1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "subtarget-emitter"
34 
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37   for (unsigned Idx : V)
38     dbgs() << Idx << ", ";
39 }
40 #endif
41 
42 namespace {
43 
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47              ArrayRef<SMLoc> Loc) override {
48     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49   }
50 };
51 
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54   const CodeGenTarget &Target;
55   InstRegexOp(const CodeGenTarget &t): Target(t) {}
56 
57   /// Remove any text inside of parentheses from S.
58   static std::string removeParens(llvm::StringRef S) {
59     std::string Result;
60     unsigned Paren = 0;
61     // NB: We don't care about escaped parens here.
62     for (char C : S) {
63       switch (C) {
64       case '(':
65         ++Paren;
66         break;
67       case ')':
68         --Paren;
69         break;
70       default:
71         if (Paren == 0)
72           Result += C;
73       }
74     }
75     return Result;
76   }
77 
78   void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79              ArrayRef<SMLoc> Loc) override {
80     ArrayRef<const CodeGenInstruction *> Instructions =
81         Target.getInstructionsByEnumValue();
82 
83     unsigned NumGeneric = Target.getNumFixedInstructions();
84     unsigned NumPseudos = Target.getNumPseudoInstructions();
85     auto Generics = Instructions.slice(0, NumGeneric);
86     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 
89     for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90       StringInit *SI = dyn_cast<StringInit>(Arg);
91       if (!SI)
92         PrintFatalError(Loc, "instregex requires pattern string: " +
93                                  Expr->getAsString());
94       StringRef Original = SI->getValue();
95 
96       // Extract a prefix that we can binary search on.
97       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98       auto FirstMeta = Original.find_first_of(RegexMetachars);
99 
100       // Look for top-level | or ?. We cannot optimize them to binary search.
101       if (removeParens(Original).find_first_of("|?") != std::string::npos)
102         FirstMeta = 0;
103 
104       Optional<Regex> Regexpr = None;
105       StringRef Prefix = Original.substr(0, FirstMeta);
106       StringRef PatStr = Original.substr(FirstMeta);
107       if (!PatStr.empty()) {
108         // For the rest use a python-style prefix match.
109         std::string pat = PatStr;
110         if (pat[0] != '^') {
111           pat.insert(0, "^(");
112           pat.insert(pat.end(), ')');
113         }
114         Regexpr = Regex(pat);
115       }
116 
117       int NumMatches = 0;
118 
119       // The generic opcodes are unsorted, handle them manually.
120       for (auto *Inst : Generics) {
121         StringRef InstName = Inst->TheDef->getName();
122         if (InstName.startswith(Prefix) &&
123             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124           Elts.insert(Inst->TheDef);
125           NumMatches++;
126         }
127       }
128 
129       // Target instructions are split into two ranges: pseudo instructions
130       // first, than non-pseudos. Each range is in lexicographical order
131       // sorted by name. Find the sub-ranges that start with our prefix.
132       struct Comp {
133         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134           return LHS->TheDef->getName() < RHS;
135         }
136         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137           return LHS < RHS->TheDef->getName() &&
138                  !RHS->TheDef->getName().startswith(LHS);
139         }
140       };
141       auto Range1 =
142           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                      Prefix, Comp());
145 
146       // For these ranges we know that instruction names start with the prefix.
147       // Check if there's a regex that needs to be checked.
148       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149         StringRef InstName = Inst->TheDef->getName();
150         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151           Elts.insert(Inst->TheDef);
152           NumMatches++;
153         }
154       };
155       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157 
158       if (0 == NumMatches)
159         PrintFatalError(Loc, "instregex has no matches: " + Original);
160     }
161   }
162 };
163 
164 } // end anonymous namespace
165 
166 /// CodeGenModels ctor interprets machine model records and populates maps.
167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                        const CodeGenTarget &TGT):
169   Records(RK), Target(TGT) {
170 
171   Sets.addFieldExpander("InstRW", "Instrs");
172 
173   // Allow Set evaluation to recognize the dags used in InstRW records:
174   // (instrs Op1, Op1...)
175   Sets.addOperator("instrs", llvm::make_unique<InstrsOp>());
176   Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target));
177 
178   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179   // that are explicitly referenced in tablegen records. Resources associated
180   // with each processor will be derived later. Populate ProcModelMap with the
181   // CodeGenProcModel instances.
182   collectProcModels();
183 
184   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185   // defined, and populate SchedReads and SchedWrites vectors. Implicit
186   // SchedReadWrites that represent sequences derived from expanded variant will
187   // be inferred later.
188   collectSchedRW();
189 
190   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191   // required by an instruction definition, and populate SchedClassIdxMap. Set
192   // NumItineraryClasses to the number of explicit itinerary classes referenced
193   // by instructions. Set NumInstrSchedClasses to the number of itinerary
194   // classes plus any classes implied by instructions that derive from class
195   // Sched and provide SchedRW list. This does not infer any new classes from
196   // SchedVariant.
197   collectSchedClasses();
198 
199   // Find instruction itineraries for each processor. Sort and populate
200   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201   // all itinerary classes to be discovered.
202   collectProcItins();
203 
204   // Find ItinRW records for each processor and itinerary class.
205   // (For per-operand resources mapped to itinerary classes).
206   collectProcItinRW();
207 
208   // Find UnsupportedFeatures records for each processor.
209   // (For per-operand resources mapped to itinerary classes).
210   collectProcUnsupportedFeatures();
211 
212   // Infer new SchedClasses from SchedVariant.
213   inferSchedClasses();
214 
215   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216   // ProcResourceDefs.
217   LLVM_DEBUG(
218       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219   collectProcResources();
220 
221   // Collect optional processor description.
222   collectOptionalProcessorInfo();
223 
224   // Check MCInstPredicate definitions.
225   checkMCInstPredicates();
226 
227   // Check STIPredicate definitions.
228   checkSTIPredicates();
229 
230   // Find STIPredicate definitions for each processor model, and construct
231   // STIPredicateFunction objects.
232   collectSTIPredicates();
233 
234   checkCompleteness();
235 }
236 
237 void CodeGenSchedModels::checkSTIPredicates() const {
238   DenseMap<StringRef, const Record *> Declarations;
239 
240   // There cannot be multiple declarations with the same name.
241   const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242   for (const Record *R : Decls) {
243     StringRef Name = R->getValueAsString("Name");
244     const auto It = Declarations.find(Name);
245     if (It == Declarations.end()) {
246       Declarations[Name] = R;
247       continue;
248     }
249 
250     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251     PrintNote(It->second->getLoc(), "Previous declaration was here.");
252     PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
253   }
254 
255   // Disallow InstructionEquivalenceClasses with an empty instruction list.
256   const RecVec Defs =
257       Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258   for (const Record *R : Defs) {
259     RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260     if (Opcodes.empty()) {
261       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262                                    "defined with an empty opcode list.");
263     }
264   }
265 }
266 
267 // Used by function `processSTIPredicate` to construct a mask of machine
268 // instruction operands.
269 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270   APInt OperandMask;
271   if (Indices.empty())
272     return OperandMask;
273 
274   int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276   OperandMask = OperandMask.zext(MaxIndex + 1);
277   for (const int64_t Index : Indices) {
278     assert(Index >= 0 && "Invalid negative indices!");
279     OperandMask.setBit(Index);
280   }
281 
282   return OperandMask;
283 }
284 
285 static void
286 processSTIPredicate(STIPredicateFunction &Fn,
287                     const DenseMap<Record *, unsigned> &ProcModelMap) {
288   DenseMap<const Record *, unsigned> Opcode2Index;
289   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290   std::vector<OpcodeMapPair> OpcodeMappings;
291   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
292 
293   DenseMap<const Record *, unsigned> Predicate2Index;
294   unsigned NumUniquePredicates = 0;
295 
296   // Number unique predicates and opcodes used by InstructionEquivalenceClass
297   // definitions. Each unique opcode will be associated with an OpcodeInfo
298   // object.
299   for (const Record *Def : Fn.getDefinitions()) {
300     RecVec Classes = Def->getValueAsListOfDefs("Classes");
301     for (const Record *EC : Classes) {
302       const Record *Pred = EC->getValueAsDef("Predicate");
303       if (Predicate2Index.find(Pred) == Predicate2Index.end())
304         Predicate2Index[Pred] = NumUniquePredicates++;
305 
306       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307       for (const Record *Opcode : Opcodes) {
308         if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309           Opcode2Index[Opcode] = OpcodeMappings.size();
310           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
311         }
312       }
313     }
314   }
315 
316   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
317   // of which processors "use" which opcodes.  We also want to be able to
318   // identify predicates that are used by different processors for a same
319   // opcode.
320   // This information is used later on by this algorithm to sort OpcodeMapping
321   // elements based on their processor and predicate sets.
322   OpcodeMasks.resize(OpcodeMappings.size());
323   APInt DefaultProcMask(ProcModelMap.size(), 0);
324   APInt DefaultPredMask(NumUniquePredicates, 0);
325   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326     MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
327 
328   // Construct a OpcodeInfo object for every unique opcode declared by an
329   // InstructionEquivalenceClass definition.
330   for (const Record *Def : Fn.getDefinitions()) {
331     RecVec Classes = Def->getValueAsListOfDefs("Classes");
332     const Record *SchedModel = Def->getValueAsDef("SchedModel");
333     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334     APInt ProcMask(ProcModelMap.size(), 0);
335     ProcMask.setBit(ProcIndex);
336 
337     for (const Record *EC : Classes) {
338       RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
339 
340       std::vector<int64_t> OpIndices =
341           EC->getValueAsListOfInts("OperandIndices");
342       APInt OperandMask = constructOperandMask(OpIndices);
343 
344       const Record *Pred = EC->getValueAsDef("Predicate");
345       APInt PredMask(NumUniquePredicates, 0);
346       PredMask.setBit(Predicate2Index[Pred]);
347 
348       for (const Record *Opcode : Opcodes) {
349         unsigned OpcodeIdx = Opcode2Index[Opcode];
350         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351           std::string Message =
352               "Opcode " + Opcode->getName().str() +
353               " used by multiple InstructionEquivalenceClass definitions.";
354           PrintFatalError(EC->getLoc(), Message);
355         }
356         OpcodeMasks[OpcodeIdx].first |= ProcMask;
357         OpcodeMasks[OpcodeIdx].second |= PredMask;
358         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
359 
360         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
361       }
362     }
363   }
364 
365   // Sort OpcodeMappings elements based on their CPU and predicate masks.
366   // As a last resort, order elements by opcode identifier.
367   llvm::sort(OpcodeMappings,
368              [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369                unsigned LhsIdx = Opcode2Index[Lhs.first];
370                unsigned RhsIdx = Opcode2Index[Rhs.first];
371                std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372                std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
373 
374                if (LhsMasks.first != RhsMasks.first) {
375                  if (LhsMasks.first.countPopulation() <
376                      RhsMasks.first.countPopulation())
377                    return true;
378                  return LhsMasks.first.countLeadingZeros() >
379                         RhsMasks.first.countLeadingZeros();
380                }
381 
382                if (LhsMasks.second != RhsMasks.second) {
383                  if (LhsMasks.second.countPopulation() <
384                      RhsMasks.second.countPopulation())
385                    return true;
386                  return LhsMasks.second.countLeadingZeros() >
387                         RhsMasks.second.countLeadingZeros();
388                }
389 
390                return LhsIdx < RhsIdx;
391              });
392 
393   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
394   // expanding the body of a STIPredicate function. In particular, each opcode
395   // group is expanded into a sequence of labels in a switch statement.
396   // It identifies opcodes for which different processors define same predicates
397   // and same opcode masks.
398   for (OpcodeMapPair &Info : OpcodeMappings)
399     Fn.addOpcode(Info.first, std::move(Info.second));
400 }
401 
402 void CodeGenSchedModels::collectSTIPredicates() {
403   // Map STIPredicateDecl records to elements of vector
404   // CodeGenSchedModels::STIPredicates.
405   DenseMap<const Record *, unsigned> Decl2Index;
406 
407   RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
408   for (const Record *R : RV) {
409     const Record *Decl = R->getValueAsDef("Declaration");
410 
411     const auto It = Decl2Index.find(Decl);
412     if (It == Decl2Index.end()) {
413       Decl2Index[Decl] = STIPredicates.size();
414       STIPredicateFunction Predicate(Decl);
415       Predicate.addDefinition(R);
416       STIPredicates.emplace_back(std::move(Predicate));
417       continue;
418     }
419 
420     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
421     PreviousDef.addDefinition(R);
422   }
423 
424   for (STIPredicateFunction &Fn : STIPredicates)
425     processSTIPredicate(Fn, ProcModelMap);
426 }
427 
428 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
429                                           const llvm::APInt &OperandMask,
430                                           const Record *Predicate) {
431   auto It = llvm::find_if(
432       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
433         return P.Predicate == Predicate && P.OperandMask == OperandMask;
434       });
435   if (It == Predicates.end()) {
436     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
437     return;
438   }
439   It->ProcModelMask |= CpuMask;
440 }
441 
442 void CodeGenSchedModels::checkMCInstPredicates() const {
443   RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
444   if (MCPredicates.empty())
445     return;
446 
447   // A target cannot have multiple TIIPredicate definitions with a same name.
448   llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
449   for (const Record *TIIPred : MCPredicates) {
450     StringRef Name = TIIPred->getValueAsString("FunctionName");
451     StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
452     if (It == TIIPredicates.end()) {
453       TIIPredicates[Name] = TIIPred;
454       continue;
455     }
456 
457     PrintError(TIIPred->getLoc(),
458                "TIIPredicate " + Name + " is multiply defined.");
459     PrintNote(It->second->getLoc(),
460               " Previous definition of " + Name + " was here.");
461     PrintFatalError(TIIPred->getLoc(),
462                     "Found conflicting definitions of TIIPredicate.");
463   }
464 }
465 
466 void CodeGenSchedModels::collectRetireControlUnits() {
467   RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
468 
469   for (Record *RCU : Units) {
470     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
471     if (PM.RetireControlUnit) {
472       PrintError(RCU->getLoc(),
473                  "Expected a single RetireControlUnit definition");
474       PrintNote(PM.RetireControlUnit->getLoc(),
475                 "Previous definition of RetireControlUnit was here");
476     }
477     PM.RetireControlUnit = RCU;
478   }
479 }
480 
481 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
482   RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
483 
484   for (Record *Queue : Queues) {
485     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
486     if (Queue->isSubClassOf("LoadQueue")) {
487       if (PM.LoadQueue) {
488         PrintError(Queue->getLoc(),
489                    "Expected a single LoadQueue definition");
490         PrintNote(PM.LoadQueue->getLoc(),
491                   "Previous definition of LoadQueue was here");
492       }
493 
494       PM.LoadQueue = Queue;
495     }
496 
497     if (Queue->isSubClassOf("StoreQueue")) {
498       if (PM.StoreQueue) {
499         PrintError(Queue->getLoc(),
500                    "Expected a single StoreQueue definition");
501         PrintNote(PM.LoadQueue->getLoc(),
502                   "Previous definition of StoreQueue was here");
503       }
504 
505       PM.StoreQueue = Queue;
506     }
507   }
508 }
509 
510 /// Collect optional processor information.
511 void CodeGenSchedModels::collectOptionalProcessorInfo() {
512   // Find register file definitions for each processor.
513   collectRegisterFiles();
514 
515   // Collect processor RetireControlUnit descriptors if available.
516   collectRetireControlUnits();
517 
518   // Collect information about load/store queues.
519   collectLoadStoreQueueInfo();
520 
521   checkCompleteness();
522 }
523 
524 /// Gather all processor models.
525 void CodeGenSchedModels::collectProcModels() {
526   RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
527   llvm::sort(ProcRecords, LessRecordFieldName());
528 
529   // Reserve space because we can. Reallocation would be ok.
530   ProcModels.reserve(ProcRecords.size()+1);
531 
532   // Use idx=0 for NoModel/NoItineraries.
533   Record *NoModelDef = Records.getDef("NoSchedModel");
534   Record *NoItinsDef = Records.getDef("NoItineraries");
535   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
536   ProcModelMap[NoModelDef] = 0;
537 
538   // For each processor, find a unique machine model.
539   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
540   for (Record *ProcRecord : ProcRecords)
541     addProcModel(ProcRecord);
542 }
543 
544 /// Get a unique processor model based on the defined MachineModel and
545 /// ProcessorItineraries.
546 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
547   Record *ModelKey = getModelOrItinDef(ProcDef);
548   if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
549     return;
550 
551   std::string Name = ModelKey->getName();
552   if (ModelKey->isSubClassOf("SchedMachineModel")) {
553     Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
554     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
555   }
556   else {
557     // An itinerary is defined without a machine model. Infer a new model.
558     if (!ModelKey->getValueAsListOfDefs("IID").empty())
559       Name = Name + "Model";
560     ProcModels.emplace_back(ProcModels.size(), Name,
561                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
562   }
563   LLVM_DEBUG(ProcModels.back().dump());
564 }
565 
566 // Recursively find all reachable SchedReadWrite records.
567 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
568                         SmallPtrSet<Record*, 16> &RWSet) {
569   if (!RWSet.insert(RWDef).second)
570     return;
571   RWDefs.push_back(RWDef);
572   // Reads don't currently have sequence records, but it can be added later.
573   if (RWDef->isSubClassOf("WriteSequence")) {
574     RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
575     for (Record *WSRec : Seq)
576       scanSchedRW(WSRec, RWDefs, RWSet);
577   }
578   else if (RWDef->isSubClassOf("SchedVariant")) {
579     // Visit each variant (guarded by a different predicate).
580     RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
581     for (Record *Variant : Vars) {
582       // Visit each RW in the sequence selected by the current variant.
583       RecVec Selected = Variant->getValueAsListOfDefs("Selected");
584       for (Record *SelDef : Selected)
585         scanSchedRW(SelDef, RWDefs, RWSet);
586     }
587   }
588 }
589 
590 // Collect and sort all SchedReadWrites reachable via tablegen records.
591 // More may be inferred later when inferring new SchedClasses from variants.
592 void CodeGenSchedModels::collectSchedRW() {
593   // Reserve idx=0 for invalid writes/reads.
594   SchedWrites.resize(1);
595   SchedReads.resize(1);
596 
597   SmallPtrSet<Record*, 16> RWSet;
598 
599   // Find all SchedReadWrites referenced by instruction defs.
600   RecVec SWDefs, SRDefs;
601   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
602     Record *SchedDef = Inst->TheDef;
603     if (SchedDef->isValueUnset("SchedRW"))
604       continue;
605     RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
606     for (Record *RW : RWs) {
607       if (RW->isSubClassOf("SchedWrite"))
608         scanSchedRW(RW, SWDefs, RWSet);
609       else {
610         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
611         scanSchedRW(RW, SRDefs, RWSet);
612       }
613     }
614   }
615   // Find all ReadWrites referenced by InstRW.
616   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
617   for (Record *InstRWDef : InstRWDefs) {
618     // For all OperandReadWrites.
619     RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
620     for (Record *RWDef : RWDefs) {
621       if (RWDef->isSubClassOf("SchedWrite"))
622         scanSchedRW(RWDef, SWDefs, RWSet);
623       else {
624         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
625         scanSchedRW(RWDef, SRDefs, RWSet);
626       }
627     }
628   }
629   // Find all ReadWrites referenced by ItinRW.
630   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
631   for (Record *ItinRWDef : ItinRWDefs) {
632     // For all OperandReadWrites.
633     RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
634     for (Record *RWDef : RWDefs) {
635       if (RWDef->isSubClassOf("SchedWrite"))
636         scanSchedRW(RWDef, SWDefs, RWSet);
637       else {
638         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
639         scanSchedRW(RWDef, SRDefs, RWSet);
640       }
641     }
642   }
643   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
644   // for the loop below that initializes Alias vectors.
645   RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
646   llvm::sort(AliasDefs, LessRecord());
647   for (Record *ADef : AliasDefs) {
648     Record *MatchDef = ADef->getValueAsDef("MatchRW");
649     Record *AliasDef = ADef->getValueAsDef("AliasRW");
650     if (MatchDef->isSubClassOf("SchedWrite")) {
651       if (!AliasDef->isSubClassOf("SchedWrite"))
652         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
653       scanSchedRW(AliasDef, SWDefs, RWSet);
654     }
655     else {
656       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
657       if (!AliasDef->isSubClassOf("SchedRead"))
658         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
659       scanSchedRW(AliasDef, SRDefs, RWSet);
660     }
661   }
662   // Sort and add the SchedReadWrites directly referenced by instructions or
663   // itinerary resources. Index reads and writes in separate domains.
664   llvm::sort(SWDefs, LessRecord());
665   for (Record *SWDef : SWDefs) {
666     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
667     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
668   }
669   llvm::sort(SRDefs, LessRecord());
670   for (Record *SRDef : SRDefs) {
671     assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
672     SchedReads.emplace_back(SchedReads.size(), SRDef);
673   }
674   // Initialize WriteSequence vectors.
675   for (CodeGenSchedRW &CGRW : SchedWrites) {
676     if (!CGRW.IsSequence)
677       continue;
678     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
679             /*IsRead=*/false);
680   }
681   // Initialize Aliases vectors.
682   for (Record *ADef : AliasDefs) {
683     Record *AliasDef = ADef->getValueAsDef("AliasRW");
684     getSchedRW(AliasDef).IsAlias = true;
685     Record *MatchDef = ADef->getValueAsDef("MatchRW");
686     CodeGenSchedRW &RW = getSchedRW(MatchDef);
687     if (RW.IsAlias)
688       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
689     RW.Aliases.push_back(ADef);
690   }
691   LLVM_DEBUG(
692       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
693       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
694         dbgs() << WIdx << ": ";
695         SchedWrites[WIdx].dump();
696         dbgs() << '\n';
697       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
698              ++RIdx) {
699         dbgs() << RIdx << ": ";
700         SchedReads[RIdx].dump();
701         dbgs() << '\n';
702       } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
703       for (Record *RWDef
704            : RWDefs) {
705         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
706           StringRef Name = RWDef->getName();
707           if (Name != "NoWrite" && Name != "ReadDefault")
708             dbgs() << "Unused SchedReadWrite " << Name << '\n';
709         }
710       });
711 }
712 
713 /// Compute a SchedWrite name from a sequence of writes.
714 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
715   std::string Name("(");
716   for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
717     if (I != Seq.begin())
718       Name += '_';
719     Name += getSchedRW(*I, IsRead).Name;
720   }
721   Name += ')';
722   return Name;
723 }
724 
725 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
726                                            bool IsRead) const {
727   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
728   const auto I = find_if(
729       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
730   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
731 }
732 
733 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
734   for (const CodeGenSchedRW &Read : SchedReads) {
735     Record *ReadDef = Read.TheDef;
736     if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
737       continue;
738 
739     RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
740     if (is_contained(ValidWrites, WriteDef)) {
741       return true;
742     }
743   }
744   return false;
745 }
746 
747 static void splitSchedReadWrites(const RecVec &RWDefs,
748                                  RecVec &WriteDefs, RecVec &ReadDefs) {
749   for (Record *RWDef : RWDefs) {
750     if (RWDef->isSubClassOf("SchedWrite"))
751       WriteDefs.push_back(RWDef);
752     else {
753       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
754       ReadDefs.push_back(RWDef);
755     }
756   }
757 }
758 
759 // Split the SchedReadWrites defs and call findRWs for each list.
760 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
761                                  IdxVec &Writes, IdxVec &Reads) const {
762   RecVec WriteDefs;
763   RecVec ReadDefs;
764   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
765   findRWs(WriteDefs, Writes, false);
766   findRWs(ReadDefs, Reads, true);
767 }
768 
769 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
770 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
771                                  bool IsRead) const {
772   for (Record *RWDef : RWDefs) {
773     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
774     assert(Idx && "failed to collect SchedReadWrite");
775     RWs.push_back(Idx);
776   }
777 }
778 
779 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
780                                           bool IsRead) const {
781   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
782   if (!SchedRW.IsSequence) {
783     RWSeq.push_back(RWIdx);
784     return;
785   }
786   int Repeat =
787     SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
788   for (int i = 0; i < Repeat; ++i) {
789     for (unsigned I : SchedRW.Sequence) {
790       expandRWSequence(I, RWSeq, IsRead);
791     }
792   }
793 }
794 
795 // Expand a SchedWrite as a sequence following any aliases that coincide with
796 // the given processor model.
797 void CodeGenSchedModels::expandRWSeqForProc(
798   unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
799   const CodeGenProcModel &ProcModel) const {
800 
801   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
802   Record *AliasDef = nullptr;
803   for (const Record *Rec : SchedWrite.Aliases) {
804     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
805     if (Rec->getValueInit("SchedModel")->isComplete()) {
806       Record *ModelDef = Rec->getValueAsDef("SchedModel");
807       if (&getProcModel(ModelDef) != &ProcModel)
808         continue;
809     }
810     if (AliasDef)
811       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
812                       "defined for processor " + ProcModel.ModelName +
813                       " Ensure only one SchedAlias exists per RW.");
814     AliasDef = AliasRW.TheDef;
815   }
816   if (AliasDef) {
817     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
818                        RWSeq, IsRead,ProcModel);
819     return;
820   }
821   if (!SchedWrite.IsSequence) {
822     RWSeq.push_back(RWIdx);
823     return;
824   }
825   int Repeat =
826     SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
827   for (int I = 0, E = Repeat; I < E; ++I) {
828     for (unsigned Idx : SchedWrite.Sequence) {
829       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
830     }
831   }
832 }
833 
834 // Find the existing SchedWrite that models this sequence of writes.
835 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
836                                                bool IsRead) {
837   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
838 
839   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
840     return makeArrayRef(RW.Sequence) == Seq;
841   });
842   // Index zero reserved for invalid RW.
843   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
844 }
845 
846 /// Add this ReadWrite if it doesn't already exist.
847 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
848                                             bool IsRead) {
849   assert(!Seq.empty() && "cannot insert empty sequence");
850   if (Seq.size() == 1)
851     return Seq.back();
852 
853   unsigned Idx = findRWForSequence(Seq, IsRead);
854   if (Idx)
855     return Idx;
856 
857   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
858   unsigned RWIdx = RWVec.size();
859   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
860   RWVec.push_back(SchedRW);
861   return RWIdx;
862 }
863 
864 /// Visit all the instruction definitions for this target to gather and
865 /// enumerate the itinerary classes. These are the explicitly specified
866 /// SchedClasses. More SchedClasses may be inferred.
867 void CodeGenSchedModels::collectSchedClasses() {
868 
869   // NoItinerary is always the first class at Idx=0
870   assert(SchedClasses.empty() && "Expected empty sched class");
871   SchedClasses.emplace_back(0, "NoInstrModel",
872                             Records.getDef("NoItinerary"));
873   SchedClasses.back().ProcIndices.push_back(0);
874 
875   // Create a SchedClass for each unique combination of itinerary class and
876   // SchedRW list.
877   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
878     Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
879     IdxVec Writes, Reads;
880     if (!Inst->TheDef->isValueUnset("SchedRW"))
881       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
882 
883     // ProcIdx == 0 indicates the class applies to all processors.
884     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
885     InstrClassMap[Inst->TheDef] = SCIdx;
886   }
887   // Create classes for InstRW defs.
888   RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
889   llvm::sort(InstRWDefs, LessRecord());
890   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
891   for (Record *RWDef : InstRWDefs)
892     createInstRWClass(RWDef);
893 
894   NumInstrSchedClasses = SchedClasses.size();
895 
896   bool EnableDump = false;
897   LLVM_DEBUG(EnableDump = true);
898   if (!EnableDump)
899     return;
900 
901   LLVM_DEBUG(
902       dbgs()
903       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
904   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
905     StringRef InstName = Inst->TheDef->getName();
906     unsigned SCIdx = getSchedClassIdx(*Inst);
907     if (!SCIdx) {
908       LLVM_DEBUG({
909         if (!Inst->hasNoSchedulingInfo)
910           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
911       });
912       continue;
913     }
914     CodeGenSchedClass &SC = getSchedClass(SCIdx);
915     if (SC.ProcIndices[0] != 0)
916       PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
917                       "must not be subtarget specific.");
918 
919     IdxVec ProcIndices;
920     if (SC.ItinClassDef->getName() != "NoItinerary") {
921       ProcIndices.push_back(0);
922       dbgs() << "Itinerary for " << InstName << ": "
923              << SC.ItinClassDef->getName() << '\n';
924     }
925     if (!SC.Writes.empty()) {
926       ProcIndices.push_back(0);
927       LLVM_DEBUG({
928         dbgs() << "SchedRW machine model for " << InstName;
929         for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
930              ++WI)
931           dbgs() << " " << SchedWrites[*WI].Name;
932         for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
933           dbgs() << " " << SchedReads[*RI].Name;
934         dbgs() << '\n';
935       });
936     }
937     const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
938     for (Record *RWDef : RWDefs) {
939       const CodeGenProcModel &ProcModel =
940           getProcModel(RWDef->getValueAsDef("SchedModel"));
941       ProcIndices.push_back(ProcModel.Index);
942       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
943                         << InstName);
944       IdxVec Writes;
945       IdxVec Reads;
946       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
947               Writes, Reads);
948       LLVM_DEBUG({
949         for (unsigned WIdx : Writes)
950           dbgs() << " " << SchedWrites[WIdx].Name;
951         for (unsigned RIdx : Reads)
952           dbgs() << " " << SchedReads[RIdx].Name;
953         dbgs() << '\n';
954       });
955     }
956     // If ProcIndices contains zero, the class applies to all processors.
957     LLVM_DEBUG({
958       if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
959         for (const CodeGenProcModel &PM : ProcModels) {
960           if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
961             dbgs() << "No machine model for " << Inst->TheDef->getName()
962                    << " on processor " << PM.ModelName << '\n';
963         }
964       }
965     });
966   }
967 }
968 
969 // Get the SchedClass index for an instruction.
970 unsigned
971 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
972   return InstrClassMap.lookup(Inst.TheDef);
973 }
974 
975 std::string
976 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
977                                          ArrayRef<unsigned> OperWrites,
978                                          ArrayRef<unsigned> OperReads) {
979 
980   std::string Name;
981   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
982     Name = ItinClassDef->getName();
983   for (unsigned Idx : OperWrites) {
984     if (!Name.empty())
985       Name += '_';
986     Name += SchedWrites[Idx].Name;
987   }
988   for (unsigned Idx : OperReads) {
989     Name += '_';
990     Name += SchedReads[Idx].Name;
991   }
992   return Name;
993 }
994 
995 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
996 
997   std::string Name;
998   for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
999     if (I != InstDefs.begin())
1000       Name += '_';
1001     Name += (*I)->getName();
1002   }
1003   return Name;
1004 }
1005 
1006 /// Add an inferred sched class from an itinerary class and per-operand list of
1007 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1008 /// processors that may utilize this class.
1009 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1010                                            ArrayRef<unsigned> OperWrites,
1011                                            ArrayRef<unsigned> OperReads,
1012                                            ArrayRef<unsigned> ProcIndices) {
1013   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1014 
1015   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1016                      return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1017                    };
1018 
1019   auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1020   unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1021   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1022     IdxVec PI;
1023     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1024                    SchedClasses[Idx].ProcIndices.end(),
1025                    ProcIndices.begin(), ProcIndices.end(),
1026                    std::back_inserter(PI));
1027     SchedClasses[Idx].ProcIndices = std::move(PI);
1028     return Idx;
1029   }
1030   Idx = SchedClasses.size();
1031   SchedClasses.emplace_back(Idx,
1032                             createSchedClassName(ItinClassDef, OperWrites,
1033                                                  OperReads),
1034                             ItinClassDef);
1035   CodeGenSchedClass &SC = SchedClasses.back();
1036   SC.Writes = OperWrites;
1037   SC.Reads = OperReads;
1038   SC.ProcIndices = ProcIndices;
1039 
1040   return Idx;
1041 }
1042 
1043 // Create classes for each set of opcodes that are in the same InstReadWrite
1044 // definition across all processors.
1045 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1046   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1047   // intersects with an existing class via a previous InstRWDef. Instrs that do
1048   // not intersect with an existing class refer back to their former class as
1049   // determined from ItinDef or SchedRW.
1050   SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1051   // Sort Instrs into sets.
1052   const RecVec *InstDefs = Sets.expand(InstRWDef);
1053   if (InstDefs->empty())
1054     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1055 
1056   for (Record *InstDef : *InstDefs) {
1057     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1058     if (Pos == InstrClassMap.end())
1059       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1060     unsigned SCIdx = Pos->second;
1061     ClassInstrs[SCIdx].push_back(InstDef);
1062   }
1063   // For each set of Instrs, create a new class if necessary, and map or remap
1064   // the Instrs to it.
1065   for (auto &Entry : ClassInstrs) {
1066     unsigned OldSCIdx = Entry.first;
1067     ArrayRef<Record*> InstDefs = Entry.second;
1068     // If the all instrs in the current class are accounted for, then leave
1069     // them mapped to their old class.
1070     if (OldSCIdx) {
1071       const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1072       if (!RWDefs.empty()) {
1073         const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1074         unsigned OrigNumInstrs =
1075           count_if(*OrigInstDefs, [&](Record *OIDef) {
1076                      return InstrClassMap[OIDef] == OldSCIdx;
1077                    });
1078         if (OrigNumInstrs == InstDefs.size()) {
1079           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1080                  "expected a generic SchedClass");
1081           Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1082           // Make sure we didn't already have a InstRW containing this
1083           // instruction on this model.
1084           for (Record *RWD : RWDefs) {
1085             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1086                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1087               for (Record *Inst : InstDefs) {
1088                 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " +
1089                             Inst->getName() + " also matches " +
1090                             RWD->getValue("Instrs")->getValue()->getAsString());
1091               }
1092             }
1093           }
1094           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1095                             << SchedClasses[OldSCIdx].Name << " on "
1096                             << RWModelDef->getName() << "\n");
1097           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1098           continue;
1099         }
1100       }
1101     }
1102     unsigned SCIdx = SchedClasses.size();
1103     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1104     CodeGenSchedClass &SC = SchedClasses.back();
1105     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1106                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1107                       << "\n");
1108 
1109     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1110     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1111     SC.Writes = SchedClasses[OldSCIdx].Writes;
1112     SC.Reads = SchedClasses[OldSCIdx].Reads;
1113     SC.ProcIndices.push_back(0);
1114     // If we had an old class, copy it's InstRWs to this new class.
1115     if (OldSCIdx) {
1116       Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1117       for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1118         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1119           for (Record *InstDef : InstDefs) {
1120             PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " +
1121                        InstDef->getName() + " also matches " +
1122                        OldRWDef->getValue("Instrs")->getValue()->getAsString());
1123           }
1124         }
1125         assert(OldRWDef != InstRWDef &&
1126                "SchedClass has duplicate InstRW def");
1127         SC.InstRWs.push_back(OldRWDef);
1128       }
1129     }
1130     // Map each Instr to this new class.
1131     for (Record *InstDef : InstDefs)
1132       InstrClassMap[InstDef] = SCIdx;
1133     SC.InstRWs.push_back(InstRWDef);
1134   }
1135 }
1136 
1137 // True if collectProcItins found anything.
1138 bool CodeGenSchedModels::hasItineraries() const {
1139   for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1140     if (PM.hasItineraries())
1141       return true;
1142   return false;
1143 }
1144 
1145 // Gather the processor itineraries.
1146 void CodeGenSchedModels::collectProcItins() {
1147   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1148   for (CodeGenProcModel &ProcModel : ProcModels) {
1149     if (!ProcModel.hasItineraries())
1150       continue;
1151 
1152     RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1153     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1154 
1155     // Populate ItinDefList with Itinerary records.
1156     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1157 
1158     // Insert each itinerary data record in the correct position within
1159     // the processor model's ItinDefList.
1160     for (Record *ItinData : ItinRecords) {
1161       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1162       bool FoundClass = false;
1163 
1164       for (const CodeGenSchedClass &SC :
1165            make_range(schedClassBegin(), schedClassEnd())) {
1166         // Multiple SchedClasses may share an itinerary. Update all of them.
1167         if (SC.ItinClassDef == ItinDef) {
1168           ProcModel.ItinDefList[SC.Index] = ItinData;
1169           FoundClass = true;
1170         }
1171       }
1172       if (!FoundClass) {
1173         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1174                           << " missing class for itinerary "
1175                           << ItinDef->getName() << '\n');
1176       }
1177     }
1178     // Check for missing itinerary entries.
1179     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1180     LLVM_DEBUG(
1181         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1182           if (!ProcModel.ItinDefList[i])
1183             dbgs() << ProcModel.ItinsDef->getName()
1184                    << " missing itinerary for class " << SchedClasses[i].Name
1185                    << '\n';
1186         });
1187   }
1188 }
1189 
1190 // Gather the read/write types for each itinerary class.
1191 void CodeGenSchedModels::collectProcItinRW() {
1192   RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1193   llvm::sort(ItinRWDefs, LessRecord());
1194   for (Record *RWDef  : ItinRWDefs) {
1195     if (!RWDef->getValueInit("SchedModel")->isComplete())
1196       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1197     Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1198     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1199     if (I == ProcModelMap.end()) {
1200       PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1201                     + ModelDef->getName());
1202     }
1203     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1204   }
1205 }
1206 
1207 // Gather the unsupported features for processor models.
1208 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1209   for (CodeGenProcModel &ProcModel : ProcModels) {
1210     for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1211        ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1212     }
1213   }
1214 }
1215 
1216 /// Infer new classes from existing classes. In the process, this may create new
1217 /// SchedWrites from sequences of existing SchedWrites.
1218 void CodeGenSchedModels::inferSchedClasses() {
1219   LLVM_DEBUG(
1220       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1221   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1222 
1223   // Visit all existing classes and newly created classes.
1224   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1225     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1226 
1227     if (SchedClasses[Idx].ItinClassDef)
1228       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1229     if (!SchedClasses[Idx].InstRWs.empty())
1230       inferFromInstRWs(Idx);
1231     if (!SchedClasses[Idx].Writes.empty()) {
1232       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1233                   Idx, SchedClasses[Idx].ProcIndices);
1234     }
1235     assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1236            "too many SchedVariants");
1237   }
1238 }
1239 
1240 /// Infer classes from per-processor itinerary resources.
1241 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1242                                             unsigned FromClassIdx) {
1243   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1244     const CodeGenProcModel &PM = ProcModels[PIdx];
1245     // For all ItinRW entries.
1246     bool HasMatch = false;
1247     for (const Record *Rec : PM.ItinRWDefs) {
1248       RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1249       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1250         continue;
1251       if (HasMatch)
1252         PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1253                       + ItinClassDef->getName()
1254                       + " in ItinResources for " + PM.ModelName);
1255       HasMatch = true;
1256       IdxVec Writes, Reads;
1257       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1258       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1259     }
1260   }
1261 }
1262 
1263 /// Infer classes from per-processor InstReadWrite definitions.
1264 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1265   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1266     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1267     Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1268     const RecVec *InstDefs = Sets.expand(Rec);
1269     RecIter II = InstDefs->begin(), IE = InstDefs->end();
1270     for (; II != IE; ++II) {
1271       if (InstrClassMap[*II] == SCIdx)
1272         break;
1273     }
1274     // If this class no longer has any instructions mapped to it, it has become
1275     // irrelevant.
1276     if (II == IE)
1277       continue;
1278     IdxVec Writes, Reads;
1279     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1280     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1281     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1282   }
1283 }
1284 
1285 namespace {
1286 
1287 // Helper for substituteVariantOperand.
1288 struct TransVariant {
1289   Record *VarOrSeqDef;  // Variant or sequence.
1290   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1291   unsigned ProcIdx;     // Processor model index or zero for any.
1292   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1293 
1294   TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1295     VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1296 };
1297 
1298 // Associate a predicate with the SchedReadWrite that it guards.
1299 // RWIdx is the index of the read/write variant.
1300 struct PredCheck {
1301   bool IsRead;
1302   unsigned RWIdx;
1303   Record *Predicate;
1304 
1305   PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1306 };
1307 
1308 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1309 struct PredTransition {
1310   // A predicate term is a conjunction of PredChecks.
1311   SmallVector<PredCheck, 4> PredTerm;
1312   SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1313   SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1314   SmallVector<unsigned, 4> ProcIndices;
1315 };
1316 
1317 // Encapsulate a set of partially constructed transitions.
1318 // The results are built by repeated calls to substituteVariants.
1319 class PredTransitions {
1320   CodeGenSchedModels &SchedModels;
1321 
1322 public:
1323   std::vector<PredTransition> TransVec;
1324 
1325   PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1326 
1327   void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1328                                 bool IsRead, unsigned StartIdx);
1329 
1330   void substituteVariants(const PredTransition &Trans);
1331 
1332 #ifndef NDEBUG
1333   void dump() const;
1334 #endif
1335 
1336 private:
1337   bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1338   void getIntersectingVariants(
1339     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1340     std::vector<TransVariant> &IntersectingVariants);
1341   void pushVariant(const TransVariant &VInfo, bool IsRead);
1342 };
1343 
1344 } // end anonymous namespace
1345 
1346 // Return true if this predicate is mutually exclusive with a PredTerm. This
1347 // degenerates into checking if the predicate is mutually exclusive with any
1348 // predicate in the Term's conjunction.
1349 //
1350 // All predicates associated with a given SchedRW are considered mutually
1351 // exclusive. This should work even if the conditions expressed by the
1352 // predicates are not exclusive because the predicates for a given SchedWrite
1353 // are always checked in the order they are defined in the .td file. Later
1354 // conditions implicitly negate any prior condition.
1355 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1356                                         ArrayRef<PredCheck> Term) {
1357   for (const PredCheck &PC: Term) {
1358     if (PC.Predicate == PredDef)
1359       return false;
1360 
1361     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1362     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1363     RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1364     if (any_of(Variants, [PredDef](const Record *R) {
1365           return R->getValueAsDef("Predicate") == PredDef;
1366         }))
1367       return true;
1368   }
1369   return false;
1370 }
1371 
1372 static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1373                                CodeGenSchedModels &SchedModels) {
1374   if (RW.HasVariants)
1375     return true;
1376 
1377   for (Record *Alias : RW.Aliases) {
1378     const CodeGenSchedRW &AliasRW =
1379       SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1380     if (AliasRW.HasVariants)
1381       return true;
1382     if (AliasRW.IsSequence) {
1383       IdxVec ExpandedRWs;
1384       SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1385       for (unsigned SI : ExpandedRWs) {
1386         if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1387                                SchedModels))
1388           return true;
1389       }
1390     }
1391   }
1392   return false;
1393 }
1394 
1395 static bool hasVariant(ArrayRef<PredTransition> Transitions,
1396                        CodeGenSchedModels &SchedModels) {
1397   for (const PredTransition &PTI : Transitions) {
1398     for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1399       for (unsigned WI : WSI)
1400         if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1401           return true;
1402 
1403     for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1404       for (unsigned RI : RSI)
1405         if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1406           return true;
1407   }
1408   return false;
1409 }
1410 
1411 // Populate IntersectingVariants with any variants or aliased sequences of the
1412 // given SchedRW whose processor indices and predicates are not mutually
1413 // exclusive with the given transition.
1414 void PredTransitions::getIntersectingVariants(
1415   const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1416   std::vector<TransVariant> &IntersectingVariants) {
1417 
1418   bool GenericRW = false;
1419 
1420   std::vector<TransVariant> Variants;
1421   if (SchedRW.HasVariants) {
1422     unsigned VarProcIdx = 0;
1423     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1424       Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1425       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1426     }
1427     // Push each variant. Assign TransVecIdx later.
1428     const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1429     for (Record *VarDef : VarDefs)
1430       Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1431     if (VarProcIdx == 0)
1432       GenericRW = true;
1433   }
1434   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1435        AI != AE; ++AI) {
1436     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1437     // to is defined within a processor model, constrain all variants to
1438     // that processor.
1439     unsigned AliasProcIdx = 0;
1440     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1441       Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1442       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1443     }
1444     const CodeGenSchedRW &AliasRW =
1445       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1446 
1447     if (AliasRW.HasVariants) {
1448       const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1449       for (Record *VD : VarDefs)
1450         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1451     }
1452     if (AliasRW.IsSequence)
1453       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1454     if (AliasProcIdx == 0)
1455       GenericRW = true;
1456   }
1457   for (TransVariant &Variant : Variants) {
1458     // Don't expand variants if the processor models don't intersect.
1459     // A zero processor index means any processor.
1460     SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1461     if (ProcIndices[0] && Variant.ProcIdx) {
1462       unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1463                                 Variant.ProcIdx);
1464       if (!Cnt)
1465         continue;
1466       if (Cnt > 1) {
1467         const CodeGenProcModel &PM =
1468           *(SchedModels.procModelBegin() + Variant.ProcIdx);
1469         PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1470                         "Multiple variants defined for processor " +
1471                         PM.ModelName +
1472                         " Ensure only one SchedAlias exists per RW.");
1473       }
1474     }
1475     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1476       Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1477       if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1478         continue;
1479     }
1480     if (IntersectingVariants.empty()) {
1481       // The first variant builds on the existing transition.
1482       Variant.TransVecIdx = TransIdx;
1483       IntersectingVariants.push_back(Variant);
1484     }
1485     else {
1486       // Push another copy of the current transition for more variants.
1487       Variant.TransVecIdx = TransVec.size();
1488       IntersectingVariants.push_back(Variant);
1489       TransVec.push_back(TransVec[TransIdx]);
1490     }
1491   }
1492   if (GenericRW && IntersectingVariants.empty()) {
1493     PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1494                     "a matching predicate on any processor");
1495   }
1496 }
1497 
1498 // Push the Reads/Writes selected by this variant onto the PredTransition
1499 // specified by VInfo.
1500 void PredTransitions::
1501 pushVariant(const TransVariant &VInfo, bool IsRead) {
1502   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1503 
1504   // If this operand transition is reached through a processor-specific alias,
1505   // then the whole transition is specific to this processor.
1506   if (VInfo.ProcIdx != 0)
1507     Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1508 
1509   IdxVec SelectedRWs;
1510   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1511     Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1512     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1513     RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1514     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1515   }
1516   else {
1517     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1518            "variant must be a SchedVariant or aliased WriteSequence");
1519     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1520   }
1521 
1522   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1523 
1524   SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1525     ? Trans.ReadSequences : Trans.WriteSequences;
1526   if (SchedRW.IsVariadic) {
1527     unsigned OperIdx = RWSequences.size()-1;
1528     // Make N-1 copies of this transition's last sequence.
1529     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1530                        RWSequences[OperIdx]);
1531     // Push each of the N elements of the SelectedRWs onto a copy of the last
1532     // sequence (split the current operand into N operands).
1533     // Note that write sequences should be expanded within this loop--the entire
1534     // sequence belongs to a single operand.
1535     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1536          RWI != RWE; ++RWI, ++OperIdx) {
1537       IdxVec ExpandedRWs;
1538       if (IsRead)
1539         ExpandedRWs.push_back(*RWI);
1540       else
1541         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1542       RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1543                                   ExpandedRWs.begin(), ExpandedRWs.end());
1544     }
1545     assert(OperIdx == RWSequences.size() && "missed a sequence");
1546   }
1547   else {
1548     // Push this transition's expanded sequence onto this transition's last
1549     // sequence (add to the current operand's sequence).
1550     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1551     IdxVec ExpandedRWs;
1552     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1553          RWI != RWE; ++RWI) {
1554       if (IsRead)
1555         ExpandedRWs.push_back(*RWI);
1556       else
1557         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1558     }
1559     Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1560   }
1561 }
1562 
1563 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1564 // operand. StartIdx is an index into TransVec where partial results
1565 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1566 // of TransVec.
1567 void PredTransitions::substituteVariantOperand(
1568   const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1569 
1570   // Visit each original RW within the current sequence.
1571   for (SmallVectorImpl<unsigned>::const_iterator
1572          RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1573     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1574     // Push this RW on all partial PredTransitions or distribute variants.
1575     // New PredTransitions may be pushed within this loop which should not be
1576     // revisited (TransEnd must be loop invariant).
1577     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1578          TransIdx != TransEnd; ++TransIdx) {
1579       // In the common case, push RW onto the current operand's sequence.
1580       if (!hasAliasedVariants(SchedRW, SchedModels)) {
1581         if (IsRead)
1582           TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1583         else
1584           TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1585         continue;
1586       }
1587       // Distribute this partial PredTransition across intersecting variants.
1588       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1589       std::vector<TransVariant> IntersectingVariants;
1590       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1591       // Now expand each variant on top of its copy of the transition.
1592       for (std::vector<TransVariant>::const_iterator
1593              IVI = IntersectingVariants.begin(),
1594              IVE = IntersectingVariants.end();
1595            IVI != IVE; ++IVI) {
1596         pushVariant(*IVI, IsRead);
1597       }
1598     }
1599   }
1600 }
1601 
1602 // For each variant of a Read/Write in Trans, substitute the sequence of
1603 // Read/Writes guarded by the variant. This is exponential in the number of
1604 // variant Read/Writes, but in practice detection of mutually exclusive
1605 // predicates should result in linear growth in the total number variants.
1606 //
1607 // This is one step in a breadth-first search of nested variants.
1608 void PredTransitions::substituteVariants(const PredTransition &Trans) {
1609   // Build up a set of partial results starting at the back of
1610   // PredTransitions. Remember the first new transition.
1611   unsigned StartIdx = TransVec.size();
1612   TransVec.emplace_back();
1613   TransVec.back().PredTerm = Trans.PredTerm;
1614   TransVec.back().ProcIndices = Trans.ProcIndices;
1615 
1616   // Visit each original write sequence.
1617   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1618          WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1619        WSI != WSE; ++WSI) {
1620     // Push a new (empty) write sequence onto all partial Transitions.
1621     for (std::vector<PredTransition>::iterator I =
1622            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1623       I->WriteSequences.emplace_back();
1624     }
1625     substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1626   }
1627   // Visit each original read sequence.
1628   for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1629          RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1630        RSI != RSE; ++RSI) {
1631     // Push a new (empty) read sequence onto all partial Transitions.
1632     for (std::vector<PredTransition>::iterator I =
1633            TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1634       I->ReadSequences.emplace_back();
1635     }
1636     substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1637   }
1638 }
1639 
1640 // Create a new SchedClass for each variant found by inferFromRW. Pass
1641 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1642                                  unsigned FromClassIdx,
1643                                  CodeGenSchedModels &SchedModels) {
1644   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1645   // requires creating a new SchedClass.
1646   for (ArrayRef<PredTransition>::iterator
1647          I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1648     IdxVec OperWritesVariant;
1649     transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1650               [&SchedModels](ArrayRef<unsigned> WS) {
1651                 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1652               });
1653     IdxVec OperReadsVariant;
1654     transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1655               [&SchedModels](ArrayRef<unsigned> RS) {
1656                 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1657               });
1658     CodeGenSchedTransition SCTrans;
1659     SCTrans.ToClassIdx =
1660       SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1661                                 OperReadsVariant, I->ProcIndices);
1662     SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1663     // The final PredTerm is unique set of predicates guarding the transition.
1664     RecVec Preds;
1665     transform(I->PredTerm, std::back_inserter(Preds),
1666               [](const PredCheck &P) {
1667                 return P.Predicate;
1668               });
1669     Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1670     SCTrans.PredTerm = std::move(Preds);
1671     SchedModels.getSchedClass(FromClassIdx)
1672         .Transitions.push_back(std::move(SCTrans));
1673   }
1674 }
1675 
1676 // Create new SchedClasses for the given ReadWrite list. If any of the
1677 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1678 // of the ReadWrite list, following Aliases if necessary.
1679 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1680                                      ArrayRef<unsigned> OperReads,
1681                                      unsigned FromClassIdx,
1682                                      ArrayRef<unsigned> ProcIndices) {
1683   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1684              dbgs() << ") ");
1685 
1686   // Create a seed transition with an empty PredTerm and the expanded sequences
1687   // of SchedWrites for the current SchedClass.
1688   std::vector<PredTransition> LastTransitions;
1689   LastTransitions.emplace_back();
1690   LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1691                                             ProcIndices.end());
1692 
1693   for (unsigned WriteIdx : OperWrites) {
1694     IdxVec WriteSeq;
1695     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1696     LastTransitions[0].WriteSequences.emplace_back();
1697     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1698     Seq.append(WriteSeq.begin(), WriteSeq.end());
1699     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1700   }
1701   LLVM_DEBUG(dbgs() << " Reads: ");
1702   for (unsigned ReadIdx : OperReads) {
1703     IdxVec ReadSeq;
1704     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1705     LastTransitions[0].ReadSequences.emplace_back();
1706     SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1707     Seq.append(ReadSeq.begin(), ReadSeq.end());
1708     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1709   }
1710   LLVM_DEBUG(dbgs() << '\n');
1711 
1712   // Collect all PredTransitions for individual operands.
1713   // Iterate until no variant writes remain.
1714   while (hasVariant(LastTransitions, *this)) {
1715     PredTransitions Transitions(*this);
1716     for (const PredTransition &Trans : LastTransitions)
1717       Transitions.substituteVariants(Trans);
1718     LLVM_DEBUG(Transitions.dump());
1719     LastTransitions.swap(Transitions.TransVec);
1720   }
1721   // If the first transition has no variants, nothing to do.
1722   if (LastTransitions[0].PredTerm.empty())
1723     return;
1724 
1725   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1726   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1727   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1728 }
1729 
1730 // Check if any processor resource group contains all resource records in
1731 // SubUnits.
1732 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1733   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1734     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1735       continue;
1736     RecVec SuperUnits =
1737       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1738     RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1739     for ( ; RI != RE; ++RI) {
1740       if (!is_contained(SuperUnits, *RI)) {
1741         break;
1742       }
1743     }
1744     if (RI == RE)
1745       return true;
1746   }
1747   return false;
1748 }
1749 
1750 // Verify that overlapping groups have a common supergroup.
1751 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1752   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1753     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1754       continue;
1755     RecVec CheckUnits =
1756       PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1757     for (unsigned j = i+1; j < e; ++j) {
1758       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1759         continue;
1760       RecVec OtherUnits =
1761         PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1762       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1763                              OtherUnits.begin(), OtherUnits.end())
1764           != CheckUnits.end()) {
1765         // CheckUnits and OtherUnits overlap
1766         OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1767                           CheckUnits.end());
1768         if (!hasSuperGroup(OtherUnits, PM)) {
1769           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1770                           "proc resource group overlaps with "
1771                           + PM.ProcResourceDefs[j]->getName()
1772                           + " but no supergroup contains both.");
1773         }
1774       }
1775     }
1776   }
1777 }
1778 
1779 // Collect all the RegisterFile definitions available in this target.
1780 void CodeGenSchedModels::collectRegisterFiles() {
1781   RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1782 
1783   // RegisterFiles is the vector of CodeGenRegisterFile.
1784   for (Record *RF : RegisterFileDefs) {
1785     // For each register file definition, construct a CodeGenRegisterFile object
1786     // and add it to the appropriate scheduling model.
1787     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1788     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1789     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1790     CGRF.MaxMovesEliminatedPerCycle =
1791         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1792     CGRF.AllowZeroMoveEliminationOnly =
1793         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1794 
1795     // Now set the number of physical registers as well as the cost of registers
1796     // in each register class.
1797     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1798     if (!CGRF.NumPhysRegs) {
1799       PrintFatalError(RF->getLoc(),
1800                       "Invalid RegisterFile with zero physical registers");
1801     }
1802 
1803     RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1804     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1805     ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1806     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1807       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1808 
1809       bool AllowMoveElim = false;
1810       if (MoveElimInfo->size() > I) {
1811         BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1812         AllowMoveElim = Val->getValue();
1813       }
1814 
1815       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1816     }
1817   }
1818 }
1819 
1820 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1821 void CodeGenSchedModels::collectProcResources() {
1822   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1823   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1824 
1825   // Add any subtarget-specific SchedReadWrites that are directly associated
1826   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1827   // determine which processors they apply to.
1828   for (const CodeGenSchedClass &SC :
1829        make_range(schedClassBegin(), schedClassEnd())) {
1830     if (SC.ItinClassDef) {
1831       collectItinProcResources(SC.ItinClassDef);
1832       continue;
1833     }
1834 
1835     // This class may have a default ReadWrite list which can be overriden by
1836     // InstRW definitions.
1837     for (Record *RW : SC.InstRWs) {
1838       Record *RWModelDef = RW->getValueAsDef("SchedModel");
1839       unsigned PIdx = getProcModel(RWModelDef).Index;
1840       IdxVec Writes, Reads;
1841       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1842       collectRWResources(Writes, Reads, PIdx);
1843     }
1844 
1845     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1846   }
1847   // Add resources separately defined by each subtarget.
1848   RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1849   for (Record *WR : WRDefs) {
1850     Record *ModelDef = WR->getValueAsDef("SchedModel");
1851     addWriteRes(WR, getProcModel(ModelDef).Index);
1852   }
1853   RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1854   for (Record *SWR : SWRDefs) {
1855     Record *ModelDef = SWR->getValueAsDef("SchedModel");
1856     addWriteRes(SWR, getProcModel(ModelDef).Index);
1857   }
1858   RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1859   for (Record *RA : RADefs) {
1860     Record *ModelDef = RA->getValueAsDef("SchedModel");
1861     addReadAdvance(RA, getProcModel(ModelDef).Index);
1862   }
1863   RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1864   for (Record *SRA : SRADefs) {
1865     if (SRA->getValueInit("SchedModel")->isComplete()) {
1866       Record *ModelDef = SRA->getValueAsDef("SchedModel");
1867       addReadAdvance(SRA, getProcModel(ModelDef).Index);
1868     }
1869   }
1870   // Add ProcResGroups that are defined within this processor model, which may
1871   // not be directly referenced but may directly specify a buffer size.
1872   RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1873   for (Record *PRG : ProcResGroups) {
1874     if (!PRG->getValueInit("SchedModel")->isComplete())
1875       continue;
1876     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1877     if (!is_contained(PM.ProcResourceDefs, PRG))
1878       PM.ProcResourceDefs.push_back(PRG);
1879   }
1880   // Add ProcResourceUnits unconditionally.
1881   for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1882     if (!PRU->getValueInit("SchedModel")->isComplete())
1883       continue;
1884     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1885     if (!is_contained(PM.ProcResourceDefs, PRU))
1886       PM.ProcResourceDefs.push_back(PRU);
1887   }
1888   // Finalize each ProcModel by sorting the record arrays.
1889   for (CodeGenProcModel &PM : ProcModels) {
1890     llvm::sort(PM.WriteResDefs, LessRecord());
1891     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1892     llvm::sort(PM.ProcResourceDefs, LessRecord());
1893     LLVM_DEBUG(
1894         PM.dump();
1895         dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1896                                          RE = PM.WriteResDefs.end();
1897                                          RI != RE; ++RI) {
1898           if ((*RI)->isSubClassOf("WriteRes"))
1899             dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1900           else
1901             dbgs() << (*RI)->getName() << " ";
1902         } dbgs() << "\nReadAdvanceDefs: ";
1903         for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1904              RE = PM.ReadAdvanceDefs.end();
1905              RI != RE; ++RI) {
1906           if ((*RI)->isSubClassOf("ReadAdvance"))
1907             dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1908           else
1909             dbgs() << (*RI)->getName() << " ";
1910         } dbgs()
1911         << "\nProcResourceDefs: ";
1912         for (RecIter RI = PM.ProcResourceDefs.begin(),
1913              RE = PM.ProcResourceDefs.end();
1914              RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1915         << '\n');
1916     verifyProcResourceGroups(PM);
1917   }
1918 
1919   ProcResourceDefs.clear();
1920   ProcResGroups.clear();
1921 }
1922 
1923 void CodeGenSchedModels::checkCompleteness() {
1924   bool Complete = true;
1925   bool HadCompleteModel = false;
1926   for (const CodeGenProcModel &ProcModel : procModels()) {
1927     const bool HasItineraries = ProcModel.hasItineraries();
1928     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1929       continue;
1930     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1931       if (Inst->hasNoSchedulingInfo)
1932         continue;
1933       if (ProcModel.isUnsupported(*Inst))
1934         continue;
1935       unsigned SCIdx = getSchedClassIdx(*Inst);
1936       if (!SCIdx) {
1937         if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1938           PrintError("No schedule information for instruction '"
1939                      + Inst->TheDef->getName() + "'");
1940           Complete = false;
1941         }
1942         continue;
1943       }
1944 
1945       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1946       if (!SC.Writes.empty())
1947         continue;
1948       if (HasItineraries && SC.ItinClassDef != nullptr &&
1949           SC.ItinClassDef->getName() != "NoItinerary")
1950         continue;
1951 
1952       const RecVec &InstRWs = SC.InstRWs;
1953       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1954         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1955       });
1956       if (I == InstRWs.end()) {
1957         PrintError("'" + ProcModel.ModelName + "' lacks information for '" +
1958                    Inst->TheDef->getName() + "'");
1959         Complete = false;
1960       }
1961     }
1962     HadCompleteModel = true;
1963   }
1964   if (!Complete) {
1965     errs() << "\n\nIncomplete schedule models found.\n"
1966       << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1967       << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1968       << "- Instructions should usually have Sched<[...]> as a superclass, "
1969          "you may temporarily use an empty list.\n"
1970       << "- Instructions related to unsupported features can be excluded with "
1971          "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1972          "processor model.\n\n";
1973     PrintFatalError("Incomplete schedule model");
1974   }
1975 }
1976 
1977 // Collect itinerary class resources for each processor.
1978 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1979   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1980     const CodeGenProcModel &PM = ProcModels[PIdx];
1981     // For all ItinRW entries.
1982     bool HasMatch = false;
1983     for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1984          II != IE; ++II) {
1985       RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1986       if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1987         continue;
1988       if (HasMatch)
1989         PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1990                         + ItinClassDef->getName()
1991                         + " in ItinResources for " + PM.ModelName);
1992       HasMatch = true;
1993       IdxVec Writes, Reads;
1994       findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1995       collectRWResources(Writes, Reads, PIdx);
1996     }
1997   }
1998 }
1999 
2000 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2001                                             ArrayRef<unsigned> ProcIndices) {
2002   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2003   if (SchedRW.TheDef) {
2004     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2005       for (unsigned Idx : ProcIndices)
2006         addWriteRes(SchedRW.TheDef, Idx);
2007     }
2008     else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2009       for (unsigned Idx : ProcIndices)
2010         addReadAdvance(SchedRW.TheDef, Idx);
2011     }
2012   }
2013   for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2014        AI != AE; ++AI) {
2015     IdxVec AliasProcIndices;
2016     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2017       AliasProcIndices.push_back(
2018         getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2019     }
2020     else
2021       AliasProcIndices = ProcIndices;
2022     const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2023     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2024 
2025     IdxVec ExpandedRWs;
2026     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2027     for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2028          SI != SE; ++SI) {
2029       collectRWResources(*SI, IsRead, AliasProcIndices);
2030     }
2031   }
2032 }
2033 
2034 // Collect resources for a set of read/write types and processor indices.
2035 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2036                                             ArrayRef<unsigned> Reads,
2037                                             ArrayRef<unsigned> ProcIndices) {
2038   for (unsigned Idx : Writes)
2039     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2040 
2041   for (unsigned Idx : Reads)
2042     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2043 }
2044 
2045 // Find the processor's resource units for this kind of resource.
2046 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2047                                              const CodeGenProcModel &PM,
2048                                              ArrayRef<SMLoc> Loc) const {
2049   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2050     return ProcResKind;
2051 
2052   Record *ProcUnitDef = nullptr;
2053   assert(!ProcResourceDefs.empty());
2054   assert(!ProcResGroups.empty());
2055 
2056   for (Record *ProcResDef : ProcResourceDefs) {
2057     if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2058         && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2059       if (ProcUnitDef) {
2060         PrintFatalError(Loc,
2061                         "Multiple ProcessorResourceUnits associated with "
2062                         + ProcResKind->getName());
2063       }
2064       ProcUnitDef = ProcResDef;
2065     }
2066   }
2067   for (Record *ProcResGroup : ProcResGroups) {
2068     if (ProcResGroup == ProcResKind
2069         && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2070       if (ProcUnitDef) {
2071         PrintFatalError(Loc,
2072                         "Multiple ProcessorResourceUnits associated with "
2073                         + ProcResKind->getName());
2074       }
2075       ProcUnitDef = ProcResGroup;
2076     }
2077   }
2078   if (!ProcUnitDef) {
2079     PrintFatalError(Loc,
2080                     "No ProcessorResources associated with "
2081                     + ProcResKind->getName());
2082   }
2083   return ProcUnitDef;
2084 }
2085 
2086 // Iteratively add a resource and its super resources.
2087 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2088                                          CodeGenProcModel &PM,
2089                                          ArrayRef<SMLoc> Loc) {
2090   while (true) {
2091     Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2092 
2093     // See if this ProcResource is already associated with this processor.
2094     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2095       return;
2096 
2097     PM.ProcResourceDefs.push_back(ProcResUnits);
2098     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2099       return;
2100 
2101     if (!ProcResUnits->getValueInit("Super")->isComplete())
2102       return;
2103 
2104     ProcResKind = ProcResUnits->getValueAsDef("Super");
2105   }
2106 }
2107 
2108 // Add resources for a SchedWrite to this processor if they don't exist.
2109 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2110   assert(PIdx && "don't add resources to an invalid Processor model");
2111 
2112   RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2113   if (is_contained(WRDefs, ProcWriteResDef))
2114     return;
2115   WRDefs.push_back(ProcWriteResDef);
2116 
2117   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2118   RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2119   for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2120        WritePRI != WritePRE; ++WritePRI) {
2121     addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2122   }
2123 }
2124 
2125 // Add resources for a ReadAdvance to this processor if they don't exist.
2126 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2127                                         unsigned PIdx) {
2128   RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2129   if (is_contained(RADefs, ProcReadAdvanceDef))
2130     return;
2131   RADefs.push_back(ProcReadAdvanceDef);
2132 }
2133 
2134 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2135   RecIter PRPos = find(ProcResourceDefs, PRDef);
2136   if (PRPos == ProcResourceDefs.end())
2137     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2138                     "the ProcResources list for " + ModelName);
2139   // Idx=0 is reserved for invalid.
2140   return 1 + (PRPos - ProcResourceDefs.begin());
2141 }
2142 
2143 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2144   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2145     for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2146       if (TheDef->getName() == PredDef->getName())
2147         return true;
2148     }
2149   }
2150   return false;
2151 }
2152 
2153 #ifndef NDEBUG
2154 void CodeGenProcModel::dump() const {
2155   dbgs() << Index << ": " << ModelName << " "
2156          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2157          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2158 }
2159 
2160 void CodeGenSchedRW::dump() const {
2161   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2162   if (IsSequence) {
2163     dbgs() << "(";
2164     dumpIdxVec(Sequence);
2165     dbgs() << ")";
2166   }
2167 }
2168 
2169 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2170   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2171          << "  Writes: ";
2172   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2173     SchedModels->getSchedWrite(Writes[i]).dump();
2174     if (i < N-1) {
2175       dbgs() << '\n';
2176       dbgs().indent(10);
2177     }
2178   }
2179   dbgs() << "\n  Reads: ";
2180   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2181     SchedModels->getSchedRead(Reads[i]).dump();
2182     if (i < N-1) {
2183       dbgs() << '\n';
2184       dbgs().indent(10);
2185     }
2186   }
2187   dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2188   if (!Transitions.empty()) {
2189     dbgs() << "\n Transitions for Proc ";
2190     for (const CodeGenSchedTransition &Transition : Transitions) {
2191       dumpIdxVec(Transition.ProcIndices);
2192     }
2193   }
2194 }
2195 
2196 void PredTransitions::dump() const {
2197   dbgs() << "Expanded Variants:\n";
2198   for (std::vector<PredTransition>::const_iterator
2199          TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2200     dbgs() << "{";
2201     for (SmallVectorImpl<PredCheck>::const_iterator
2202            PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2203          PCI != PCE; ++PCI) {
2204       if (PCI != TI->PredTerm.begin())
2205         dbgs() << ", ";
2206       dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2207              << ":" << PCI->Predicate->getName();
2208     }
2209     dbgs() << "},\n  => {";
2210     for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2211            WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2212          WSI != WSE; ++WSI) {
2213       dbgs() << "(";
2214       for (SmallVectorImpl<unsigned>::const_iterator
2215              WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2216         if (WI != WSI->begin())
2217           dbgs() << ", ";
2218         dbgs() << SchedModels.getSchedWrite(*WI).Name;
2219       }
2220       dbgs() << "),";
2221     }
2222     dbgs() << "}\n";
2223   }
2224 }
2225 #endif // NDEBUG
2226