1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 ArrayRef<const CodeGenInstruction *> Instructions = 82 Target.getInstructionsByEnumValue(); 83 84 unsigned NumGeneric = Target.getNumFixedInstructions(); 85 auto Generics = Instructions.slice(0, NumGeneric); 86 auto NonGenerics = Instructions.slice(NumGeneric); 87 88 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 89 StringInit *SI = dyn_cast<StringInit>(Arg); 90 if (!SI) 91 PrintFatalError(Loc, "instregex requires pattern string: " + 92 Expr->getAsString()); 93 StringRef Original = SI->getValue(); 94 95 // Extract a prefix that we can binary search on. 96 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 97 auto FirstMeta = Original.find_first_of(RegexMetachars); 98 99 // Look for top-level | or ?. We cannot optimize them to binary search. 100 if (removeParens(Original).find_first_of("|?") != std::string::npos) 101 FirstMeta = 0; 102 103 Optional<Regex> Regexpr = None; 104 StringRef Prefix = Original.substr(0, FirstMeta); 105 StringRef PatStr = Original.substr(FirstMeta); 106 if (!PatStr.empty()) { 107 // For the rest use a python-style prefix match. 108 std::string pat = PatStr; 109 if (pat[0] != '^') { 110 pat.insert(0, "^("); 111 pat.insert(pat.end(), ')'); 112 } 113 Regexpr = Regex(pat); 114 } 115 116 int NumMatches = 0; 117 118 // The generic opcodes are unsorted, handle them manually. 119 for (auto *Inst : Generics) { 120 StringRef InstName = Inst->TheDef->getName(); 121 if (InstName.startswith(Prefix) && 122 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 123 Elts.insert(Inst->TheDef); 124 NumMatches++; 125 } 126 } 127 128 // Target instructions are sorted. Find the range that starts with our 129 // prefix. 130 struct Comp { 131 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 132 return LHS->TheDef->getName() < RHS; 133 } 134 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 135 return LHS < RHS->TheDef->getName() && 136 !RHS->TheDef->getName().startswith(LHS); 137 } 138 }; 139 auto Range = std::equal_range(NonGenerics.begin(), NonGenerics.end(), 140 Prefix, Comp()); 141 142 // For this range we know that it starts with the prefix. Check if there's 143 // a regex that needs to be checked. 144 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { 145 StringRef InstName = Inst->TheDef->getName(); 146 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 147 Elts.insert(Inst->TheDef); 148 NumMatches++; 149 } 150 }; 151 std::for_each(Range.first, Range.second, HandleNonGeneric); 152 153 if (0 == NumMatches) 154 PrintFatalError(Loc, "instregex has no matches: " + Original); 155 } 156 } 157 }; 158 159 } // end anonymous namespace 160 161 /// CodeGenModels ctor interprets machine model records and populates maps. 162 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 163 const CodeGenTarget &TGT): 164 Records(RK), Target(TGT) { 165 166 Sets.addFieldExpander("InstRW", "Instrs"); 167 168 // Allow Set evaluation to recognize the dags used in InstRW records: 169 // (instrs Op1, Op1...) 170 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 171 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 172 173 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 174 // that are explicitly referenced in tablegen records. Resources associated 175 // with each processor will be derived later. Populate ProcModelMap with the 176 // CodeGenProcModel instances. 177 collectProcModels(); 178 179 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 180 // defined, and populate SchedReads and SchedWrites vectors. Implicit 181 // SchedReadWrites that represent sequences derived from expanded variant will 182 // be inferred later. 183 collectSchedRW(); 184 185 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 186 // required by an instruction definition, and populate SchedClassIdxMap. Set 187 // NumItineraryClasses to the number of explicit itinerary classes referenced 188 // by instructions. Set NumInstrSchedClasses to the number of itinerary 189 // classes plus any classes implied by instructions that derive from class 190 // Sched and provide SchedRW list. This does not infer any new classes from 191 // SchedVariant. 192 collectSchedClasses(); 193 194 // Find instruction itineraries for each processor. Sort and populate 195 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 196 // all itinerary classes to be discovered. 197 collectProcItins(); 198 199 // Find ItinRW records for each processor and itinerary class. 200 // (For per-operand resources mapped to itinerary classes). 201 collectProcItinRW(); 202 203 // Find UnsupportedFeatures records for each processor. 204 // (For per-operand resources mapped to itinerary classes). 205 collectProcUnsupportedFeatures(); 206 207 // Infer new SchedClasses from SchedVariant. 208 inferSchedClasses(); 209 210 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 211 // ProcResourceDefs. 212 LLVM_DEBUG( 213 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 214 collectProcResources(); 215 216 // Collect optional processor description. 217 collectOptionalProcessorInfo(); 218 219 checkCompleteness(); 220 } 221 222 void CodeGenSchedModels::collectRetireControlUnits() { 223 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 224 225 for (Record *RCU : Units) { 226 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 227 if (PM.RetireControlUnit) { 228 PrintError(RCU->getLoc(), 229 "Expected a single RetireControlUnit definition"); 230 PrintNote(PM.RetireControlUnit->getLoc(), 231 "Previous definition of RetireControlUnit was here"); 232 } 233 PM.RetireControlUnit = RCU; 234 } 235 } 236 237 /// Collect optional processor information. 238 void CodeGenSchedModels::collectOptionalProcessorInfo() { 239 // Find register file definitions for each processor. 240 collectRegisterFiles(); 241 242 // Collect processor RetireControlUnit descriptors if available. 243 collectRetireControlUnits(); 244 245 // Find pfm counter definitions for each processor. 246 collectPfmCounters(); 247 248 checkCompleteness(); 249 } 250 251 /// Gather all processor models. 252 void CodeGenSchedModels::collectProcModels() { 253 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 254 llvm::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 255 256 // Reserve space because we can. Reallocation would be ok. 257 ProcModels.reserve(ProcRecords.size()+1); 258 259 // Use idx=0 for NoModel/NoItineraries. 260 Record *NoModelDef = Records.getDef("NoSchedModel"); 261 Record *NoItinsDef = Records.getDef("NoItineraries"); 262 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 263 ProcModelMap[NoModelDef] = 0; 264 265 // For each processor, find a unique machine model. 266 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 267 for (Record *ProcRecord : ProcRecords) 268 addProcModel(ProcRecord); 269 } 270 271 /// Get a unique processor model based on the defined MachineModel and 272 /// ProcessorItineraries. 273 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 274 Record *ModelKey = getModelOrItinDef(ProcDef); 275 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 276 return; 277 278 std::string Name = ModelKey->getName(); 279 if (ModelKey->isSubClassOf("SchedMachineModel")) { 280 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 281 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 282 } 283 else { 284 // An itinerary is defined without a machine model. Infer a new model. 285 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 286 Name = Name + "Model"; 287 ProcModels.emplace_back(ProcModels.size(), Name, 288 ProcDef->getValueAsDef("SchedModel"), ModelKey); 289 } 290 LLVM_DEBUG(ProcModels.back().dump()); 291 } 292 293 // Recursively find all reachable SchedReadWrite records. 294 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 295 SmallPtrSet<Record*, 16> &RWSet) { 296 if (!RWSet.insert(RWDef).second) 297 return; 298 RWDefs.push_back(RWDef); 299 // Reads don't currently have sequence records, but it can be added later. 300 if (RWDef->isSubClassOf("WriteSequence")) { 301 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 302 for (Record *WSRec : Seq) 303 scanSchedRW(WSRec, RWDefs, RWSet); 304 } 305 else if (RWDef->isSubClassOf("SchedVariant")) { 306 // Visit each variant (guarded by a different predicate). 307 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 308 for (Record *Variant : Vars) { 309 // Visit each RW in the sequence selected by the current variant. 310 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 311 for (Record *SelDef : Selected) 312 scanSchedRW(SelDef, RWDefs, RWSet); 313 } 314 } 315 } 316 317 // Collect and sort all SchedReadWrites reachable via tablegen records. 318 // More may be inferred later when inferring new SchedClasses from variants. 319 void CodeGenSchedModels::collectSchedRW() { 320 // Reserve idx=0 for invalid writes/reads. 321 SchedWrites.resize(1); 322 SchedReads.resize(1); 323 324 SmallPtrSet<Record*, 16> RWSet; 325 326 // Find all SchedReadWrites referenced by instruction defs. 327 RecVec SWDefs, SRDefs; 328 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 329 Record *SchedDef = Inst->TheDef; 330 if (SchedDef->isValueUnset("SchedRW")) 331 continue; 332 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 333 for (Record *RW : RWs) { 334 if (RW->isSubClassOf("SchedWrite")) 335 scanSchedRW(RW, SWDefs, RWSet); 336 else { 337 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 338 scanSchedRW(RW, SRDefs, RWSet); 339 } 340 } 341 } 342 // Find all ReadWrites referenced by InstRW. 343 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 344 for (Record *InstRWDef : InstRWDefs) { 345 // For all OperandReadWrites. 346 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 347 for (Record *RWDef : RWDefs) { 348 if (RWDef->isSubClassOf("SchedWrite")) 349 scanSchedRW(RWDef, SWDefs, RWSet); 350 else { 351 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 352 scanSchedRW(RWDef, SRDefs, RWSet); 353 } 354 } 355 } 356 // Find all ReadWrites referenced by ItinRW. 357 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 358 for (Record *ItinRWDef : ItinRWDefs) { 359 // For all OperandReadWrites. 360 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 361 for (Record *RWDef : RWDefs) { 362 if (RWDef->isSubClassOf("SchedWrite")) 363 scanSchedRW(RWDef, SWDefs, RWSet); 364 else { 365 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 366 scanSchedRW(RWDef, SRDefs, RWSet); 367 } 368 } 369 } 370 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 371 // for the loop below that initializes Alias vectors. 372 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 373 llvm::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 374 for (Record *ADef : AliasDefs) { 375 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 376 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 377 if (MatchDef->isSubClassOf("SchedWrite")) { 378 if (!AliasDef->isSubClassOf("SchedWrite")) 379 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 380 scanSchedRW(AliasDef, SWDefs, RWSet); 381 } 382 else { 383 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 384 if (!AliasDef->isSubClassOf("SchedRead")) 385 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 386 scanSchedRW(AliasDef, SRDefs, RWSet); 387 } 388 } 389 // Sort and add the SchedReadWrites directly referenced by instructions or 390 // itinerary resources. Index reads and writes in separate domains. 391 llvm::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 392 for (Record *SWDef : SWDefs) { 393 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 394 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 395 } 396 llvm::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 397 for (Record *SRDef : SRDefs) { 398 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 399 SchedReads.emplace_back(SchedReads.size(), SRDef); 400 } 401 // Initialize WriteSequence vectors. 402 for (CodeGenSchedRW &CGRW : SchedWrites) { 403 if (!CGRW.IsSequence) 404 continue; 405 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 406 /*IsRead=*/false); 407 } 408 // Initialize Aliases vectors. 409 for (Record *ADef : AliasDefs) { 410 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 411 getSchedRW(AliasDef).IsAlias = true; 412 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 413 CodeGenSchedRW &RW = getSchedRW(MatchDef); 414 if (RW.IsAlias) 415 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 416 RW.Aliases.push_back(ADef); 417 } 418 LLVM_DEBUG( 419 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 420 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 421 dbgs() << WIdx << ": "; 422 SchedWrites[WIdx].dump(); 423 dbgs() << '\n'; 424 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; 425 ++RIdx) { 426 dbgs() << RIdx << ": "; 427 SchedReads[RIdx].dump(); 428 dbgs() << '\n'; 429 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 430 for (Record *RWDef 431 : RWDefs) { 432 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 433 StringRef Name = RWDef->getName(); 434 if (Name != "NoWrite" && Name != "ReadDefault") 435 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 436 } 437 }); 438 } 439 440 /// Compute a SchedWrite name from a sequence of writes. 441 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 442 std::string Name("("); 443 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 444 if (I != Seq.begin()) 445 Name += '_'; 446 Name += getSchedRW(*I, IsRead).Name; 447 } 448 Name += ')'; 449 return Name; 450 } 451 452 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, 453 bool IsRead) const { 454 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 455 const auto I = find_if( 456 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); 457 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 458 } 459 460 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 461 for (const CodeGenSchedRW &Read : SchedReads) { 462 Record *ReadDef = Read.TheDef; 463 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 464 continue; 465 466 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 467 if (is_contained(ValidWrites, WriteDef)) { 468 return true; 469 } 470 } 471 return false; 472 } 473 474 static void splitSchedReadWrites(const RecVec &RWDefs, 475 RecVec &WriteDefs, RecVec &ReadDefs) { 476 for (Record *RWDef : RWDefs) { 477 if (RWDef->isSubClassOf("SchedWrite")) 478 WriteDefs.push_back(RWDef); 479 else { 480 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 481 ReadDefs.push_back(RWDef); 482 } 483 } 484 } 485 486 // Split the SchedReadWrites defs and call findRWs for each list. 487 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 488 IdxVec &Writes, IdxVec &Reads) const { 489 RecVec WriteDefs; 490 RecVec ReadDefs; 491 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 492 findRWs(WriteDefs, Writes, false); 493 findRWs(ReadDefs, Reads, true); 494 } 495 496 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 497 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 498 bool IsRead) const { 499 for (Record *RWDef : RWDefs) { 500 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 501 assert(Idx && "failed to collect SchedReadWrite"); 502 RWs.push_back(Idx); 503 } 504 } 505 506 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 507 bool IsRead) const { 508 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 509 if (!SchedRW.IsSequence) { 510 RWSeq.push_back(RWIdx); 511 return; 512 } 513 int Repeat = 514 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 515 for (int i = 0; i < Repeat; ++i) { 516 for (unsigned I : SchedRW.Sequence) { 517 expandRWSequence(I, RWSeq, IsRead); 518 } 519 } 520 } 521 522 // Expand a SchedWrite as a sequence following any aliases that coincide with 523 // the given processor model. 524 void CodeGenSchedModels::expandRWSeqForProc( 525 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 526 const CodeGenProcModel &ProcModel) const { 527 528 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 529 Record *AliasDef = nullptr; 530 for (const Record *Rec : SchedWrite.Aliases) { 531 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); 532 if (Rec->getValueInit("SchedModel")->isComplete()) { 533 Record *ModelDef = Rec->getValueAsDef("SchedModel"); 534 if (&getProcModel(ModelDef) != &ProcModel) 535 continue; 536 } 537 if (AliasDef) 538 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 539 "defined for processor " + ProcModel.ModelName + 540 " Ensure only one SchedAlias exists per RW."); 541 AliasDef = AliasRW.TheDef; 542 } 543 if (AliasDef) { 544 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 545 RWSeq, IsRead,ProcModel); 546 return; 547 } 548 if (!SchedWrite.IsSequence) { 549 RWSeq.push_back(RWIdx); 550 return; 551 } 552 int Repeat = 553 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 554 for (int I = 0, E = Repeat; I < E; ++I) { 555 for (unsigned Idx : SchedWrite.Sequence) { 556 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); 557 } 558 } 559 } 560 561 // Find the existing SchedWrite that models this sequence of writes. 562 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 563 bool IsRead) { 564 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 565 566 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { 567 return makeArrayRef(RW.Sequence) == Seq; 568 }); 569 // Index zero reserved for invalid RW. 570 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 571 } 572 573 /// Add this ReadWrite if it doesn't already exist. 574 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 575 bool IsRead) { 576 assert(!Seq.empty() && "cannot insert empty sequence"); 577 if (Seq.size() == 1) 578 return Seq.back(); 579 580 unsigned Idx = findRWForSequence(Seq, IsRead); 581 if (Idx) 582 return Idx; 583 584 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 585 unsigned RWIdx = RWVec.size(); 586 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 587 RWVec.push_back(SchedRW); 588 return RWIdx; 589 } 590 591 /// Visit all the instruction definitions for this target to gather and 592 /// enumerate the itinerary classes. These are the explicitly specified 593 /// SchedClasses. More SchedClasses may be inferred. 594 void CodeGenSchedModels::collectSchedClasses() { 595 596 // NoItinerary is always the first class at Idx=0 597 assert(SchedClasses.empty() && "Expected empty sched class"); 598 SchedClasses.emplace_back(0, "NoInstrModel", 599 Records.getDef("NoItinerary")); 600 SchedClasses.back().ProcIndices.push_back(0); 601 602 // Create a SchedClass for each unique combination of itinerary class and 603 // SchedRW list. 604 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 605 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 606 IdxVec Writes, Reads; 607 if (!Inst->TheDef->isValueUnset("SchedRW")) 608 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 609 610 // ProcIdx == 0 indicates the class applies to all processors. 611 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 612 InstrClassMap[Inst->TheDef] = SCIdx; 613 } 614 // Create classes for InstRW defs. 615 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 616 llvm::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 617 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 618 for (Record *RWDef : InstRWDefs) 619 createInstRWClass(RWDef); 620 621 NumInstrSchedClasses = SchedClasses.size(); 622 623 bool EnableDump = false; 624 LLVM_DEBUG(EnableDump = true); 625 if (!EnableDump) 626 return; 627 628 LLVM_DEBUG( 629 dbgs() 630 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); 631 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 632 StringRef InstName = Inst->TheDef->getName(); 633 unsigned SCIdx = getSchedClassIdx(*Inst); 634 if (!SCIdx) { 635 LLVM_DEBUG({ 636 if (!Inst->hasNoSchedulingInfo) 637 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 638 }); 639 continue; 640 } 641 CodeGenSchedClass &SC = getSchedClass(SCIdx); 642 if (SC.ProcIndices[0] != 0) 643 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 644 "must not be subtarget specific."); 645 646 IdxVec ProcIndices; 647 if (SC.ItinClassDef->getName() != "NoItinerary") { 648 ProcIndices.push_back(0); 649 dbgs() << "Itinerary for " << InstName << ": " 650 << SC.ItinClassDef->getName() << '\n'; 651 } 652 if (!SC.Writes.empty()) { 653 ProcIndices.push_back(0); 654 LLVM_DEBUG({ 655 dbgs() << "SchedRW machine model for " << InstName; 656 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; 657 ++WI) 658 dbgs() << " " << SchedWrites[*WI].Name; 659 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 660 dbgs() << " " << SchedReads[*RI].Name; 661 dbgs() << '\n'; 662 }); 663 } 664 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 665 for (Record *RWDef : RWDefs) { 666 const CodeGenProcModel &ProcModel = 667 getProcModel(RWDef->getValueAsDef("SchedModel")); 668 ProcIndices.push_back(ProcModel.Index); 669 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " 670 << InstName); 671 IdxVec Writes; 672 IdxVec Reads; 673 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 674 Writes, Reads); 675 LLVM_DEBUG({ 676 for (unsigned WIdx : Writes) 677 dbgs() << " " << SchedWrites[WIdx].Name; 678 for (unsigned RIdx : Reads) 679 dbgs() << " " << SchedReads[RIdx].Name; 680 dbgs() << '\n'; 681 }); 682 } 683 // If ProcIndices contains zero, the class applies to all processors. 684 LLVM_DEBUG({ 685 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 686 for (const CodeGenProcModel &PM : ProcModels) { 687 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 688 dbgs() << "No machine model for " << Inst->TheDef->getName() 689 << " on processor " << PM.ModelName << '\n'; 690 } 691 } 692 }); 693 } 694 } 695 696 // Get the SchedClass index for an instruction. 697 unsigned 698 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { 699 return InstrClassMap.lookup(Inst.TheDef); 700 } 701 702 std::string 703 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 704 ArrayRef<unsigned> OperWrites, 705 ArrayRef<unsigned> OperReads) { 706 707 std::string Name; 708 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 709 Name = ItinClassDef->getName(); 710 for (unsigned Idx : OperWrites) { 711 if (!Name.empty()) 712 Name += '_'; 713 Name += SchedWrites[Idx].Name; 714 } 715 for (unsigned Idx : OperReads) { 716 Name += '_'; 717 Name += SchedReads[Idx].Name; 718 } 719 return Name; 720 } 721 722 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 723 724 std::string Name; 725 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 726 if (I != InstDefs.begin()) 727 Name += '_'; 728 Name += (*I)->getName(); 729 } 730 return Name; 731 } 732 733 /// Add an inferred sched class from an itinerary class and per-operand list of 734 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 735 /// processors that may utilize this class. 736 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 737 ArrayRef<unsigned> OperWrites, 738 ArrayRef<unsigned> OperReads, 739 ArrayRef<unsigned> ProcIndices) { 740 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 741 742 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { 743 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); 744 }; 745 746 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); 747 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); 748 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 749 IdxVec PI; 750 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 751 SchedClasses[Idx].ProcIndices.end(), 752 ProcIndices.begin(), ProcIndices.end(), 753 std::back_inserter(PI)); 754 SchedClasses[Idx].ProcIndices = std::move(PI); 755 return Idx; 756 } 757 Idx = SchedClasses.size(); 758 SchedClasses.emplace_back(Idx, 759 createSchedClassName(ItinClassDef, OperWrites, 760 OperReads), 761 ItinClassDef); 762 CodeGenSchedClass &SC = SchedClasses.back(); 763 SC.Writes = OperWrites; 764 SC.Reads = OperReads; 765 SC.ProcIndices = ProcIndices; 766 767 return Idx; 768 } 769 770 // Create classes for each set of opcodes that are in the same InstReadWrite 771 // definition across all processors. 772 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 773 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 774 // intersects with an existing class via a previous InstRWDef. Instrs that do 775 // not intersect with an existing class refer back to their former class as 776 // determined from ItinDef or SchedRW. 777 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 778 // Sort Instrs into sets. 779 const RecVec *InstDefs = Sets.expand(InstRWDef); 780 if (InstDefs->empty()) 781 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 782 783 for (Record *InstDef : *InstDefs) { 784 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 785 if (Pos == InstrClassMap.end()) 786 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 787 unsigned SCIdx = Pos->second; 788 ClassInstrs[SCIdx].push_back(InstDef); 789 } 790 // For each set of Instrs, create a new class if necessary, and map or remap 791 // the Instrs to it. 792 for (auto &Entry : ClassInstrs) { 793 unsigned OldSCIdx = Entry.first; 794 ArrayRef<Record*> InstDefs = Entry.second; 795 // If the all instrs in the current class are accounted for, then leave 796 // them mapped to their old class. 797 if (OldSCIdx) { 798 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 799 if (!RWDefs.empty()) { 800 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 801 unsigned OrigNumInstrs = 802 count_if(*OrigInstDefs, [&](Record *OIDef) { 803 return InstrClassMap[OIDef] == OldSCIdx; 804 }); 805 if (OrigNumInstrs == InstDefs.size()) { 806 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 807 "expected a generic SchedClass"); 808 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 809 // Make sure we didn't already have a InstRW containing this 810 // instruction on this model. 811 for (Record *RWD : RWDefs) { 812 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 813 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 814 for (Record *Inst : InstDefs) { 815 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 816 Inst->getName() + " also matches " + 817 RWD->getValue("Instrs")->getValue()->getAsString()); 818 } 819 } 820 } 821 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 822 << SchedClasses[OldSCIdx].Name << " on " 823 << RWModelDef->getName() << "\n"); 824 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 825 continue; 826 } 827 } 828 } 829 unsigned SCIdx = SchedClasses.size(); 830 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 831 CodeGenSchedClass &SC = SchedClasses.back(); 832 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 833 << InstRWDef->getValueAsDef("SchedModel")->getName() 834 << "\n"); 835 836 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 837 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 838 SC.Writes = SchedClasses[OldSCIdx].Writes; 839 SC.Reads = SchedClasses[OldSCIdx].Reads; 840 SC.ProcIndices.push_back(0); 841 // If we had an old class, copy it's InstRWs to this new class. 842 if (OldSCIdx) { 843 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 844 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 845 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 846 for (Record *InstDef : InstDefs) { 847 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 848 InstDef->getName() + " also matches " + 849 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 850 } 851 } 852 assert(OldRWDef != InstRWDef && 853 "SchedClass has duplicate InstRW def"); 854 SC.InstRWs.push_back(OldRWDef); 855 } 856 } 857 // Map each Instr to this new class. 858 for (Record *InstDef : InstDefs) 859 InstrClassMap[InstDef] = SCIdx; 860 SC.InstRWs.push_back(InstRWDef); 861 } 862 } 863 864 // True if collectProcItins found anything. 865 bool CodeGenSchedModels::hasItineraries() const { 866 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) 867 if (PM.hasItineraries()) 868 return true; 869 return false; 870 } 871 872 // Gather the processor itineraries. 873 void CodeGenSchedModels::collectProcItins() { 874 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 875 for (CodeGenProcModel &ProcModel : ProcModels) { 876 if (!ProcModel.hasItineraries()) 877 continue; 878 879 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 880 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 881 882 // Populate ItinDefList with Itinerary records. 883 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 884 885 // Insert each itinerary data record in the correct position within 886 // the processor model's ItinDefList. 887 for (Record *ItinData : ItinRecords) { 888 const Record *ItinDef = ItinData->getValueAsDef("TheClass"); 889 bool FoundClass = false; 890 891 for (const CodeGenSchedClass &SC : 892 make_range(schedClassBegin(), schedClassEnd())) { 893 // Multiple SchedClasses may share an itinerary. Update all of them. 894 if (SC.ItinClassDef == ItinDef) { 895 ProcModel.ItinDefList[SC.Index] = ItinData; 896 FoundClass = true; 897 } 898 } 899 if (!FoundClass) { 900 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() 901 << " missing class for itinerary " 902 << ItinDef->getName() << '\n'); 903 } 904 } 905 // Check for missing itinerary entries. 906 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 907 LLVM_DEBUG( 908 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 909 if (!ProcModel.ItinDefList[i]) 910 dbgs() << ProcModel.ItinsDef->getName() 911 << " missing itinerary for class " << SchedClasses[i].Name 912 << '\n'; 913 }); 914 } 915 } 916 917 // Gather the read/write types for each itinerary class. 918 void CodeGenSchedModels::collectProcItinRW() { 919 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 920 llvm::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 921 for (Record *RWDef : ItinRWDefs) { 922 if (!RWDef->getValueInit("SchedModel")->isComplete()) 923 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 924 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 925 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 926 if (I == ProcModelMap.end()) { 927 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 928 + ModelDef->getName()); 929 } 930 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 931 } 932 } 933 934 // Gather the unsupported features for processor models. 935 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 936 for (CodeGenProcModel &ProcModel : ProcModels) { 937 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 938 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 939 } 940 } 941 } 942 943 /// Infer new classes from existing classes. In the process, this may create new 944 /// SchedWrites from sequences of existing SchedWrites. 945 void CodeGenSchedModels::inferSchedClasses() { 946 LLVM_DEBUG( 947 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 948 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 949 950 // Visit all existing classes and newly created classes. 951 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 952 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 953 954 if (SchedClasses[Idx].ItinClassDef) 955 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 956 if (!SchedClasses[Idx].InstRWs.empty()) 957 inferFromInstRWs(Idx); 958 if (!SchedClasses[Idx].Writes.empty()) { 959 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 960 Idx, SchedClasses[Idx].ProcIndices); 961 } 962 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 963 "too many SchedVariants"); 964 } 965 } 966 967 /// Infer classes from per-processor itinerary resources. 968 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 969 unsigned FromClassIdx) { 970 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 971 const CodeGenProcModel &PM = ProcModels[PIdx]; 972 // For all ItinRW entries. 973 bool HasMatch = false; 974 for (const Record *Rec : PM.ItinRWDefs) { 975 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); 976 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 977 continue; 978 if (HasMatch) 979 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class " 980 + ItinClassDef->getName() 981 + " in ItinResources for " + PM.ModelName); 982 HasMatch = true; 983 IdxVec Writes, Reads; 984 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 985 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 986 } 987 } 988 } 989 990 /// Infer classes from per-processor InstReadWrite definitions. 991 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 992 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 993 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 994 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 995 const RecVec *InstDefs = Sets.expand(Rec); 996 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 997 for (; II != IE; ++II) { 998 if (InstrClassMap[*II] == SCIdx) 999 break; 1000 } 1001 // If this class no longer has any instructions mapped to it, it has become 1002 // irrelevant. 1003 if (II == IE) 1004 continue; 1005 IdxVec Writes, Reads; 1006 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1007 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1008 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1009 } 1010 } 1011 1012 namespace { 1013 1014 // Helper for substituteVariantOperand. 1015 struct TransVariant { 1016 Record *VarOrSeqDef; // Variant or sequence. 1017 unsigned RWIdx; // Index of this variant or sequence's matched type. 1018 unsigned ProcIdx; // Processor model index or zero for any. 1019 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1020 1021 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1022 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1023 }; 1024 1025 // Associate a predicate with the SchedReadWrite that it guards. 1026 // RWIdx is the index of the read/write variant. 1027 struct PredCheck { 1028 bool IsRead; 1029 unsigned RWIdx; 1030 Record *Predicate; 1031 1032 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1033 }; 1034 1035 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1036 struct PredTransition { 1037 // A predicate term is a conjunction of PredChecks. 1038 SmallVector<PredCheck, 4> PredTerm; 1039 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1040 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1041 SmallVector<unsigned, 4> ProcIndices; 1042 }; 1043 1044 // Encapsulate a set of partially constructed transitions. 1045 // The results are built by repeated calls to substituteVariants. 1046 class PredTransitions { 1047 CodeGenSchedModels &SchedModels; 1048 1049 public: 1050 std::vector<PredTransition> TransVec; 1051 1052 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1053 1054 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1055 bool IsRead, unsigned StartIdx); 1056 1057 void substituteVariants(const PredTransition &Trans); 1058 1059 #ifndef NDEBUG 1060 void dump() const; 1061 #endif 1062 1063 private: 1064 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1065 void getIntersectingVariants( 1066 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1067 std::vector<TransVariant> &IntersectingVariants); 1068 void pushVariant(const TransVariant &VInfo, bool IsRead); 1069 }; 1070 1071 } // end anonymous namespace 1072 1073 // Return true if this predicate is mutually exclusive with a PredTerm. This 1074 // degenerates into checking if the predicate is mutually exclusive with any 1075 // predicate in the Term's conjunction. 1076 // 1077 // All predicates associated with a given SchedRW are considered mutually 1078 // exclusive. This should work even if the conditions expressed by the 1079 // predicates are not exclusive because the predicates for a given SchedWrite 1080 // are always checked in the order they are defined in the .td file. Later 1081 // conditions implicitly negate any prior condition. 1082 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1083 ArrayRef<PredCheck> Term) { 1084 for (const PredCheck &PC: Term) { 1085 if (PC.Predicate == PredDef) 1086 return false; 1087 1088 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1089 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1090 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1091 if (any_of(Variants, [PredDef](const Record *R) { 1092 return R->getValueAsDef("Predicate") == PredDef; 1093 })) 1094 return true; 1095 } 1096 return false; 1097 } 1098 1099 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1100 CodeGenSchedModels &SchedModels) { 1101 if (RW.HasVariants) 1102 return true; 1103 1104 for (Record *Alias : RW.Aliases) { 1105 const CodeGenSchedRW &AliasRW = 1106 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1107 if (AliasRW.HasVariants) 1108 return true; 1109 if (AliasRW.IsSequence) { 1110 IdxVec ExpandedRWs; 1111 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1112 for (unsigned SI : ExpandedRWs) { 1113 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead), 1114 SchedModels)) 1115 return true; 1116 } 1117 } 1118 } 1119 return false; 1120 } 1121 1122 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1123 CodeGenSchedModels &SchedModels) { 1124 for (const PredTransition &PTI : Transitions) { 1125 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences) 1126 for (unsigned WI : WSI) 1127 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels)) 1128 return true; 1129 1130 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences) 1131 for (unsigned RI : RSI) 1132 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels)) 1133 return true; 1134 } 1135 return false; 1136 } 1137 1138 // Populate IntersectingVariants with any variants or aliased sequences of the 1139 // given SchedRW whose processor indices and predicates are not mutually 1140 // exclusive with the given transition. 1141 void PredTransitions::getIntersectingVariants( 1142 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1143 std::vector<TransVariant> &IntersectingVariants) { 1144 1145 bool GenericRW = false; 1146 1147 std::vector<TransVariant> Variants; 1148 if (SchedRW.HasVariants) { 1149 unsigned VarProcIdx = 0; 1150 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1151 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1152 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1153 } 1154 // Push each variant. Assign TransVecIdx later. 1155 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1156 for (Record *VarDef : VarDefs) 1157 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); 1158 if (VarProcIdx == 0) 1159 GenericRW = true; 1160 } 1161 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1162 AI != AE; ++AI) { 1163 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1164 // to is defined within a processor model, constrain all variants to 1165 // that processor. 1166 unsigned AliasProcIdx = 0; 1167 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1168 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1169 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1170 } 1171 const CodeGenSchedRW &AliasRW = 1172 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1173 1174 if (AliasRW.HasVariants) { 1175 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1176 for (Record *VD : VarDefs) 1177 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); 1178 } 1179 if (AliasRW.IsSequence) 1180 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); 1181 if (AliasProcIdx == 0) 1182 GenericRW = true; 1183 } 1184 for (TransVariant &Variant : Variants) { 1185 // Don't expand variants if the processor models don't intersect. 1186 // A zero processor index means any processor. 1187 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1188 if (ProcIndices[0] && Variant.ProcIdx) { 1189 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1190 Variant.ProcIdx); 1191 if (!Cnt) 1192 continue; 1193 if (Cnt > 1) { 1194 const CodeGenProcModel &PM = 1195 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1196 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1197 "Multiple variants defined for processor " + 1198 PM.ModelName + 1199 " Ensure only one SchedAlias exists per RW."); 1200 } 1201 } 1202 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1203 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1204 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1205 continue; 1206 } 1207 if (IntersectingVariants.empty()) { 1208 // The first variant builds on the existing transition. 1209 Variant.TransVecIdx = TransIdx; 1210 IntersectingVariants.push_back(Variant); 1211 } 1212 else { 1213 // Push another copy of the current transition for more variants. 1214 Variant.TransVecIdx = TransVec.size(); 1215 IntersectingVariants.push_back(Variant); 1216 TransVec.push_back(TransVec[TransIdx]); 1217 } 1218 } 1219 if (GenericRW && IntersectingVariants.empty()) { 1220 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1221 "a matching predicate on any processor"); 1222 } 1223 } 1224 1225 // Push the Reads/Writes selected by this variant onto the PredTransition 1226 // specified by VInfo. 1227 void PredTransitions:: 1228 pushVariant(const TransVariant &VInfo, bool IsRead) { 1229 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1230 1231 // If this operand transition is reached through a processor-specific alias, 1232 // then the whole transition is specific to this processor. 1233 if (VInfo.ProcIdx != 0) 1234 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1235 1236 IdxVec SelectedRWs; 1237 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1238 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1239 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef); 1240 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1241 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1242 } 1243 else { 1244 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1245 "variant must be a SchedVariant or aliased WriteSequence"); 1246 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1247 } 1248 1249 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1250 1251 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1252 ? Trans.ReadSequences : Trans.WriteSequences; 1253 if (SchedRW.IsVariadic) { 1254 unsigned OperIdx = RWSequences.size()-1; 1255 // Make N-1 copies of this transition's last sequence. 1256 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, 1257 RWSequences[OperIdx]); 1258 // Push each of the N elements of the SelectedRWs onto a copy of the last 1259 // sequence (split the current operand into N operands). 1260 // Note that write sequences should be expanded within this loop--the entire 1261 // sequence belongs to a single operand. 1262 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1263 RWI != RWE; ++RWI, ++OperIdx) { 1264 IdxVec ExpandedRWs; 1265 if (IsRead) 1266 ExpandedRWs.push_back(*RWI); 1267 else 1268 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1269 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1270 ExpandedRWs.begin(), ExpandedRWs.end()); 1271 } 1272 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1273 } 1274 else { 1275 // Push this transition's expanded sequence onto this transition's last 1276 // sequence (add to the current operand's sequence). 1277 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1278 IdxVec ExpandedRWs; 1279 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1280 RWI != RWE; ++RWI) { 1281 if (IsRead) 1282 ExpandedRWs.push_back(*RWI); 1283 else 1284 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1285 } 1286 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1287 } 1288 } 1289 1290 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1291 // operand. StartIdx is an index into TransVec where partial results 1292 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1293 // of TransVec. 1294 void PredTransitions::substituteVariantOperand( 1295 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1296 1297 // Visit each original RW within the current sequence. 1298 for (SmallVectorImpl<unsigned>::const_iterator 1299 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1300 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1301 // Push this RW on all partial PredTransitions or distribute variants. 1302 // New PredTransitions may be pushed within this loop which should not be 1303 // revisited (TransEnd must be loop invariant). 1304 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1305 TransIdx != TransEnd; ++TransIdx) { 1306 // In the common case, push RW onto the current operand's sequence. 1307 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1308 if (IsRead) 1309 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1310 else 1311 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1312 continue; 1313 } 1314 // Distribute this partial PredTransition across intersecting variants. 1315 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1316 std::vector<TransVariant> IntersectingVariants; 1317 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1318 // Now expand each variant on top of its copy of the transition. 1319 for (std::vector<TransVariant>::const_iterator 1320 IVI = IntersectingVariants.begin(), 1321 IVE = IntersectingVariants.end(); 1322 IVI != IVE; ++IVI) { 1323 pushVariant(*IVI, IsRead); 1324 } 1325 } 1326 } 1327 } 1328 1329 // For each variant of a Read/Write in Trans, substitute the sequence of 1330 // Read/Writes guarded by the variant. This is exponential in the number of 1331 // variant Read/Writes, but in practice detection of mutually exclusive 1332 // predicates should result in linear growth in the total number variants. 1333 // 1334 // This is one step in a breadth-first search of nested variants. 1335 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1336 // Build up a set of partial results starting at the back of 1337 // PredTransitions. Remember the first new transition. 1338 unsigned StartIdx = TransVec.size(); 1339 TransVec.emplace_back(); 1340 TransVec.back().PredTerm = Trans.PredTerm; 1341 TransVec.back().ProcIndices = Trans.ProcIndices; 1342 1343 // Visit each original write sequence. 1344 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1345 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1346 WSI != WSE; ++WSI) { 1347 // Push a new (empty) write sequence onto all partial Transitions. 1348 for (std::vector<PredTransition>::iterator I = 1349 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1350 I->WriteSequences.emplace_back(); 1351 } 1352 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1353 } 1354 // Visit each original read sequence. 1355 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1356 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1357 RSI != RSE; ++RSI) { 1358 // Push a new (empty) read sequence onto all partial Transitions. 1359 for (std::vector<PredTransition>::iterator I = 1360 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1361 I->ReadSequences.emplace_back(); 1362 } 1363 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1364 } 1365 } 1366 1367 // Create a new SchedClass for each variant found by inferFromRW. Pass 1368 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1369 unsigned FromClassIdx, 1370 CodeGenSchedModels &SchedModels) { 1371 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1372 // requires creating a new SchedClass. 1373 for (ArrayRef<PredTransition>::iterator 1374 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1375 IdxVec OperWritesVariant; 1376 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1377 [&SchedModels](ArrayRef<unsigned> WS) { 1378 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1379 }); 1380 IdxVec OperReadsVariant; 1381 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1382 [&SchedModels](ArrayRef<unsigned> RS) { 1383 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1384 }); 1385 CodeGenSchedTransition SCTrans; 1386 SCTrans.ToClassIdx = 1387 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1388 OperReadsVariant, I->ProcIndices); 1389 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1390 // The final PredTerm is unique set of predicates guarding the transition. 1391 RecVec Preds; 1392 transform(I->PredTerm, std::back_inserter(Preds), 1393 [](const PredCheck &P) { 1394 return P.Predicate; 1395 }); 1396 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1397 SCTrans.PredTerm = std::move(Preds); 1398 SchedModels.getSchedClass(FromClassIdx) 1399 .Transitions.push_back(std::move(SCTrans)); 1400 } 1401 } 1402 1403 // Create new SchedClasses for the given ReadWrite list. If any of the 1404 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1405 // of the ReadWrite list, following Aliases if necessary. 1406 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1407 ArrayRef<unsigned> OperReads, 1408 unsigned FromClassIdx, 1409 ArrayRef<unsigned> ProcIndices) { 1410 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); 1411 dbgs() << ") "); 1412 1413 // Create a seed transition with an empty PredTerm and the expanded sequences 1414 // of SchedWrites for the current SchedClass. 1415 std::vector<PredTransition> LastTransitions; 1416 LastTransitions.emplace_back(); 1417 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1418 ProcIndices.end()); 1419 1420 for (unsigned WriteIdx : OperWrites) { 1421 IdxVec WriteSeq; 1422 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1423 LastTransitions[0].WriteSequences.emplace_back(); 1424 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1425 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1426 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1427 } 1428 LLVM_DEBUG(dbgs() << " Reads: "); 1429 for (unsigned ReadIdx : OperReads) { 1430 IdxVec ReadSeq; 1431 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1432 LastTransitions[0].ReadSequences.emplace_back(); 1433 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1434 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1435 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1436 } 1437 LLVM_DEBUG(dbgs() << '\n'); 1438 1439 // Collect all PredTransitions for individual operands. 1440 // Iterate until no variant writes remain. 1441 while (hasVariant(LastTransitions, *this)) { 1442 PredTransitions Transitions(*this); 1443 for (const PredTransition &Trans : LastTransitions) 1444 Transitions.substituteVariants(Trans); 1445 LLVM_DEBUG(Transitions.dump()); 1446 LastTransitions.swap(Transitions.TransVec); 1447 } 1448 // If the first transition has no variants, nothing to do. 1449 if (LastTransitions[0].PredTerm.empty()) 1450 return; 1451 1452 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1453 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1454 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1455 } 1456 1457 // Check if any processor resource group contains all resource records in 1458 // SubUnits. 1459 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1460 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1461 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1462 continue; 1463 RecVec SuperUnits = 1464 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1465 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1466 for ( ; RI != RE; ++RI) { 1467 if (!is_contained(SuperUnits, *RI)) { 1468 break; 1469 } 1470 } 1471 if (RI == RE) 1472 return true; 1473 } 1474 return false; 1475 } 1476 1477 // Verify that overlapping groups have a common supergroup. 1478 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1479 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1480 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1481 continue; 1482 RecVec CheckUnits = 1483 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1484 for (unsigned j = i+1; j < e; ++j) { 1485 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1486 continue; 1487 RecVec OtherUnits = 1488 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1489 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1490 OtherUnits.begin(), OtherUnits.end()) 1491 != CheckUnits.end()) { 1492 // CheckUnits and OtherUnits overlap 1493 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1494 CheckUnits.end()); 1495 if (!hasSuperGroup(OtherUnits, PM)) { 1496 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1497 "proc resource group overlaps with " 1498 + PM.ProcResourceDefs[j]->getName() 1499 + " but no supergroup contains both."); 1500 } 1501 } 1502 } 1503 } 1504 } 1505 1506 // Collect all the RegisterFile definitions available in this target. 1507 void CodeGenSchedModels::collectRegisterFiles() { 1508 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1509 1510 // RegisterFiles is the vector of CodeGenRegisterFile. 1511 for (Record *RF : RegisterFileDefs) { 1512 // For each register file definition, construct a CodeGenRegisterFile object 1513 // and add it to the appropriate scheduling model. 1514 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1515 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1516 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1517 1518 // Now set the number of physical registers as well as the cost of registers 1519 // in each register class. 1520 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1521 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1522 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1523 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1524 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1525 CGRF.Costs.emplace_back(RegisterClasses[I], Cost); 1526 } 1527 } 1528 } 1529 1530 // Collect all the RegisterFile definitions available in this target. 1531 void CodeGenSchedModels::collectPfmCounters() { 1532 for (Record *Def : Records.getAllDerivedDefinitions("PfmIssueCounter")) { 1533 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1534 PM.PfmIssueCounterDefs.emplace_back(Def); 1535 } 1536 for (Record *Def : Records.getAllDerivedDefinitions("PfmCycleCounter")) { 1537 CodeGenProcModel &PM = getProcModel(Def->getValueAsDef("SchedModel")); 1538 if (PM.PfmCycleCounterDef) { 1539 PrintFatalError(Def->getLoc(), 1540 "multiple cycle counters for " + 1541 Def->getValueAsDef("SchedModel")->getName()); 1542 } 1543 PM.PfmCycleCounterDef = Def; 1544 } 1545 } 1546 1547 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1548 void CodeGenSchedModels::collectProcResources() { 1549 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1550 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1551 1552 // Add any subtarget-specific SchedReadWrites that are directly associated 1553 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1554 // determine which processors they apply to. 1555 for (const CodeGenSchedClass &SC : 1556 make_range(schedClassBegin(), schedClassEnd())) { 1557 if (SC.ItinClassDef) { 1558 collectItinProcResources(SC.ItinClassDef); 1559 continue; 1560 } 1561 1562 // This class may have a default ReadWrite list which can be overriden by 1563 // InstRW definitions. 1564 for (Record *RW : SC.InstRWs) { 1565 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1566 unsigned PIdx = getProcModel(RWModelDef).Index; 1567 IdxVec Writes, Reads; 1568 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1569 collectRWResources(Writes, Reads, PIdx); 1570 } 1571 1572 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); 1573 } 1574 // Add resources separately defined by each subtarget. 1575 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1576 for (Record *WR : WRDefs) { 1577 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1578 addWriteRes(WR, getProcModel(ModelDef).Index); 1579 } 1580 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1581 for (Record *SWR : SWRDefs) { 1582 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1583 addWriteRes(SWR, getProcModel(ModelDef).Index); 1584 } 1585 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1586 for (Record *RA : RADefs) { 1587 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1588 addReadAdvance(RA, getProcModel(ModelDef).Index); 1589 } 1590 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1591 for (Record *SRA : SRADefs) { 1592 if (SRA->getValueInit("SchedModel")->isComplete()) { 1593 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1594 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1595 } 1596 } 1597 // Add ProcResGroups that are defined within this processor model, which may 1598 // not be directly referenced but may directly specify a buffer size. 1599 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1600 for (Record *PRG : ProcResGroups) { 1601 if (!PRG->getValueInit("SchedModel")->isComplete()) 1602 continue; 1603 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1604 if (!is_contained(PM.ProcResourceDefs, PRG)) 1605 PM.ProcResourceDefs.push_back(PRG); 1606 } 1607 // Add ProcResourceUnits unconditionally. 1608 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1609 if (!PRU->getValueInit("SchedModel")->isComplete()) 1610 continue; 1611 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1612 if (!is_contained(PM.ProcResourceDefs, PRU)) 1613 PM.ProcResourceDefs.push_back(PRU); 1614 } 1615 // Finalize each ProcModel by sorting the record arrays. 1616 for (CodeGenProcModel &PM : ProcModels) { 1617 llvm::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1618 LessRecord()); 1619 llvm::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1620 LessRecord()); 1621 llvm::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1622 LessRecord()); 1623 LLVM_DEBUG( 1624 PM.dump(); 1625 dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), 1626 RE = PM.WriteResDefs.end(); 1627 RI != RE; ++RI) { 1628 if ((*RI)->isSubClassOf("WriteRes")) 1629 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1630 else 1631 dbgs() << (*RI)->getName() << " "; 1632 } dbgs() << "\nReadAdvanceDefs: "; 1633 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1634 RE = PM.ReadAdvanceDefs.end(); 1635 RI != RE; ++RI) { 1636 if ((*RI)->isSubClassOf("ReadAdvance")) 1637 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1638 else 1639 dbgs() << (*RI)->getName() << " "; 1640 } dbgs() 1641 << "\nProcResourceDefs: "; 1642 for (RecIter RI = PM.ProcResourceDefs.begin(), 1643 RE = PM.ProcResourceDefs.end(); 1644 RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() 1645 << '\n'); 1646 verifyProcResourceGroups(PM); 1647 } 1648 1649 ProcResourceDefs.clear(); 1650 ProcResGroups.clear(); 1651 } 1652 1653 void CodeGenSchedModels::checkCompleteness() { 1654 bool Complete = true; 1655 bool HadCompleteModel = false; 1656 for (const CodeGenProcModel &ProcModel : procModels()) { 1657 const bool HasItineraries = ProcModel.hasItineraries(); 1658 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1659 continue; 1660 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1661 if (Inst->hasNoSchedulingInfo) 1662 continue; 1663 if (ProcModel.isUnsupported(*Inst)) 1664 continue; 1665 unsigned SCIdx = getSchedClassIdx(*Inst); 1666 if (!SCIdx) { 1667 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1668 PrintError("No schedule information for instruction '" 1669 + Inst->TheDef->getName() + "'"); 1670 Complete = false; 1671 } 1672 continue; 1673 } 1674 1675 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1676 if (!SC.Writes.empty()) 1677 continue; 1678 if (HasItineraries && SC.ItinClassDef != nullptr && 1679 SC.ItinClassDef->getName() != "NoItinerary") 1680 continue; 1681 1682 const RecVec &InstRWs = SC.InstRWs; 1683 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1684 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1685 }); 1686 if (I == InstRWs.end()) { 1687 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1688 Inst->TheDef->getName() + "'"); 1689 Complete = false; 1690 } 1691 } 1692 HadCompleteModel = true; 1693 } 1694 if (!Complete) { 1695 errs() << "\n\nIncomplete schedule models found.\n" 1696 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1697 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1698 << "- Instructions should usually have Sched<[...]> as a superclass, " 1699 "you may temporarily use an empty list.\n" 1700 << "- Instructions related to unsupported features can be excluded with " 1701 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1702 "processor model.\n\n"; 1703 PrintFatalError("Incomplete schedule model"); 1704 } 1705 } 1706 1707 // Collect itinerary class resources for each processor. 1708 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1709 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1710 const CodeGenProcModel &PM = ProcModels[PIdx]; 1711 // For all ItinRW entries. 1712 bool HasMatch = false; 1713 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1714 II != IE; ++II) { 1715 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1716 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1717 continue; 1718 if (HasMatch) 1719 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1720 + ItinClassDef->getName() 1721 + " in ItinResources for " + PM.ModelName); 1722 HasMatch = true; 1723 IdxVec Writes, Reads; 1724 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1725 collectRWResources(Writes, Reads, PIdx); 1726 } 1727 } 1728 } 1729 1730 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1731 ArrayRef<unsigned> ProcIndices) { 1732 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1733 if (SchedRW.TheDef) { 1734 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1735 for (unsigned Idx : ProcIndices) 1736 addWriteRes(SchedRW.TheDef, Idx); 1737 } 1738 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1739 for (unsigned Idx : ProcIndices) 1740 addReadAdvance(SchedRW.TheDef, Idx); 1741 } 1742 } 1743 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1744 AI != AE; ++AI) { 1745 IdxVec AliasProcIndices; 1746 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1747 AliasProcIndices.push_back( 1748 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1749 } 1750 else 1751 AliasProcIndices = ProcIndices; 1752 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1753 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1754 1755 IdxVec ExpandedRWs; 1756 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1757 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1758 SI != SE; ++SI) { 1759 collectRWResources(*SI, IsRead, AliasProcIndices); 1760 } 1761 } 1762 } 1763 1764 // Collect resources for a set of read/write types and processor indices. 1765 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 1766 ArrayRef<unsigned> Reads, 1767 ArrayRef<unsigned> ProcIndices) { 1768 for (unsigned Idx : Writes) 1769 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 1770 1771 for (unsigned Idx : Reads) 1772 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 1773 } 1774 1775 // Find the processor's resource units for this kind of resource. 1776 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1777 const CodeGenProcModel &PM, 1778 ArrayRef<SMLoc> Loc) const { 1779 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1780 return ProcResKind; 1781 1782 Record *ProcUnitDef = nullptr; 1783 assert(!ProcResourceDefs.empty()); 1784 assert(!ProcResGroups.empty()); 1785 1786 for (Record *ProcResDef : ProcResourceDefs) { 1787 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 1788 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 1789 if (ProcUnitDef) { 1790 PrintFatalError(Loc, 1791 "Multiple ProcessorResourceUnits associated with " 1792 + ProcResKind->getName()); 1793 } 1794 ProcUnitDef = ProcResDef; 1795 } 1796 } 1797 for (Record *ProcResGroup : ProcResGroups) { 1798 if (ProcResGroup == ProcResKind 1799 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 1800 if (ProcUnitDef) { 1801 PrintFatalError(Loc, 1802 "Multiple ProcessorResourceUnits associated with " 1803 + ProcResKind->getName()); 1804 } 1805 ProcUnitDef = ProcResGroup; 1806 } 1807 } 1808 if (!ProcUnitDef) { 1809 PrintFatalError(Loc, 1810 "No ProcessorResources associated with " 1811 + ProcResKind->getName()); 1812 } 1813 return ProcUnitDef; 1814 } 1815 1816 // Iteratively add a resource and its super resources. 1817 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1818 CodeGenProcModel &PM, 1819 ArrayRef<SMLoc> Loc) { 1820 while (true) { 1821 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 1822 1823 // See if this ProcResource is already associated with this processor. 1824 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 1825 return; 1826 1827 PM.ProcResourceDefs.push_back(ProcResUnits); 1828 if (ProcResUnits->isSubClassOf("ProcResGroup")) 1829 return; 1830 1831 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1832 return; 1833 1834 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1835 } 1836 } 1837 1838 // Add resources for a SchedWrite to this processor if they don't exist. 1839 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1840 assert(PIdx && "don't add resources to an invalid Processor model"); 1841 1842 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1843 if (is_contained(WRDefs, ProcWriteResDef)) 1844 return; 1845 WRDefs.push_back(ProcWriteResDef); 1846 1847 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1848 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1849 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1850 WritePRI != WritePRE; ++WritePRI) { 1851 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 1852 } 1853 } 1854 1855 // Add resources for a ReadAdvance to this processor if they don't exist. 1856 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1857 unsigned PIdx) { 1858 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1859 if (is_contained(RADefs, ProcReadAdvanceDef)) 1860 return; 1861 RADefs.push_back(ProcReadAdvanceDef); 1862 } 1863 1864 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1865 RecIter PRPos = find(ProcResourceDefs, PRDef); 1866 if (PRPos == ProcResourceDefs.end()) 1867 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1868 "the ProcResources list for " + ModelName); 1869 // Idx=0 is reserved for invalid. 1870 return 1 + (PRPos - ProcResourceDefs.begin()); 1871 } 1872 1873 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 1874 for (const Record *TheDef : UnsupportedFeaturesDefs) { 1875 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 1876 if (TheDef->getName() == PredDef->getName()) 1877 return true; 1878 } 1879 } 1880 return false; 1881 } 1882 1883 #ifndef NDEBUG 1884 void CodeGenProcModel::dump() const { 1885 dbgs() << Index << ": " << ModelName << " " 1886 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1887 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1888 } 1889 1890 void CodeGenSchedRW::dump() const { 1891 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1892 if (IsSequence) { 1893 dbgs() << "("; 1894 dumpIdxVec(Sequence); 1895 dbgs() << ")"; 1896 } 1897 } 1898 1899 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1900 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 1901 << " Writes: "; 1902 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1903 SchedModels->getSchedWrite(Writes[i]).dump(); 1904 if (i < N-1) { 1905 dbgs() << '\n'; 1906 dbgs().indent(10); 1907 } 1908 } 1909 dbgs() << "\n Reads: "; 1910 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1911 SchedModels->getSchedRead(Reads[i]).dump(); 1912 if (i < N-1) { 1913 dbgs() << '\n'; 1914 dbgs().indent(10); 1915 } 1916 } 1917 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1918 if (!Transitions.empty()) { 1919 dbgs() << "\n Transitions for Proc "; 1920 for (const CodeGenSchedTransition &Transition : Transitions) { 1921 dumpIdxVec(Transition.ProcIndices); 1922 } 1923 } 1924 } 1925 1926 void PredTransitions::dump() const { 1927 dbgs() << "Expanded Variants:\n"; 1928 for (std::vector<PredTransition>::const_iterator 1929 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1930 dbgs() << "{"; 1931 for (SmallVectorImpl<PredCheck>::const_iterator 1932 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1933 PCI != PCE; ++PCI) { 1934 if (PCI != TI->PredTerm.begin()) 1935 dbgs() << ", "; 1936 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1937 << ":" << PCI->Predicate->getName(); 1938 } 1939 dbgs() << "},\n => {"; 1940 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1941 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1942 WSI != WSE; ++WSI) { 1943 dbgs() << "("; 1944 for (SmallVectorImpl<unsigned>::const_iterator 1945 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1946 if (WI != WSI->begin()) 1947 dbgs() << ", "; 1948 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1949 } 1950 dbgs() << "),"; 1951 } 1952 dbgs() << "}\n"; 1953 } 1954 } 1955 #endif // NDEBUG 1956