1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate the machine model as decribed in 11 // the target description. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "subtarget-emitter" 16 17 #include "CodeGenSchedule.h" 18 #include "CodeGenTarget.h" 19 #include "llvm/TableGen/Error.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Regex.h" 22 #include "llvm/ADT/STLExtras.h" 23 24 using namespace llvm; 25 26 #ifndef NDEBUG 27 static void dumpIdxVec(const IdxVec &V) { 28 for (unsigned i = 0, e = V.size(); i < e; ++i) { 29 dbgs() << V[i] << ", "; 30 } 31 } 32 static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) { 33 for (unsigned i = 0, e = V.size(); i < e; ++i) { 34 dbgs() << V[i] << ", "; 35 } 36 } 37 #endif 38 39 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. 40 struct InstrsOp : public SetTheory::Operator { 41 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 42 ArrayRef<SMLoc> Loc) { 43 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 44 } 45 }; 46 47 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. 48 // 49 // TODO: Since this is a prefix match, perform a binary search over the 50 // instruction names using lower_bound. Note that the predefined instrs must be 51 // scanned linearly first. However, this is only safe if the regex pattern has 52 // no top-level bars. The DAG already has a list of patterns, so there's no 53 // reason to use top-level bars, but we need a way to verify they don't exist 54 // before implementing the optimization. 55 struct InstRegexOp : public SetTheory::Operator { 56 const CodeGenTarget &Target; 57 InstRegexOp(const CodeGenTarget &t): Target(t) {} 58 59 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 60 ArrayRef<SMLoc> Loc) { 61 SmallVector<Regex*, 4> RegexList; 62 for (DagInit::const_arg_iterator 63 AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { 64 StringInit *SI = dyn_cast<StringInit>(*AI); 65 if (!SI) 66 PrintFatalError(Loc, "instregex requires pattern string: " 67 + Expr->getAsString()); 68 std::string pat = SI->getValue(); 69 // Implement a python-style prefix match. 70 if (pat[0] != '^') { 71 pat.insert(0, "^("); 72 pat.insert(pat.end(), ')'); 73 } 74 RegexList.push_back(new Regex(pat)); 75 } 76 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 77 E = Target.inst_end(); I != E; ++I) { 78 for (SmallVectorImpl<Regex*>::iterator 79 RI = RegexList.begin(), RE = RegexList.end(); RI != RE; ++RI) { 80 if ((*RI)->match((*I)->TheDef->getName())) 81 Elts.insert((*I)->TheDef); 82 } 83 } 84 DeleteContainerPointers(RegexList); 85 } 86 }; 87 88 /// CodeGenModels ctor interprets machine model records and populates maps. 89 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, 90 const CodeGenTarget &TGT): 91 Records(RK), Target(TGT), NumItineraryClasses(0) { 92 93 Sets.addFieldExpander("InstRW", "Instrs"); 94 95 // Allow Set evaluation to recognize the dags used in InstRW records: 96 // (instrs Op1, Op1...) 97 Sets.addOperator("instrs", new InstrsOp); 98 Sets.addOperator("instregex", new InstRegexOp(Target)); 99 100 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values 101 // that are explicitly referenced in tablegen records. Resources associated 102 // with each processor will be derived later. Populate ProcModelMap with the 103 // CodeGenProcModel instances. 104 collectProcModels(); 105 106 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly 107 // defined, and populate SchedReads and SchedWrites vectors. Implicit 108 // SchedReadWrites that represent sequences derived from expanded variant will 109 // be inferred later. 110 collectSchedRW(); 111 112 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly 113 // required by an instruction definition, and populate SchedClassIdxMap. Set 114 // NumItineraryClasses to the number of explicit itinerary classes referenced 115 // by instructions. Set NumInstrSchedClasses to the number of itinerary 116 // classes plus any classes implied by instructions that derive from class 117 // Sched and provide SchedRW list. This does not infer any new classes from 118 // SchedVariant. 119 collectSchedClasses(); 120 121 // Find instruction itineraries for each processor. Sort and populate 122 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires 123 // all itinerary classes to be discovered. 124 collectProcItins(); 125 126 // Find ItinRW records for each processor and itinerary class. 127 // (For per-operand resources mapped to itinerary classes). 128 collectProcItinRW(); 129 130 // Infer new SchedClasses from SchedVariant. 131 inferSchedClasses(); 132 133 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and 134 // ProcResourceDefs. 135 collectProcResources(); 136 } 137 138 /// Gather all processor models. 139 void CodeGenSchedModels::collectProcModels() { 140 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); 141 std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); 142 143 // Reserve space because we can. Reallocation would be ok. 144 ProcModels.reserve(ProcRecords.size()+1); 145 146 // Use idx=0 for NoModel/NoItineraries. 147 Record *NoModelDef = Records.getDef("NoSchedModel"); 148 Record *NoItinsDef = Records.getDef("NoItineraries"); 149 ProcModels.push_back(CodeGenProcModel(0, "NoSchedModel", 150 NoModelDef, NoItinsDef)); 151 ProcModelMap[NoModelDef] = 0; 152 153 // For each processor, find a unique machine model. 154 for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) 155 addProcModel(ProcRecords[i]); 156 } 157 158 /// Get a unique processor model based on the defined MachineModel and 159 /// ProcessorItineraries. 160 void CodeGenSchedModels::addProcModel(Record *ProcDef) { 161 Record *ModelKey = getModelOrItinDef(ProcDef); 162 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) 163 return; 164 165 std::string Name = ModelKey->getName(); 166 if (ModelKey->isSubClassOf("SchedMachineModel")) { 167 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); 168 ProcModels.push_back( 169 CodeGenProcModel(ProcModels.size(), Name, ModelKey, ItinsDef)); 170 } 171 else { 172 // An itinerary is defined without a machine model. Infer a new model. 173 if (!ModelKey->getValueAsListOfDefs("IID").empty()) 174 Name = Name + "Model"; 175 ProcModels.push_back( 176 CodeGenProcModel(ProcModels.size(), Name, 177 ProcDef->getValueAsDef("SchedModel"), ModelKey)); 178 } 179 DEBUG(ProcModels.back().dump()); 180 } 181 182 // Recursively find all reachable SchedReadWrite records. 183 static void scanSchedRW(Record *RWDef, RecVec &RWDefs, 184 SmallPtrSet<Record*, 16> &RWSet) { 185 if (!RWSet.insert(RWDef)) 186 return; 187 RWDefs.push_back(RWDef); 188 // Reads don't current have sequence records, but it can be added later. 189 if (RWDef->isSubClassOf("WriteSequence")) { 190 RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); 191 for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) 192 scanSchedRW(*I, RWDefs, RWSet); 193 } 194 else if (RWDef->isSubClassOf("SchedVariant")) { 195 // Visit each variant (guarded by a different predicate). 196 RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); 197 for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { 198 // Visit each RW in the sequence selected by the current variant. 199 RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); 200 for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) 201 scanSchedRW(*I, RWDefs, RWSet); 202 } 203 } 204 } 205 206 // Collect and sort all SchedReadWrites reachable via tablegen records. 207 // More may be inferred later when inferring new SchedClasses from variants. 208 void CodeGenSchedModels::collectSchedRW() { 209 // Reserve idx=0 for invalid writes/reads. 210 SchedWrites.resize(1); 211 SchedReads.resize(1); 212 213 SmallPtrSet<Record*, 16> RWSet; 214 215 // Find all SchedReadWrites referenced by instruction defs. 216 RecVec SWDefs, SRDefs; 217 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 218 E = Target.inst_end(); I != E; ++I) { 219 Record *SchedDef = (*I)->TheDef; 220 if (!SchedDef->isSubClassOf("Sched")) 221 continue; 222 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); 223 for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { 224 if ((*RWI)->isSubClassOf("SchedWrite")) 225 scanSchedRW(*RWI, SWDefs, RWSet); 226 else { 227 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 228 scanSchedRW(*RWI, SRDefs, RWSet); 229 } 230 } 231 } 232 // Find all ReadWrites referenced by InstRW. 233 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 234 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { 235 // For all OperandReadWrites. 236 RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); 237 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 238 RWI != RWE; ++RWI) { 239 if ((*RWI)->isSubClassOf("SchedWrite")) 240 scanSchedRW(*RWI, SWDefs, RWSet); 241 else { 242 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 243 scanSchedRW(*RWI, SRDefs, RWSet); 244 } 245 } 246 } 247 // Find all ReadWrites referenced by ItinRW. 248 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 249 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 250 // For all OperandReadWrites. 251 RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); 252 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 253 RWI != RWE; ++RWI) { 254 if ((*RWI)->isSubClassOf("SchedWrite")) 255 scanSchedRW(*RWI, SWDefs, RWSet); 256 else { 257 assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 258 scanSchedRW(*RWI, SRDefs, RWSet); 259 } 260 } 261 } 262 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted 263 // for the loop below that initializes Alias vectors. 264 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); 265 std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); 266 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 267 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 268 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 269 if (MatchDef->isSubClassOf("SchedWrite")) { 270 if (!AliasDef->isSubClassOf("SchedWrite")) 271 PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); 272 scanSchedRW(AliasDef, SWDefs, RWSet); 273 } 274 else { 275 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); 276 if (!AliasDef->isSubClassOf("SchedRead")) 277 PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); 278 scanSchedRW(AliasDef, SRDefs, RWSet); 279 } 280 } 281 // Sort and add the SchedReadWrites directly referenced by instructions or 282 // itinerary resources. Index reads and writes in separate domains. 283 std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); 284 for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { 285 assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); 286 SchedWrites.push_back(CodeGenSchedRW(SchedWrites.size(), *SWI)); 287 } 288 std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); 289 for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { 290 assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); 291 SchedReads.push_back(CodeGenSchedRW(SchedReads.size(), *SRI)); 292 } 293 // Initialize WriteSequence vectors. 294 for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), 295 WE = SchedWrites.end(); WI != WE; ++WI) { 296 if (!WI->IsSequence) 297 continue; 298 findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, 299 /*IsRead=*/false); 300 } 301 // Initialize Aliases vectors. 302 for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { 303 Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); 304 getSchedRW(AliasDef).IsAlias = true; 305 Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); 306 CodeGenSchedRW &RW = getSchedRW(MatchDef); 307 if (RW.IsAlias) 308 PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); 309 RW.Aliases.push_back(*AI); 310 } 311 DEBUG( 312 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { 313 dbgs() << WIdx << ": "; 314 SchedWrites[WIdx].dump(); 315 dbgs() << '\n'; 316 } 317 for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { 318 dbgs() << RIdx << ": "; 319 SchedReads[RIdx].dump(); 320 dbgs() << '\n'; 321 } 322 RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); 323 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); 324 RI != RE; ++RI) { 325 if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { 326 const std::string &Name = (*RI)->getName(); 327 if (Name != "NoWrite" && Name != "ReadDefault") 328 dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; 329 } 330 }); 331 } 332 333 /// Compute a SchedWrite name from a sequence of writes. 334 std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) { 335 std::string Name("("); 336 for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) { 337 if (I != Seq.begin()) 338 Name += '_'; 339 Name += getSchedRW(*I, IsRead).Name; 340 } 341 Name += ')'; 342 return Name; 343 } 344 345 unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, 346 unsigned After) const { 347 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 348 assert(After < RWVec.size() && "start position out of bounds"); 349 for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, 350 E = RWVec.end(); I != E; ++I) { 351 if (I->TheDef == Def) 352 return I - RWVec.begin(); 353 } 354 return 0; 355 } 356 357 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { 358 for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { 359 Record *ReadDef = SchedReads[i].TheDef; 360 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) 361 continue; 362 363 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); 364 if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) 365 != ValidWrites.end()) { 366 return true; 367 } 368 } 369 return false; 370 } 371 372 namespace llvm { 373 void splitSchedReadWrites(const RecVec &RWDefs, 374 RecVec &WriteDefs, RecVec &ReadDefs) { 375 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 376 if ((*RWI)->isSubClassOf("SchedWrite")) 377 WriteDefs.push_back(*RWI); 378 else { 379 assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); 380 ReadDefs.push_back(*RWI); 381 } 382 } 383 } 384 } // namespace llvm 385 386 // Split the SchedReadWrites defs and call findRWs for each list. 387 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, 388 IdxVec &Writes, IdxVec &Reads) const { 389 RecVec WriteDefs; 390 RecVec ReadDefs; 391 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); 392 findRWs(WriteDefs, Writes, false); 393 findRWs(ReadDefs, Reads, true); 394 } 395 396 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. 397 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, 398 bool IsRead) const { 399 for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { 400 unsigned Idx = getSchedRWIdx(*RI, IsRead); 401 assert(Idx && "failed to collect SchedReadWrite"); 402 RWs.push_back(Idx); 403 } 404 } 405 406 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, 407 bool IsRead) const { 408 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 409 if (!SchedRW.IsSequence) { 410 RWSeq.push_back(RWIdx); 411 return; 412 } 413 int Repeat = 414 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; 415 for (int i = 0; i < Repeat; ++i) { 416 for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); 417 I != E; ++I) { 418 expandRWSequence(*I, RWSeq, IsRead); 419 } 420 } 421 } 422 423 // Expand a SchedWrite as a sequence following any aliases that coincide with 424 // the given processor model. 425 void CodeGenSchedModels::expandRWSeqForProc( 426 unsigned RWIdx, IdxVec &RWSeq, bool IsRead, 427 const CodeGenProcModel &ProcModel) const { 428 429 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); 430 Record *AliasDef = 0; 431 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 432 AI != AE; ++AI) { 433 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 434 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 435 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 436 if (&getProcModel(ModelDef) != &ProcModel) 437 continue; 438 } 439 if (AliasDef) 440 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 441 "defined for processor " + ProcModel.ModelName + 442 " Ensure only one SchedAlias exists per RW."); 443 AliasDef = AliasRW.TheDef; 444 } 445 if (AliasDef) { 446 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), 447 RWSeq, IsRead,ProcModel); 448 return; 449 } 450 if (!SchedWrite.IsSequence) { 451 RWSeq.push_back(RWIdx); 452 return; 453 } 454 int Repeat = 455 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; 456 for (int i = 0; i < Repeat; ++i) { 457 for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); 458 I != E; ++I) { 459 expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); 460 } 461 } 462 } 463 464 // Find the existing SchedWrite that models this sequence of writes. 465 unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq, 466 bool IsRead) { 467 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; 468 469 for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); 470 I != E; ++I) { 471 if (I->Sequence == Seq) 472 return I - RWVec.begin(); 473 } 474 // Index zero reserved for invalid RW. 475 return 0; 476 } 477 478 /// Add this ReadWrite if it doesn't already exist. 479 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, 480 bool IsRead) { 481 assert(!Seq.empty() && "cannot insert empty sequence"); 482 if (Seq.size() == 1) 483 return Seq.back(); 484 485 unsigned Idx = findRWForSequence(Seq, IsRead); 486 if (Idx) 487 return Idx; 488 489 unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); 490 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); 491 if (IsRead) 492 SchedReads.push_back(SchedRW); 493 else 494 SchedWrites.push_back(SchedRW); 495 return RWIdx; 496 } 497 498 /// Visit all the instruction definitions for this target to gather and 499 /// enumerate the itinerary classes. These are the explicitly specified 500 /// SchedClasses. More SchedClasses may be inferred. 501 void CodeGenSchedModels::collectSchedClasses() { 502 503 // NoItinerary is always the first class at Idx=0 504 SchedClasses.resize(1); 505 SchedClasses.back().Name = "NoItinerary"; 506 SchedClasses.back().ProcIndices.push_back(0); 507 SchedClassIdxMap[SchedClasses.back().Name] = 0; 508 509 // Gather and sort all itinerary classes used by instruction descriptions. 510 RecVec ItinClassList; 511 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 512 E = Target.inst_end(); I != E; ++I) { 513 Record *ItinDef = (*I)->TheDef->getValueAsDef("Itinerary"); 514 // Map a new SchedClass with no index. 515 if (!SchedClassIdxMap.count(ItinDef->getName())) { 516 SchedClassIdxMap[ItinDef->getName()] = 0; 517 ItinClassList.push_back(ItinDef); 518 } 519 } 520 // Assign each itinerary class unique number, skipping NoItinerary==0 521 NumItineraryClasses = ItinClassList.size(); 522 std::sort(ItinClassList.begin(), ItinClassList.end(), LessRecord()); 523 for (unsigned i = 0, N = NumItineraryClasses; i < N; i++) { 524 Record *ItinDef = ItinClassList[i]; 525 SchedClassIdxMap[ItinDef->getName()] = SchedClasses.size(); 526 SchedClasses.push_back(CodeGenSchedClass(ItinDef)); 527 } 528 // Infer classes from SchedReadWrite resources listed for each 529 // instruction definition that inherits from class Sched. 530 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 531 E = Target.inst_end(); I != E; ++I) { 532 if (!(*I)->TheDef->isSubClassOf("Sched")) 533 continue; 534 IdxVec Writes, Reads; 535 findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 536 // ProcIdx == 0 indicates the class applies to all processors. 537 IdxVec ProcIndices(1, 0); 538 addSchedClass(Writes, Reads, ProcIndices); 539 } 540 // Create classes for InstRW defs. 541 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); 542 std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); 543 for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) 544 createInstRWClass(*OI); 545 546 NumInstrSchedClasses = SchedClasses.size(); 547 548 bool EnableDump = false; 549 DEBUG(EnableDump = true); 550 if (!EnableDump) 551 return; 552 for (CodeGenTarget::inst_iterator I = Target.inst_begin(), 553 E = Target.inst_end(); I != E; ++I) { 554 Record *SchedDef = (*I)->TheDef; 555 std::string InstName = (*I)->TheDef->getName(); 556 if (SchedDef->isSubClassOf("Sched")) { 557 IdxVec Writes; 558 IdxVec Reads; 559 findRWs((*I)->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); 560 dbgs() << "SchedRW machine model for " << InstName; 561 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 562 dbgs() << " " << SchedWrites[*WI].Name; 563 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 564 dbgs() << " " << SchedReads[*RI].Name; 565 dbgs() << '\n'; 566 } 567 unsigned SCIdx = InstrClassMap.lookup((*I)->TheDef); 568 if (SCIdx) { 569 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 570 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); 571 RWI != RWE; ++RWI) { 572 const CodeGenProcModel &ProcModel = 573 getProcModel((*RWI)->getValueAsDef("SchedModel")); 574 dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; 575 IdxVec Writes; 576 IdxVec Reads; 577 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), 578 Writes, Reads); 579 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 580 dbgs() << " " << SchedWrites[*WI].Name; 581 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 582 dbgs() << " " << SchedReads[*RI].Name; 583 dbgs() << '\n'; 584 } 585 continue; 586 } 587 if (!SchedDef->isSubClassOf("Sched") 588 && (SchedDef->getValueAsDef("Itinerary")->getName() == "NoItinerary")) { 589 dbgs() << "No machine model for " << (*I)->TheDef->getName() << '\n'; 590 } 591 } 592 } 593 594 unsigned CodeGenSchedModels::getSchedClassIdx( 595 const RecVec &RWDefs) const { 596 597 IdxVec Writes, Reads; 598 findRWs(RWDefs, Writes, Reads); 599 return findSchedClassIdx(Writes, Reads); 600 } 601 602 /// Find an SchedClass that has been inferred from a per-operand list of 603 /// SchedWrites and SchedReads. 604 unsigned CodeGenSchedModels::findSchedClassIdx(const IdxVec &Writes, 605 const IdxVec &Reads) const { 606 for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { 607 // Classes with InstRWs may have the same Writes/Reads as a class originally 608 // produced by a SchedRW definition. We need to be able to recover the 609 // original class index for processors that don't match any InstRWs. 610 if (I->ItinClassDef || !I->InstRWs.empty()) 611 continue; 612 613 if (I->Writes == Writes && I->Reads == Reads) { 614 return I - schedClassBegin(); 615 } 616 } 617 return 0; 618 } 619 620 // Get the SchedClass index for an instruction. 621 unsigned CodeGenSchedModels::getSchedClassIdx( 622 const CodeGenInstruction &Inst) const { 623 624 unsigned SCIdx = InstrClassMap.lookup(Inst.TheDef); 625 if (SCIdx) 626 return SCIdx; 627 628 // If this opcode isn't mapped by the subtarget fallback to the instruction 629 // definition's SchedRW or ItinDef values. 630 if (Inst.TheDef->isSubClassOf("Sched")) { 631 RecVec RWs = Inst.TheDef->getValueAsListOfDefs("SchedRW"); 632 return getSchedClassIdx(RWs); 633 } 634 Record *ItinDef = Inst.TheDef->getValueAsDef("Itinerary"); 635 assert(SchedClassIdxMap.count(ItinDef->getName()) && "missing ItinClass"); 636 unsigned Idx = SchedClassIdxMap.lookup(ItinDef->getName()); 637 assert(Idx <= NumItineraryClasses && "bad ItinClass index"); 638 return Idx; 639 } 640 641 std::string CodeGenSchedModels::createSchedClassName( 642 const IdxVec &OperWrites, const IdxVec &OperReads) { 643 644 std::string Name; 645 for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) { 646 if (WI != OperWrites.begin()) 647 Name += '_'; 648 Name += SchedWrites[*WI].Name; 649 } 650 for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) { 651 Name += '_'; 652 Name += SchedReads[*RI].Name; 653 } 654 return Name; 655 } 656 657 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { 658 659 std::string Name; 660 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { 661 if (I != InstDefs.begin()) 662 Name += '_'; 663 Name += (*I)->getName(); 664 } 665 return Name; 666 } 667 668 /// Add an inferred sched class from a per-operand list of SchedWrites and 669 /// SchedReads. ProcIndices contains the set of IDs of processors that may 670 /// utilize this class. 671 unsigned CodeGenSchedModels::addSchedClass(const IdxVec &OperWrites, 672 const IdxVec &OperReads, 673 const IdxVec &ProcIndices) 674 { 675 assert(!ProcIndices.empty() && "expect at least one ProcIdx"); 676 677 unsigned Idx = findSchedClassIdx(OperWrites, OperReads); 678 if (Idx) { 679 IdxVec PI; 680 std::set_union(SchedClasses[Idx].ProcIndices.begin(), 681 SchedClasses[Idx].ProcIndices.end(), 682 ProcIndices.begin(), ProcIndices.end(), 683 std::back_inserter(PI)); 684 SchedClasses[Idx].ProcIndices.swap(PI); 685 return Idx; 686 } 687 Idx = SchedClasses.size(); 688 SchedClasses.resize(Idx+1); 689 CodeGenSchedClass &SC = SchedClasses.back(); 690 SC.Name = createSchedClassName(OperWrites, OperReads); 691 SC.Writes = OperWrites; 692 SC.Reads = OperReads; 693 SC.ProcIndices = ProcIndices; 694 695 return Idx; 696 } 697 698 // Create classes for each set of opcodes that are in the same InstReadWrite 699 // definition across all processors. 700 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { 701 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that 702 // intersects with an existing class via a previous InstRWDef. Instrs that do 703 // not intersect with an existing class refer back to their former class as 704 // determined from ItinDef or SchedRW. 705 SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; 706 // Sort Instrs into sets. 707 const RecVec *InstDefs = Sets.expand(InstRWDef); 708 if (InstDefs->empty()) 709 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); 710 711 for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { 712 unsigned SCIdx = 0; 713 InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); 714 if (Pos != InstrClassMap.end()) 715 SCIdx = Pos->second; 716 else { 717 // This instruction has not been mapped yet. Get the original class. All 718 // instructions in the same InstrRW class must be from the same original 719 // class because that is the fall-back class for other processors. 720 Record *ItinDef = (*I)->getValueAsDef("Itinerary"); 721 SCIdx = SchedClassIdxMap.lookup(ItinDef->getName()); 722 if (!SCIdx && (*I)->isSubClassOf("Sched")) 723 SCIdx = getSchedClassIdx((*I)->getValueAsListOfDefs("SchedRW")); 724 } 725 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 726 for (; CIdx != CEnd; ++CIdx) { 727 if (ClassInstrs[CIdx].first == SCIdx) 728 break; 729 } 730 if (CIdx == CEnd) { 731 ClassInstrs.resize(CEnd + 1); 732 ClassInstrs[CIdx].first = SCIdx; 733 } 734 ClassInstrs[CIdx].second.push_back(*I); 735 } 736 // For each set of Instrs, create a new class if necessary, and map or remap 737 // the Instrs to it. 738 unsigned CIdx = 0, CEnd = ClassInstrs.size(); 739 for (; CIdx != CEnd; ++CIdx) { 740 unsigned OldSCIdx = ClassInstrs[CIdx].first; 741 ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; 742 // If the all instrs in the current class are accounted for, then leave 743 // them mapped to their old class. 744 if (SchedClasses[OldSCIdx].InstRWs.size() == InstDefs.size()) { 745 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && 746 "expected a generic SchedClass"); 747 continue; 748 } 749 unsigned SCIdx = SchedClasses.size(); 750 SchedClasses.resize(SCIdx+1); 751 CodeGenSchedClass &SC = SchedClasses.back(); 752 SC.Name = createSchedClassName(InstDefs); 753 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. 754 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; 755 SC.Writes = SchedClasses[OldSCIdx].Writes; 756 SC.Reads = SchedClasses[OldSCIdx].Reads; 757 SC.ProcIndices.push_back(0); 758 // Map each Instr to this new class. 759 // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". 760 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); 761 SmallSet<unsigned, 4> RemappedClassIDs; 762 for (ArrayRef<Record*>::const_iterator 763 II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { 764 unsigned OldSCIdx = InstrClassMap[*II]; 765 if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx)) { 766 for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), 767 RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { 768 if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { 769 PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + 770 (*II)->getName() + " also matches " + 771 (*RI)->getValue("Instrs")->getValue()->getAsString()); 772 } 773 assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); 774 SC.InstRWs.push_back(*RI); 775 } 776 } 777 InstrClassMap[*II] = SCIdx; 778 } 779 SC.InstRWs.push_back(InstRWDef); 780 } 781 } 782 783 // Gather the processor itineraries. 784 void CodeGenSchedModels::collectProcItins() { 785 for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), 786 PE = ProcModels.end(); PI != PE; ++PI) { 787 CodeGenProcModel &ProcModel = *PI; 788 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); 789 // Skip empty itinerary. 790 if (ItinRecords.empty()) 791 continue; 792 793 ProcModel.ItinDefList.resize(NumItineraryClasses+1); 794 795 // Insert each itinerary data record in the correct position within 796 // the processor model's ItinDefList. 797 for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { 798 Record *ItinData = ItinRecords[i]; 799 Record *ItinDef = ItinData->getValueAsDef("TheClass"); 800 if (!SchedClassIdxMap.count(ItinDef->getName())) { 801 DEBUG(dbgs() << ProcModel.ItinsDef->getName() 802 << " has unused itinerary class " << ItinDef->getName() << '\n'); 803 continue; 804 } 805 assert(SchedClassIdxMap.count(ItinDef->getName()) && "missing ItinClass"); 806 unsigned Idx = SchedClassIdxMap.lookup(ItinDef->getName()); 807 assert(Idx <= NumItineraryClasses && "bad ItinClass index"); 808 ProcModel.ItinDefList[Idx] = ItinData; 809 } 810 // Check for missing itinerary entries. 811 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); 812 DEBUG( 813 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { 814 if (!ProcModel.ItinDefList[i]) 815 dbgs() << ProcModel.ItinsDef->getName() 816 << " missing itinerary for class " 817 << SchedClasses[i].Name << '\n'; 818 }); 819 } 820 } 821 822 // Gather the read/write types for each itinerary class. 823 void CodeGenSchedModels::collectProcItinRW() { 824 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); 825 std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); 826 for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { 827 if (!(*II)->getValueInit("SchedModel")->isComplete()) 828 PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); 829 Record *ModelDef = (*II)->getValueAsDef("SchedModel"); 830 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); 831 if (I == ProcModelMap.end()) { 832 PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " 833 + ModelDef->getName()); 834 } 835 ProcModels[I->second].ItinRWDefs.push_back(*II); 836 } 837 } 838 839 /// Infer new classes from existing classes. In the process, this may create new 840 /// SchedWrites from sequences of existing SchedWrites. 841 void CodeGenSchedModels::inferSchedClasses() { 842 // Visit all existing classes and newly created classes. 843 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { 844 if (SchedClasses[Idx].ItinClassDef) 845 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); 846 else if (!SchedClasses[Idx].InstRWs.empty()) 847 inferFromInstRWs(Idx); 848 else { 849 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, 850 Idx, SchedClasses[Idx].ProcIndices); 851 } 852 assert(SchedClasses.size() < (NumInstrSchedClasses*6) && 853 "too many SchedVariants"); 854 } 855 } 856 857 /// Infer classes from per-processor itinerary resources. 858 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, 859 unsigned FromClassIdx) { 860 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 861 const CodeGenProcModel &PM = ProcModels[PIdx]; 862 // For all ItinRW entries. 863 bool HasMatch = false; 864 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 865 II != IE; ++II) { 866 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 867 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 868 continue; 869 if (HasMatch) 870 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 871 + ItinClassDef->getName() 872 + " in ItinResources for " + PM.ModelName); 873 HasMatch = true; 874 IdxVec Writes, Reads; 875 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 876 IdxVec ProcIndices(1, PIdx); 877 inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); 878 } 879 } 880 } 881 882 /// Infer classes from per-processor InstReadWrite definitions. 883 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { 884 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; 885 for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { 886 const RecVec *InstDefs = Sets.expand(*RWI); 887 RecIter II = InstDefs->begin(), IE = InstDefs->end(); 888 for (; II != IE; ++II) { 889 if (InstrClassMap[*II] == SCIdx) 890 break; 891 } 892 // If this class no longer has any instructions mapped to it, it has become 893 // irrelevant. 894 if (II == IE) 895 continue; 896 IdxVec Writes, Reads; 897 findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 898 unsigned PIdx = getProcModel((*RWI)->getValueAsDef("SchedModel")).Index; 899 IdxVec ProcIndices(1, PIdx); 900 inferFromRW(Writes, Reads, SCIdx, ProcIndices); 901 } 902 } 903 904 namespace { 905 // Helper for substituteVariantOperand. 906 struct TransVariant { 907 Record *VarOrSeqDef; // Variant or sequence. 908 unsigned RWIdx; // Index of this variant or sequence's matched type. 909 unsigned ProcIdx; // Processor model index or zero for any. 910 unsigned TransVecIdx; // Index into PredTransitions::TransVec. 911 912 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): 913 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} 914 }; 915 916 // Associate a predicate with the SchedReadWrite that it guards. 917 // RWIdx is the index of the read/write variant. 918 struct PredCheck { 919 bool IsRead; 920 unsigned RWIdx; 921 Record *Predicate; 922 923 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} 924 }; 925 926 // A Predicate transition is a list of RW sequences guarded by a PredTerm. 927 struct PredTransition { 928 // A predicate term is a conjunction of PredChecks. 929 SmallVector<PredCheck, 4> PredTerm; 930 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; 931 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; 932 SmallVector<unsigned, 4> ProcIndices; 933 }; 934 935 // Encapsulate a set of partially constructed transitions. 936 // The results are built by repeated calls to substituteVariants. 937 class PredTransitions { 938 CodeGenSchedModels &SchedModels; 939 940 public: 941 std::vector<PredTransition> TransVec; 942 943 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} 944 945 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, 946 bool IsRead, unsigned StartIdx); 947 948 void substituteVariants(const PredTransition &Trans); 949 950 #ifndef NDEBUG 951 void dump() const; 952 #endif 953 954 private: 955 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); 956 void getIntersectingVariants( 957 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 958 std::vector<TransVariant> &IntersectingVariants); 959 void pushVariant(const TransVariant &VInfo, bool IsRead); 960 }; 961 } // anonymous 962 963 // Return true if this predicate is mutually exclusive with a PredTerm. This 964 // degenerates into checking if the predicate is mutually exclusive with any 965 // predicate in the Term's conjunction. 966 // 967 // All predicates associated with a given SchedRW are considered mutually 968 // exclusive. This should work even if the conditions expressed by the 969 // predicates are not exclusive because the predicates for a given SchedWrite 970 // are always checked in the order they are defined in the .td file. Later 971 // conditions implicitly negate any prior condition. 972 bool PredTransitions::mutuallyExclusive(Record *PredDef, 973 ArrayRef<PredCheck> Term) { 974 975 for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); 976 I != E; ++I) { 977 if (I->Predicate == PredDef) 978 return false; 979 980 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); 981 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); 982 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 983 for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { 984 if ((*VI)->getValueAsDef("Predicate") == PredDef) 985 return true; 986 } 987 } 988 return false; 989 } 990 991 static bool hasAliasedVariants(const CodeGenSchedRW &RW, 992 CodeGenSchedModels &SchedModels) { 993 if (RW.HasVariants) 994 return true; 995 996 for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { 997 const CodeGenSchedRW &AliasRW = 998 SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); 999 if (AliasRW.HasVariants) 1000 return true; 1001 if (AliasRW.IsSequence) { 1002 IdxVec ExpandedRWs; 1003 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); 1004 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1005 SI != SE; ++SI) { 1006 if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), 1007 SchedModels)) { 1008 return true; 1009 } 1010 } 1011 } 1012 } 1013 return false; 1014 } 1015 1016 static bool hasVariant(ArrayRef<PredTransition> Transitions, 1017 CodeGenSchedModels &SchedModels) { 1018 for (ArrayRef<PredTransition>::iterator 1019 PTI = Transitions.begin(), PTE = Transitions.end(); 1020 PTI != PTE; ++PTI) { 1021 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1022 WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); 1023 WSI != WSE; ++WSI) { 1024 for (SmallVectorImpl<unsigned>::const_iterator 1025 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1026 if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) 1027 return true; 1028 } 1029 } 1030 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1031 RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); 1032 RSI != RSE; ++RSI) { 1033 for (SmallVectorImpl<unsigned>::const_iterator 1034 RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { 1035 if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) 1036 return true; 1037 } 1038 } 1039 } 1040 return false; 1041 } 1042 1043 // Populate IntersectingVariants with any variants or aliased sequences of the 1044 // given SchedRW whose processor indices and predicates are not mutually 1045 // exclusive with the given transition, 1046 void PredTransitions::getIntersectingVariants( 1047 const CodeGenSchedRW &SchedRW, unsigned TransIdx, 1048 std::vector<TransVariant> &IntersectingVariants) { 1049 1050 std::vector<TransVariant> Variants; 1051 if (SchedRW.HasVariants) { 1052 unsigned VarProcIdx = 0; 1053 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { 1054 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); 1055 VarProcIdx = SchedModels.getProcModel(ModelDef).Index; 1056 } 1057 // Push each variant. Assign TransVecIdx later. 1058 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); 1059 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1060 Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); 1061 } 1062 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1063 AI != AE; ++AI) { 1064 // If either the SchedAlias itself or the SchedReadWrite that it aliases 1065 // to is defined within a processor model, constrain all variants to 1066 // that processor. 1067 unsigned AliasProcIdx = 0; 1068 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1069 Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); 1070 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; 1071 } 1072 const CodeGenSchedRW &AliasRW = 1073 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 1074 1075 if (AliasRW.HasVariants) { 1076 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); 1077 for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) 1078 Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); 1079 } 1080 if (AliasRW.IsSequence) { 1081 Variants.push_back( 1082 TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); 1083 } 1084 } 1085 for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { 1086 TransVariant &Variant = Variants[VIdx]; 1087 // Don't expand variants if the processor models don't intersect. 1088 // A zero processor index means any processor. 1089 SmallVector<unsigned, 4> &ProcIndices = TransVec[TransIdx].ProcIndices; 1090 if (ProcIndices[0] && Variants[VIdx].ProcIdx) { 1091 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), 1092 Variant.ProcIdx); 1093 if (!Cnt) 1094 continue; 1095 if (Cnt > 1) { 1096 const CodeGenProcModel &PM = 1097 *(SchedModels.procModelBegin() + Variant.ProcIdx); 1098 PrintFatalError(Variant.VarOrSeqDef->getLoc(), 1099 "Multiple variants defined for processor " + 1100 PM.ModelName + 1101 " Ensure only one SchedAlias exists per RW."); 1102 } 1103 } 1104 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { 1105 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); 1106 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) 1107 continue; 1108 } 1109 if (IntersectingVariants.empty()) { 1110 // The first variant builds on the existing transition. 1111 Variant.TransVecIdx = TransIdx; 1112 IntersectingVariants.push_back(Variant); 1113 } 1114 else { 1115 // Push another copy of the current transition for more variants. 1116 Variant.TransVecIdx = TransVec.size(); 1117 IntersectingVariants.push_back(Variant); 1118 TransVec.push_back(TransVec[TransIdx]); 1119 } 1120 } 1121 } 1122 1123 // Push the Reads/Writes selected by this variant onto the PredTransition 1124 // specified by VInfo. 1125 void PredTransitions:: 1126 pushVariant(const TransVariant &VInfo, bool IsRead) { 1127 1128 PredTransition &Trans = TransVec[VInfo.TransVecIdx]; 1129 1130 // If this operand transition is reached through a processor-specific alias, 1131 // then the whole transition is specific to this processor. 1132 if (VInfo.ProcIdx != 0) 1133 Trans.ProcIndices.assign(1, VInfo.ProcIdx); 1134 1135 IdxVec SelectedRWs; 1136 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { 1137 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); 1138 Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); 1139 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); 1140 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); 1141 } 1142 else { 1143 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && 1144 "variant must be a SchedVariant or aliased WriteSequence"); 1145 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); 1146 } 1147 1148 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); 1149 1150 SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead 1151 ? Trans.ReadSequences : Trans.WriteSequences; 1152 if (SchedRW.IsVariadic) { 1153 unsigned OperIdx = RWSequences.size()-1; 1154 // Make N-1 copies of this transition's last sequence. 1155 for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { 1156 RWSequences.push_back(RWSequences[OperIdx]); 1157 } 1158 // Push each of the N elements of the SelectedRWs onto a copy of the last 1159 // sequence (split the current operand into N operands). 1160 // Note that write sequences should be expanded within this loop--the entire 1161 // sequence belongs to a single operand. 1162 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1163 RWI != RWE; ++RWI, ++OperIdx) { 1164 IdxVec ExpandedRWs; 1165 if (IsRead) 1166 ExpandedRWs.push_back(*RWI); 1167 else 1168 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1169 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), 1170 ExpandedRWs.begin(), ExpandedRWs.end()); 1171 } 1172 assert(OperIdx == RWSequences.size() && "missed a sequence"); 1173 } 1174 else { 1175 // Push this transition's expanded sequence onto this transition's last 1176 // sequence (add to the current operand's sequence). 1177 SmallVectorImpl<unsigned> &Seq = RWSequences.back(); 1178 IdxVec ExpandedRWs; 1179 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); 1180 RWI != RWE; ++RWI) { 1181 if (IsRead) 1182 ExpandedRWs.push_back(*RWI); 1183 else 1184 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); 1185 } 1186 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); 1187 } 1188 } 1189 1190 // RWSeq is a sequence of all Reads or all Writes for the next read or write 1191 // operand. StartIdx is an index into TransVec where partial results 1192 // starts. RWSeq must be applied to all transitions between StartIdx and the end 1193 // of TransVec. 1194 void PredTransitions::substituteVariantOperand( 1195 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { 1196 1197 // Visit each original RW within the current sequence. 1198 for (SmallVectorImpl<unsigned>::const_iterator 1199 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { 1200 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); 1201 // Push this RW on all partial PredTransitions or distribute variants. 1202 // New PredTransitions may be pushed within this loop which should not be 1203 // revisited (TransEnd must be loop invariant). 1204 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); 1205 TransIdx != TransEnd; ++TransIdx) { 1206 // In the common case, push RW onto the current operand's sequence. 1207 if (!hasAliasedVariants(SchedRW, SchedModels)) { 1208 if (IsRead) 1209 TransVec[TransIdx].ReadSequences.back().push_back(*RWI); 1210 else 1211 TransVec[TransIdx].WriteSequences.back().push_back(*RWI); 1212 continue; 1213 } 1214 // Distribute this partial PredTransition across intersecting variants. 1215 // This will push a copies of TransVec[TransIdx] on the back of TransVec. 1216 std::vector<TransVariant> IntersectingVariants; 1217 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); 1218 if (IntersectingVariants.empty()) 1219 PrintFatalError(SchedRW.TheDef->getLoc(), 1220 "No variant of this type has " 1221 "a matching predicate on any processor"); 1222 // Now expand each variant on top of its copy of the transition. 1223 for (std::vector<TransVariant>::const_iterator 1224 IVI = IntersectingVariants.begin(), 1225 IVE = IntersectingVariants.end(); 1226 IVI != IVE; ++IVI) { 1227 pushVariant(*IVI, IsRead); 1228 } 1229 } 1230 } 1231 } 1232 1233 // For each variant of a Read/Write in Trans, substitute the sequence of 1234 // Read/Writes guarded by the variant. This is exponential in the number of 1235 // variant Read/Writes, but in practice detection of mutually exclusive 1236 // predicates should result in linear growth in the total number variants. 1237 // 1238 // This is one step in a breadth-first search of nested variants. 1239 void PredTransitions::substituteVariants(const PredTransition &Trans) { 1240 // Build up a set of partial results starting at the back of 1241 // PredTransitions. Remember the first new transition. 1242 unsigned StartIdx = TransVec.size(); 1243 TransVec.resize(TransVec.size() + 1); 1244 TransVec.back().PredTerm = Trans.PredTerm; 1245 TransVec.back().ProcIndices = Trans.ProcIndices; 1246 1247 // Visit each original write sequence. 1248 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1249 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); 1250 WSI != WSE; ++WSI) { 1251 // Push a new (empty) write sequence onto all partial Transitions. 1252 for (std::vector<PredTransition>::iterator I = 1253 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1254 I->WriteSequences.resize(I->WriteSequences.size() + 1); 1255 } 1256 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); 1257 } 1258 // Visit each original read sequence. 1259 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1260 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); 1261 RSI != RSE; ++RSI) { 1262 // Push a new (empty) read sequence onto all partial Transitions. 1263 for (std::vector<PredTransition>::iterator I = 1264 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { 1265 I->ReadSequences.resize(I->ReadSequences.size() + 1); 1266 } 1267 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); 1268 } 1269 } 1270 1271 // Create a new SchedClass for each variant found by inferFromRW. Pass 1272 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, 1273 unsigned FromClassIdx, 1274 CodeGenSchedModels &SchedModels) { 1275 // For each PredTransition, create a new CodeGenSchedTransition, which usually 1276 // requires creating a new SchedClass. 1277 for (ArrayRef<PredTransition>::iterator 1278 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { 1279 IdxVec OperWritesVariant; 1280 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1281 WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); 1282 WSI != WSE; ++WSI) { 1283 // Create a new write representing the expanded sequence. 1284 OperWritesVariant.push_back( 1285 SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); 1286 } 1287 IdxVec OperReadsVariant; 1288 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1289 RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); 1290 RSI != RSE; ++RSI) { 1291 // Create a new read representing the expanded sequence. 1292 OperReadsVariant.push_back( 1293 SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); 1294 } 1295 IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); 1296 CodeGenSchedTransition SCTrans; 1297 SCTrans.ToClassIdx = 1298 SchedModels.addSchedClass(OperWritesVariant, OperReadsVariant, 1299 ProcIndices); 1300 SCTrans.ProcIndices = ProcIndices; 1301 // The final PredTerm is unique set of predicates guarding the transition. 1302 RecVec Preds; 1303 for (SmallVectorImpl<PredCheck>::const_iterator 1304 PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { 1305 Preds.push_back(PI->Predicate); 1306 } 1307 RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); 1308 Preds.resize(PredsEnd - Preds.begin()); 1309 SCTrans.PredTerm = Preds; 1310 SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); 1311 } 1312 } 1313 1314 // Create new SchedClasses for the given ReadWrite list. If any of the 1315 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant 1316 // of the ReadWrite list, following Aliases if necessary. 1317 void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites, 1318 const IdxVec &OperReads, 1319 unsigned FromClassIdx, 1320 const IdxVec &ProcIndices) { 1321 DEBUG(dbgs() << "INFER RW: "); 1322 1323 // Create a seed transition with an empty PredTerm and the expanded sequences 1324 // of SchedWrites for the current SchedClass. 1325 std::vector<PredTransition> LastTransitions; 1326 LastTransitions.resize(1); 1327 LastTransitions.back().ProcIndices.append(ProcIndices.begin(), 1328 ProcIndices.end()); 1329 1330 for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) { 1331 IdxVec WriteSeq; 1332 expandRWSequence(*I, WriteSeq, /*IsRead=*/false); 1333 unsigned Idx = LastTransitions[0].WriteSequences.size(); 1334 LastTransitions[0].WriteSequences.resize(Idx + 1); 1335 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; 1336 for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) 1337 Seq.push_back(*WI); 1338 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1339 } 1340 DEBUG(dbgs() << " Reads: "); 1341 for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) { 1342 IdxVec ReadSeq; 1343 expandRWSequence(*I, ReadSeq, /*IsRead=*/true); 1344 unsigned Idx = LastTransitions[0].ReadSequences.size(); 1345 LastTransitions[0].ReadSequences.resize(Idx + 1); 1346 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; 1347 for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) 1348 Seq.push_back(*RI); 1349 DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); 1350 } 1351 DEBUG(dbgs() << '\n'); 1352 1353 // Collect all PredTransitions for individual operands. 1354 // Iterate until no variant writes remain. 1355 while (hasVariant(LastTransitions, *this)) { 1356 PredTransitions Transitions(*this); 1357 for (std::vector<PredTransition>::const_iterator 1358 I = LastTransitions.begin(), E = LastTransitions.end(); 1359 I != E; ++I) { 1360 Transitions.substituteVariants(*I); 1361 } 1362 DEBUG(Transitions.dump()); 1363 LastTransitions.swap(Transitions.TransVec); 1364 } 1365 // If the first transition has no variants, nothing to do. 1366 if (LastTransitions[0].PredTerm.empty()) 1367 return; 1368 1369 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to 1370 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. 1371 inferFromTransitions(LastTransitions, FromClassIdx, *this); 1372 } 1373 1374 // Collect and sort WriteRes, ReadAdvance, and ProcResources. 1375 void CodeGenSchedModels::collectProcResources() { 1376 // Add any subtarget-specific SchedReadWrites that are directly associated 1377 // with processor resources. Refer to the parent SchedClass's ProcIndices to 1378 // determine which processors they apply to. 1379 for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); 1380 SCI != SCE; ++SCI) { 1381 if (SCI->ItinClassDef) 1382 collectItinProcResources(SCI->ItinClassDef); 1383 else 1384 collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); 1385 } 1386 // Add resources separately defined by each subtarget. 1387 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); 1388 for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { 1389 Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); 1390 addWriteRes(*WRI, getProcModel(ModelDef).Index); 1391 } 1392 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); 1393 for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { 1394 Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); 1395 addReadAdvance(*RAI, getProcModel(ModelDef).Index); 1396 } 1397 // Finalize each ProcModel by sorting the record arrays. 1398 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1399 CodeGenProcModel &PM = ProcModels[PIdx]; 1400 std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), 1401 LessRecord()); 1402 std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), 1403 LessRecord()); 1404 std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), 1405 LessRecord()); 1406 DEBUG( 1407 PM.dump(); 1408 dbgs() << "WriteResDefs: "; 1409 for (RecIter RI = PM.WriteResDefs.begin(), 1410 RE = PM.WriteResDefs.end(); RI != RE; ++RI) { 1411 if ((*RI)->isSubClassOf("WriteRes")) 1412 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; 1413 else 1414 dbgs() << (*RI)->getName() << " "; 1415 } 1416 dbgs() << "\nReadAdvanceDefs: "; 1417 for (RecIter RI = PM.ReadAdvanceDefs.begin(), 1418 RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { 1419 if ((*RI)->isSubClassOf("ReadAdvance")) 1420 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; 1421 else 1422 dbgs() << (*RI)->getName() << " "; 1423 } 1424 dbgs() << "\nProcResourceDefs: "; 1425 for (RecIter RI = PM.ProcResourceDefs.begin(), 1426 RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { 1427 dbgs() << (*RI)->getName() << " "; 1428 } 1429 dbgs() << '\n'); 1430 } 1431 } 1432 1433 // Collect itinerary class resources for each processor. 1434 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { 1435 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { 1436 const CodeGenProcModel &PM = ProcModels[PIdx]; 1437 // For all ItinRW entries. 1438 bool HasMatch = false; 1439 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); 1440 II != IE; ++II) { 1441 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 1442 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) 1443 continue; 1444 if (HasMatch) 1445 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " 1446 + ItinClassDef->getName() 1447 + " in ItinResources for " + PM.ModelName); 1448 HasMatch = true; 1449 IdxVec Writes, Reads; 1450 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); 1451 IdxVec ProcIndices(1, PIdx); 1452 collectRWResources(Writes, Reads, ProcIndices); 1453 } 1454 } 1455 } 1456 1457 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, 1458 const IdxVec &ProcIndices) { 1459 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); 1460 if (SchedRW.TheDef) { 1461 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { 1462 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1463 PI != PE; ++PI) { 1464 addWriteRes(SchedRW.TheDef, *PI); 1465 } 1466 } 1467 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { 1468 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1469 PI != PE; ++PI) { 1470 addReadAdvance(SchedRW.TheDef, *PI); 1471 } 1472 } 1473 } 1474 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); 1475 AI != AE; ++AI) { 1476 IdxVec AliasProcIndices; 1477 if ((*AI)->getValueInit("SchedModel")->isComplete()) { 1478 AliasProcIndices.push_back( 1479 getProcModel((*AI)->getValueAsDef("SchedModel")).Index); 1480 } 1481 else 1482 AliasProcIndices = ProcIndices; 1483 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); 1484 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); 1485 1486 IdxVec ExpandedRWs; 1487 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); 1488 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); 1489 SI != SE; ++SI) { 1490 collectRWResources(*SI, IsRead, AliasProcIndices); 1491 } 1492 } 1493 } 1494 1495 // Collect resources for a set of read/write types and processor indices. 1496 void CodeGenSchedModels::collectRWResources(const IdxVec &Writes, 1497 const IdxVec &Reads, 1498 const IdxVec &ProcIndices) { 1499 1500 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) 1501 collectRWResources(*WI, /*IsRead=*/false, ProcIndices); 1502 1503 for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) 1504 collectRWResources(*RI, /*IsRead=*/true, ProcIndices); 1505 } 1506 1507 1508 // Find the processor's resource units for this kind of resource. 1509 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, 1510 const CodeGenProcModel &PM) const { 1511 if (ProcResKind->isSubClassOf("ProcResourceUnits")) 1512 return ProcResKind; 1513 1514 Record *ProcUnitDef = 0; 1515 RecVec ProcResourceDefs = 1516 Records.getAllDerivedDefinitions("ProcResourceUnits"); 1517 1518 for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); 1519 RI != RE; ++RI) { 1520 1521 if ((*RI)->getValueAsDef("Kind") == ProcResKind 1522 && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { 1523 if (ProcUnitDef) { 1524 PrintFatalError((*RI)->getLoc(), 1525 "Multiple ProcessorResourceUnits associated with " 1526 + ProcResKind->getName()); 1527 } 1528 ProcUnitDef = *RI; 1529 } 1530 } 1531 if (!ProcUnitDef) { 1532 PrintFatalError(ProcResKind->getLoc(), 1533 "No ProcessorResources associated with " 1534 + ProcResKind->getName()); 1535 } 1536 return ProcUnitDef; 1537 } 1538 1539 // Iteratively add a resource and its super resources. 1540 void CodeGenSchedModels::addProcResource(Record *ProcResKind, 1541 CodeGenProcModel &PM) { 1542 for (;;) { 1543 Record *ProcResUnits = findProcResUnits(ProcResKind, PM); 1544 1545 // See if this ProcResource is already associated with this processor. 1546 RecIter I = std::find(PM.ProcResourceDefs.begin(), 1547 PM.ProcResourceDefs.end(), ProcResUnits); 1548 if (I != PM.ProcResourceDefs.end()) 1549 return; 1550 1551 PM.ProcResourceDefs.push_back(ProcResUnits); 1552 if (!ProcResUnits->getValueInit("Super")->isComplete()) 1553 return; 1554 1555 ProcResKind = ProcResUnits->getValueAsDef("Super"); 1556 } 1557 } 1558 1559 // Add resources for a SchedWrite to this processor if they don't exist. 1560 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { 1561 assert(PIdx && "don't add resources to an invalid Processor model"); 1562 1563 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; 1564 RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); 1565 if (WRI != WRDefs.end()) 1566 return; 1567 WRDefs.push_back(ProcWriteResDef); 1568 1569 // Visit ProcResourceKinds referenced by the newly discovered WriteRes. 1570 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); 1571 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); 1572 WritePRI != WritePRE; ++WritePRI) { 1573 addProcResource(*WritePRI, ProcModels[PIdx]); 1574 } 1575 } 1576 1577 // Add resources for a ReadAdvance to this processor if they don't exist. 1578 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, 1579 unsigned PIdx) { 1580 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; 1581 RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); 1582 if (I != RADefs.end()) 1583 return; 1584 RADefs.push_back(ProcReadAdvanceDef); 1585 } 1586 1587 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { 1588 RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), 1589 PRDef); 1590 if (PRPos == ProcResourceDefs.end()) 1591 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " 1592 "the ProcResources list for " + ModelName); 1593 // Idx=0 is reserved for invalid. 1594 return 1 + (PRPos - ProcResourceDefs.begin()); 1595 } 1596 1597 #ifndef NDEBUG 1598 void CodeGenProcModel::dump() const { 1599 dbgs() << Index << ": " << ModelName << " " 1600 << (ModelDef ? ModelDef->getName() : "inferred") << " " 1601 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; 1602 } 1603 1604 void CodeGenSchedRW::dump() const { 1605 dbgs() << Name << (IsVariadic ? " (V) " : " "); 1606 if (IsSequence) { 1607 dbgs() << "("; 1608 dumpIdxVec(Sequence); 1609 dbgs() << ")"; 1610 } 1611 } 1612 1613 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { 1614 dbgs() << "SCHEDCLASS " << Name << '\n' 1615 << " Writes: "; 1616 for (unsigned i = 0, N = Writes.size(); i < N; ++i) { 1617 SchedModels->getSchedWrite(Writes[i]).dump(); 1618 if (i < N-1) { 1619 dbgs() << '\n'; 1620 dbgs().indent(10); 1621 } 1622 } 1623 dbgs() << "\n Reads: "; 1624 for (unsigned i = 0, N = Reads.size(); i < N; ++i) { 1625 SchedModels->getSchedRead(Reads[i]).dump(); 1626 if (i < N-1) { 1627 dbgs() << '\n'; 1628 dbgs().indent(10); 1629 } 1630 } 1631 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; 1632 } 1633 1634 void PredTransitions::dump() const { 1635 dbgs() << "Expanded Variants:\n"; 1636 for (std::vector<PredTransition>::const_iterator 1637 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { 1638 dbgs() << "{"; 1639 for (SmallVectorImpl<PredCheck>::const_iterator 1640 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); 1641 PCI != PCE; ++PCI) { 1642 if (PCI != TI->PredTerm.begin()) 1643 dbgs() << ", "; 1644 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name 1645 << ":" << PCI->Predicate->getName(); 1646 } 1647 dbgs() << "},\n => {"; 1648 for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator 1649 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); 1650 WSI != WSE; ++WSI) { 1651 dbgs() << "("; 1652 for (SmallVectorImpl<unsigned>::const_iterator 1653 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { 1654 if (WI != WSI->begin()) 1655 dbgs() << ", "; 1656 dbgs() << SchedModels.getSchedWrite(*WI).Name; 1657 } 1658 dbgs() << "),"; 1659 } 1660 dbgs() << "}\n"; 1661 } 1662 } 1663 #endif // NDEBUG 1664