } 1469 } 1470 // Add resources separately defined by each subtarget. 1471 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1472 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1473 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1474 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1475 } 1476 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1477 for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { 1478 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1479 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1480 } 1481 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1482 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1483 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1484 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1485 } 1486 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1487 for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { 1488 if ((*RAI)->getValueInit("SchedModel")->isComplete()) { 1489 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1490 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1491 } 1492 } 1493 // Add ProcResGroups that are defined within this processor model, which may 1494 // not be directly referenced but may directly specify a buffer size. 1495 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1496 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1497 RI != RE; ++RI) { 1498 if (!(*RI)->getValueInit("SchedModel")->isComplete()) 1499 continue; 1500 CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); 1501 if (!is_contained(PM.ProcResourceDefs, *RI)) 1502 PM.ProcResourceDefs.push_back(*RI); 1503 } 1504 // Finalize each ProcModel by sorting the record arrays. 1505 for (CodeGenProcModel &PM : ProcModels) { 1506 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1507 LessRecord()); 1508 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1509 LessRecord()); 1510 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1511 LessRecord()); 1512 DEBUG( 1513 PM.dump(); 1514 dbgs() << "WriteResDefs: "; 1515 for (RecIter RI = PM.WriteResDefs.begin(), 1516 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1517 if ((*RI)->isSubClassOf("WriteRes")) 1518 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1519 else 1520 dbgs() << (*RI)->getName() << " "; 1521 } 1522 dbgs() << "\nReadAdvanceDefs: "; 1523 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1524 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1525 if ((*RI)->isSubClassOf("ReadAdvance")) 1526 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1527 else 1528 dbgs() << (*RI)->getName() << " "; 1529 } 1530 dbgs() << "\nProcResourceDefs: "; 1531 for (RecIter RI = PM.ProcResourceDefs.begin(), 1532 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1533 dbgs() << (*RI)->getName() << " "; 1534 } 1535 dbgs() << '\n'); 1536 verifyProcResourceGroups(PM); 1537 } 1538 1539 ProcResourceDefs.clear(); 1540 ProcResGroups.clear(); 1541 } 1542 1543 void CodeGenSchedModels::checkCompleteness() { 1544 bool Complete = true; 1545 bool HadCompleteModel = false; 1546 for (const CodeGenProcModel &ProcModel : procModels()) { 1547 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1548 continue; 1549 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1550 if (Inst->hasNoSchedulingInfo) 1551 continue; 1552 if (ProcModel.isUnsupported(*Inst)) 1553 continue; 1554 unsigned SCIdx = getSchedClassIdx(*Inst); 1555 if (!SCIdx) { 1556 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1557 PrintError("No schedule information for instruction '" 1558 + Inst->TheDef->getName() + "'"); 1559 Complete = false; 1560 } 1561 continue; 1562 } 1563 1564 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1565 if (!SC.Writes.empty()) 1566 continue; 1567 if (SC.ItinClassDef != nullptr) 1568 continue; 1569 1570 const RecVec &InstRWs = SC.InstRWs; 1571 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1572 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1573 }); 1574 if (I == InstRWs.end()) { 1575 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1576 Inst->TheDef->getName() + "'"); 1577 Complete = false; 1578 } 1579 } 1580 HadCompleteModel = true; 1581 } 1582 if (!Complete) { 1583 errs() << "\n\nIncomplete schedule models found.\n" 1584 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1585 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1586 << "- Instructions should usually have Sched<[...]> as a superclass, " 1587 "you may temporarily use an empty list.\n" 1588 << "- Instructions related to unsupported features can be excluded with " 1589 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1590 "processor model.\n\n"; 1591 PrintFatalError("Incomplete schedule model"); 1592 } 1593 } 1594 1595 // Collect itinerary class resources for each processor. 1596 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1597 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1598 const CodeGenProcModel &PM = ProcModels[PIdx]; 1599 // For all ItinRW entries. 1600 bool HasMatch = false; 1601 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1602 II != IE; ++II) { 1603 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1604 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1605 continue; 1606 if (HasMatch) 1607 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1608 + ItinClassDef->getName() 1609 + " in ItinResources for " + PM.ModelName); 1610 HasMatch = true; 1611 IdxVec Writes, Reads; 1612 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1613 IdxVec ProcIndices(1, PIdx); 1614 collectRWResources(Writes, Reads, ProcIndices); 1615 } 1616 } 1617 } 1618 1619 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1620 ArrayRef<unsigned> ProcIndices) { 1621 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1622 if (SchedRW.TheDef) { 1623 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1624 for (unsigned Idx : ProcIndices) 1625 addWriteRes(SchedRW.TheDef, Idx); 1626 } 1627 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1628 for (unsigned Idx : ProcIndices) 1629 addReadAdvance(SchedRW.TheDef, Idx); 1630 } 1631 } 1632 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1633 AI != AE; ++AI) { 1634 IdxVec AliasProcIndices; 1635 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1636 AliasProcIndices.push_back( 1637 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1638 } 1639 else 1640 AliasProcIndices = ProcIndices; 1641 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1642 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1643 1644 IdxVec ExpandedRWs; 1645 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1646 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1647 SI != SE; ++SI) { 1648 collectRWResources(*SI, IsRead, AliasProcIndices); 1649 } 1650 } 1651 } 1652 1653 // Collect resources for a set of read/write types and processor indices. 1654 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1655 ArrayRef<unsigned> Reads, 1656 ArrayRef<unsigned> ProcIndices) { 1657 1658 for (unsigned Idx : Writes) 1659 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1660 1661 for (unsigned Idx : Reads) 1662 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1663 } 1664 1665 1666 // Find the processor's resource units for this kind of resource. 1667 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1668 const CodeGenProcModel &PM) const { 1669 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1670 return ProcResKind; 1671 1672 Record *ProcUnitDef = nullptr; 1673 assert(!ProcResourceDefs.empty()); 1674 assert(!ProcResGroups.empty()); 1675 1676 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1677 RI != RE; ++RI) { 1678 1679 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1680 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1681 if (ProcUnitDef) { 1682 PrintFatalError((*RI)->getLoc(), 1683 "Multiple ProcessorResourceUnits associated with " 1684 + ProcResKind->getName()); 1685 } 1686 ProcUnitDef = *RI; 1687 } 1688 } 1689 for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); 1690 RI != RE; ++RI) { 1691 1692 if (*RI == ProcResKind 1693 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1694 if (ProcUnitDef) { 1695 PrintFatalError((*RI)->getLoc(), 1696 "Multiple ProcessorResourceUnits associated with " 1697 + ProcResKind->getName()); 1698 } 1699 ProcUnitDef = *RI; 1700 } 1701 } 1702 if (!ProcUnitDef) { 1703 PrintFatalError(ProcResKind->getLoc(), 1704 "No ProcessorResources associated with " 1705 + ProcResKind->getName()); 1706 } 1707 return ProcUnitDef; 1708 } 1709 1710 // Iteratively add a resource and its super resources. 1711 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1712 CodeGenProcModel &PM) { 1713 for (;;) { 1714 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1715 1716 // See if this ProcResource is already associated with this processor. 1717 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1718 return; 1719 1720 PM.ProcResourceDefs.push_back(ProcResUnits); 1721 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1722 return; 1723 1724 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1725 return; 1726 1727 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1728 } 1729 } 1730 1731 // Add resources for a SchedWrite to this processor if they don't exist. 1732 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1733 assert(PIdx && "don't add resources to an invalid Processor model"); 1734 1735 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1736 if (is_contained(WRDefs, ProcWriteResDef)) 1737 return; 1738 WRDefs.push_back(ProcWriteResDef); 1739 1740 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1741 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1742 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1743 WritePRI != WritePRE; ++WritePRI) { 1744 addProcResource(*WritePRI, ProcModels[PIdx]); 1745 } 1746 } 1747 1748 // Add resources for a ReadAdvance to this processor if they don't exist. 1749 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1750 unsigned PIdx) { 1751 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1752 if (is_contained(RADefs, ProcReadAdvanceDef)) 1753 return; 1754 RADefs.push_back(ProcReadAdvanceDef); 1755 } 1756 1757 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1758 RecIter PRPos = find(ProcResourceDefs, PRDef); 1759 if (PRPos == ProcResourceDefs.end()) 1760 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1761 "the ProcResources list for " + ModelName); 1762 // Idx=0 is reserved for invalid. 1763 return 1 + (PRPos - ProcResourceDefs.begin()); 1764 } 1765 1766 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1767 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1768 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1769 if (TheDef->getName() == PredDef->getName()) 1770 return true; 1771 } 1772 } 1773 return false; 1774 } 1775 1776 #ifndef NDEBUG 1777 void CodeGenProcModel::dump() const { 1778 dbgs() << Index << ": " << ModelName << " " 1779 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1780 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1781 } 1782 1783 void CodeGenSchedRW::dump() const { 1784 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1785 if (IsSequence) { 1786 dbgs() << "("; 1787 dumpIdxVec(Sequence); 1788 dbgs() << ")"; 1789 } 1790 } 1791 1792 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1793 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1794 << " Writes: "; 1795 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1796 SchedModels->getSchedWrite(Writes[i]).dump(); 1797 if (i < N-1) { 1798 dbgs() << '\n'; 1799 dbgs().indent(10); 1800 } 1801 } 1802 dbgs() << "\n Reads: "; 1803 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1804 SchedModels->getSchedRead(Reads[i]).dump(); 1805 if (i < N-1) { 1806 dbgs() << '\n'; 1807 dbgs().indent(10); 1808 } 1809 } 1810 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1811 if (!Transitions.empty()) { 1812 dbgs() << "\n Transitions for Proc "; 1813 for (std::vector<CodeGenSchedTransition>::const_iterator 1814 TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { 1815 dumpIdxVec(TI->ProcIndices); 1816 } 1817 } 1818 } 1819 1820 void PredTransitions::dump() const { 1821 dbgs() << "Expanded Variants:\n"; 1822 for (std::vector<PredTransition>::const_iterator 1823 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1824 dbgs() << "{"; 1825 for (SmallVectorImpl<PredCheck>::const_iterator 1826 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1827 PCI != PCE; ++PCI) { 1828 if (PCI != TI->PredTerm.begin()) 1829 dbgs() << ", "; 1830 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1831 << ":" << PCI->Predicate->getName(); 1832 } 1833 dbgs() << "},\n => {"; 1834 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1835 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1836 WSI != WSE; ++WSI) { 1837 dbgs() << "("; 1838 for (SmallVectorImpl<unsigned>::const_iterator 1839 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1840 if (WI != WSI->begin()) 1841 dbgs() << ", "; 1842 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1843 } 1844 dbgs() << "),"; 1845 } 1846 dbgs() << "}\n"; 1847 } 1848 } 1849 #endif // NDEBUG 1850