1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "subtarget-emitter"
34 
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37   for (unsigned Idx : V)
38     dbgs() << Idx << ", ";
39 }
40 #endif
41 
42 namespace {
43 
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47              ArrayRef<SMLoc> Loc) override {
48     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49   }
50 };
51 
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54   const CodeGenTarget &Target;
55   InstRegexOp(const CodeGenTarget &t): Target(t) {}
56 
57   /// Remove any text inside of parentheses from S.
58   static std::string removeParens(llvm::StringRef S) {
59     std::string Result;
60     unsigned Paren = 0;
61     // NB: We don't care about escaped parens here.
62     for (char C : S) {
63       switch (C) {
64       case '(':
65         ++Paren;
66         break;
67       case ')':
68         --Paren;
69         break;
70       default:
71         if (Paren == 0)
72           Result += C;
73       }
74     }
75     return Result;
76   }
77 
78   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79              ArrayRef<SMLoc> Loc) override {
80     ArrayRef<const CodeGenInstruction *> Instructions =
81         Target.getInstructionsByEnumValue();
82 
83     unsigned NumGeneric = Target.getNumFixedInstructions();
84     unsigned NumPseudos = Target.getNumPseudoInstructions();
85     auto Generics = Instructions.slice(0, NumGeneric);
86     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 
89     for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90       StringInit *SI = dyn_cast<StringInit>(Arg);
91       if (!SI)
92         PrintFatalError(Loc, "instregex requires pattern string: " +
93                                  Expr->getAsString());
94       StringRef Original = SI->getValue();
95 
96       // Extract a prefix that we can binary search on.
97       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98       auto FirstMeta = Original.find_first_of(RegexMetachars);
99 
100       // Look for top-level | or ?. We cannot optimize them to binary search.
101       if (removeParens(Original).find_first_of("|?") != std::string::npos)
102         FirstMeta = 0;
103 
104       Optional<Regex> Regexpr = None;
105       StringRef Prefix = Original.substr(0, FirstMeta);
106       StringRef PatStr = Original.substr(FirstMeta);
107       if (!PatStr.empty()) {
108         // For the rest use a python-style prefix match.
109         std::string pat = std::string(PatStr);
110         if (pat[0] != '^') {
111           pat.insert(0, "^(");
112           pat.insert(pat.end(), ')');
113         }
114         Regexpr = Regex(pat);
115       }
116 
117       int NumMatches = 0;
118 
119       // The generic opcodes are unsorted, handle them manually.
120       for (auto *Inst : Generics) {
121         StringRef InstName = Inst->TheDef->getName();
122         if (InstName.startswith(Prefix) &&
123             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124           Elts.insert(Inst->TheDef);
125           NumMatches++;
126         }
127       }
128 
129       // Target instructions are split into two ranges: pseudo instructions
130       // first, than non-pseudos. Each range is in lexicographical order
131       // sorted by name. Find the sub-ranges that start with our prefix.
132       struct Comp {
133         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134           return LHS->TheDef->getName() < RHS;
135         }
136         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137           return LHS < RHS->TheDef->getName() &&
138                  !RHS->TheDef->getName().startswith(LHS);
139         }
140       };
141       auto Range1 =
142           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                      Prefix, Comp());
145 
146       // For these ranges we know that instruction names start with the prefix.
147       // Check if there's a regex that needs to be checked.
148       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149         StringRef InstName = Inst->TheDef->getName();
150         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151           Elts.insert(Inst->TheDef);
152           NumMatches++;
153         }
154       };
155       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157 
158       if (0 == NumMatches)
159         PrintFatalError(Loc, "instregex has no matches: " + Original);
160     }
161   }
162 };
163 
164 } // end anonymous namespace
165 
166 /// CodeGenModels ctor interprets machine model records and populates maps.
167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                        const CodeGenTarget &TGT):
169   Records(RK), Target(TGT) {
170 
171   Sets.addFieldExpander("InstRW", "Instrs");
172 
173   // Allow Set evaluation to recognize the dags used in InstRW records:
174   // (instrs Op1, Op1...)
175   Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176   Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177 
178   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179   // that are explicitly referenced in tablegen records. Resources associated
180   // with each processor will be derived later. Populate ProcModelMap with the
181   // CodeGenProcModel instances.
182   collectProcModels();
183 
184   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185   // defined, and populate SchedReads and SchedWrites vectors. Implicit
186   // SchedReadWrites that represent sequences derived from expanded variant will
187   // be inferred later.
188   collectSchedRW();
189 
190   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191   // required by an instruction definition, and populate SchedClassIdxMap. Set
192   // NumItineraryClasses to the number of explicit itinerary classes referenced
193   // by instructions. Set NumInstrSchedClasses to the number of itinerary
194   // classes plus any classes implied by instructions that derive from class
195   // Sched and provide SchedRW list. This does not infer any new classes from
196   // SchedVariant.
197   collectSchedClasses();
198 
199   // Find instruction itineraries for each processor. Sort and populate
200   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201   // all itinerary classes to be discovered.
202   collectProcItins();
203 
204   // Find ItinRW records for each processor and itinerary class.
205   // (For per-operand resources mapped to itinerary classes).
206   collectProcItinRW();
207 
208   // Find UnsupportedFeatures records for each processor.
209   // (For per-operand resources mapped to itinerary classes).
210   collectProcUnsupportedFeatures();
211 
212   // Infer new SchedClasses from SchedVariant.
213   inferSchedClasses();
214 
215   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216   // ProcResourceDefs.
217   LLVM_DEBUG(
218       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219   collectProcResources();
220 
221   // Collect optional processor description.
222   collectOptionalProcessorInfo();
223 
224   // Check MCInstPredicate definitions.
225   checkMCInstPredicates();
226 
227   // Check STIPredicate definitions.
228   checkSTIPredicates();
229 
230   // Find STIPredicate definitions for each processor model, and construct
231   // STIPredicateFunction objects.
232   collectSTIPredicates();
233 
234   checkCompleteness();
235 }
236 
237 void CodeGenSchedModels::checkSTIPredicates() const {
238   DenseMap<StringRef, const Record *> Declarations;
239 
240   // There cannot be multiple declarations with the same name.
241   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242   for (const Record *R : Decls) {
243     StringRef Name = R->getValueAsString("Name");
244     const auto It = Declarations.find(Name);
245     if (It == Declarations.end()) {
246       Declarations[Name] = R;
247       continue;
248     }
249 
250     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251     PrintNote(It->second->getLoc(), "Previous declaration was here.");
252     PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
253   }
254 
255   // Disallow InstructionEquivalenceClasses with an empty instruction list.
256   const RecVec Defs =
257       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258   for (const Record *R : Defs) {
259     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260     if (Opcodes.empty()) {
261       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262                                    "defined with an empty opcode list.");
263     }
264   }
265 }
266 
267 // Used by function `processSTIPredicate` to construct a mask of machine
268 // instruction operands.
269 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270   APInt OperandMask;
271   if (Indices.empty())
272     return OperandMask;
273 
274   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276   OperandMask = OperandMask.zext(MaxIndex + 1);
277   for (const int64_t Index : Indices) {
278     assert(Index >= 0 && "Invalid negative indices!");
279     OperandMask.setBit(Index);
280   }
281 
282   return OperandMask;
283 }
284 
285 static void
286 processSTIPredicate(STIPredicateFunction &Fn,
287                     const DenseMap<Record *, unsigned> &ProcModelMap) {
288   DenseMap<const Record *, unsigned> Opcode2Index;
289   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290   std::vector<OpcodeMapPair> OpcodeMappings;
291   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
292 
293   DenseMap<const Record *, unsigned> Predicate2Index;
294   unsigned NumUniquePredicates = 0;
295 
296   // Number unique predicates and opcodes used by InstructionEquivalenceClass
297   // definitions. Each unique opcode will be associated with an OpcodeInfo
298   // object.
299   for (const Record *Def : Fn.getDefinitions()) {
300     RecVec Classes = Def->getValueAsListOfDefs("Classes");
301     for (const Record *EC : Classes) {
302       const Record *Pred = EC->getValueAsDef("Predicate");
303       if (Predicate2Index.find(Pred) == Predicate2Index.end())
304         Predicate2Index[Pred] = NumUniquePredicates++;
305 
306       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307       for (const Record *Opcode : Opcodes) {
308         if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309           Opcode2Index[Opcode] = OpcodeMappings.size();
310           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
311         }
312       }
313     }
314   }
315 
316   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
317   // of which processors "use" which opcodes.  We also want to be able to
318   // identify predicates that are used by different processors for a same
319   // opcode.
320   // This information is used later on by this algorithm to sort OpcodeMapping
321   // elements based on their processor and predicate sets.
322   OpcodeMasks.resize(OpcodeMappings.size());
323   APInt DefaultProcMask(ProcModelMap.size(), 0);
324   APInt DefaultPredMask(NumUniquePredicates, 0);
325   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
327 
328   // Construct a OpcodeInfo object for every unique opcode declared by an
329   // InstructionEquivalenceClass definition.
330   for (const Record *Def : Fn.getDefinitions()) {
331     RecVec Classes = Def->getValueAsListOfDefs("Classes");
332     const Record *SchedModel = Def->getValueAsDef("SchedModel");
333     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334     APInt ProcMask(ProcModelMap.size(), 0);
335     ProcMask.setBit(ProcIndex);
336 
337     for (const Record *EC : Classes) {
338       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
339 
340       std::vector<int64_t> OpIndices =
341           EC->getValueAsListOfInts("OperandIndices");
342       APInt OperandMask = constructOperandMask(OpIndices);
343 
344       const Record *Pred = EC->getValueAsDef("Predicate");
345       APInt PredMask(NumUniquePredicates, 0);
346       PredMask.setBit(Predicate2Index[Pred]);
347 
348       for (const Record *Opcode : Opcodes) {
349         unsigned OpcodeIdx = Opcode2Index[Opcode];
350         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351           std::string Message =
352               "Opcode " + Opcode->getName().str() +
353               " used by multiple InstructionEquivalenceClass definitions.";
354           PrintFatalError(EC->getLoc(), Message);
355         }
356         OpcodeMasks[OpcodeIdx].first |= ProcMask;
357         OpcodeMasks[OpcodeIdx].second |= PredMask;
358         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
359 
360         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
361       }
362     }
363   }
364 
365   // Sort OpcodeMappings elements based on their CPU and predicate masks.
366   // As a last resort, order elements by opcode identifier.
367   llvm::sort(OpcodeMappings,
368              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369                unsigned LhsIdx = Opcode2Index[Lhs.first];
370                unsigned RhsIdx = Opcode2Index[Rhs.first];
371                const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372                const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
373 
374                auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
375                  unsigned LhsCountPopulation = Lhs.countPopulation();
376                  unsigned RhsCountPopulation = Rhs.countPopulation();
377                  return ((LhsCountPopulation < RhsCountPopulation) ||
378                          ((LhsCountPopulation == RhsCountPopulation) &&
379                           (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
380                };
381 
382                if (LhsMasks.first != RhsMasks.first)
383                  return LessThan(LhsMasks.first, RhsMasks.first);
384 
385                if (LhsMasks.second != RhsMasks.second)
386                  return LessThan(LhsMasks.second, RhsMasks.second);
387 
388                return LhsIdx < RhsIdx;
389              });
390 
391   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
392   // expanding the body of a STIPredicate function. In particular, each opcode
393   // group is expanded into a sequence of labels in a switch statement.
394   // It identifies opcodes for which different processors define same predicates
395   // and same opcode masks.
396   for (OpcodeMapPair &Info : OpcodeMappings)
397     Fn.addOpcode(Info.first, std::move(Info.second));
398 }
399 
400 void CodeGenSchedModels::collectSTIPredicates() {
401   // Map STIPredicateDecl records to elements of vector
402   // CodeGenSchedModels::STIPredicates.
403   DenseMap<const Record *, unsigned> Decl2Index;
404 
405   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
406   for (const Record *R : RV) {
407     const Record *Decl = R->getValueAsDef("Declaration");
408 
409     const auto It = Decl2Index.find(Decl);
410     if (It == Decl2Index.end()) {
411       Decl2Index[Decl] = STIPredicates.size();
412       STIPredicateFunction Predicate(Decl);
413       Predicate.addDefinition(R);
414       STIPredicates.emplace_back(std::move(Predicate));
415       continue;
416     }
417 
418     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
419     PreviousDef.addDefinition(R);
420   }
421 
422   for (STIPredicateFunction &Fn : STIPredicates)
423     processSTIPredicate(Fn, ProcModelMap);
424 }
425 
426 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
427                                           const llvm::APInt &OperandMask,
428                                           const Record *Predicate) {
429   auto It = llvm::find_if(
430       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
431         return P.Predicate == Predicate && P.OperandMask == OperandMask;
432       });
433   if (It == Predicates.end()) {
434     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
435     return;
436   }
437   It->ProcModelMask |= CpuMask;
438 }
439 
440 void CodeGenSchedModels::checkMCInstPredicates() const {
441   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
442   if (MCPredicates.empty())
443     return;
444 
445   // A target cannot have multiple TIIPredicate definitions with a same name.
446   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
447   for (const Record *TIIPred : MCPredicates) {
448     StringRef Name = TIIPred->getValueAsString("FunctionName");
449     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
450     if (It == TIIPredicates.end()) {
451       TIIPredicates[Name] = TIIPred;
452       continue;
453     }
454 
455     PrintError(TIIPred->getLoc(),
456                "TIIPredicate " + Name + " is multiply defined.");
457     PrintNote(It->second->getLoc(),
458               " Previous definition of " + Name + " was here.");
459     PrintFatalError(TIIPred->getLoc(),
460                     "Found conflicting definitions of TIIPredicate.");
461   }
462 }
463 
464 void CodeGenSchedModels::collectRetireControlUnits() {
465   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
466 
467   for (Record *RCU : Units) {
468     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
469     if (PM.RetireControlUnit) {
470       PrintError(RCU->getLoc(),
471                  "Expected a single RetireControlUnit definition");
472       PrintNote(PM.RetireControlUnit->getLoc(),
473                 "Previous definition of RetireControlUnit was here");
474     }
475     PM.RetireControlUnit = RCU;
476   }
477 }
478 
479 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
480   RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
481 
482   for (Record *Queue : Queues) {
483     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
484     if (Queue->isSubClassOf("LoadQueue")) {
485       if (PM.LoadQueue) {
486         PrintError(Queue->getLoc(),
487                    "Expected a single LoadQueue definition");
488         PrintNote(PM.LoadQueue->getLoc(),
489                   "Previous definition of LoadQueue was here");
490       }
491 
492       PM.LoadQueue = Queue;
493     }
494 
495     if (Queue->isSubClassOf("StoreQueue")) {
496       if (PM.StoreQueue) {
497         PrintError(Queue->getLoc(),
498                    "Expected a single StoreQueue definition");
499         PrintNote(PM.LoadQueue->getLoc(),
500                   "Previous definition of StoreQueue was here");
501       }
502 
503       PM.StoreQueue = Queue;
504     }
505   }
506 }
507 
508 /// Collect optional processor information.
509 void CodeGenSchedModels::collectOptionalProcessorInfo() {
510   // Find register file definitions for each processor.
511   collectRegisterFiles();
512 
513   // Collect processor RetireControlUnit descriptors if available.
514   collectRetireControlUnits();
515 
516   // Collect information about load/store queues.
517   collectLoadStoreQueueInfo();
518 
519   checkCompleteness();
520 }
521 
522 /// Gather all processor models.
523 void CodeGenSchedModels::collectProcModels() {
524   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
525   llvm::sort(ProcRecords, LessRecordFieldName());
526 
527   // Reserve space because we can. Reallocation would be ok.
528   ProcModels.reserve(ProcRecords.size()+1);
529 
530   // Use idx=0 for NoModel/NoItineraries.
531   Record *NoModelDef = Records.getDef("NoSchedModel");
532   Record *NoItinsDef = Records.getDef("NoItineraries");
533   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
534   ProcModelMap[NoModelDef] = 0;
535 
536   // For each processor, find a unique machine model.
537   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
538   for (Record *ProcRecord : ProcRecords)
539     addProcModel(ProcRecord);
540 }
541 
542 /// Get a unique processor model based on the defined MachineModel and
543 /// ProcessorItineraries.
544 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
545   Record *ModelKey = getModelOrItinDef(ProcDef);
546   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
547     return;
548 
549   std::string Name = std::string(ModelKey->getName());
550   if (ModelKey->isSubClassOf("SchedMachineModel")) {
551     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
552     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
553   }
554   else {
555     // An itinerary is defined without a machine model. Infer a new model.
556     if (!ModelKey->getValueAsListOfDefs("IID").empty())
557       Name = Name + "Model";
558     ProcModels.emplace_back(ProcModels.size(), Name,
559                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
560   }
561   LLVM_DEBUG(ProcModels.back().dump());
562 }
563 
564 // Recursively find all reachable SchedReadWrite records.
565 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
566                         SmallPtrSet<Record*, 16> &RWSet) {
567   if (!RWSet.insert(RWDef).second)
568     return;
569   RWDefs.push_back(RWDef);
570   // Reads don't currently have sequence records, but it can be added later.
571   if (RWDef->isSubClassOf("WriteSequence")) {
572     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
573     for (Record *WSRec : Seq)
574       scanSchedRW(WSRec, RWDefs, RWSet);
575   }
576   else if (RWDef->isSubClassOf("SchedVariant")) {
577     // Visit each variant (guarded by a different predicate).
578     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
579     for (Record *Variant : Vars) {
580       // Visit each RW in the sequence selected by the current variant.
581       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
582       for (Record *SelDef : Selected)
583         scanSchedRW(SelDef, RWDefs, RWSet);
584     }
585   }
586 }
587 
588 // Collect and sort all SchedReadWrites reachable via tablegen records.
589 // More may be inferred later when inferring new SchedClasses from variants.
590 void CodeGenSchedModels::collectSchedRW() {
591   // Reserve idx=0 for invalid writes/reads.
592   SchedWrites.resize(1);
593   SchedReads.resize(1);
594 
595   SmallPtrSet<Record*, 16> RWSet;
596 
597   // Find all SchedReadWrites referenced by instruction defs.
598   RecVec SWDefs, SRDefs;
599   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
600     Record *SchedDef = Inst->TheDef;
601     if (SchedDef->isValueUnset("SchedRW"))
602       continue;
603     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
604     for (Record *RW : RWs) {
605       if (RW->isSubClassOf("SchedWrite"))
606         scanSchedRW(RW, SWDefs, RWSet);
607       else {
608         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
609         scanSchedRW(RW, SRDefs, RWSet);
610       }
611     }
612   }
613   // Find all ReadWrites referenced by InstRW.
614   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
615   for (Record *InstRWDef : InstRWDefs) {
616     // For all OperandReadWrites.
617     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
618     for (Record *RWDef : RWDefs) {
619       if (RWDef->isSubClassOf("SchedWrite"))
620         scanSchedRW(RWDef, SWDefs, RWSet);
621       else {
622         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
623         scanSchedRW(RWDef, SRDefs, RWSet);
624       }
625     }
626   }
627   // Find all ReadWrites referenced by ItinRW.
628   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
629   for (Record *ItinRWDef : ItinRWDefs) {
630     // For all OperandReadWrites.
631     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
632     for (Record *RWDef : RWDefs) {
633       if (RWDef->isSubClassOf("SchedWrite"))
634         scanSchedRW(RWDef, SWDefs, RWSet);
635       else {
636         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
637         scanSchedRW(RWDef, SRDefs, RWSet);
638       }
639     }
640   }
641   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
642   // for the loop below that initializes Alias vectors.
643   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
644   llvm::sort(AliasDefs, LessRecord());
645   for (Record *ADef : AliasDefs) {
646     Record *MatchDef = ADef->getValueAsDef("MatchRW");
647     Record *AliasDef = ADef->getValueAsDef("AliasRW");
648     if (MatchDef->isSubClassOf("SchedWrite")) {
649       if (!AliasDef->isSubClassOf("SchedWrite"))
650         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
651       scanSchedRW(AliasDef, SWDefs, RWSet);
652     }
653     else {
654       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
655       if (!AliasDef->isSubClassOf("SchedRead"))
656         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
657       scanSchedRW(AliasDef, SRDefs, RWSet);
658     }
659   }
660   // Sort and add the SchedReadWrites directly referenced by instructions or
661   // itinerary resources. Index reads and writes in separate domains.
662   llvm::sort(SWDefs, LessRecord());
663   for (Record *SWDef : SWDefs) {
664     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
665     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
666   }
667   llvm::sort(SRDefs, LessRecord());
668   for (Record *SRDef : SRDefs) {
669     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
670     SchedReads.emplace_back(SchedReads.size(), SRDef);
671   }
672   // Initialize WriteSequence vectors.
673   for (CodeGenSchedRW &CGRW : SchedWrites) {
674     if (!CGRW.IsSequence)
675       continue;
676     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
677             /*IsRead=*/false);
678   }
679   // Initialize Aliases vectors.
680   for (Record *ADef : AliasDefs) {
681     Record *AliasDef = ADef->getValueAsDef("AliasRW");
682     getSchedRW(AliasDef).IsAlias = true;
683     Record *MatchDef = ADef->getValueAsDef("MatchRW");
684     CodeGenSchedRW &RW = getSchedRW(MatchDef);
685     if (RW.IsAlias)
686       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
687     RW.Aliases.push_back(ADef);
688   }
689   LLVM_DEBUG(
690       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
691       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
692         dbgs() << WIdx << ": ";
693         SchedWrites[WIdx].dump();
694         dbgs() << '\n';
695       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
696              ++RIdx) {
697         dbgs() << RIdx << ": ";
698         SchedReads[RIdx].dump();
699         dbgs() << '\n';
700       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
701       for (Record *RWDef
702            : RWDefs) {
703         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
704           StringRef Name = RWDef->getName();
705           if (Name != "NoWrite" && Name != "ReadDefault")
706             dbgs() << "Unused SchedReadWrite " << Name << '\n';
707         }
708       });
709 }
710 
711 /// Compute a SchedWrite name from a sequence of writes.
712 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
713   std::string Name("(");
714   for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
715     if (I != Seq.begin())
716       Name += '_';
717     Name += getSchedRW(*I, IsRead).Name;
718   }
719   Name += ')';
720   return Name;
721 }
722 
723 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
724                                            bool IsRead) const {
725   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
726   const auto I = find_if(
727       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
728   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
729 }
730 
731 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
732   for (const CodeGenSchedRW &Read : SchedReads) {
733     Record *ReadDef = Read.TheDef;
734     if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
735       continue;
736 
737     RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
738     if (is_contained(ValidWrites, WriteDef)) {
739       return true;
740     }
741   }
742   return false;
743 }
744 
745 static void splitSchedReadWrites(const RecVec &RWDefs,
746                                  RecVec &WriteDefs, RecVec &ReadDefs) {
747   for (Record *RWDef : RWDefs) {
748     if (RWDef->isSubClassOf("SchedWrite"))
749       WriteDefs.push_back(RWDef);
750     else {
751       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
752       ReadDefs.push_back(RWDef);
753     }
754   }
755 }
756 
757 // Split the SchedReadWrites defs and call findRWs for each list.
758 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
759                                  IdxVec &Writes, IdxVec &Reads) const {
760   RecVec WriteDefs;
761   RecVec ReadDefs;
762   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
763   findRWs(WriteDefs, Writes, false);
764   findRWs(ReadDefs, Reads, true);
765 }
766 
767 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
768 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
769                                  bool IsRead) const {
770   for (Record *RWDef : RWDefs) {
771     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
772     assert(Idx && "failed to collect SchedReadWrite");
773     RWs.push_back(Idx);
774   }
775 }
776 
777 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
778                                           bool IsRead) const {
779   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
780   if (!SchedRW.IsSequence) {
781     RWSeq.push_back(RWIdx);
782     return;
783   }
784   int Repeat =
785     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
786   for (int i = 0; i < Repeat; ++i) {
787     for (unsigned I : SchedRW.Sequence) {
788       expandRWSequence(I, RWSeq, IsRead);
789     }
790   }
791 }
792 
793 // Expand a SchedWrite as a sequence following any aliases that coincide with
794 // the given processor model.
795 void CodeGenSchedModels::expandRWSeqForProc(
796   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
797   const CodeGenProcModel &ProcModel) const {
798 
799   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
800   Record *AliasDef = nullptr;
801   for (const Record *Rec : SchedWrite.Aliases) {
802     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
803     if (Rec->getValueInit("SchedModel")->isComplete()) {
804       Record *ModelDef = Rec->getValueAsDef("SchedModel");
805       if (&getProcModel(ModelDef) != &ProcModel)
806         continue;
807     }
808     if (AliasDef)
809       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
810                       "defined for processor " + ProcModel.ModelName +
811                       " Ensure only one SchedAlias exists per RW.");
812     AliasDef = AliasRW.TheDef;
813   }
814   if (AliasDef) {
815     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
816                        RWSeq, IsRead,ProcModel);
817     return;
818   }
819   if (!SchedWrite.IsSequence) {
820     RWSeq.push_back(RWIdx);
821     return;
822   }
823   int Repeat =
824     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
825   for (int I = 0, E = Repeat; I < E; ++I) {
826     for (unsigned Idx : SchedWrite.Sequence) {
827       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
828     }
829   }
830 }
831 
832 // Find the existing SchedWrite that models this sequence of writes.
833 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
834                                                bool IsRead) {
835   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
836 
837   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
838     return makeArrayRef(RW.Sequence) == Seq;
839   });
840   // Index zero reserved for invalid RW.
841   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
842 }
843 
844 /// Add this ReadWrite if it doesn't already exist.
845 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
846                                             bool IsRead) {
847   assert(!Seq.empty() && "cannot insert empty sequence");
848   if (Seq.size() == 1)
849     return Seq.back();
850 
851   unsigned Idx = findRWForSequence(Seq, IsRead);
852   if (Idx)
853     return Idx;
854 
855   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
856   unsigned RWIdx = RWVec.size();
857   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
858   RWVec.push_back(SchedRW);
859   return RWIdx;
860 }
861 
862 /// Visit all the instruction definitions for this target to gather and
863 /// enumerate the itinerary classes. These are the explicitly specified
864 /// SchedClasses. More SchedClasses may be inferred.
865 void CodeGenSchedModels::collectSchedClasses() {
866 
867   // NoItinerary is always the first class at Idx=0
868   assert(SchedClasses.empty() && "Expected empty sched class");
869   SchedClasses.emplace_back(0, "NoInstrModel",
870                             Records.getDef("NoItinerary"));
871   SchedClasses.back().ProcIndices.push_back(0);
872 
873   // Create a SchedClass for each unique combination of itinerary class and
874   // SchedRW list.
875   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
876     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
877     IdxVec Writes, Reads;
878     if (!Inst->TheDef->isValueUnset("SchedRW"))
879       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
880 
881     // ProcIdx == 0 indicates the class applies to all processors.
882     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
883     InstrClassMap[Inst->TheDef] = SCIdx;
884   }
885   // Create classes for InstRW defs.
886   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
887   llvm::sort(InstRWDefs, LessRecord());
888   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
889   for (Record *RWDef : InstRWDefs)
890     createInstRWClass(RWDef);
891 
892   NumInstrSchedClasses = SchedClasses.size();
893 
894   bool EnableDump = false;
895   LLVM_DEBUG(EnableDump = true);
896   if (!EnableDump)
897     return;
898 
899   LLVM_DEBUG(
900       dbgs()
901       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
902   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
903     StringRef InstName = Inst->TheDef->getName();
904     unsigned SCIdx = getSchedClassIdx(*Inst);
905     if (!SCIdx) {
906       LLVM_DEBUG({
907         if (!Inst->hasNoSchedulingInfo)
908           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
909       });
910       continue;
911     }
912     CodeGenSchedClass &SC = getSchedClass(SCIdx);
913     if (SC.ProcIndices[0] != 0)
914       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
915                       "must not be subtarget specific.");
916 
917     IdxVec ProcIndices;
918     if (SC.ItinClassDef->getName() != "NoItinerary") {
919       ProcIndices.push_back(0);
920       dbgs() << "Itinerary for " << InstName << ": "
921              << SC.ItinClassDef->getName() << '\n';
922     }
923     if (!SC.Writes.empty()) {
924       ProcIndices.push_back(0);
925       LLVM_DEBUG({
926         dbgs() << "SchedRW machine model for " << InstName;
927         for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
928              ++WI)
929           dbgs() << " " << SchedWrites[*WI].Name;
930         for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
931           dbgs() << " " << SchedReads[*RI].Name;
932         dbgs() << '\n';
933       });
934     }
935     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
936     for (Record *RWDef : RWDefs) {
937       const CodeGenProcModel &ProcModel =
938           getProcModel(RWDef->getValueAsDef("SchedModel"));
939       ProcIndices.push_back(ProcModel.Index);
940       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
941                         << InstName);
942       IdxVec Writes;
943       IdxVec Reads;
944       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
945               Writes, Reads);
946       LLVM_DEBUG({
947         for (unsigned WIdx : Writes)
948           dbgs() << " " << SchedWrites[WIdx].Name;
949         for (unsigned RIdx : Reads)
950           dbgs() << " " << SchedReads[RIdx].Name;
951         dbgs() << '\n';
952       });
953     }
954     // If ProcIndices contains zero, the class applies to all processors.
955     LLVM_DEBUG({
956       if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
957         for (const CodeGenProcModel &PM : ProcModels) {
958           if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
959             dbgs() << "No machine model for " << Inst->TheDef->getName()
960                    << " on processor " << PM.ModelName << '\n';
961         }
962       }
963     });
964   }
965 }
966 
967 // Get the SchedClass index for an instruction.
968 unsigned
969 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
970   return InstrClassMap.lookup(Inst.TheDef);
971 }
972 
973 std::string
974 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
975                                          ArrayRef<unsigned> OperWrites,
976                                          ArrayRef<unsigned> OperReads) {
977 
978   std::string Name;
979   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
980     Name = std::string(ItinClassDef->getName());
981   for (unsigned Idx : OperWrites) {
982     if (!Name.empty())
983       Name += '_';
984     Name += SchedWrites[Idx].Name;
985   }
986   for (unsigned Idx : OperReads) {
987     Name += '_';
988     Name += SchedReads[Idx].Name;
989   }
990   return Name;
991 }
992 
993 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
994 
995   std::string Name;
996   for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
997     if (I != InstDefs.begin())
998       Name += '_';
999     Name += (*I)->getName();
1000   }
1001   return Name;
1002 }
1003 
1004 /// Add an inferred sched class from an itinerary class and per-operand list of
1005 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1006 /// processors that may utilize this class.
1007 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1008                                            ArrayRef<unsigned> OperWrites,
1009                                            ArrayRef<unsigned> OperReads,
1010                                            ArrayRef<unsigned> ProcIndices) {
1011   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1012 
1013   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1014                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1015                    };
1016 
1017   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1018   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1019   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1020     IdxVec PI;
1021     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1022                    SchedClasses[Idx].ProcIndices.end(),
1023                    ProcIndices.begin(), ProcIndices.end(),
1024                    std::back_inserter(PI));
1025     SchedClasses[Idx].ProcIndices = std::move(PI);
1026     return Idx;
1027   }
1028   Idx = SchedClasses.size();
1029   SchedClasses.emplace_back(Idx,
1030                             createSchedClassName(ItinClassDef, OperWrites,
1031                                                  OperReads),
1032                             ItinClassDef);
1033   CodeGenSchedClass &SC = SchedClasses.back();
1034   SC.Writes = OperWrites;
1035   SC.Reads = OperReads;
1036   SC.ProcIndices = ProcIndices;
1037 
1038   return Idx;
1039 }
1040 
1041 // Create classes for each set of opcodes that are in the same InstReadWrite
1042 // definition across all processors.
1043 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1044   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1045   // intersects with an existing class via a previous InstRWDef. Instrs that do
1046   // not intersect with an existing class refer back to their former class as
1047   // determined from ItinDef or SchedRW.
1048   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1049   // Sort Instrs into sets.
1050   const RecVec *InstDefs = Sets.expand(InstRWDef);
1051   if (InstDefs->empty())
1052     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1053 
1054   for (Record *InstDef : *InstDefs) {
1055     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1056     if (Pos == InstrClassMap.end())
1057       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1058     unsigned SCIdx = Pos->second;
1059     ClassInstrs[SCIdx].push_back(InstDef);
1060   }
1061   // For each set of Instrs, create a new class if necessary, and map or remap
1062   // the Instrs to it.
1063   for (auto &Entry : ClassInstrs) {
1064     unsigned OldSCIdx = Entry.first;
1065     ArrayRef<Record*> InstDefs = Entry.second;
1066     // If the all instrs in the current class are accounted for, then leave
1067     // them mapped to their old class.
1068     if (OldSCIdx) {
1069       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1070       if (!RWDefs.empty()) {
1071         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1072         unsigned OrigNumInstrs =
1073           count_if(*OrigInstDefs, [&](Record *OIDef) {
1074                      return InstrClassMap[OIDef] == OldSCIdx;
1075                    });
1076         if (OrigNumInstrs == InstDefs.size()) {
1077           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1078                  "expected a generic SchedClass");
1079           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1080           // Make sure we didn't already have a InstRW containing this
1081           // instruction on this model.
1082           for (Record *RWD : RWDefs) {
1083             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1084                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1085               assert(!InstDefs.empty()); // Checked at function start.
1086               PrintFatalError
1087                   (InstRWDef->getLoc(),
1088                    "Overlapping InstRW definition for \"" +
1089                    InstDefs.front()->getName() +
1090                    "\" also matches previous \"" +
1091                    RWD->getValue("Instrs")->getValue()->getAsString() +
1092                    "\".");
1093             }
1094           }
1095           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1096                             << SchedClasses[OldSCIdx].Name << " on "
1097                             << RWModelDef->getName() << "\n");
1098           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1099           continue;
1100         }
1101       }
1102     }
1103     unsigned SCIdx = SchedClasses.size();
1104     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1105     CodeGenSchedClass &SC = SchedClasses.back();
1106     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1107                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1108                       << "\n");
1109 
1110     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1111     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1112     SC.Writes = SchedClasses[OldSCIdx].Writes;
1113     SC.Reads = SchedClasses[OldSCIdx].Reads;
1114     SC.ProcIndices.push_back(0);
1115     // If we had an old class, copy it's InstRWs to this new class.
1116     if (OldSCIdx) {
1117       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1118       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1119         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1120           assert(!InstDefs.empty()); // Checked at function start.
1121           PrintFatalError
1122               (InstRWDef->getLoc(),
1123                "Overlapping InstRW definition for \"" +
1124                InstDefs.front()->getName() +
1125                "\" also matches previous \"" +
1126                OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1127                "\".");
1128         }
1129         assert(OldRWDef != InstRWDef &&
1130                "SchedClass has duplicate InstRW def");
1131         SC.InstRWs.push_back(OldRWDef);
1132       }
1133     }
1134     // Map each Instr to this new class.
1135     for (Record *InstDef : InstDefs)
1136       InstrClassMap[InstDef] = SCIdx;
1137     SC.InstRWs.push_back(InstRWDef);
1138   }
1139 }
1140 
1141 // True if collectProcItins found anything.
1142 bool CodeGenSchedModels::hasItineraries() const {
1143   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1144     if (PM.hasItineraries())
1145       return true;
1146   return false;
1147 }
1148 
1149 // Gather the processor itineraries.
1150 void CodeGenSchedModels::collectProcItins() {
1151   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1152   for (CodeGenProcModel &ProcModel : ProcModels) {
1153     if (!ProcModel.hasItineraries())
1154       continue;
1155 
1156     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1157     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1158 
1159     // Populate ItinDefList with Itinerary records.
1160     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1161 
1162     // Insert each itinerary data record in the correct position within
1163     // the processor model's ItinDefList.
1164     for (Record *ItinData : ItinRecords) {
1165       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1166       bool FoundClass = false;
1167 
1168       for (const CodeGenSchedClass &SC :
1169            make_range(schedClassBegin(), schedClassEnd())) {
1170         // Multiple SchedClasses may share an itinerary. Update all of them.
1171         if (SC.ItinClassDef == ItinDef) {
1172           ProcModel.ItinDefList[SC.Index] = ItinData;
1173           FoundClass = true;
1174         }
1175       }
1176       if (!FoundClass) {
1177         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1178                           << " missing class for itinerary "
1179                           << ItinDef->getName() << '\n');
1180       }
1181     }
1182     // Check for missing itinerary entries.
1183     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1184     LLVM_DEBUG(
1185         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1186           if (!ProcModel.ItinDefList[i])
1187             dbgs() << ProcModel.ItinsDef->getName()
1188                    << " missing itinerary for class " << SchedClasses[i].Name
1189                    << '\n';
1190         });
1191   }
1192 }
1193 
1194 // Gather the read/write types for each itinerary class.
1195 void CodeGenSchedModels::collectProcItinRW() {
1196   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1197   llvm::sort(ItinRWDefs, LessRecord());
1198   for (Record *RWDef  : ItinRWDefs) {
1199     if (!RWDef->getValueInit("SchedModel")->isComplete())
1200       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1201     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1202     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1203     if (I == ProcModelMap.end()) {
1204       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1205                     + ModelDef->getName());
1206     }
1207     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1208   }
1209 }
1210 
1211 // Gather the unsupported features for processor models.
1212 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1213   for (CodeGenProcModel &ProcModel : ProcModels) {
1214     for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1215        ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1216     }
1217   }
1218 }
1219 
1220 /// Infer new classes from existing classes. In the process, this may create new
1221 /// SchedWrites from sequences of existing SchedWrites.
1222 void CodeGenSchedModels::inferSchedClasses() {
1223   LLVM_DEBUG(
1224       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1225   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1226 
1227   // Visit all existing classes and newly created classes.
1228   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1229     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1230 
1231     if (SchedClasses[Idx].ItinClassDef)
1232       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1233     if (!SchedClasses[Idx].InstRWs.empty())
1234       inferFromInstRWs(Idx);
1235     if (!SchedClasses[Idx].Writes.empty()) {
1236       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1237                   Idx, SchedClasses[Idx].ProcIndices);
1238     }
1239     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1240            "too many SchedVariants");
1241   }
1242 }
1243 
1244 /// Infer classes from per-processor itinerary resources.
1245 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1246                                             unsigned FromClassIdx) {
1247   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1248     const CodeGenProcModel &PM = ProcModels[PIdx];
1249     // For all ItinRW entries.
1250     bool HasMatch = false;
1251     for (const Record *Rec : PM.ItinRWDefs) {
1252       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1253       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1254         continue;
1255       if (HasMatch)
1256         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1257                       + ItinClassDef->getName()
1258                       + " in ItinResources for " + PM.ModelName);
1259       HasMatch = true;
1260       IdxVec Writes, Reads;
1261       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1262       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1263     }
1264   }
1265 }
1266 
1267 /// Infer classes from per-processor InstReadWrite definitions.
1268 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1269   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1270     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1271     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1272     const RecVec *InstDefs = Sets.expand(Rec);
1273     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1274     for (; II != IE; ++II) {
1275       if (InstrClassMap[*II] == SCIdx)
1276         break;
1277     }
1278     // If this class no longer has any instructions mapped to it, it has become
1279     // irrelevant.
1280     if (II == IE)
1281       continue;
1282     IdxVec Writes, Reads;
1283     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1284     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1285     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1286   }
1287 }
1288 
1289 namespace {
1290 
1291 // Helper for substituteVariantOperand.
1292 struct TransVariant {
1293   Record *VarOrSeqDef;  // Variant or sequence.
1294   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1295   unsigned ProcIdx;     // Processor model index or zero for any.
1296   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1297 
1298   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1299     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1300 };
1301 
1302 // Associate a predicate with the SchedReadWrite that it guards.
1303 // RWIdx is the index of the read/write variant.
1304 struct PredCheck {
1305   bool IsRead;
1306   unsigned RWIdx;
1307   Record *Predicate;
1308 
1309   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1310 };
1311 
1312 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1313 struct PredTransition {
1314   // A predicate term is a conjunction of PredChecks.
1315   SmallVector<PredCheck, 4> PredTerm;
1316   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1317   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1318   SmallVector<unsigned, 4> ProcIndices;
1319 };
1320 
1321 // Encapsulate a set of partially constructed transitions.
1322 // The results are built by repeated calls to substituteVariants.
1323 class PredTransitions {
1324   CodeGenSchedModels &SchedModels;
1325 
1326 public:
1327   std::vector<PredTransition> TransVec;
1328 
1329   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1330 
1331   void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1332                                 bool IsRead, unsigned StartIdx);
1333 
1334   void substituteVariants(const PredTransition &Trans);
1335 
1336 #ifndef NDEBUG
1337   void dump() const;
1338 #endif
1339 
1340 private:
1341   bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1342   void getIntersectingVariants(
1343     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1344     std::vector<TransVariant> &IntersectingVariants);
1345   void pushVariant(const TransVariant &VInfo, bool IsRead);
1346 };
1347 
1348 } // end anonymous namespace
1349 
1350 // Return true if this predicate is mutually exclusive with a PredTerm. This
1351 // degenerates into checking if the predicate is mutually exclusive with any
1352 // predicate in the Term's conjunction.
1353 //
1354 // All predicates associated with a given SchedRW are considered mutually
1355 // exclusive. This should work even if the conditions expressed by the
1356 // predicates are not exclusive because the predicates for a given SchedWrite
1357 // are always checked in the order they are defined in the .td file. Later
1358 // conditions implicitly negate any prior condition.
1359 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1360                                         ArrayRef<PredCheck> Term) {
1361   for (const PredCheck &PC: Term) {
1362     if (PC.Predicate == PredDef)
1363       return false;
1364 
1365     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1366     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1367     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1368     if (any_of(Variants, [PredDef](const Record *R) {
1369           return R->getValueAsDef("Predicate") == PredDef;
1370         }))
1371       return true;
1372   }
1373   return false;
1374 }
1375 
1376 static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1377                                CodeGenSchedModels &SchedModels) {
1378   if (RW.HasVariants)
1379     return true;
1380 
1381   for (Record *Alias : RW.Aliases) {
1382     const CodeGenSchedRW &AliasRW =
1383       SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1384     if (AliasRW.HasVariants)
1385       return true;
1386     if (AliasRW.IsSequence) {
1387       IdxVec ExpandedRWs;
1388       SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1389       for (unsigned SI : ExpandedRWs) {
1390         if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1391                                SchedModels))
1392           return true;
1393       }
1394     }
1395   }
1396   return false;
1397 }
1398 
1399 static bool hasVariant(ArrayRef<PredTransition> Transitions,
1400                        CodeGenSchedModels &SchedModels) {
1401   for (const PredTransition &PTI : Transitions) {
1402     for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1403       for (unsigned WI : WSI)
1404         if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1405           return true;
1406 
1407     for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1408       for (unsigned RI : RSI)
1409         if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1410           return true;
1411   }
1412   return false;
1413 }
1414 
1415 // Populate IntersectingVariants with any variants or aliased sequences of the
1416 // given SchedRW whose processor indices and predicates are not mutually
1417 // exclusive with the given transition.
1418 void PredTransitions::getIntersectingVariants(
1419   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1420   std::vector<TransVariant> &IntersectingVariants) {
1421 
1422   bool GenericRW = false;
1423 
1424   std::vector<TransVariant> Variants;
1425   if (SchedRW.HasVariants) {
1426     unsigned VarProcIdx = 0;
1427     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1428       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1429       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1430     }
1431     // Push each variant. Assign TransVecIdx later.
1432     const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1433     for (Record *VarDef : VarDefs)
1434       Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1435     if (VarProcIdx == 0)
1436       GenericRW = true;
1437   }
1438   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1439        AI != AE; ++AI) {
1440     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1441     // to is defined within a processor model, constrain all variants to
1442     // that processor.
1443     unsigned AliasProcIdx = 0;
1444     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1445       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1446       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1447     }
1448     const CodeGenSchedRW &AliasRW =
1449       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1450 
1451     if (AliasRW.HasVariants) {
1452       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1453       for (Record *VD : VarDefs)
1454         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1455     }
1456     if (AliasRW.IsSequence)
1457       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1458     if (AliasProcIdx == 0)
1459       GenericRW = true;
1460   }
1461   for (TransVariant &Variant : Variants) {
1462     // Don't expand variants if the processor models don't intersect.
1463     // A zero processor index means any processor.
1464     SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1465     if (ProcIndices[0] && Variant.ProcIdx) {
1466       unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1467                                 Variant.ProcIdx);
1468       if (!Cnt)
1469         continue;
1470       if (Cnt > 1) {
1471         const CodeGenProcModel &PM =
1472           *(SchedModels.procModelBegin() + Variant.ProcIdx);
1473         PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1474                         "Multiple variants defined for processor " +
1475                         PM.ModelName +
1476                         " Ensure only one SchedAlias exists per RW.");
1477       }
1478     }
1479     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1480       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1481       if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1482         continue;
1483     }
1484     if (IntersectingVariants.empty()) {
1485       // The first variant builds on the existing transition.
1486       Variant.TransVecIdx = TransIdx;
1487       IntersectingVariants.push_back(Variant);
1488     }
1489     else {
1490       // Push another copy of the current transition for more variants.
1491       Variant.TransVecIdx = TransVec.size();
1492       IntersectingVariants.push_back(Variant);
1493       TransVec.push_back(TransVec[TransIdx]);
1494     }
1495   }
1496   if (GenericRW && IntersectingVariants.empty()) {
1497     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1498                     "a matching predicate on any processor");
1499   }
1500 }
1501 
1502 // Push the Reads/Writes selected by this variant onto the PredTransition
1503 // specified by VInfo.
1504 void PredTransitions::
1505 pushVariant(const TransVariant &VInfo, bool IsRead) {
1506   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1507 
1508   // If this operand transition is reached through a processor-specific alias,
1509   // then the whole transition is specific to this processor.
1510   if (VInfo.ProcIdx != 0)
1511     Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1512 
1513   IdxVec SelectedRWs;
1514   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1515     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1516     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1517     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1518     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1519   }
1520   else {
1521     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1522            "variant must be a SchedVariant or aliased WriteSequence");
1523     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1524   }
1525 
1526   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1527 
1528   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1529     ? Trans.ReadSequences : Trans.WriteSequences;
1530   if (SchedRW.IsVariadic) {
1531     unsigned OperIdx = RWSequences.size()-1;
1532     // Make N-1 copies of this transition's last sequence.
1533     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1534                        RWSequences[OperIdx]);
1535     // Push each of the N elements of the SelectedRWs onto a copy of the last
1536     // sequence (split the current operand into N operands).
1537     // Note that write sequences should be expanded within this loop--the entire
1538     // sequence belongs to a single operand.
1539     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1540          RWI != RWE; ++RWI, ++OperIdx) {
1541       IdxVec ExpandedRWs;
1542       if (IsRead)
1543         ExpandedRWs.push_back(*RWI);
1544       else
1545         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1546       RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1547                                   ExpandedRWs.begin(), ExpandedRWs.end());
1548     }
1549     assert(OperIdx == RWSequences.size() && "missed a sequence");
1550   }
1551   else {
1552     // Push this transition's expanded sequence onto this transition's last
1553     // sequence (add to the current operand's sequence).
1554     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1555     IdxVec ExpandedRWs;
1556     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1557          RWI != RWE; ++RWI) {
1558       if (IsRead)
1559         ExpandedRWs.push_back(*RWI);
1560       else
1561         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1562     }
1563     Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1564   }
1565 }
1566 
1567 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1568 // operand. StartIdx is an index into TransVec where partial results
1569 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1570 // of TransVec.
1571 void PredTransitions::substituteVariantOperand(
1572   const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1573 
1574   // Visit each original RW within the current sequence.
1575   for (SmallVectorImpl<unsigned>::const_iterator
1576          RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1577     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1578     // Push this RW on all partial PredTransitions or distribute variants.
1579     // New PredTransitions may be pushed within this loop which should not be
1580     // revisited (TransEnd must be loop invariant).
1581     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1582          TransIdx != TransEnd; ++TransIdx) {
1583       // In the common case, push RW onto the current operand's sequence.
1584       if (!hasAliasedVariants(SchedRW, SchedModels)) {
1585         if (IsRead)
1586           TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1587         else
1588           TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1589         continue;
1590       }
1591       // Distribute this partial PredTransition across intersecting variants.
1592       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1593       std::vector<TransVariant> IntersectingVariants;
1594       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1595       // Now expand each variant on top of its copy of the transition.
1596       for (std::vector<TransVariant>::const_iterator
1597              IVI = IntersectingVariants.begin(),
1598              IVE = IntersectingVariants.end();
1599            IVI != IVE; ++IVI) {
1600         pushVariant(*IVI, IsRead);
1601       }
1602     }
1603   }
1604 }
1605 
1606 // For each variant of a Read/Write in Trans, substitute the sequence of
1607 // Read/Writes guarded by the variant. This is exponential in the number of
1608 // variant Read/Writes, but in practice detection of mutually exclusive
1609 // predicates should result in linear growth in the total number variants.
1610 //
1611 // This is one step in a breadth-first search of nested variants.
1612 void PredTransitions::substituteVariants(const PredTransition &Trans) {
1613   // Build up a set of partial results starting at the back of
1614   // PredTransitions. Remember the first new transition.
1615   unsigned StartIdx = TransVec.size();
1616   TransVec.emplace_back();
1617   TransVec.back().PredTerm = Trans.PredTerm;
1618   TransVec.back().ProcIndices = Trans.ProcIndices;
1619 
1620   // Visit each original write sequence.
1621   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1622          WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1623        WSI != WSE; ++WSI) {
1624     // Push a new (empty) write sequence onto all partial Transitions.
1625     for (std::vector<PredTransition>::iterator I =
1626            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1627       I->WriteSequences.emplace_back();
1628     }
1629     substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1630   }
1631   // Visit each original read sequence.
1632   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1633          RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1634        RSI != RSE; ++RSI) {
1635     // Push a new (empty) read sequence onto all partial Transitions.
1636     for (std::vector<PredTransition>::iterator I =
1637            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1638       I->ReadSequences.emplace_back();
1639     }
1640     substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1641   }
1642 }
1643 
1644 // Create a new SchedClass for each variant found by inferFromRW. Pass
1645 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1646                                  unsigned FromClassIdx,
1647                                  CodeGenSchedModels &SchedModels) {
1648   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1649   // requires creating a new SchedClass.
1650   for (ArrayRef<PredTransition>::iterator
1651          I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1652     IdxVec OperWritesVariant;
1653     transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1654               [&SchedModels](ArrayRef<unsigned> WS) {
1655                 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1656               });
1657     IdxVec OperReadsVariant;
1658     transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1659               [&SchedModels](ArrayRef<unsigned> RS) {
1660                 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1661               });
1662     CodeGenSchedTransition SCTrans;
1663     SCTrans.ToClassIdx =
1664       SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1665                                 OperReadsVariant, I->ProcIndices);
1666     SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1667     // The final PredTerm is unique set of predicates guarding the transition.
1668     RecVec Preds;
1669     transform(I->PredTerm, std::back_inserter(Preds),
1670               [](const PredCheck &P) {
1671                 return P.Predicate;
1672               });
1673     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1674     SCTrans.PredTerm = std::move(Preds);
1675     SchedModels.getSchedClass(FromClassIdx)
1676         .Transitions.push_back(std::move(SCTrans));
1677   }
1678 }
1679 
1680 // Create new SchedClasses for the given ReadWrite list. If any of the
1681 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1682 // of the ReadWrite list, following Aliases if necessary.
1683 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1684                                      ArrayRef<unsigned> OperReads,
1685                                      unsigned FromClassIdx,
1686                                      ArrayRef<unsigned> ProcIndices) {
1687   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1688              dbgs() << ") ");
1689 
1690   // Create a seed transition with an empty PredTerm and the expanded sequences
1691   // of SchedWrites for the current SchedClass.
1692   std::vector<PredTransition> LastTransitions;
1693   LastTransitions.emplace_back();
1694   LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1695                                             ProcIndices.end());
1696 
1697   for (unsigned WriteIdx : OperWrites) {
1698     IdxVec WriteSeq;
1699     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1700     LastTransitions[0].WriteSequences.emplace_back();
1701     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1702     Seq.append(WriteSeq.begin(), WriteSeq.end());
1703     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1704   }
1705   LLVM_DEBUG(dbgs() << " Reads: ");
1706   for (unsigned ReadIdx : OperReads) {
1707     IdxVec ReadSeq;
1708     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1709     LastTransitions[0].ReadSequences.emplace_back();
1710     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1711     Seq.append(ReadSeq.begin(), ReadSeq.end());
1712     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1713   }
1714   LLVM_DEBUG(dbgs() << '\n');
1715 
1716   // Collect all PredTransitions for individual operands.
1717   // Iterate until no variant writes remain.
1718   while (hasVariant(LastTransitions, *this)) {
1719     PredTransitions Transitions(*this);
1720     for (const PredTransition &Trans : LastTransitions)
1721       Transitions.substituteVariants(Trans);
1722     LLVM_DEBUG(Transitions.dump());
1723     LastTransitions.swap(Transitions.TransVec);
1724   }
1725   // If the first transition has no variants, nothing to do.
1726   if (LastTransitions[0].PredTerm.empty())
1727     return;
1728 
1729   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1730   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1731   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1732 }
1733 
1734 // Check if any processor resource group contains all resource records in
1735 // SubUnits.
1736 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1737   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1738     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1739       continue;
1740     RecVec SuperUnits =
1741       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1742     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1743     for ( ; RI != RE; ++RI) {
1744       if (!is_contained(SuperUnits, *RI)) {
1745         break;
1746       }
1747     }
1748     if (RI == RE)
1749       return true;
1750   }
1751   return false;
1752 }
1753 
1754 // Verify that overlapping groups have a common supergroup.
1755 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1756   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1757     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1758       continue;
1759     RecVec CheckUnits =
1760       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1761     for (unsigned j = i+1; j < e; ++j) {
1762       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1763         continue;
1764       RecVec OtherUnits =
1765         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1766       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1767                              OtherUnits.begin(), OtherUnits.end())
1768           != CheckUnits.end()) {
1769         // CheckUnits and OtherUnits overlap
1770         OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1771                           CheckUnits.end());
1772         if (!hasSuperGroup(OtherUnits, PM)) {
1773           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1774                           "proc resource group overlaps with "
1775                           + PM.ProcResourceDefs[j]->getName()
1776                           + " but no supergroup contains both.");
1777         }
1778       }
1779     }
1780   }
1781 }
1782 
1783 // Collect all the RegisterFile definitions available in this target.
1784 void CodeGenSchedModels::collectRegisterFiles() {
1785   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1786 
1787   // RegisterFiles is the vector of CodeGenRegisterFile.
1788   for (Record *RF : RegisterFileDefs) {
1789     // For each register file definition, construct a CodeGenRegisterFile object
1790     // and add it to the appropriate scheduling model.
1791     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1792     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1793     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1794     CGRF.MaxMovesEliminatedPerCycle =
1795         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1796     CGRF.AllowZeroMoveEliminationOnly =
1797         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1798 
1799     // Now set the number of physical registers as well as the cost of registers
1800     // in each register class.
1801     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1802     if (!CGRF.NumPhysRegs) {
1803       PrintFatalError(RF->getLoc(),
1804                       "Invalid RegisterFile with zero physical registers");
1805     }
1806 
1807     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1808     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1809     ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1810     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1811       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1812 
1813       bool AllowMoveElim = false;
1814       if (MoveElimInfo->size() > I) {
1815         BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1816         AllowMoveElim = Val->getValue();
1817       }
1818 
1819       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1820     }
1821   }
1822 }
1823 
1824 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1825 void CodeGenSchedModels::collectProcResources() {
1826   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1827   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1828 
1829   // Add any subtarget-specific SchedReadWrites that are directly associated
1830   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1831   // determine which processors they apply to.
1832   for (const CodeGenSchedClass &SC :
1833        make_range(schedClassBegin(), schedClassEnd())) {
1834     if (SC.ItinClassDef) {
1835       collectItinProcResources(SC.ItinClassDef);
1836       continue;
1837     }
1838 
1839     // This class may have a default ReadWrite list which can be overriden by
1840     // InstRW definitions.
1841     for (Record *RW : SC.InstRWs) {
1842       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1843       unsigned PIdx = getProcModel(RWModelDef).Index;
1844       IdxVec Writes, Reads;
1845       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1846       collectRWResources(Writes, Reads, PIdx);
1847     }
1848 
1849     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1850   }
1851   // Add resources separately defined by each subtarget.
1852   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1853   for (Record *WR : WRDefs) {
1854     Record *ModelDef = WR->getValueAsDef("SchedModel");
1855     addWriteRes(WR, getProcModel(ModelDef).Index);
1856   }
1857   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1858   for (Record *SWR : SWRDefs) {
1859     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1860     addWriteRes(SWR, getProcModel(ModelDef).Index);
1861   }
1862   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1863   for (Record *RA : RADefs) {
1864     Record *ModelDef = RA->getValueAsDef("SchedModel");
1865     addReadAdvance(RA, getProcModel(ModelDef).Index);
1866   }
1867   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1868   for (Record *SRA : SRADefs) {
1869     if (SRA->getValueInit("SchedModel")->isComplete()) {
1870       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1871       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1872     }
1873   }
1874   // Add ProcResGroups that are defined within this processor model, which may
1875   // not be directly referenced but may directly specify a buffer size.
1876   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1877   for (Record *PRG : ProcResGroups) {
1878     if (!PRG->getValueInit("SchedModel")->isComplete())
1879       continue;
1880     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1881     if (!is_contained(PM.ProcResourceDefs, PRG))
1882       PM.ProcResourceDefs.push_back(PRG);
1883   }
1884   // Add ProcResourceUnits unconditionally.
1885   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1886     if (!PRU->getValueInit("SchedModel")->isComplete())
1887       continue;
1888     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1889     if (!is_contained(PM.ProcResourceDefs, PRU))
1890       PM.ProcResourceDefs.push_back(PRU);
1891   }
1892   // Finalize each ProcModel by sorting the record arrays.
1893   for (CodeGenProcModel &PM : ProcModels) {
1894     llvm::sort(PM.WriteResDefs, LessRecord());
1895     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1896     llvm::sort(PM.ProcResourceDefs, LessRecord());
1897     LLVM_DEBUG(
1898         PM.dump();
1899         dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1900                                          RE = PM.WriteResDefs.end();
1901                                          RI != RE; ++RI) {
1902           if ((*RI)->isSubClassOf("WriteRes"))
1903             dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1904           else
1905             dbgs() << (*RI)->getName() << " ";
1906         } dbgs() << "\nReadAdvanceDefs: ";
1907         for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1908              RE = PM.ReadAdvanceDefs.end();
1909              RI != RE; ++RI) {
1910           if ((*RI)->isSubClassOf("ReadAdvance"))
1911             dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1912           else
1913             dbgs() << (*RI)->getName() << " ";
1914         } dbgs()
1915         << "\nProcResourceDefs: ";
1916         for (RecIter RI = PM.ProcResourceDefs.begin(),
1917              RE = PM.ProcResourceDefs.end();
1918              RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1919         << '\n');
1920     verifyProcResourceGroups(PM);
1921   }
1922 
1923   ProcResourceDefs.clear();
1924   ProcResGroups.clear();
1925 }
1926 
1927 void CodeGenSchedModels::checkCompleteness() {
1928   bool Complete = true;
1929   bool HadCompleteModel = false;
1930   for (const CodeGenProcModel &ProcModel : procModels()) {
1931     const bool HasItineraries = ProcModel.hasItineraries();
1932     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1933       continue;
1934     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1935       if (Inst->hasNoSchedulingInfo)
1936         continue;
1937       if (ProcModel.isUnsupported(*Inst))
1938         continue;
1939       unsigned SCIdx = getSchedClassIdx(*Inst);
1940       if (!SCIdx) {
1941         if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1942           PrintError(Inst->TheDef->getLoc(),
1943                      "No schedule information for instruction '" +
1944                          Inst->TheDef->getName() + "' in SchedMachineModel '" +
1945                      ProcModel.ModelDef->getName() + "'");
1946           Complete = false;
1947         }
1948         continue;
1949       }
1950 
1951       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1952       if (!SC.Writes.empty())
1953         continue;
1954       if (HasItineraries && SC.ItinClassDef != nullptr &&
1955           SC.ItinClassDef->getName() != "NoItinerary")
1956         continue;
1957 
1958       const RecVec &InstRWs = SC.InstRWs;
1959       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1960         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1961       });
1962       if (I == InstRWs.end()) {
1963         PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1964                                                "' lacks information for '" +
1965                                                Inst->TheDef->getName() + "'");
1966         Complete = false;
1967       }
1968     }
1969     HadCompleteModel = true;
1970   }
1971   if (!Complete) {
1972     errs() << "\n\nIncomplete schedule models found.\n"
1973       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1974       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1975       << "- Instructions should usually have Sched<[...]> as a superclass, "
1976          "you may temporarily use an empty list.\n"
1977       << "- Instructions related to unsupported features can be excluded with "
1978          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1979          "processor model.\n\n";
1980     PrintFatalError("Incomplete schedule model");
1981   }
1982 }
1983 
1984 // Collect itinerary class resources for each processor.
1985 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1986   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1987     const CodeGenProcModel &PM = ProcModels[PIdx];
1988     // For all ItinRW entries.
1989     bool HasMatch = false;
1990     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1991          II != IE; ++II) {
1992       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1993       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1994         continue;
1995       if (HasMatch)
1996         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1997                         + ItinClassDef->getName()
1998                         + " in ItinResources for " + PM.ModelName);
1999       HasMatch = true;
2000       IdxVec Writes, Reads;
2001       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2002       collectRWResources(Writes, Reads, PIdx);
2003     }
2004   }
2005 }
2006 
2007 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2008                                             ArrayRef<unsigned> ProcIndices) {
2009   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2010   if (SchedRW.TheDef) {
2011     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2012       for (unsigned Idx : ProcIndices)
2013         addWriteRes(SchedRW.TheDef, Idx);
2014     }
2015     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2016       for (unsigned Idx : ProcIndices)
2017         addReadAdvance(SchedRW.TheDef, Idx);
2018     }
2019   }
2020   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2021        AI != AE; ++AI) {
2022     IdxVec AliasProcIndices;
2023     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2024       AliasProcIndices.push_back(
2025         getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2026     }
2027     else
2028       AliasProcIndices = ProcIndices;
2029     const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2030     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2031 
2032     IdxVec ExpandedRWs;
2033     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2034     for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2035          SI != SE; ++SI) {
2036       collectRWResources(*SI, IsRead, AliasProcIndices);
2037     }
2038   }
2039 }
2040 
2041 // Collect resources for a set of read/write types and processor indices.
2042 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2043                                             ArrayRef<unsigned> Reads,
2044                                             ArrayRef<unsigned> ProcIndices) {
2045   for (unsigned Idx : Writes)
2046     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2047 
2048   for (unsigned Idx : Reads)
2049     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2050 }
2051 
2052 // Find the processor's resource units for this kind of resource.
2053 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2054                                              const CodeGenProcModel &PM,
2055                                              ArrayRef<SMLoc> Loc) const {
2056   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2057     return ProcResKind;
2058 
2059   Record *ProcUnitDef = nullptr;
2060   assert(!ProcResourceDefs.empty());
2061   assert(!ProcResGroups.empty());
2062 
2063   for (Record *ProcResDef : ProcResourceDefs) {
2064     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2065         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2066       if (ProcUnitDef) {
2067         PrintFatalError(Loc,
2068                         "Multiple ProcessorResourceUnits associated with "
2069                         + ProcResKind->getName());
2070       }
2071       ProcUnitDef = ProcResDef;
2072     }
2073   }
2074   for (Record *ProcResGroup : ProcResGroups) {
2075     if (ProcResGroup == ProcResKind
2076         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2077       if (ProcUnitDef) {
2078         PrintFatalError(Loc,
2079                         "Multiple ProcessorResourceUnits associated with "
2080                         + ProcResKind->getName());
2081       }
2082       ProcUnitDef = ProcResGroup;
2083     }
2084   }
2085   if (!ProcUnitDef) {
2086     PrintFatalError(Loc,
2087                     "No ProcessorResources associated with "
2088                     + ProcResKind->getName());
2089   }
2090   return ProcUnitDef;
2091 }
2092 
2093 // Iteratively add a resource and its super resources.
2094 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2095                                          CodeGenProcModel &PM,
2096                                          ArrayRef<SMLoc> Loc) {
2097   while (true) {
2098     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2099 
2100     // See if this ProcResource is already associated with this processor.
2101     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2102       return;
2103 
2104     PM.ProcResourceDefs.push_back(ProcResUnits);
2105     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2106       return;
2107 
2108     if (!ProcResUnits->getValueInit("Super")->isComplete())
2109       return;
2110 
2111     ProcResKind = ProcResUnits->getValueAsDef("Super");
2112   }
2113 }
2114 
2115 // Add resources for a SchedWrite to this processor if they don't exist.
2116 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2117   assert(PIdx && "don't add resources to an invalid Processor model");
2118 
2119   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2120   if (is_contained(WRDefs, ProcWriteResDef))
2121     return;
2122   WRDefs.push_back(ProcWriteResDef);
2123 
2124   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2125   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2126   for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2127        WritePRI != WritePRE; ++WritePRI) {
2128     addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2129   }
2130 }
2131 
2132 // Add resources for a ReadAdvance to this processor if they don't exist.
2133 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2134                                         unsigned PIdx) {
2135   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2136   if (is_contained(RADefs, ProcReadAdvanceDef))
2137     return;
2138   RADefs.push_back(ProcReadAdvanceDef);
2139 }
2140 
2141 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2142   RecIter PRPos = find(ProcResourceDefs, PRDef);
2143   if (PRPos == ProcResourceDefs.end())
2144     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2145                     "the ProcResources list for " + ModelName);
2146   // Idx=0 is reserved for invalid.
2147   return 1 + (PRPos - ProcResourceDefs.begin());
2148 }
2149 
2150 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2151   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2152     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2153       if (TheDef->getName() == PredDef->getName())
2154         return true;
2155     }
2156   }
2157   return false;
2158 }
2159 
2160 #ifndef NDEBUG
2161 void CodeGenProcModel::dump() const {
2162   dbgs() << Index << ": " << ModelName << " "
2163          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2164          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2165 }
2166 
2167 void CodeGenSchedRW::dump() const {
2168   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2169   if (IsSequence) {
2170     dbgs() << "(";
2171     dumpIdxVec(Sequence);
2172     dbgs() << ")";
2173   }
2174 }
2175 
2176 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2177   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2178          << "  Writes: ";
2179   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2180     SchedModels->getSchedWrite(Writes[i]).dump();
2181     if (i < N-1) {
2182       dbgs() << '\n';
2183       dbgs().indent(10);
2184     }
2185   }
2186   dbgs() << "\n  Reads: ";
2187   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2188     SchedModels->getSchedRead(Reads[i]).dump();
2189     if (i < N-1) {
2190       dbgs() << '\n';
2191       dbgs().indent(10);
2192     }
2193   }
2194   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2195   if (!Transitions.empty()) {
2196     dbgs() << "\n Transitions for Proc ";
2197     for (const CodeGenSchedTransition &Transition : Transitions) {
2198       dumpIdxVec(Transition.ProcIndices);
2199     }
2200   }
2201 }
2202 
2203 void PredTransitions::dump() const {
2204   dbgs() << "Expanded Variants:\n";
2205   for (std::vector<PredTransition>::const_iterator
2206          TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2207     dbgs() << "{";
2208     for (SmallVectorImpl<PredCheck>::const_iterator
2209            PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2210          PCI != PCE; ++PCI) {
2211       if (PCI != TI->PredTerm.begin())
2212         dbgs() << ", ";
2213       dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2214              << ":" << PCI->Predicate->getName();
2215     }
2216     dbgs() << "},\n  => {";
2217     for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2218            WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2219          WSI != WSE; ++WSI) {
2220       dbgs() << "(";
2221       for (SmallVectorImpl<unsigned>::const_iterator
2222              WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2223         if (WI != WSI->begin())
2224           dbgs() << ", ";
2225         dbgs() << SchedModels.getSchedWrite(*WI).Name;
2226       }
2227       dbgs() << "),";
2228     }
2229     dbgs() << "}\n";
2230   }
2231 }
2232 #endif // NDEBUG
2233