1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as described in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenSchedule.h" 16 #include "CodeGenInstruction.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Regex.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include <algorithm> 29 #include <iterator> 30 #include <utility> 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "subtarget-emitter" 35 36 #ifndef NDEBUG 37 static void dumpIdxVec(ArrayRef<unsigned> V) { 38 for (unsigned Idx : V) 39 dbgs() << Idx << ", "; 40 } 41 #endif 42 43 namespace { 44 45 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 46 struct InstrsOp : public SetTheory::Operator { 47 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 48 ArrayRef<SMLoc> Loc) override { 49 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 50 } 51 }; 52 53 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 54 struct InstRegexOp : public SetTheory::Operator { 55 const CodeGenTarget &Target; 56 InstRegexOp(const CodeGenTarget &t): Target(t) {} 57 58 /// Remove any text inside of parentheses from S. 59 static std::string removeParens(llvm::StringRef S) { 60 std::string Result; 61 unsigned Paren = 0; 62 // NB: We don't care about escaped parens here. 63 for (char C : S) { 64 switch (C) { 65 case '(': 66 ++Paren; 67 break; 68 case ')': 69 --Paren; 70 break; 71 default: 72 if (Paren == 0) 73 Result += C; 74 } 75 } 76 return Result; 77 } 78 79 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 80 ArrayRef<SMLoc> Loc) override { 81 ArrayRef<const CodeGenInstruction *> Instructions = 82 Target.getInstructionsByEnumValue(); 83 84 unsigned NumGeneric = Target.getNumFixedInstructions(); 85 unsigned NumPseudos = Target.getNumPseudoInstructions(); 86 auto Generics = Instructions.slice(0, NumGeneric); 87 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos); 88 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos); 89 90 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) { 91 StringInit *SI = dyn_cast<StringInit>(Arg); 92 if (!SI) 93 PrintFatalError(Loc, "instregex requires pattern string: " + 94 Expr->getAsString()); 95 StringRef Original = SI->getValue(); 96 97 // Extract a prefix that we can binary search on. 98 static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; 99 auto FirstMeta = Original.find_first_of(RegexMetachars); 100 101 // Look for top-level | or ?. We cannot optimize them to binary search. 102 if (removeParens(Original).find_first_of("|?") != std::string::npos) 103 FirstMeta = 0; 104 105 Optional<Regex> Regexpr = None; 106 StringRef Prefix = Original.substr(0, FirstMeta); 107 StringRef PatStr = Original.substr(FirstMeta); 108 if (!PatStr.empty()) { 109 // For the rest use a python-style prefix match. 110 std::string pat = PatStr; 111 if (pat[0] != '^') { 112 pat.insert(0, "^("); 113 pat.insert(pat.end(), ')'); 114 } 115 Regexpr = Regex(pat); 116 } 117 118 int NumMatches = 0; 119 120 // The generic opcodes are unsorted, handle them manually. 121 for (auto *Inst : Generics) { 122 StringRef InstName = Inst->TheDef->getName(); 123 if (InstName.startswith(Prefix) && 124 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { 125 Elts.insert(Inst->TheDef); 126 NumMatches++; 127 } 128 } 129 130 // Target instructions are split into two ranges: pseudo instructions 131 // first, than non-pseudos. Each range is in lexicographical order 132 // sorted by name. Find the sub-ranges that start with our prefix. 133 struct Comp { 134 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { 135 return LHS->TheDef->getName() < RHS; 136 } 137 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { 138 return LHS < RHS->TheDef->getName() && 139 !RHS->TheDef->getName().startswith(LHS); 140 } 141 }; 142 auto Range1 = 143 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp()); 144 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(), 145 Prefix, Comp()); 146 147 // For these ranges we know that instruction names start with the prefix. 148 // Check if there's a regex that needs to be checked. 149 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { 150 StringRef InstName = Inst->TheDef->getName(); 151 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { 152 Elts.insert(Inst->TheDef); 153 NumMatches++; 154 } 155 }; 156 std::for_each(Range1.first, Range1.second, HandleNonGeneric); 157 std::for_each(Range2.first, Range2.second, HandleNonGeneric); 158 159 if (0 == NumMatches) 160 PrintFatalError(Loc, "instregex has no matches: " + Original); 161 } 162 } 163 }; 164 165 } // end anonymous namespace 166 167 /// CodeGenModels ctor interprets machine model records and populates maps. 168 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 169 const CodeGenTarget &TGT): 170 Records(RK), Target(TGT) { 171 172 Sets.addFieldExpander("InstRW", "Instrs"); 173 174 // Allow Set evaluation to recognize the dags used in InstRW records: 175 // (instrs Op1, Op1...) 176 Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); 177 Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); 178 179 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 180 // that are explicitly referenced in tablegen records. Resources associated 181 // with each processor will be derived later. Populate ProcModelMap with the 182 // CodeGenProcModel instances. 183 collectProcModels(); 184 185 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 186 // defined, and populate SchedReads and SchedWrites vectors. Implicit 187 // SchedReadWrites that represent sequences derived from expanded variant will 188 // be inferred later. 189 collectSchedRW(); 190 191 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 192 // required by an instruction definition, and populate SchedClassIdxMap. Set 193 // NumItineraryClasses to the number of explicit itinerary classes referenced 194 // by instructions. Set NumInstrSchedClasses to the number of itinerary 195 // classes plus any classes implied by instructions that derive from class 196 // Sched and provide SchedRW list. This does not infer any new classes from 197 // SchedVariant. 198 collectSchedClasses(); 199 200 // Find instruction itineraries for each processor. Sort and populate 201 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 202 // all itinerary classes to be discovered. 203 collectProcItins(); 204 205 // Find ItinRW records for each processor and itinerary class. 206 // (For per-operand resources mapped to itinerary classes). 207 collectProcItinRW(); 208 209 // Find UnsupportedFeatures records for each processor. 210 // (For per-operand resources mapped to itinerary classes). 211 collectProcUnsupportedFeatures(); 212 213 // Infer new SchedClasses from SchedVariant. 214 inferSchedClasses(); 215 216 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 217 // ProcResourceDefs. 218 LLVM_DEBUG( 219 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); 220 collectProcResources(); 221 222 // Collect optional processor description. 223 collectOptionalProcessorInfo(); 224 225 // Check MCInstPredicate definitions. 226 checkMCInstPredicates(); 227 228 // Check STIPredicate definitions. 229 checkSTIPredicates(); 230 231 // Find STIPredicate definitions for each processor model, and construct 232 // STIPredicateFunction objects. 233 collectSTIPredicates(); 234 235 checkCompleteness(); 236 } 237 238 void CodeGenSchedModels::checkSTIPredicates() const { 239 DenseMap<StringRef, const Record *> Declarations; 240 241 // There cannot be multiple declarations with the same name. 242 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl"); 243 for (const Record *R : Decls) { 244 StringRef Name = R->getValueAsString("Name"); 245 const auto It = Declarations.find(Name); 246 if (It == Declarations.end()) { 247 Declarations[Name] = R; 248 continue; 249 } 250 251 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared."); 252 PrintNote(It->second->getLoc(), "Previous declaration was here."); 253 PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found."); 254 } 255 256 // Disallow InstructionEquivalenceClasses with an empty instruction list. 257 const RecVec Defs = 258 Records.getAllDerivedDefinitions("InstructionEquivalenceClass"); 259 for (const Record *R : Defs) { 260 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes"); 261 if (Opcodes.empty()) { 262 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass " 263 "defined with an empty opcode list."); 264 } 265 } 266 } 267 268 // Used by function `processSTIPredicate` to construct a mask of machine 269 // instruction operands. 270 static APInt constructOperandMask(ArrayRef<int64_t> Indices) { 271 APInt OperandMask; 272 if (Indices.empty()) 273 return OperandMask; 274 275 int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end()); 276 assert(MaxIndex >= 0 && "Invalid negative indices in input!"); 277 OperandMask = OperandMask.zext(MaxIndex + 1); 278 for (const int64_t Index : Indices) { 279 assert(Index >= 0 && "Invalid negative indices!"); 280 OperandMask.setBit(Index); 281 } 282 283 return OperandMask; 284 } 285 286 static void 287 processSTIPredicate(STIPredicateFunction &Fn, 288 const DenseMap<Record *, unsigned> &ProcModelMap) { 289 DenseMap<const Record *, unsigned> Opcode2Index; 290 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>; 291 std::vector<OpcodeMapPair> OpcodeMappings; 292 std::vector<std::pair<APInt, APInt>> OpcodeMasks; 293 294 DenseMap<const Record *, unsigned> Predicate2Index; 295 unsigned NumUniquePredicates = 0; 296 297 // Number unique predicates and opcodes used by InstructionEquivalenceClass 298 // definitions. Each unique opcode will be associated with an OpcodeInfo 299 // object. 300 for (const Record *Def : Fn.getDefinitions()) { 301 RecVec Classes = Def->getValueAsListOfDefs("Classes"); 302 for (const Record *EC : Classes) { 303 const Record *Pred = EC->getValueAsDef("Predicate"); 304 if (Predicate2Index.find(Pred) == Predicate2Index.end()) 305 Predicate2Index[Pred] = NumUniquePredicates++; 306 307 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes"); 308 for (const Record *Opcode : Opcodes) { 309 if (Opcode2Index.find(Opcode) == Opcode2Index.end()) { 310 Opcode2Index[Opcode] = OpcodeMappings.size(); 311 OpcodeMappings.emplace_back(Opcode, OpcodeInfo()); 312 } 313 } 314 } 315 } 316 317 // Initialize vector `OpcodeMasks` with default values. We want to keep track 318 // of which processors "use" which opcodes. We also want to be able to 319 // identify predicates that are used by different processors for a same 320 // opcode. 321 // This information is used later on by this algorithm to sort OpcodeMapping 322 // elements based on their processor and predicate sets. 323 OpcodeMasks.resize(OpcodeMappings.size()); 324 APInt DefaultProcMask(ProcModelMap.size(), 0); 325 APInt DefaultPredMask(NumUniquePredicates, 0); 326 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks) 327 MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask); 328 329 // Construct a OpcodeInfo object for every unique opcode declared by an 330 // InstructionEquivalenceClass definition. 331 for (const Record *Def : Fn.getDefinitions()) { 332 RecVec Classes = Def->getValueAsListOfDefs("Classes"); 333 const Record *SchedModel = Def->getValueAsDef("SchedModel"); 334 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second; 335 APInt ProcMask(ProcModelMap.size(), 0); 336 ProcMask.setBit(ProcIndex); 337 338 for (const Record *EC : Classes) { 339 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes"); 340 341 std::vector<int64_t> OpIndices = 342 EC->getValueAsListOfInts("OperandIndices"); 343 APInt OperandMask = constructOperandMask(OpIndices); 344 345 const Record *Pred = EC->getValueAsDef("Predicate"); 346 APInt PredMask(NumUniquePredicates, 0); 347 PredMask.setBit(Predicate2Index[Pred]); 348 349 for (const Record *Opcode : Opcodes) { 350 unsigned OpcodeIdx = Opcode2Index[Opcode]; 351 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) { 352 std::string Message = 353 "Opcode " + Opcode->getName().str() + 354 " used by multiple InstructionEquivalenceClass definitions."; 355 PrintFatalError(EC->getLoc(), Message); 356 } 357 OpcodeMasks[OpcodeIdx].first |= ProcMask; 358 OpcodeMasks[OpcodeIdx].second |= PredMask; 359 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second; 360 361 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred); 362 } 363 } 364 } 365 366 // Sort OpcodeMappings elements based on their CPU and predicate masks. 367 // As a last resort, order elements by opcode identifier. 368 llvm::sort(OpcodeMappings, 369 [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) { 370 unsigned LhsIdx = Opcode2Index[Lhs.first]; 371 unsigned RhsIdx = Opcode2Index[Rhs.first]; 372 std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx]; 373 std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx]; 374 375 if (LhsMasks.first != RhsMasks.first) { 376 if (LhsMasks.first.countPopulation() < 377 RhsMasks.first.countPopulation()) 378 return true; 379 return LhsMasks.first.countLeadingZeros() > 380 RhsMasks.first.countLeadingZeros(); 381 } 382 383 if (LhsMasks.second != RhsMasks.second) { 384 if (LhsMasks.second.countPopulation() < 385 RhsMasks.second.countPopulation()) 386 return true; 387 return LhsMasks.second.countLeadingZeros() > 388 RhsMasks.second.countLeadingZeros(); 389 } 390 391 return LhsIdx < RhsIdx; 392 }); 393 394 // Now construct opcode groups. Groups are used by the SubtargetEmitter when 395 // expanding the body of a STIPredicate function. In particular, each opcode 396 // group is expanded into a sequence of labels in a switch statement. 397 // It identifies opcodes for which different processors define same predicates 398 // and same opcode masks. 399 for (OpcodeMapPair &Info : OpcodeMappings) 400 Fn.addOpcode(Info.first, std::move(Info.second)); 401 } 402 403 void CodeGenSchedModels::collectSTIPredicates() { 404 // Map STIPredicateDecl records to elements of vector 405 // CodeGenSchedModels::STIPredicates. 406 DenseMap<const Record *, unsigned> Decl2Index; 407 408 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate"); 409 for (const Record *R : RV) { 410 const Record *Decl = R->getValueAsDef("Declaration"); 411 412 const auto It = Decl2Index.find(Decl); 413 if (It == Decl2Index.end()) { 414 Decl2Index[Decl] = STIPredicates.size(); 415 STIPredicateFunction Predicate(Decl); 416 Predicate.addDefinition(R); 417 STIPredicates.emplace_back(std::move(Predicate)); 418 continue; 419 } 420 421 STIPredicateFunction &PreviousDef = STIPredicates[It->second]; 422 PreviousDef.addDefinition(R); 423 } 424 425 for (STIPredicateFunction &Fn : STIPredicates) 426 processSTIPredicate(Fn, ProcModelMap); 427 } 428 429 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask, 430 const llvm::APInt &OperandMask, 431 const Record *Predicate) { 432 auto It = llvm::find_if( 433 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) { 434 return P.Predicate == Predicate && P.OperandMask == OperandMask; 435 }); 436 if (It == Predicates.end()) { 437 Predicates.emplace_back(CpuMask, OperandMask, Predicate); 438 return; 439 } 440 It->ProcModelMask |= CpuMask; 441 } 442 443 void CodeGenSchedModels::checkMCInstPredicates() const { 444 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate"); 445 if (MCPredicates.empty()) 446 return; 447 448 // A target cannot have multiple TIIPredicate definitions with a same name. 449 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size()); 450 for (const Record *TIIPred : MCPredicates) { 451 StringRef Name = TIIPred->getValueAsString("FunctionName"); 452 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name); 453 if (It == TIIPredicates.end()) { 454 TIIPredicates[Name] = TIIPred; 455 continue; 456 } 457 458 PrintError(TIIPred->getLoc(), 459 "TIIPredicate " + Name + " is multiply defined."); 460 PrintNote(It->second->getLoc(), 461 " Previous definition of " + Name + " was here."); 462 PrintFatalError(TIIPred->getLoc(), 463 "Found conflicting definitions of TIIPredicate."); 464 } 465 } 466 467 void CodeGenSchedModels::collectRetireControlUnits() { 468 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); 469 470 for (Record *RCU : Units) { 471 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); 472 if (PM.RetireControlUnit) { 473 PrintError(RCU->getLoc(), 474 "Expected a single RetireControlUnit definition"); 475 PrintNote(PM.RetireControlUnit->getLoc(), 476 "Previous definition of RetireControlUnit was here"); 477 } 478 PM.RetireControlUnit = RCU; 479 } 480 } 481 482 /// Collect optional processor information. 483 void CodeGenSchedModels::collectOptionalProcessorInfo() { 484 // Find register file definitions for each processor. 485 collectRegisterFiles(); 486 487 // Collect processor RetireControlUnit descriptors if available. 488 collectRetireControlUnits(); 489 490 checkCompleteness(); 491 } 492 493 /// Gather all processor models. 494 void CodeGenSchedModels::collectProcModels() { 495 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 496 llvm::sort(ProcRecords, LessRecordFieldName()); 497 498 // Reserve space because we can. Reallocation would be ok. 499 ProcModels.reserve(ProcRecords.size()+1); 500 501 // Use idx=0 for NoModel/NoItineraries. 502 Record *NoModelDef = Records.getDef("NoSchedModel"); 503 Record *NoItinsDef = Records.getDef("NoItineraries"); 504 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); 505 ProcModelMap[NoModelDef] = 0; 506 507 // For each processor, find a unique machine model. 508 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); 509 for (Record *ProcRecord : ProcRecords) 510 addProcModel(ProcRecord); 511 } 512 513 /// Get a unique processor model based on the defined MachineModel and 514 /// ProcessorItineraries. 515 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 516 Record *ModelKey = getModelOrItinDef(ProcDef); 517 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 518 return; 519 520 std::string Name = ModelKey->getName(); 521 if (ModelKey->isSubClassOf("SchedMachineModel")) { 522 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 523 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); 524 } 525 else { 526 // An itinerary is defined without a machine model. Infer a new model. 527 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 528 Name = Name + "Model"; 529 ProcModels.emplace_back(ProcModels.size(), Name, 530 ProcDef->getValueAsDef("SchedModel"), ModelKey); 531 } 532 LLVM_DEBUG(ProcModels.back().dump()); 533 } 534 535 // Recursively find all reachable SchedReadWrite records. 536 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 537 SmallPtrSet<Record*, 16> &RWSet) { 538 if (!RWSet.insert(RWDef).second) 539 return; 540 RWDefs.push_back(RWDef); 541 // Reads don't currently have sequence records, but it can be added later. 542 if (RWDef->isSubClassOf("WriteSequence")) { 543 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 544 for (Record *WSRec : Seq) 545 scanSchedRW(WSRec, RWDefs, RWSet); 546 } 547 else if (RWDef->isSubClassOf("SchedVariant")) { 548 // Visit each variant (guarded by a different predicate). 549 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 550 for (Record *Variant : Vars) { 551 // Visit each RW in the sequence selected by the current variant. 552 RecVec Selected = Variant->getValueAsListOfDefs("Selected"); 553 for (Record *SelDef : Selected) 554 scanSchedRW(SelDef, RWDefs, RWSet); 555 } 556 } 557 } 558 559 // Collect and sort all SchedReadWrites reachable via tablegen records. 560 // More may be inferred later when inferring new SchedClasses from variants. 561 void CodeGenSchedModels::collectSchedRW() { 562 // Reserve idx=0 for invalid writes/reads. 563 SchedWrites.resize(1); 564 SchedReads.resize(1); 565 566 SmallPtrSet<Record*, 16> RWSet; 567 568 // Find all SchedReadWrites referenced by instruction defs. 569 RecVec SWDefs, SRDefs; 570 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 571 Record *SchedDef = Inst->TheDef; 572 if (SchedDef->isValueUnset("SchedRW")) 573 continue; 574 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 575 for (Record *RW : RWs) { 576 if (RW->isSubClassOf("SchedWrite")) 577 scanSchedRW(RW, SWDefs, RWSet); 578 else { 579 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 580 scanSchedRW(RW, SRDefs, RWSet); 581 } 582 } 583 } 584 // Find all ReadWrites referenced by InstRW. 585 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 586 for (Record *InstRWDef : InstRWDefs) { 587 // For all OperandReadWrites. 588 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); 589 for (Record *RWDef : RWDefs) { 590 if (RWDef->isSubClassOf("SchedWrite")) 591 scanSchedRW(RWDef, SWDefs, RWSet); 592 else { 593 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 594 scanSchedRW(RWDef, SRDefs, RWSet); 595 } 596 } 597 } 598 // Find all ReadWrites referenced by ItinRW. 599 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 600 for (Record *ItinRWDef : ItinRWDefs) { 601 // For all OperandReadWrites. 602 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); 603 for (Record *RWDef : RWDefs) { 604 if (RWDef->isSubClassOf("SchedWrite")) 605 scanSchedRW(RWDef, SWDefs, RWSet); 606 else { 607 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 608 scanSchedRW(RWDef, SRDefs, RWSet); 609 } 610 } 611 } 612 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 613 // for the loop below that initializes Alias vectors. 614 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 615 llvm::sort(AliasDefs, LessRecord()); 616 for (Record *ADef : AliasDefs) { 617 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 618 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 619 if (MatchDef->isSubClassOf("SchedWrite")) { 620 if (!AliasDef->isSubClassOf("SchedWrite")) 621 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); 622 scanSchedRW(AliasDef, SWDefs, RWSet); 623 } 624 else { 625 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 626 if (!AliasDef->isSubClassOf("SchedRead")) 627 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); 628 scanSchedRW(AliasDef, SRDefs, RWSet); 629 } 630 } 631 // Sort and add the SchedReadWrites directly referenced by instructions or 632 // itinerary resources. Index reads and writes in separate domains. 633 llvm::sort(SWDefs, LessRecord()); 634 for (Record *SWDef : SWDefs) { 635 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); 636 SchedWrites.emplace_back(SchedWrites.size(), SWDef); 637 } 638 llvm::sort(SRDefs, LessRecord()); 639 for (Record *SRDef : SRDefs) { 640 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); 641 SchedReads.emplace_back(SchedReads.size(), SRDef); 642 } 643 // Initialize WriteSequence vectors. 644 for (CodeGenSchedRW &CGRW : SchedWrites) { 645 if (!CGRW.IsSequence) 646 continue; 647 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, 648 /*IsRead=*/false); 649 } 650 // Initialize Aliases vectors. 651 for (Record *ADef : AliasDefs) { 652 Record *AliasDef = ADef->getValueAsDef("AliasRW"); 653 getSchedRW(AliasDef).IsAlias = true; 654 Record *MatchDef = ADef->getValueAsDef("MatchRW"); 655 CodeGenSchedRW &RW = getSchedRW(MatchDef); 656 if (RW.IsAlias) 657 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); 658 RW.Aliases.push_back(ADef); 659 } 660 LLVM_DEBUG( 661 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; 662 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 663 dbgs() << WIdx << ": "; 664 SchedWrites[WIdx].dump(); 665 dbgs() << '\n'; 666 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; 667 ++RIdx) { 668 dbgs() << RIdx << ": "; 669 SchedReads[RIdx].dump(); 670 dbgs() << '\n'; 671 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 672 for (Record *RWDef 673 : RWDefs) { 674 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { 675 StringRef Name = RWDef->getName(); 676 if (Name != "NoWrite" && Name != "ReadDefault") 677 dbgs() << "Unused SchedReadWrite " << Name << '\n'; 678 } 679 }); 680 } 681 682 /// Compute a SchedWrite name from a sequence of writes. 683 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) { 684 std::string Name("("); 685 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) { 686 if (I != Seq.begin()) 687 Name += '_'; 688 Name += getSchedRW(*I, IsRead).Name; 689 } 690 Name += ')'; 691 return Name; 692 } 693 694 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, 695 bool IsRead) const { 696 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 697 const auto I = find_if( 698 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); 699 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 700 } 701 702 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 703 for (const CodeGenSchedRW &Read : SchedReads) { 704 Record *ReadDef = Read.TheDef; 705 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 706 continue; 707 708 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 709 if (is_contained(ValidWrites, WriteDef)) { 710 return true; 711 } 712 } 713 return false; 714 } 715 716 static void splitSchedReadWrites(const RecVec &RWDefs, 717 RecVec &WriteDefs, RecVec &ReadDefs) { 718 for (Record *RWDef : RWDefs) { 719 if (RWDef->isSubClassOf("SchedWrite")) 720 WriteDefs.push_back(RWDef); 721 else { 722 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 723 ReadDefs.push_back(RWDef); 724 } 725 } 726 } 727 728 // Split the SchedReadWrites defs and call findRWs for each list. 729 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 730 IdxVec &Writes, IdxVec &Reads) const { 731 RecVec WriteDefs; 732 RecVec ReadDefs; 733 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 734 findRWs(WriteDefs, Writes, false); 735 findRWs(ReadDefs, Reads, true); 736 } 737 738 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 739 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 740 bool IsRead) const { 741 for (Record *RWDef : RWDefs) { 742 unsigned Idx = getSchedRWIdx(RWDef, IsRead); 743 assert(Idx && "failed to collect SchedReadWrite"); 744 RWs.push_back(Idx); 745 } 746 } 747 748 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 749 bool IsRead) const { 750 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 751 if (!SchedRW.IsSequence) { 752 RWSeq.push_back(RWIdx); 753 return; 754 } 755 int Repeat = 756 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 757 for (int i = 0; i < Repeat; ++i) { 758 for (unsigned I : SchedRW.Sequence) { 759 expandRWSequence(I, RWSeq, IsRead); 760 } 761 } 762 } 763 764 // Expand a SchedWrite as a sequence following any aliases that coincide with 765 // the given processor model. 766 void CodeGenSchedModels::expandRWSeqForProc( 767 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 768 const CodeGenProcModel &ProcModel) const { 769 770 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 771 Record *AliasDef = nullptr; 772 for (const Record *Rec : SchedWrite.Aliases) { 773 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); 774 if (Rec->getValueInit("SchedModel")->isComplete()) { 775 Record *ModelDef = Rec->getValueAsDef("SchedModel"); 776 if (&getProcModel(ModelDef) != &ProcModel) 777 continue; 778 } 779 if (AliasDef) 780 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 781 "defined for processor " + ProcModel.ModelName + 782 " Ensure only one SchedAlias exists per RW."); 783 AliasDef = AliasRW.TheDef; 784 } 785 if (AliasDef) { 786 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 787 RWSeq, IsRead,ProcModel); 788 return; 789 } 790 if (!SchedWrite.IsSequence) { 791 RWSeq.push_back(RWIdx); 792 return; 793 } 794 int Repeat = 795 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 796 for (int I = 0, E = Repeat; I < E; ++I) { 797 for (unsigned Idx : SchedWrite.Sequence) { 798 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); 799 } 800 } 801 } 802 803 // Find the existing SchedWrite that models this sequence of writes. 804 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq, 805 bool IsRead) { 806 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 807 808 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { 809 return makeArrayRef(RW.Sequence) == Seq; 810 }); 811 // Index zero reserved for invalid RW. 812 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); 813 } 814 815 /// Add this ReadWrite if it doesn't already exist. 816 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 817 bool IsRead) { 818 assert(!Seq.empty() && "cannot insert empty sequence"); 819 if (Seq.size() == 1) 820 return Seq.back(); 821 822 unsigned Idx = findRWForSequence(Seq, IsRead); 823 if (Idx) 824 return Idx; 825 826 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 827 unsigned RWIdx = RWVec.size(); 828 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 829 RWVec.push_back(SchedRW); 830 return RWIdx; 831 } 832 833 /// Visit all the instruction definitions for this target to gather and 834 /// enumerate the itinerary classes. These are the explicitly specified 835 /// SchedClasses. More SchedClasses may be inferred. 836 void CodeGenSchedModels::collectSchedClasses() { 837 838 // NoItinerary is always the first class at Idx=0 839 assert(SchedClasses.empty() && "Expected empty sched class"); 840 SchedClasses.emplace_back(0, "NoInstrModel", 841 Records.getDef("NoItinerary")); 842 SchedClasses.back().ProcIndices.push_back(0); 843 844 // Create a SchedClass for each unique combination of itinerary class and 845 // SchedRW list. 846 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 847 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); 848 IdxVec Writes, Reads; 849 if (!Inst->TheDef->isValueUnset("SchedRW")) 850 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 851 852 // ProcIdx == 0 indicates the class applies to all processors. 853 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); 854 InstrClassMap[Inst->TheDef] = SCIdx; 855 } 856 // Create classes for InstRW defs. 857 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 858 llvm::sort(InstRWDefs, LessRecord()); 859 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); 860 for (Record *RWDef : InstRWDefs) 861 createInstRWClass(RWDef); 862 863 NumInstrSchedClasses = SchedClasses.size(); 864 865 bool EnableDump = false; 866 LLVM_DEBUG(EnableDump = true); 867 if (!EnableDump) 868 return; 869 870 LLVM_DEBUG( 871 dbgs() 872 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); 873 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 874 StringRef InstName = Inst->TheDef->getName(); 875 unsigned SCIdx = getSchedClassIdx(*Inst); 876 if (!SCIdx) { 877 LLVM_DEBUG({ 878 if (!Inst->hasNoSchedulingInfo) 879 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; 880 }); 881 continue; 882 } 883 CodeGenSchedClass &SC = getSchedClass(SCIdx); 884 if (SC.ProcIndices[0] != 0) 885 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " 886 "must not be subtarget specific."); 887 888 IdxVec ProcIndices; 889 if (SC.ItinClassDef->getName() != "NoItinerary") { 890 ProcIndices.push_back(0); 891 dbgs() << "Itinerary for " << InstName << ": " 892 << SC.ItinClassDef->getName() << '\n'; 893 } 894 if (!SC.Writes.empty()) { 895 ProcIndices.push_back(0); 896 LLVM_DEBUG({ 897 dbgs() << "SchedRW machine model for " << InstName; 898 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; 899 ++WI) 900 dbgs() << " " << SchedWrites[*WI].Name; 901 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) 902 dbgs() << " " << SchedReads[*RI].Name; 903 dbgs() << '\n'; 904 }); 905 } 906 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 907 for (Record *RWDef : RWDefs) { 908 const CodeGenProcModel &ProcModel = 909 getProcModel(RWDef->getValueAsDef("SchedModel")); 910 ProcIndices.push_back(ProcModel.Index); 911 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " 912 << InstName); 913 IdxVec Writes; 914 IdxVec Reads; 915 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 916 Writes, Reads); 917 LLVM_DEBUG({ 918 for (unsigned WIdx : Writes) 919 dbgs() << " " << SchedWrites[WIdx].Name; 920 for (unsigned RIdx : Reads) 921 dbgs() << " " << SchedReads[RIdx].Name; 922 dbgs() << '\n'; 923 }); 924 } 925 // If ProcIndices contains zero, the class applies to all processors. 926 LLVM_DEBUG({ 927 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) { 928 for (const CodeGenProcModel &PM : ProcModels) { 929 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index)) 930 dbgs() << "No machine model for " << Inst->TheDef->getName() 931 << " on processor " << PM.ModelName << '\n'; 932 } 933 } 934 }); 935 } 936 } 937 938 // Get the SchedClass index for an instruction. 939 unsigned 940 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { 941 return InstrClassMap.lookup(Inst.TheDef); 942 } 943 944 std::string 945 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, 946 ArrayRef<unsigned> OperWrites, 947 ArrayRef<unsigned> OperReads) { 948 949 std::string Name; 950 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") 951 Name = ItinClassDef->getName(); 952 for (unsigned Idx : OperWrites) { 953 if (!Name.empty()) 954 Name += '_'; 955 Name += SchedWrites[Idx].Name; 956 } 957 for (unsigned Idx : OperReads) { 958 Name += '_'; 959 Name += SchedReads[Idx].Name; 960 } 961 return Name; 962 } 963 964 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 965 966 std::string Name; 967 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 968 if (I != InstDefs.begin()) 969 Name += '_'; 970 Name += (*I)->getName(); 971 } 972 return Name; 973 } 974 975 /// Add an inferred sched class from an itinerary class and per-operand list of 976 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of 977 /// processors that may utilize this class. 978 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, 979 ArrayRef<unsigned> OperWrites, 980 ArrayRef<unsigned> OperReads, 981 ArrayRef<unsigned> ProcIndices) { 982 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 983 984 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { 985 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); 986 }; 987 988 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); 989 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); 990 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { 991 IdxVec PI; 992 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 993 SchedClasses[Idx].ProcIndices.end(), 994 ProcIndices.begin(), ProcIndices.end(), 995 std::back_inserter(PI)); 996 SchedClasses[Idx].ProcIndices = std::move(PI); 997 return Idx; 998 } 999 Idx = SchedClasses.size(); 1000 SchedClasses.emplace_back(Idx, 1001 createSchedClassName(ItinClassDef, OperWrites, 1002 OperReads), 1003 ItinClassDef); 1004 CodeGenSchedClass &SC = SchedClasses.back(); 1005 SC.Writes = OperWrites; 1006 SC.Reads = OperReads; 1007 SC.ProcIndices = ProcIndices; 1008 1009 return Idx; 1010 } 1011 1012 // Create classes for each set of opcodes that are in the same InstReadWrite 1013 // definition across all processors. 1014 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 1015 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 1016 // intersects with an existing class via a previous InstRWDef. Instrs that do 1017 // not intersect with an existing class refer back to their former class as 1018 // determined from ItinDef or SchedRW. 1019 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs; 1020 // Sort Instrs into sets. 1021 const RecVec *InstDefs = Sets.expand(InstRWDef); 1022 if (InstDefs->empty()) 1023 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 1024 1025 for (Record *InstDef : *InstDefs) { 1026 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); 1027 if (Pos == InstrClassMap.end()) 1028 PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); 1029 unsigned SCIdx = Pos->second; 1030 ClassInstrs[SCIdx].push_back(InstDef); 1031 } 1032 // For each set of Instrs, create a new class if necessary, and map or remap 1033 // the Instrs to it. 1034 for (auto &Entry : ClassInstrs) { 1035 unsigned OldSCIdx = Entry.first; 1036 ArrayRef<Record*> InstDefs = Entry.second; 1037 // If the all instrs in the current class are accounted for, then leave 1038 // them mapped to their old class. 1039 if (OldSCIdx) { 1040 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; 1041 if (!RWDefs.empty()) { 1042 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); 1043 unsigned OrigNumInstrs = 1044 count_if(*OrigInstDefs, [&](Record *OIDef) { 1045 return InstrClassMap[OIDef] == OldSCIdx; 1046 }); 1047 if (OrigNumInstrs == InstDefs.size()) { 1048 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 1049 "expected a generic SchedClass"); 1050 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 1051 // Make sure we didn't already have a InstRW containing this 1052 // instruction on this model. 1053 for (Record *RWD : RWDefs) { 1054 if (RWD->getValueAsDef("SchedModel") == RWModelDef && 1055 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { 1056 for (Record *Inst : InstDefs) { 1057 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 1058 Inst->getName() + " also matches " + 1059 RWD->getValue("Instrs")->getValue()->getAsString()); 1060 } 1061 } 1062 } 1063 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" 1064 << SchedClasses[OldSCIdx].Name << " on " 1065 << RWModelDef->getName() << "\n"); 1066 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); 1067 continue; 1068 } 1069 } 1070 } 1071 unsigned SCIdx = SchedClasses.size(); 1072 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); 1073 CodeGenSchedClass &SC = SchedClasses.back(); 1074 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " 1075 << InstRWDef->getValueAsDef("SchedModel")->getName() 1076 << "\n"); 1077 1078 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 1079 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 1080 SC.Writes = SchedClasses[OldSCIdx].Writes; 1081 SC.Reads = SchedClasses[OldSCIdx].Reads; 1082 SC.ProcIndices.push_back(0); 1083 // If we had an old class, copy it's InstRWs to this new class. 1084 if (OldSCIdx) { 1085 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 1086 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { 1087 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { 1088 for (Record *InstDef : InstDefs) { 1089 PrintFatalError(OldRWDef->getLoc(), "Overlapping InstRW def " + 1090 InstDef->getName() + " also matches " + 1091 OldRWDef->getValue("Instrs")->getValue()->getAsString()); 1092 } 1093 } 1094 assert(OldRWDef != InstRWDef && 1095 "SchedClass has duplicate InstRW def"); 1096 SC.InstRWs.push_back(OldRWDef); 1097 } 1098 } 1099 // Map each Instr to this new class. 1100 for (Record *InstDef : InstDefs) 1101 InstrClassMap[InstDef] = SCIdx; 1102 SC.InstRWs.push_back(InstRWDef); 1103 } 1104 } 1105 1106 // True if collectProcItins found anything. 1107 bool CodeGenSchedModels::hasItineraries() const { 1108 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) 1109 if (PM.hasItineraries()) 1110 return true; 1111 return false; 1112 } 1113 1114 // Gather the processor itineraries. 1115 void CodeGenSchedModels::collectProcItins() { 1116 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); 1117 for (CodeGenProcModel &ProcModel : ProcModels) { 1118 if (!ProcModel.hasItineraries()) 1119 continue; 1120 1121 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 1122 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); 1123 1124 // Populate ItinDefList with Itinerary records. 1125 ProcModel.ItinDefList.resize(NumInstrSchedClasses); 1126 1127 // Insert each itinerary data record in the correct position within 1128 // the processor model's ItinDefList. 1129 for (Record *ItinData : ItinRecords) { 1130 const Record *ItinDef = ItinData->getValueAsDef("TheClass"); 1131 bool FoundClass = false; 1132 1133 for (const CodeGenSchedClass &SC : 1134 make_range(schedClassBegin(), schedClassEnd())) { 1135 // Multiple SchedClasses may share an itinerary. Update all of them. 1136 if (SC.ItinClassDef == ItinDef) { 1137 ProcModel.ItinDefList[SC.Index] = ItinData; 1138 FoundClass = true; 1139 } 1140 } 1141 if (!FoundClass) { 1142 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() 1143 << " missing class for itinerary " 1144 << ItinDef->getName() << '\n'); 1145 } 1146 } 1147 // Check for missing itinerary entries. 1148 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 1149 LLVM_DEBUG( 1150 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 1151 if (!ProcModel.ItinDefList[i]) 1152 dbgs() << ProcModel.ItinsDef->getName() 1153 << " missing itinerary for class " << SchedClasses[i].Name 1154 << '\n'; 1155 }); 1156 } 1157 } 1158 1159 // Gather the read/write types for each itinerary class. 1160 void CodeGenSchedModels::collectProcItinRW() { 1161 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 1162 llvm::sort(ItinRWDefs, LessRecord()); 1163 for (Record *RWDef : ItinRWDefs) { 1164 if (!RWDef->getValueInit("SchedModel")->isComplete()) 1165 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); 1166 Record *ModelDef = RWDef->getValueAsDef("SchedModel"); 1167 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 1168 if (I == ProcModelMap.end()) { 1169 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " 1170 + ModelDef->getName()); 1171 } 1172 ProcModels[I->second].ItinRWDefs.push_back(RWDef); 1173 } 1174 } 1175 1176 // Gather the unsupported features for processor models. 1177 void CodeGenSchedModels::collectProcUnsupportedFeatures() { 1178 for (CodeGenProcModel &ProcModel : ProcModels) { 1179 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) { 1180 ProcModel.UnsupportedFeaturesDefs.push_back(Pred); 1181 } 1182 } 1183 } 1184 1185 /// Infer new classes from existing classes. In the process, this may create new 1186 /// SchedWrites from sequences of existing SchedWrites. 1187 void CodeGenSchedModels::inferSchedClasses() { 1188 LLVM_DEBUG( 1189 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); 1190 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); 1191 1192 // Visit all existing classes and newly created classes. 1193 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 1194 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); 1195 1196 if (SchedClasses[Idx].ItinClassDef) 1197 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 1198 if (!SchedClasses[Idx].InstRWs.empty()) 1199 inferFromInstRWs(Idx); 1200 if (!SchedClasses[Idx].Writes.empty()) { 1201 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 1202 Idx, SchedClasses[Idx].ProcIndices); 1203 } 1204 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 1205 "too many SchedVariants"); 1206 } 1207 } 1208 1209 /// Infer classes from per-processor itinerary resources. 1210 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 1211 unsigned FromClassIdx) { 1212 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1213 const CodeGenProcModel &PM = ProcModels[PIdx]; 1214 // For all ItinRW entries. 1215 bool HasMatch = false; 1216 for (const Record *Rec : PM.ItinRWDefs) { 1217 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); 1218 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1219 continue; 1220 if (HasMatch) 1221 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class " 1222 + ItinClassDef->getName() 1223 + " in ItinResources for " + PM.ModelName); 1224 HasMatch = true; 1225 IdxVec Writes, Reads; 1226 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1227 inferFromRW(Writes, Reads, FromClassIdx, PIdx); 1228 } 1229 } 1230 } 1231 1232 /// Infer classes from per-processor InstReadWrite definitions. 1233 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 1234 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { 1235 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); 1236 Record *Rec = SchedClasses[SCIdx].InstRWs[I]; 1237 const RecVec *InstDefs = Sets.expand(Rec); 1238 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 1239 for (; II != IE; ++II) { 1240 if (InstrClassMap[*II] == SCIdx) 1241 break; 1242 } 1243 // If this class no longer has any instructions mapped to it, it has become 1244 // irrelevant. 1245 if (II == IE) 1246 continue; 1247 IdxVec Writes, Reads; 1248 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1249 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; 1250 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. 1251 } 1252 } 1253 1254 namespace { 1255 1256 // Helper for substituteVariantOperand. 1257 struct TransVariant { 1258 Record *VarOrSeqDef; // Variant or sequence. 1259 unsigned RWIdx; // Index of this variant or sequence's matched type. 1260 unsigned ProcIdx; // Processor model index or zero for any. 1261 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 1262 1263 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 1264 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 1265 }; 1266 1267 // Associate a predicate with the SchedReadWrite that it guards. 1268 // RWIdx is the index of the read/write variant. 1269 struct PredCheck { 1270 bool IsRead; 1271 unsigned RWIdx; 1272 Record *Predicate; 1273 1274 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 1275 }; 1276 1277 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 1278 struct PredTransition { 1279 // A predicate term is a conjunction of PredChecks. 1280 SmallVector<PredCheck, 4> PredTerm; 1281 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 1282 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 1283 SmallVector<unsigned, 4> ProcIndices; 1284 }; 1285 1286 // Encapsulate a set of partially constructed transitions. 1287 // The results are built by repeated calls to substituteVariants. 1288 class PredTransitions { 1289 CodeGenSchedModels &SchedModels; 1290 1291 public: 1292 std::vector<PredTransition> TransVec; 1293 1294 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 1295 1296 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 1297 bool IsRead, unsigned StartIdx); 1298 1299 void substituteVariants(const PredTransition &Trans); 1300 1301 #ifndef NDEBUG 1302 void dump() const; 1303 #endif 1304 1305 private: 1306 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 1307 void getIntersectingVariants( 1308 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1309 std::vector<TransVariant> &IntersectingVariants); 1310 void pushVariant(const TransVariant &VInfo, bool IsRead); 1311 }; 1312 1313 } // end anonymous namespace 1314 1315 // Return true if this predicate is mutually exclusive with a PredTerm. This 1316 // degenerates into checking if the predicate is mutually exclusive with any 1317 // predicate in the Term's conjunction. 1318 // 1319 // All predicates associated with a given SchedRW are considered mutually 1320 // exclusive. This should work even if the conditions expressed by the 1321 // predicates are not exclusive because the predicates for a given SchedWrite 1322 // are always checked in the order they are defined in the .td file. Later 1323 // conditions implicitly negate any prior condition. 1324 bool PredTransitions::mutuallyExclusive(Record *PredDef, 1325 ArrayRef<PredCheck> Term) { 1326 for (const PredCheck &PC: Term) { 1327 if (PC.Predicate == PredDef) 1328 return false; 1329 1330 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); 1331 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 1332 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1333 if (any_of(Variants, [PredDef](const Record *R) { 1334 return R->getValueAsDef("Predicate") == PredDef; 1335 })) 1336 return true; 1337 } 1338 return false; 1339 } 1340 1341 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 1342 CodeGenSchedModels &SchedModels) { 1343 if (RW.HasVariants) 1344 return true; 1345 1346 for (Record *Alias : RW.Aliases) { 1347 const CodeGenSchedRW &AliasRW = 1348 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW")); 1349 if (AliasRW.HasVariants) 1350 return true; 1351 if (AliasRW.IsSequence) { 1352 IdxVec ExpandedRWs; 1353 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1354 for (unsigned SI : ExpandedRWs) { 1355 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead), 1356 SchedModels)) 1357 return true; 1358 } 1359 } 1360 } 1361 return false; 1362 } 1363 1364 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1365 CodeGenSchedModels &SchedModels) { 1366 for (const PredTransition &PTI : Transitions) { 1367 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences) 1368 for (unsigned WI : WSI) 1369 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels)) 1370 return true; 1371 1372 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences) 1373 for (unsigned RI : RSI) 1374 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels)) 1375 return true; 1376 } 1377 return false; 1378 } 1379 1380 // Populate IntersectingVariants with any variants or aliased sequences of the 1381 // given SchedRW whose processor indices and predicates are not mutually 1382 // exclusive with the given transition. 1383 void PredTransitions::getIntersectingVariants( 1384 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1385 std::vector<TransVariant> &IntersectingVariants) { 1386 1387 bool GenericRW = false; 1388 1389 std::vector<TransVariant> Variants; 1390 if (SchedRW.HasVariants) { 1391 unsigned VarProcIdx = 0; 1392 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1393 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1394 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1395 } 1396 // Push each variant. Assign TransVecIdx later. 1397 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1398 for (Record *VarDef : VarDefs) 1399 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); 1400 if (VarProcIdx == 0) 1401 GenericRW = true; 1402 } 1403 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1404 AI != AE; ++AI) { 1405 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1406 // to is defined within a processor model, constrain all variants to 1407 // that processor. 1408 unsigned AliasProcIdx = 0; 1409 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1410 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1411 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1412 } 1413 const CodeGenSchedRW &AliasRW = 1414 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1415 1416 if (AliasRW.HasVariants) { 1417 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1418 for (Record *VD : VarDefs) 1419 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); 1420 } 1421 if (AliasRW.IsSequence) 1422 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); 1423 if (AliasProcIdx == 0) 1424 GenericRW = true; 1425 } 1426 for (TransVariant &Variant : Variants) { 1427 // Don't expand variants if the processor models don't intersect. 1428 // A zero processor index means any processor. 1429 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; 1430 if (ProcIndices[0] && Variant.ProcIdx) { 1431 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1432 Variant.ProcIdx); 1433 if (!Cnt) 1434 continue; 1435 if (Cnt > 1) { 1436 const CodeGenProcModel &PM = 1437 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1438 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1439 "Multiple variants defined for processor " + 1440 PM.ModelName + 1441 " Ensure only one SchedAlias exists per RW."); 1442 } 1443 } 1444 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1445 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1446 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1447 continue; 1448 } 1449 if (IntersectingVariants.empty()) { 1450 // The first variant builds on the existing transition. 1451 Variant.TransVecIdx = TransIdx; 1452 IntersectingVariants.push_back(Variant); 1453 } 1454 else { 1455 // Push another copy of the current transition for more variants. 1456 Variant.TransVecIdx = TransVec.size(); 1457 IntersectingVariants.push_back(Variant); 1458 TransVec.push_back(TransVec[TransIdx]); 1459 } 1460 } 1461 if (GenericRW && IntersectingVariants.empty()) { 1462 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " 1463 "a matching predicate on any processor"); 1464 } 1465 } 1466 1467 // Push the Reads/Writes selected by this variant onto the PredTransition 1468 // specified by VInfo. 1469 void PredTransitions:: 1470 pushVariant(const TransVariant &VInfo, bool IsRead) { 1471 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1472 1473 // If this operand transition is reached through a processor-specific alias, 1474 // then the whole transition is specific to this processor. 1475 if (VInfo.ProcIdx != 0) 1476 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1477 1478 IdxVec SelectedRWs; 1479 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1480 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1481 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef); 1482 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1483 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1484 } 1485 else { 1486 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1487 "variant must be a SchedVariant or aliased WriteSequence"); 1488 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1489 } 1490 1491 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1492 1493 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead 1494 ? Trans.ReadSequences : Trans.WriteSequences; 1495 if (SchedRW.IsVariadic) { 1496 unsigned OperIdx = RWSequences.size()-1; 1497 // Make N-1 copies of this transition's last sequence. 1498 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, 1499 RWSequences[OperIdx]); 1500 // Push each of the N elements of the SelectedRWs onto a copy of the last 1501 // sequence (split the current operand into N operands). 1502 // Note that write sequences should be expanded within this loop--the entire 1503 // sequence belongs to a single operand. 1504 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1505 RWI != RWE; ++RWI, ++OperIdx) { 1506 IdxVec ExpandedRWs; 1507 if (IsRead) 1508 ExpandedRWs.push_back(*RWI); 1509 else 1510 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1511 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1512 ExpandedRWs.begin(), ExpandedRWs.end()); 1513 } 1514 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1515 } 1516 else { 1517 // Push this transition's expanded sequence onto this transition's last 1518 // sequence (add to the current operand's sequence). 1519 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1520 IdxVec ExpandedRWs; 1521 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1522 RWI != RWE; ++RWI) { 1523 if (IsRead) 1524 ExpandedRWs.push_back(*RWI); 1525 else 1526 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1527 } 1528 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1529 } 1530 } 1531 1532 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1533 // operand. StartIdx is an index into TransVec where partial results 1534 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1535 // of TransVec. 1536 void PredTransitions::substituteVariantOperand( 1537 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1538 1539 // Visit each original RW within the current sequence. 1540 for (SmallVectorImpl<unsigned>::const_iterator 1541 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1542 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1543 // Push this RW on all partial PredTransitions or distribute variants. 1544 // New PredTransitions may be pushed within this loop which should not be 1545 // revisited (TransEnd must be loop invariant). 1546 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1547 TransIdx != TransEnd; ++TransIdx) { 1548 // In the common case, push RW onto the current operand's sequence. 1549 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1550 if (IsRead) 1551 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1552 else 1553 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1554 continue; 1555 } 1556 // Distribute this partial PredTransition across intersecting variants. 1557 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1558 std::vector<TransVariant> IntersectingVariants; 1559 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1560 // Now expand each variant on top of its copy of the transition. 1561 for (std::vector<TransVariant>::const_iterator 1562 IVI = IntersectingVariants.begin(), 1563 IVE = IntersectingVariants.end(); 1564 IVI != IVE; ++IVI) { 1565 pushVariant(*IVI, IsRead); 1566 } 1567 } 1568 } 1569 } 1570 1571 // For each variant of a Read/Write in Trans, substitute the sequence of 1572 // Read/Writes guarded by the variant. This is exponential in the number of 1573 // variant Read/Writes, but in practice detection of mutually exclusive 1574 // predicates should result in linear growth in the total number variants. 1575 // 1576 // This is one step in a breadth-first search of nested variants. 1577 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1578 // Build up a set of partial results starting at the back of 1579 // PredTransitions. Remember the first new transition. 1580 unsigned StartIdx = TransVec.size(); 1581 TransVec.emplace_back(); 1582 TransVec.back().PredTerm = Trans.PredTerm; 1583 TransVec.back().ProcIndices = Trans.ProcIndices; 1584 1585 // Visit each original write sequence. 1586 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1587 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1588 WSI != WSE; ++WSI) { 1589 // Push a new (empty) write sequence onto all partial Transitions. 1590 for (std::vector<PredTransition>::iterator I = 1591 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1592 I->WriteSequences.emplace_back(); 1593 } 1594 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1595 } 1596 // Visit each original read sequence. 1597 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 1598 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1599 RSI != RSE; ++RSI) { 1600 // Push a new (empty) read sequence onto all partial Transitions. 1601 for (std::vector<PredTransition>::iterator I = 1602 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1603 I->ReadSequences.emplace_back(); 1604 } 1605 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1606 } 1607 } 1608 1609 // Create a new SchedClass for each variant found by inferFromRW. Pass 1610 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1611 unsigned FromClassIdx, 1612 CodeGenSchedModels &SchedModels) { 1613 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1614 // requires creating a new SchedClass. 1615 for (ArrayRef<PredTransition>::iterator 1616 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1617 IdxVec OperWritesVariant; 1618 transform(I->WriteSequences, std::back_inserter(OperWritesVariant), 1619 [&SchedModels](ArrayRef<unsigned> WS) { 1620 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false); 1621 }); 1622 IdxVec OperReadsVariant; 1623 transform(I->ReadSequences, std::back_inserter(OperReadsVariant), 1624 [&SchedModels](ArrayRef<unsigned> RS) { 1625 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true); 1626 }); 1627 CodeGenSchedTransition SCTrans; 1628 SCTrans.ToClassIdx = 1629 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, 1630 OperReadsVariant, I->ProcIndices); 1631 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end()); 1632 // The final PredTerm is unique set of predicates guarding the transition. 1633 RecVec Preds; 1634 transform(I->PredTerm, std::back_inserter(Preds), 1635 [](const PredCheck &P) { 1636 return P.Predicate; 1637 }); 1638 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); 1639 SCTrans.PredTerm = std::move(Preds); 1640 SchedModels.getSchedClass(FromClassIdx) 1641 .Transitions.push_back(std::move(SCTrans)); 1642 } 1643 } 1644 1645 // Create new SchedClasses for the given ReadWrite list. If any of the 1646 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1647 // of the ReadWrite list, following Aliases if necessary. 1648 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites, 1649 ArrayRef<unsigned> OperReads, 1650 unsigned FromClassIdx, 1651 ArrayRef<unsigned> ProcIndices) { 1652 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); 1653 dbgs() << ") "); 1654 1655 // Create a seed transition with an empty PredTerm and the expanded sequences 1656 // of SchedWrites for the current SchedClass. 1657 std::vector<PredTransition> LastTransitions; 1658 LastTransitions.emplace_back(); 1659 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1660 ProcIndices.end()); 1661 1662 for (unsigned WriteIdx : OperWrites) { 1663 IdxVec WriteSeq; 1664 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); 1665 LastTransitions[0].WriteSequences.emplace_back(); 1666 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back(); 1667 Seq.append(WriteSeq.begin(), WriteSeq.end()); 1668 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1669 } 1670 LLVM_DEBUG(dbgs() << " Reads: "); 1671 for (unsigned ReadIdx : OperReads) { 1672 IdxVec ReadSeq; 1673 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); 1674 LastTransitions[0].ReadSequences.emplace_back(); 1675 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back(); 1676 Seq.append(ReadSeq.begin(), ReadSeq.end()); 1677 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1678 } 1679 LLVM_DEBUG(dbgs() << '\n'); 1680 1681 // Collect all PredTransitions for individual operands. 1682 // Iterate until no variant writes remain. 1683 while (hasVariant(LastTransitions, *this)) { 1684 PredTransitions Transitions(*this); 1685 for (const PredTransition &Trans : LastTransitions) 1686 Transitions.substituteVariants(Trans); 1687 LLVM_DEBUG(Transitions.dump()); 1688 LastTransitions.swap(Transitions.TransVec); 1689 } 1690 // If the first transition has no variants, nothing to do. 1691 if (LastTransitions[0].PredTerm.empty()) 1692 return; 1693 1694 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1695 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1696 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1697 } 1698 1699 // Check if any processor resource group contains all resource records in 1700 // SubUnits. 1701 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { 1702 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1703 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1704 continue; 1705 RecVec SuperUnits = 1706 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1707 RecIter RI = SubUnits.begin(), RE = SubUnits.end(); 1708 for ( ; RI != RE; ++RI) { 1709 if (!is_contained(SuperUnits, *RI)) { 1710 break; 1711 } 1712 } 1713 if (RI == RE) 1714 return true; 1715 } 1716 return false; 1717 } 1718 1719 // Verify that overlapping groups have a common supergroup. 1720 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { 1721 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { 1722 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) 1723 continue; 1724 RecVec CheckUnits = 1725 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); 1726 for (unsigned j = i+1; j < e; ++j) { 1727 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) 1728 continue; 1729 RecVec OtherUnits = 1730 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); 1731 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), 1732 OtherUnits.begin(), OtherUnits.end()) 1733 != CheckUnits.end()) { 1734 // CheckUnits and OtherUnits overlap 1735 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), 1736 CheckUnits.end()); 1737 if (!hasSuperGroup(OtherUnits, PM)) { 1738 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), 1739 "proc resource group overlaps with " 1740 + PM.ProcResourceDefs[j]->getName() 1741 + " but no supergroup contains both."); 1742 } 1743 } 1744 } 1745 } 1746 } 1747 1748 // Collect all the RegisterFile definitions available in this target. 1749 void CodeGenSchedModels::collectRegisterFiles() { 1750 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); 1751 1752 // RegisterFiles is the vector of CodeGenRegisterFile. 1753 for (Record *RF : RegisterFileDefs) { 1754 // For each register file definition, construct a CodeGenRegisterFile object 1755 // and add it to the appropriate scheduling model. 1756 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); 1757 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); 1758 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); 1759 CGRF.MaxMovesEliminatedPerCycle = 1760 RF->getValueAsInt("MaxMovesEliminatedPerCycle"); 1761 CGRF.AllowZeroMoveEliminationOnly = 1762 RF->getValueAsBit("AllowZeroMoveEliminationOnly"); 1763 1764 // Now set the number of physical registers as well as the cost of registers 1765 // in each register class. 1766 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); 1767 if (!CGRF.NumPhysRegs) { 1768 PrintFatalError(RF->getLoc(), 1769 "Invalid RegisterFile with zero physical registers"); 1770 } 1771 1772 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); 1773 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts"); 1774 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination"); 1775 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { 1776 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; 1777 1778 bool AllowMoveElim = false; 1779 if (MoveElimInfo->size() > I) { 1780 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I)); 1781 AllowMoveElim = Val->getValue(); 1782 } 1783 1784 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim); 1785 } 1786 } 1787 } 1788 1789 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1790 void CodeGenSchedModels::collectProcResources() { 1791 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); 1792 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1793 1794 // Add any subtarget-specific SchedReadWrites that are directly associated 1795 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1796 // determine which processors they apply to. 1797 for (const CodeGenSchedClass &SC : 1798 make_range(schedClassBegin(), schedClassEnd())) { 1799 if (SC.ItinClassDef) { 1800 collectItinProcResources(SC.ItinClassDef); 1801 continue; 1802 } 1803 1804 // This class may have a default ReadWrite list which can be overriden by 1805 // InstRW definitions. 1806 for (Record *RW : SC.InstRWs) { 1807 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1808 unsigned PIdx = getProcModel(RWModelDef).Index; 1809 IdxVec Writes, Reads; 1810 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1811 collectRWResources(Writes, Reads, PIdx); 1812 } 1813 1814 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); 1815 } 1816 // Add resources separately defined by each subtarget. 1817 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1818 for (Record *WR : WRDefs) { 1819 Record *ModelDef = WR->getValueAsDef("SchedModel"); 1820 addWriteRes(WR, getProcModel(ModelDef).Index); 1821 } 1822 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); 1823 for (Record *SWR : SWRDefs) { 1824 Record *ModelDef = SWR->getValueAsDef("SchedModel"); 1825 addWriteRes(SWR, getProcModel(ModelDef).Index); 1826 } 1827 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1828 for (Record *RA : RADefs) { 1829 Record *ModelDef = RA->getValueAsDef("SchedModel"); 1830 addReadAdvance(RA, getProcModel(ModelDef).Index); 1831 } 1832 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); 1833 for (Record *SRA : SRADefs) { 1834 if (SRA->getValueInit("SchedModel")->isComplete()) { 1835 Record *ModelDef = SRA->getValueAsDef("SchedModel"); 1836 addReadAdvance(SRA, getProcModel(ModelDef).Index); 1837 } 1838 } 1839 // Add ProcResGroups that are defined within this processor model, which may 1840 // not be directly referenced but may directly specify a buffer size. 1841 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); 1842 for (Record *PRG : ProcResGroups) { 1843 if (!PRG->getValueInit("SchedModel")->isComplete()) 1844 continue; 1845 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); 1846 if (!is_contained(PM.ProcResourceDefs, PRG)) 1847 PM.ProcResourceDefs.push_back(PRG); 1848 } 1849 // Add ProcResourceUnits unconditionally. 1850 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { 1851 if (!PRU->getValueInit("SchedModel")->isComplete()) 1852 continue; 1853 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); 1854 if (!is_contained(PM.ProcResourceDefs, PRU)) 1855 PM.ProcResourceDefs.push_back(PRU); 1856 } 1857 // Finalize each ProcModel by sorting the record arrays. 1858 for (CodeGenProcModel &PM : ProcModels) { 1859 llvm::sort(PM.WriteResDefs, LessRecord()); 1860 llvm::sort(PM.ReadAdvanceDefs, LessRecord()); 1861 llvm::sort(PM.ProcResourceDefs, LessRecord()); 1862 LLVM_DEBUG( 1863 PM.dump(); 1864 dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), 1865 RE = PM.WriteResDefs.end(); 1866 RI != RE; ++RI) { 1867 if ((*RI)->isSubClassOf("WriteRes")) 1868 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1869 else 1870 dbgs() << (*RI)->getName() << " "; 1871 } dbgs() << "\nReadAdvanceDefs: "; 1872 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1873 RE = PM.ReadAdvanceDefs.end(); 1874 RI != RE; ++RI) { 1875 if ((*RI)->isSubClassOf("ReadAdvance")) 1876 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1877 else 1878 dbgs() << (*RI)->getName() << " "; 1879 } dbgs() 1880 << "\nProcResourceDefs: "; 1881 for (RecIter RI = PM.ProcResourceDefs.begin(), 1882 RE = PM.ProcResourceDefs.end(); 1883 RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() 1884 << '\n'); 1885 verifyProcResourceGroups(PM); 1886 } 1887 1888 ProcResourceDefs.clear(); 1889 ProcResGroups.clear(); 1890 } 1891 1892 void CodeGenSchedModels::checkCompleteness() { 1893 bool Complete = true; 1894 bool HadCompleteModel = false; 1895 for (const CodeGenProcModel &ProcModel : procModels()) { 1896 const bool HasItineraries = ProcModel.hasItineraries(); 1897 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) 1898 continue; 1899 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 1900 if (Inst->hasNoSchedulingInfo) 1901 continue; 1902 if (ProcModel.isUnsupported(*Inst)) 1903 continue; 1904 unsigned SCIdx = getSchedClassIdx(*Inst); 1905 if (!SCIdx) { 1906 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { 1907 PrintError("No schedule information for instruction '" 1908 + Inst->TheDef->getName() + "'"); 1909 Complete = false; 1910 } 1911 continue; 1912 } 1913 1914 const CodeGenSchedClass &SC = getSchedClass(SCIdx); 1915 if (!SC.Writes.empty()) 1916 continue; 1917 if (HasItineraries && SC.ItinClassDef != nullptr && 1918 SC.ItinClassDef->getName() != "NoItinerary") 1919 continue; 1920 1921 const RecVec &InstRWs = SC.InstRWs; 1922 auto I = find_if(InstRWs, [&ProcModel](const Record *R) { 1923 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; 1924 }); 1925 if (I == InstRWs.end()) { 1926 PrintError("'" + ProcModel.ModelName + "' lacks information for '" + 1927 Inst->TheDef->getName() + "'"); 1928 Complete = false; 1929 } 1930 } 1931 HadCompleteModel = true; 1932 } 1933 if (!Complete) { 1934 errs() << "\n\nIncomplete schedule models found.\n" 1935 << "- Consider setting 'CompleteModel = 0' while developing new models.\n" 1936 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" 1937 << "- Instructions should usually have Sched<[...]> as a superclass, " 1938 "you may temporarily use an empty list.\n" 1939 << "- Instructions related to unsupported features can be excluded with " 1940 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the " 1941 "processor model.\n\n"; 1942 PrintFatalError("Incomplete schedule model"); 1943 } 1944 } 1945 1946 // Collect itinerary class resources for each processor. 1947 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1948 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1949 const CodeGenProcModel &PM = ProcModels[PIdx]; 1950 // For all ItinRW entries. 1951 bool HasMatch = false; 1952 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1953 II != IE; ++II) { 1954 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1955 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1956 continue; 1957 if (HasMatch) 1958 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1959 + ItinClassDef->getName() 1960 + " in ItinResources for " + PM.ModelName); 1961 HasMatch = true; 1962 IdxVec Writes, Reads; 1963 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1964 collectRWResources(Writes, Reads, PIdx); 1965 } 1966 } 1967 } 1968 1969 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1970 ArrayRef<unsigned> ProcIndices) { 1971 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1972 if (SchedRW.TheDef) { 1973 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1974 for (unsigned Idx : ProcIndices) 1975 addWriteRes(SchedRW.TheDef, Idx); 1976 } 1977 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1978 for (unsigned Idx : ProcIndices) 1979 addReadAdvance(SchedRW.TheDef, Idx); 1980 } 1981 } 1982 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1983 AI != AE; ++AI) { 1984 IdxVec AliasProcIndices; 1985 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1986 AliasProcIndices.push_back( 1987 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1988 } 1989 else 1990 AliasProcIndices = ProcIndices; 1991 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1992 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1993 1994 IdxVec ExpandedRWs; 1995 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1996 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1997 SI != SE; ++SI) { 1998 collectRWResources(*SI, IsRead, AliasProcIndices); 1999 } 2000 } 2001 } 2002 2003 // Collect resources for a set of read/write types and processor indices. 2004 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes, 2005 ArrayRef<unsigned> Reads, 2006 ArrayRef<unsigned> ProcIndices) { 2007 for (unsigned Idx : Writes) 2008 collectRWResources(Idx, /*IsRead=*/false, ProcIndices); 2009 2010 for (unsigned Idx : Reads) 2011 collectRWResources(Idx, /*IsRead=*/true, ProcIndices); 2012 } 2013 2014 // Find the processor's resource units for this kind of resource. 2015 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 2016 const CodeGenProcModel &PM, 2017 ArrayRef<SMLoc> Loc) const { 2018 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 2019 return ProcResKind; 2020 2021 Record *ProcUnitDef = nullptr; 2022 assert(!ProcResourceDefs.empty()); 2023 assert(!ProcResGroups.empty()); 2024 2025 for (Record *ProcResDef : ProcResourceDefs) { 2026 if (ProcResDef->getValueAsDef("Kind") == ProcResKind 2027 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { 2028 if (ProcUnitDef) { 2029 PrintFatalError(Loc, 2030 "Multiple ProcessorResourceUnits associated with " 2031 + ProcResKind->getName()); 2032 } 2033 ProcUnitDef = ProcResDef; 2034 } 2035 } 2036 for (Record *ProcResGroup : ProcResGroups) { 2037 if (ProcResGroup == ProcResKind 2038 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { 2039 if (ProcUnitDef) { 2040 PrintFatalError(Loc, 2041 "Multiple ProcessorResourceUnits associated with " 2042 + ProcResKind->getName()); 2043 } 2044 ProcUnitDef = ProcResGroup; 2045 } 2046 } 2047 if (!ProcUnitDef) { 2048 PrintFatalError(Loc, 2049 "No ProcessorResources associated with " 2050 + ProcResKind->getName()); 2051 } 2052 return ProcUnitDef; 2053 } 2054 2055 // Iteratively add a resource and its super resources. 2056 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 2057 CodeGenProcModel &PM, 2058 ArrayRef<SMLoc> Loc) { 2059 while (true) { 2060 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); 2061 2062 // See if this ProcResource is already associated with this processor. 2063 if (is_contained(PM.ProcResourceDefs, ProcResUnits)) 2064 return; 2065 2066 PM.ProcResourceDefs.push_back(ProcResUnits); 2067 if (ProcResUnits->isSubClassOf("ProcResGroup")) 2068 return; 2069 2070 if (!ProcResUnits->getValueInit("Super")->isComplete()) 2071 return; 2072 2073 ProcResKind = ProcResUnits->getValueAsDef("Super"); 2074 } 2075 } 2076 2077 // Add resources for a SchedWrite to this processor if they don't exist. 2078 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 2079 assert(PIdx && "don't add resources to an invalid Processor model"); 2080 2081 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 2082 if (is_contained(WRDefs, ProcWriteResDef)) 2083 return; 2084 WRDefs.push_back(ProcWriteResDef); 2085 2086 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 2087 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 2088 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 2089 WritePRI != WritePRE; ++WritePRI) { 2090 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); 2091 } 2092 } 2093 2094 // Add resources for a ReadAdvance to this processor if they don't exist. 2095 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 2096 unsigned PIdx) { 2097 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 2098 if (is_contained(RADefs, ProcReadAdvanceDef)) 2099 return; 2100 RADefs.push_back(ProcReadAdvanceDef); 2101 } 2102 2103 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 2104 RecIter PRPos = find(ProcResourceDefs, PRDef); 2105 if (PRPos == ProcResourceDefs.end()) 2106 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 2107 "the ProcResources list for " + ModelName); 2108 // Idx=0 is reserved for invalid. 2109 return 1 + (PRPos - ProcResourceDefs.begin()); 2110 } 2111 2112 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { 2113 for (const Record *TheDef : UnsupportedFeaturesDefs) { 2114 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { 2115 if (TheDef->getName() == PredDef->getName()) 2116 return true; 2117 } 2118 } 2119 return false; 2120 } 2121 2122 #ifndef NDEBUG 2123 void CodeGenProcModel::dump() const { 2124 dbgs() << Index << ": " << ModelName << " " 2125 << (ModelDef ? ModelDef->getName() : "inferred") << " " 2126 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 2127 } 2128 2129 void CodeGenSchedRW::dump() const { 2130 dbgs() << Name << (IsVariadic ? " (V) " : " "); 2131 if (IsSequence) { 2132 dbgs() << "("; 2133 dumpIdxVec(Sequence); 2134 dbgs() << ")"; 2135 } 2136 } 2137 2138 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 2139 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' 2140 << " Writes: "; 2141 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 2142 SchedModels->getSchedWrite(Writes[i]).dump(); 2143 if (i < N-1) { 2144 dbgs() << '\n'; 2145 dbgs().indent(10); 2146 } 2147 } 2148 dbgs() << "\n Reads: "; 2149 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 2150 SchedModels->getSchedRead(Reads[i]).dump(); 2151 if (i < N-1) { 2152 dbgs() << '\n'; 2153 dbgs().indent(10); 2154 } 2155 } 2156 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 2157 if (!Transitions.empty()) { 2158 dbgs() << "\n Transitions for Proc "; 2159 for (const CodeGenSchedTransition &Transition : Transitions) { 2160 dumpIdxVec(Transition.ProcIndices); 2161 } 2162 } 2163 } 2164 2165 void PredTransitions::dump() const { 2166 dbgs() << "Expanded Variants:\n"; 2167 for (std::vector<PredTransition>::const_iterator 2168 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 2169 dbgs() << "{"; 2170 for (SmallVectorImpl<PredCheck>::const_iterator 2171 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 2172 PCI != PCE; ++PCI) { 2173 if (PCI != TI->PredTerm.begin()) 2174 dbgs() << ", "; 2175 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 2176 << ":" << PCI->Predicate->getName(); 2177 } 2178 dbgs() << "},\n => {"; 2179 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator 2180 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 2181 WSI != WSE; ++WSI) { 2182 dbgs() << "("; 2183 for (SmallVectorImpl<unsigned>::const_iterator 2184 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 2185 if (WI != WSI->begin()) 2186 dbgs() << ", "; 2187 dbgs() << SchedModels.getSchedWrite(*WI).Name; 2188 } 2189 dbgs() << "),"; 2190 } 2191 dbgs() << "}\n"; 2192 } 2193 } 2194 #endif // NDEBUG 2195